《电磁场与电磁波》复习纲要(含答案)
电磁场与电磁波试卷及复习提纲.
《电磁场与电磁波》学习提要第一章场论简介1、方向导数和梯度的概念;方向导数和梯度的关系。
2、通量的定义;散度的定义及作用。
3、环量的定义;旋度的定义及作用;旋度的两个重要性质。
4、场论的两个重要定理:高斯散度定理和斯托克斯定理。
第二章静电场1、电场强度的定义和电力线的概念。
2、点电荷的场强公式及场强叠加原理;场强的计算实例。
3、静电场的高斯定理;用高斯定理求场强方法与实例。
4、电压、电位和电位差的概念;点电荷电位公式;电位叠加原理。
5、等位面的定义;等位面的性质;电位梯度,电位梯度与场强的关系。
6、静电场环路定理的积分形式和微分形式,静电场的基本性质。
7、电位梯度的概念;电位梯度和电场强度的关系。
8、导体静电平衡条件;处于静电平衡的导体的性质。
9、电偶极子的概念。
10、电位移向量;电位移向量与场强的关系;介质中高斯定理的微分形式和积分形式;求介质中的场强。
11、介质中静电场的基本方程;介质中静电场的性质。
12、独立导体的电容;两导体间的电容;求电容及电容器电场的方法与实例。
13、静电场的能量分布,和能量密度的概念。
第三章电流场和恒定电场1、传导电流和运流电流的概念。
2、电流强度和电流密度的概念;电流强度和电流密度的关系。
3、欧姆定律的微分形式和积分形式。
4、电流连续性方程的微分形式和积分形式;恒定电流的微分形式和积分形式及其意义。
5、电动势的定义。
6、恒定电场的基本方程及其性质。
第四章恒定磁场1、电流产生磁场,恒定电流产生恒定磁场。
2、电流元与电流元之间磁相互作用的规律-安培定律。
3、安培公式;磁感应强度矢量的定义;磁感应强度矢量的方向、大小和单位。
4、洛仑兹力及其计算公式。
5、电流元所产生的磁场元:比奥-萨伐尔定律;磁场叠加原理;磁感应线。
计算磁场的方法和实例。
6、磁通的定义和单位。
7、磁通连续性原理的微分形式、积分形式和它们的意义。
8、通量源和旋涡源的定义。
9、安培环路定律的积分形式和微分形式。
《电磁场与电磁波》期末复习题及答案
《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。
A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。
《电磁场与电磁波》课后习题解答(全)
(3)
【习题3.4】
解:(1)在区域中,传导电流密度为0,即J=0
将 表示为复数形式,有
由复数形式的麦克斯韦方程,可得电场的复数形式
所以,电场的瞬时值形式为
(2) 处的表面电流密度
(3) 处的表面电荷密度
(4) 处的位移电流密度
【习题3.5】
解:传导电流密度 (A/ )
位移电流密度
【习题3.6】
(2)内导体表面的电流密度
(3)
所以,在 中的位移电流
【习题2.13】
解:(1)将 表示为复数形式:
则由时谐形式的麦克斯韦方程可得:
而磁场的瞬时表达式为
(2)z=0处导体表面的电流密度为
z=d处导体表面的电流密度为
【习题2.14】
已知正弦电磁场的电场瞬时值为
式中
试求:(1)电场的复矢量;
(2)磁场的复矢量和瞬时值。
由安培环路定律: ,按照上图所示线路积分有
等式左边
等号右边为闭合回路穿过的总电流
所以
写成矢量式为
将 代入得
【习题3.18】
解:当 时, ,
当 时, ,
这表明 和 是理想导电壁得表面,不存在电场的切向分量 和磁场的法向分量 。
在 表面,法线
所以
在 表面,法线
所以
【习题3.19】
证明:考虑极化后的麦克斯韦第一方程
(1)
和 (2)
若采用库仑规范,即 (3)
对(1)式两边取散度,有
将(2)、(3)式代入,得
故电流连续性也是满足的。
【习题4.3】解:
【习题4.4】
证明:因为 即
