八年级上册数学 全等三角形易错题(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册数学全等三角形易错题(Word版含答案)
一、八年级数学轴对称三角形填空题(难)
1.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=___________.
【答案】40°
【解析】
【分析】
作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质即可求解.
【详解】
如图:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA、OB 的交点时,△PMN的周长最短,连接P1O、P2O,
∵PP1关于OA对称,
∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM=50°
同理,∠P2OP=2∠NOP,OP=OP2,
∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,
∴△P1OP2是等腰三角形.
∴∠OP2N=∠OP1M=50°,
∴∠P1OP2=180°-2×50°=80°,
∴∠AOB=40°,
故答案为:40°
【点睛】
本题考查了对称的性质,正确作出图形,证得△P1OP2是等腰三角形是解题的关键.
内任意一点,OP=5 cm,点M和点N分别是射线OA和射线2.如图,点P是AOB
OB 上的动点,PN PM MN ++的最小值是5 cm ,则AOB ∠的度数是__________.
【答案】30°
【解析】
试题解析:分别作点P 关于OA 、OB 的对称点C 、D ,连接CD ,
分别交OA 、OB 于点M 、N ,连接OC 、OD 、PM 、PN 、MN ,如图所示:
∵点P 关于OA 的对称点为D ,关于OB 的对称点为C ,
∴PM=DM ,OP=OD ,∠DOA=∠POA ;
∵点P 关于OB 的对称点为C ,
∴PN=CN ,OP=OC ,∠COB=∠POB ,
∴OC=OP=OD ,∠AOB=
12
∠COD , ∵PN+PM+MN 的最小值是5cm ,
∴PM+PN+MN=5,
∴DM+CN+MN=5,
即CD=5=OP ,
∴OC=OD=CD , 即△OCD 是等边三角形,
∴∠COD=60°,
∴∠AOB=30°.
3.如图,在ABC ∆中,点D 是BC 的中点,点E 是AD 上一点,BE AC =.若70C ∠=︒,50DAC ∠=︒ 则EBD ∠的度数为______.
【答案】10︒
【解析】
【分析】
延长AD 到F 使DF AD =,连接BF ,通过ACD FDB ≅,根据全等三角形的性质得到CAD BFD ∠=∠,AC BF =, 等量代换得BF BE =,由等腰三角形的性质得到F BEF ∠=∠,即可得到BEF CAD ∠=∠,进而利用三角形的内角和解答即可得.
【详解】
如图,延长AD 到F ,使DF AD =,连接BF :
∵D 是BC 的中点
∴BD CD =
又∵ADC FDB ∠=∠,AD DF =
∴ACD FDB ≅
∴AC BF =, CAD F ∠=∠,C DBF ∠=∠
∵AC BE =, 70C ︒∠=, 50CAD ︒∠=
∴BE BF =, 70DBF ︒∠=
∴50BEF F ︒∠=∠=
∴180180505080EBF F BEF ︒︒︒︒︒∠=-∠-∠=--=
∴807010EBD EBF DBF ︒︒︒∠=∠-∠=-=
故答案为:10︒
【点睛】
本题主要考查的知识点有全等三角形的判定及性质、等腰三角形的性质及三角形的内角和定理,解题的关键在于通过倍长中线法构造全等三角形.
4.如图,将ABC ∆沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的1A 处,称为第1次操作,折痕DE 到BC 的距离记为1h ,还原纸片后,再将ADE ∆沿着过AD 中点1D 的直线折叠,使点A 落在DE 边上的2A 处,称为第2次操作,折痕11D E 到BC 的距离记为2h ,按上述方法不断操作下去…经过第2020次操作后得到的折痕20192019D E 到BC 的距离记为2020h ,若11h =,则2020h 的值为______.
【答案】2019122-
【解析】
【分析】
根据中点的性质及折叠的性质可得DA=DA ₁=DB,从而可得∠ADA ₁=2∠B,结合折叠的性质可得.,∠ADA ₁=2∠ADE,可得∠ADE=∠B,继而判断DE// BC,得出DE 是△ABC 的中位线,证得AA ₁⊥BC,AA ₁=2,由此发现规律:01
2122h =-=-₁同理21122h =-3211122222
h =-⨯=-…于是经过第n 次操作后得到的折痕Dn-1 En-1到BC 的距离1122n n h -=-
,据此求得2020h 的值. 【详解】
解:如图连接AA ₁,由折叠的性质可得:AA ₁⊥DE, DA= DA ₁ ,A ₂、A ₃…均在AA ₁上
又∵ D 是AB 中点,∴DA= DB ,
∵DB= DA ₁ ,
∴∠BA ₁D=∠B ,
∴∠ADA ₁=∠B +∠BA ₁D=2∠B,