故 满足连续性方程。
另外, 满足洛仑兹条件。
《电磁场与电磁波》必考复习题(2013年)有答案
为体积 V 内总的损耗功率。
(E H) dS ——单位时间内通过曲面 S
S
进入体积 V 的电磁能量。
物理意义: 在单位时间内, 通过曲面 S 进入体积 V 的电磁能量等于体积 V 中 所增加的电磁场能量与损耗的能量之和——能量守恒! 。 8.什么是波的极化?说明极化分类及判断规则。 答:波的极化:在电磁波传播空间给定点处,电场强度矢量的端点随时间变化的 轨迹, 或者说是在空间给定点上电场强度矢量的取向随时间变化的特性分为线极 化、圆极化、椭圆极化三种。 判断规则:根据两正交分量的振幅或/和两者初相角的相对大小来确定,如 果 y x 0或 ,则为线极化;若 E ym E xm ,且 y x / 2 , 则是圆极化波;其它情况是椭圆极化波。 9.分别定性说明均匀平面波在理想介质中、导电媒质中的传播特性。 答:理想介质中的均匀平面波的传播特点: 电场、磁场与传播方向之间相互垂直,是横电磁波(TEM 波) ; 无衰减,电场与磁场的振幅不变; 波阻抗为实数,电场与磁场同相位; 电磁波的相速与频率无关,无色散; 电场能量密度等于磁场能量密度,能量的传输速度等于相速。 导电媒质中均匀平面波的传播特点: ●电场强度 E 、 磁场强度 H 与波的传播方向相互垂直, 是横电磁波 (TEM 波) ; ●媒质的本征阻抗为复数,电场与磁场相位不同,磁场滞后于电场 角; ●在波的传播过程中,电场与磁场的振幅呈指数衰减; ●电磁波的相速不仅与媒质参数有关,而且与频率有关 (有色散) ; ●平均磁场能量密度大于平均电场能量密度。 10.简要说明行波、驻波、行驻波之间的区别。 答:行波的振幅不变,其驻波比为 1;驻波的振幅最小值是零,其驻波比为无穷
《第5章 电磁场与电磁波》试卷及答案_高中物理必修 第三册_沪教版_2024-2025学年
《第5章电磁场与电磁波》试卷(答案在后面)一、单项选择题(本大题有7小题,每小题4分,共28分)1、关于电磁场理论,以下哪个陈述是正确的?A. 变化的电场周围一定产生变化的磁场。
B. 恒定电流周围可以产生稳定的磁场,但不会产生电场。
C. 静止电荷产生的电场会随时间变化而改变。
D. 光速在任何惯性参考系中都是不同的。
2、对于电磁波传播特性,下列说法中哪一项是错误的?A. 电磁波可以在真空中传播。
B. 电磁波传播不需要介质。
C. 所有电磁波在真空中的传播速度相同。
D. 不同频率的电磁波在同一介质中的折射率总是相同。
3、关于电磁波的传播特性,以下说法正确的是:A. 电磁波只能在真空中传播B. 电磁波的传播速度在任何介质中都相同C. 电磁波传播不需要介质D. 电磁波不能被反射或折射4、对于麦克斯韦方程组,下列叙述哪一项是准确的?A. 麦克斯韦方程组只适用于静态电场和磁场B. 麦克斯韦方程组预言了电磁波的存在C. 麦克斯韦方程组无法解释光的偏振现象D. 麦克斯韦方程组表明变化的电场不会产生磁场5、在真空中,一个均匀带电的无限长直导线周围产生的磁场强度(H)与距离导线的距离(r)成反比。
如果导线单位长度上的电流为(I),那么在距离导线(r)处的磁场强度(H)可以用下列哪个公式表示?(真空中的磁导率(μ0=4π×10−7 T⋅m/A)))A.(H=μ0I2πr)B.(H=μ0Iπr)C.(H=2μ0Iπr)D.(H=μ0I4πr6、当电磁波在真空中传播时,下面哪一个描述是不正确的?A. 电磁波的速度等于光速(c)。
B. 电磁波的电场和磁场相互垂直。
C. 电磁波的能量密度由其频率决定。
D. 电磁波的传播不需要介质。
7、一个电子在电场中沿着电场线方向从A点移动到B点,下列说法中正确的是:A. 电子在A点的电势能大于在B点的电势能。
B. 电子在A点的电势能小于在B点的电势能。
C. 电子在A点的电势能等于在B点的电势能。
电磁场与电磁波复习提纲
“电磁场与电磁波“复习提纲根本定义、根本公式、根本概念、根本计算一、场的概念〔§1-1〕 1. 场的定义2. 标量场与矢量场:等值面、矢量线 二、矢量分析1. 矢量点积与叉积的定义:〔第一次习题〕2. 三种常用正交坐标系3.标量的梯度〔§1-3〕 a) 等值面:例1-1 b) 方向导数:例1-2c) 梯度定义与计算:例1-3 4. 矢量场的通量与散度〔§1-4〕a) 矢量线的定义:例1-4b) 矢量场的通量:()()S e r F S r F n SSd d⋅=⋅=⎰⎰ψc) 矢量场的散度定义与计算:例1-5d) 散度定理〔高斯定理〕:⎰⎰⋅=⋅∇SVS F V Fd d5. 矢量场的环量与旋度〔§1-5〕a) 矢量场的环流〔环量〕:⎰⋅=ll F d Γb) 矢量场的旋度定义与计算:例1-6 c) 旋度定理〔斯托克斯定理〕:()⎰⎰⋅=⋅⨯∇CSl F S Fd d6. 无源场与无散场a) 旋度的散度()0≡⨯∇⋅∇A ,散度处处为0的矢量场为无源场,有A F⨯∇=b) 梯度的旋度()0≡∇⨯∇ϕ,旋度处处为0的矢量场为无旋场,有u F -∇=;c) 矢量场的分类 7. 拉普拉斯算子8. 亥姆霍兹定理:概念与意义 根本概念:1. 矢量场的散度和旋度用于描述矢量场的不同性质a) 矢量场的旋度是矢量,矢量场的散度是标量;b) 旋度描述矢量场中场量与涡旋源的关系,散度描述矢量场中场量与通量源的关系; c) 无源场与无旋场的条件;d) 旋度描述场分量在与其垂直方向上的变化规律;散度描述场分量沿各自方向上的变化规律 2. 亥姆霍兹定理概括了矢量场的根本性质a) 矢量场由其散度、旋度和边界条件唯一确定;b) 由于矢量的散度和旋度分别对应矢量场的一种源,故分析矢量场总可以从研究其散度和旋度着手; c) 散度方程和旋度方程是矢量场的微分形式,故可以从矢量场沿闭合面的通量和沿闭合路径的环流着手,得到根本方程的积分形式。
《电磁场与电磁波》习题参考答案
况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。
电磁场与电磁波复习题(含答案)
电磁场与电磁波复习题(含答案)电磁场与电磁波复习题⼀、填空题1、⽮量的通量物理含义是⽮量穿过曲⾯的⽮量线总数,散度的物理意义⽮量场中任意⼀点处通量对体积的变化率。
散度与通量的关系是⽮量场中任意⼀点处通量对体积的变化率。
2、散度在直⾓坐标系的表达式 z A y A x A z yxA A ??++=??=ρρdiv ;散度在圆柱坐标系下的表达;3、⽮量函数的环量定义⽮量A 沿空间有向闭合曲线C 的线积分,旋度的定义过点P 作⼀微⼩曲⾯S,它的边界曲线记为L,⾯的法线⽅与曲线绕向成右⼿螺旋法则。
当S 点P 时,存在极限环量密度。
⼆者的关系 ndS dC e A ρρ?=rot ;旋度的物理意义点P 的旋度的⼤⼩是该点环量密度的最⼤值;点P 的旋度的⽅向是该点最⼤环量密度的⽅向。
4.⽮量的旋度在直⾓坐标系下的表达式。
5、梯度的物理意义标量场的梯度是⼀个⽮量,是空间坐标点的函数。
梯度的⼤⼩为该点标量函数?的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向等值⾯、⽅向导数与梯度的关系是梯度的⼤⼩为该点标量函数的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向.; 6、⽤⽅向余弦cos ,cos ,cos αβγ写出直⾓坐标系中单位⽮量l e r 的表达式;7、直⾓坐标系下⽅向导数u的数学表达式是,梯度的表达式8、亥姆霍兹定理的表述在有限区域内,⽮量场由它的散度、旋度及边界条件唯⼀地确定,说明的问题是⽮量场的散度应满⾜的关系及旋度应满⾜的关系决定了⽮量场的基本性质。
9、麦克斯韦⽅程组的积分形式分别为 0()s l s s l sD dS Q BE dl dS t B dS D H dl J dS t ?=??=-??=?=+r r r r r r r r g r r r r r g ????其物理描述分别为10、麦克斯韦⽅程组的微分形式分别为 020E /E /t B 0B //t B c J E ρεε??=??=-=??=+??r r r r r r r其物理意义分别为11、时谐场是激励源按照单⼀频率随时间作正弦变化时所激发的也随时间按照正弦变化的场,⼀般采⽤时谐场来分析时变电磁场的⼀般规律,是因为任何时变周期函数都可以⽤正弦函数表⽰的傅⾥叶级数来表⽰;在线性条件下,可以使⽤叠加原理。
电磁波与电磁场期末复习题(试题+答案)
电磁波与电磁场期末复习题(试题+答案)电磁波与电磁场期末试题一、填空题(20分)1.旋度矢量的散度恒等与零,梯度矢量的旋度恒等与零。
2.在理想导体与介质分界面上,法线矢量n r由理想导体2指向介质1,则磁场满足的边界条件:01=?B n ρρ,s J H n =?1ρρ。
3.在静电场中,导体表面的电荷密度σ与导体外的电位函数?满足的关系式n ??=?εσ-。
4.极化介质体积内的束缚电荷密度σ与极化强度P 之间的关系式为P ?-?=σ。
5.在解析法求解静态场的边值问题中,分离变量法是求解拉普拉斯方程的最基本方法;在某些特定情况下,还可用镜像法求拉普拉斯方程的特解。
6.若密绕的线圈匝数为N ,则产生的磁通为单匝时的N 倍,其自感为单匝的2N 倍。
7.麦克斯韦关于位移电流的假说反映出变化的电场要产生磁场。
8.表征时变场中电磁能量的守恒关系是坡印廷定理。
9.如果将导波装置的两端短路,使电磁波在两端来回反射以产生振荡的装置称为谐振腔。
10.写出下列两种情况下,介电常数为ε的均匀无界媒质中电场强度的量值随距离r 的变化规律:带电金属球(带电荷量为Q )E = 24r Qπε;无限长线电荷(电荷线密度为λ)E =r2。
11.电介质的极性分子在无外电场作用下,所有正、负电荷的作用中心不相重合,而形成电偶极子,但由于电偶极矩方向不规则,电偶极矩的矢量和为零。
在外电场作用下,极性分子的电矩发生转向,使电偶极矩的矢量和不再为零,而产生极化。
12.根据场的唯一性定理在静态场的边值问题中,只要满足给定的边界条件,则泊松方程或拉普拉斯方程的解是唯一的。
二、判断题(每空2分,共10分)1.应用分离变量法求解电、磁场问题时,要求整个场域内媒质必须是均匀、线性的。
(×)2.一个点电荷Q 放在球形高斯面中心处。
如果此电荷被移开原来的球心,但仍在球内,则通过这个球面的电通量将会改变。
(×)3.在线性磁介质中,由IL ψ=的关系可知,电感系数不仅与导线的几何尺寸、材料特性有关,还与通过线圈的电流有关。
电磁波与电磁场(总复习).
5.电容C
q q U 1 2 1 1 q2 2 (We qU CU ) 2 2 2C We
V
1 n 电场能量:We qii 2 i 1
1 E DdV 2
二、计算
1.基本计算:均匀媒质、2种媒质中带电体周围的 D、E、 ? 分析方法:使用高斯定律
C
0 4
B(r )
0 4
V
J ( r ') R dV ' 3 R
J mS M n
3.基本方程: H dl I H J 本构关系: B H 矢量磁位: B A 4.边界条件:B2 n B1n 5. 电感:L I M 12
一主要知识点概念主要结论第五章时变电磁场一主要知识点
第 1章
矢量分析要点
一 、概念 1.“场”:定义、分类、几何描述方法? 2. 亥姆霍兹定理? 二、标量场 G e e e
l
x
x
y
y
z
z
P0
cos cos cos G l 0 x y z
3.瞬时矢量与复矢量之间的转换规则?
( x, y, z)e jt ] E( x, y, z, t ) Re[E
波动方程的2种形式?复数波动方程的推导? 二、计算: 1.场的瞬时形式与复矢量之间的转换? 2.已知磁场,求电场: 已知电场,求磁场:
第六章
平面电磁波
一、主要知识点 均匀平面波传播特性;波的极化 1.均匀平面波定义 2.无耗介质中 E ex E0 e jkz E( z, t ) ex E0m cos(t kz 0 )
计算: ?
电磁场与电磁波复习题(含答案)
电磁场与电磁波复习题 一、填空题1、矢量的通量物理含义是矢量穿过曲面的矢量线总数,散度的物理意义矢量场中任意一点处通量对体积的变化率。
散度与通量的关系是矢量场中任意一点处通量对体积的变化率。
2、 散度在直角坐标系的表达式 z A y A x A z yxA A ∂∂∂∂∂∂++=⋅∇= div ;散度在圆柱坐标系下的表达;3、矢量函数的环量定义矢量A 沿空间有向闭合曲线C 的线积分, 旋度的定义 过点P 作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右手螺旋法则。
当S 点P 时,存在极限环量密度。
二者的关系n dS dC e A ⋅=rot ;旋度的物理意义点P 的旋度的大小是该点环量密度的最大值;点P 的旋度的方向是该点最 大环量密度的方向。
4.矢量的旋度在直角坐标系下的表达式。
5、梯度的物理意义标量场的梯度是一个矢量,是空间坐标点的函数。
梯度的大小为该点标量函数ϕ的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向等值面、方向导数与梯度的关系是梯度的大小为该点标量函数ϕ的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向.; 6、用方向余弦cos ,cos ,cos αβγ写出直角坐标系中单位矢量l e 的表达式 ; 7、直角坐标系下方向导数u ∂的数学表达式是cos cos cos l αβγ∂∂∂∂∂∂∂∂uuuu=++xyz ,梯度的表达式x y z G e e e grad x y z φφφφφ∂∂∂=++=∇=∂∂∂;8、亥姆霍兹定理的表述在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,说明的问题是矢量场的散度应满足的关系及旋度应满足的关系决定了矢量场的基本性质。
9、麦克斯韦方程组的积分形式分别为0()s l s s l s D dS Q B E dl dS t B dS D H dl J dS t ⋅=∂⋅=-⋅∂=∂=+⋅∂⎰⎰⎰⎰⎰⎰其物理描述分别为10、麦克斯韦方程组的微分形式分别为20E /E /tB 0B //tB c J E ρεε∇⋅=∇⨯=-∂∂∇⋅=∇⨯=+∂∂其物理意义分别为 11、时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的场, 一般采用时谐场来分析时变电磁场的一般规律,是因为任何时变周期函数都可以用正弦函数表示的傅里叶级数来表示;在线性条件下,可以使用叠加原理。
电磁场与电磁波答案(无填空答案)
电磁场与电磁波复习材料简答2.试写出在理想导体表面电位所满足的边界条件。
一2•答:设理想导体内部电位対机,空气媒质中电位为观。
由于理想导1■本表面电场的切向分量等于零,或者说电场垂直于理想导体表面,因此有〔3分)3.试简述静电平衡状态下带电导体的性质。
答:静电平衡状态下,带电导体是等位体,导体表面为等位面;(2分)导体内部电场强度等于零,在导体表面只有电场的法向分量。
(3分)4.什么是色散?色散将对信号产生什么影响?答:在导电媒质中,电磁波的传播速度随频率变化的现象称为色散。
(3分)色散将使信号产生失真,从而影响通信质量。
(2分) aB dt ,试说明其物理意义,并写出方程的积分形式。
答:意义:随时间变化的磯场可以产生电场-其和分形式为:样•必=-[理廖C 右况6.试简述唯一性定理,并说明其意义。
答:在静电场中,在给定的边界条件下,拉普拉斯方程或泊松方程的解是唯一的「这一定理称为唯一性定理4(3分9它的意义:给岀了定解的充要条件:既满足方程区满足边界条件的解是正确的。
7. 什么是群速?试写出群速与相速之间的关系式。
〔写出微分形式也对)VxE=5.已知麦克斯韦第二方程为 1.简述恒定磁场的性质,并写出其两个基本方程。
1■答:恒定谢场是连续的场或无散场,即谢感应强度沿任一闭合曲面的积分等于恒定磁场的源是矢量两个基本方答:它表明时变场中的磁场是由传导电§盍丿和位移电渍该方程的积分形芒为答:电磁波包络或能量的传播速度称为群速。
群速叫与相速®的关系式为:耳=―気厂(2分)1片畑8. 写出位移电流的表达式,它的提出有何意义?告,位移电流,=®位移电流产生磁效应代表了变化的电场能够产生磁场,使麦克斯韦能够预言电磁场以波的形式传播,为现代通信打下理论基础。
9.简述亥姆霍兹定理,并说明其意义。
答:当一个矢量场的两类源(标量源和矢量源)在空间的分布确定时,该矢量场就唯一地确定了,这一规律称为亥姆霍兹定理。
《电磁场与电磁波》笔记和课后习题(含考研真题)详解
第1章矢量分析1.1复习笔记一、标量场和矢量场1.一个只用大小描述的物理量为标量。
若所研究的物理量为一标量,则该物理量所确定的场为标量场,如温度场,密度场等。
用一个标量函数来表示该场为2.一个既有大小又有方向特性的物理量为矢量。
若所研究的物理量为一矢量,则该物理量所确定的场为矢量场,如力场、电场等。
用一个矢量函数来表示该场为二、标量场的方向导数与梯度1.在直角坐标系中方向导数的计算公式为式中,是方向l的方向余弦。
特点:方向导数既与所研究的点有关,也与方向有关。
2.标量场的梯度是一个矢量,在直角坐标系中,梯度的表达式为在柱坐标系和球坐标系中,梯度的表达式为标量场的梯度意义:描述标量场在某点的最大变化率及其变化最大的方向。
3.梯度运算的基本公式:三、矢量场的散度与旋度1.散度矢量通过包含该点的任意闭合小曲面的通量与曲面元体积之比的极限。
矢量场的散度是个标量,在直角坐标系、圆柱坐标系及球坐标系中的计算式分别为2.散度定理(高斯定理)矢量场F的散度在体积V上的体积分,等于矢量场F在限定该体积的闭合面S上的面积分。
3.旋度旋涡源密度矢量。
矢量场的旋度是个矢量,在直角坐标系、圆柱坐标系及球坐标系中分别表示为4.斯托克斯定理矢量场F的旋度在曲面S上的面积分等于矢量场F在限定曲面的闭合曲线C上的线积分。
四、无旋场与无散场1.仅有散度源而无旋度源的矢量场为无旋场,如静电场,。
梯度矢量的重要性质:它的旋度恒等于零,即。
2.仅有旋度源而无散度源的矢量场为无散场,如恒定磁场,。
旋度矢量的重要性质:它的散度恒等于零,即。
五、格林定理1.格林第一恒等式2.格林第二恒等式3.格林定理的应用:(1)利用格林定理可以将区域中场的求解问题转变为边界上场的求解问题。
(2)格林定理反映了两种标量场之间满足的关系。
因此,如果已知其中一种场的分布,即可利用格林定理求解另一种场的分布。
六、亥姆霍兹定理在有限区域V内,任一矢量场由它的散度、旋度和边界条件唯一地确定,且可表示为:1.2课后习题详解(一)思考题1.1如果A·B=A·C,是否意味着B=C?为什么?答:并不意味着B=C。
《电磁场与电磁波》期末复习
ò E v(rv)=- 1 r(rv')?(1)dV'
4pe0V'
R
ò Ev(rv)=-
?
轾 犏 犏 犏 臌 4p1e0V'
r(rv'))dV' R
E v(rv)=-?f(rv)
➢ 静电场的散度(有源场)
炎Dv = r
炎Ev= rf + rp e0
➢ 高斯通量定理
vv
òÑ SD?dS åq
➢ 媒质极化
➢ 两个零恒等式
(1) ()0
任何标量场梯度的旋度恒为零。
v (2) ( A )0
任何矢量场的旋度的散度恒为零。
电磁场的基本规律
➢ 电流连续性方程(无源区)
vv
òÑsJ ?dS 0
炎
v J
=
-
¶r
¶t
➢ 静电场的旋度(无旋度)
蝌 蜒 E v?dlv l
vv
(汛E)缀 dS 0
s
v
汛E=0
➢ 电位函数
¶u ¶l
=
gradu?avl
? a v x抖 抖 x+a v y y+a v z? ?z
➢ 点积
vv A ? BA x B x+ A y B y+ A y B y
avi ?avi 1 avi ?avk 0
➢ 叉积
vv A?B
avx avy avz Ax Ay Az
Bx By Bz =(AyBz - AzBy)avx +(AzBx- AxBz)avy +(AxBy- AyBx)avz
《电磁场与电磁波》期末复习
复习内容
• 考试内容及题型 • 各章要点
电磁场与电磁波期末考试复习试题4套(部分含答案)
电磁场与电磁波期末考试复习资料11.圆柱坐标系中单位矢量 , 。
2.对于矢量A ,若 ,则=+•y x a y x a x )(2 ,=⨯x z a y a x 2 。
3.给定两个矢量z y x a a a A 32-+=,z y a a B +-=4,则矢量A 的单位矢量为 ,矢量B A ⋅= 。
4.已知直角坐标系中点P 1(5,-2,1),P 2(3,1,2),则P1的位置矢量为 ,P1到P2的距离矢量为 。
5.已知球坐标系中单位矢量 。
6.在两半无限大导电平面组成的直角劈形中间放置一点电荷,此时点电荷的镜像电荷个数为 。
7.点电荷q 在自由空间任一点r 处电场强度为 。
8.静电场中导体内的电场为 ,电场强度与电位函数的关系为 。
9.高斯散度定理的积分式为 ,它广泛的用于将一个封闭面积分变成等价的体积分,或者将一个体积分变成等价的封闭面积分。
10.已知任意一个矢量场A ,则其旋度的散度为 。
11.真空中静电场的基本方程的微分形式为 、 、 。
12.分析恒定磁场时,在无界真空中,两个基本场变量为 ,它们之间的关系为 。
13.斯托克斯定理为 ,它表明矢量场A 的旋度沿曲面S 的方向分量的面积分等于该矢量沿围绕此面积曲线边界的线积分。
14.任意一个标量场u ,则其梯度的旋度为 。
15.对于某一矢量 ,它的散度定义式为 ,用哈密顿算子表示为 。
16.介质中静电场的基本方程的积分式为 , , 。
17.介质中恒定磁场的基本方程的微分形式为 、 、 。
18.介质中恒定磁场的基本方程的积分式为 , , 。
19.静电场中两种介质分界面的边界条件是 , 。
20.在无限大的导体平面上方d 处放一点电荷q ,则其镜像电荷电量为 ,位置位于 ;如果一个点电荷置于两平行导体中间,则此点电荷有 镜像电荷。
21.矢量场223z a yz a y x a A z y x ++=在点P(1,1,0)的散度为 。
22.一个半径为a 的接地导体球,一点电荷q 位于距球心d 处,则其镜像电荷带电量为 ,位置位于 ;当点电荷q 向无限远处运动时,其镜像电荷向 运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S
第二类边值问题(纽曼问题) 已知场域边界面上的位函数的法向导数值,即 第三类边值问题(混合边值问题) 知位函数的法向导数值,即
|S f 2 ( S ) n
已知场域一部分边界面上的位函数值,而其余边界面上则已
|S1 f1 ( S1 )、 | f (S ) S 2 2 n 2
线处有无限长的线电流 I,圆柱外是空气(µ0 ),试求圆柱内 外的 B 、 H 和 M 的分布。 解:应用安培环路定理,得 H C dl 2 H I I H e 0 磁场强度 2π I e 0 a 2 π 磁感应强度 B I e 0 a 2 π 0 I B e 2π M H 磁化强度 0 0 0
C
F dl F dS
S
5、无旋场和无散场概念。 旋度表示场中各点的场量与旋涡源的关系。 矢量场所在空间里的场量的旋度处处等于零,称该场为无旋场(或保守场) 散度表示场中各点的场量与通量源的关系。 矢量场所在空间里的场量的散度处处等于零,称该场为无散场(或管形场) 。 6、理解格林定理和亥姆霍兹定理的物理意义 格林定理反映了两种标量场 (区域 V 中的场与边界 S 上的场之间的关系) 之间满足的关系。 因此,如果已知其中一种场的分布,即可利用格林定理求解另一种场的分布 在无界空间,矢量场由其散度及旋度唯一确定 在有界空间,矢量场由其散度、旋度及其边界条件唯一确定。 第二章 电磁现象的普遍规律 1、 电流连续性方程的微分形式。
D H J t B E t B 0 D
D ) dS C H dl S ( J t B E dl dS S t C SB dS 0 D dS ρdV V S
第一章 矢量分析 1、方向导数和梯度的概念; 方向导数和梯度的关系; 直角坐标系中方向导数和梯度的表达式。 梯度是一个矢量。标量场 u 在某点梯度的模等于该点的最大方向 导数,方向为该点具有最大方向导数的方向。记为 gradu 方向导数:标量场 u 自某点沿某一方向上的变化率 标量场 u 在给定点沿某个方向上的方向导数,是梯度在该方向上的投影。
4、场论的两个重要定理:高斯散度定理和斯托克斯定理。 散度定理(高斯定理)
矢量场在空间任意闭合曲面S的通量等于该闭合曲面S所包含体积V中 矢量场的散度的体积分,即
斯托克斯定理
S
F dS
FdV
V
矢量场 F 沿任意闭合曲线的环流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即
对于体分布电流,则有
Wm
1 J AdV 2 V
磁场能量密度:
1 wm B H 2
7、静态场的边值问题;边值问题的类型;唯一性定理的表述。
第三章 静态电磁场及其边值问题
3.4.1
边值问题的类型
V
第一类边值问题(狄里赫利问题) 已知场域边界面上的位函数值,即
|S f1 ( S )
J t
2、 磁通连续性原理的微分形式、积分形式。
S
B(r ) dS 0
磁通连续性原理(积分形式)
B(r ) 0
恒定磁场的散度(微分形式)
3、 介质中高斯定理的微分形式和积分形式。用高斯定理求场强方法与实例。 其积分形式为
D dS dV
1、电位梯度和电场强度的关系。
E
2、求导体的电容的方法与实例。
第三章 静态电磁场及其边值问题
例3.1.5 同轴线内导体半径为a ,外导体半径为b ,内外导体 间填充的介电常数为 的均匀介质,求同轴线单位长度的电容。 解 设同轴线的内、外导体单位长度带电量分别为 l 和 l , 应用高斯定理可得到内外导体间任一点的电场强度为
en (D1 D2 ) 0 en (B1 B2 ) 0 e ( E n 1 E2 ) 0 e ( H H n 1 2) 0
第三章 静态电磁场及其边值问题
en D S en B 0 en E 0 en H J S
以上各个场矢量都应满足麦克斯韦方程,将以上得到的 H 和 D
ex H x Hx D Dx ex t t
ex Em sin(t kz )
由
D H t
k 2 2
9、 电磁场的边界条件。 1.两种理想介质分界面上的边界条件 理想导体表面上的边界条件
惟一性定理的表述 在场域 V 的边界面 S 上给定 一值。
或
第三章 静态电磁场及其边值问题
3.1.4
静电场的能量
We 1 q 2
1. 静电场的能量
电量为 q 的带电体具有的电场能量We
对于电荷体密度为ρ的体分布电荷,体积元dV中的电荷ρdV 具有的电场能量为
dWe
1 dV 2 We 1 dV 2 V 1 We SdS 2 S 1 We ldl 2 c
计算公式:
梯度的表达式: 直角坐标系
u u u u e x ey ez x y z
F Fy Fz F x x y z
2、通量的表达式;散度的计算式。
F dS F en dS
S S
3、旋度的计算式;旋度的两个重要性质。 性质 1:旋度的散度恒等于 0 性质 2:标量的梯度的旋度恒等于 0
r
0
a
r
E
r E 0 er (r < a) 3 0
a
r
4、 磁介质中的安培环路定律的积分形式微分形式。用安培环路定律计算磁感应强度。
H dl J dS I
C S
H J
第二章 电磁场的基本规律
例4
有一磁导率为 µ ,半径为a 的无限长导磁圆柱,其轴
kEm B ey cos(t kz )
第二章 电磁场的基本规律
B = H
kEm H ey cos(t kz )
D E
代入式
D ex Em cos(t kz)
ey y Hy ez H y k 2 Em ex ex sin(t kz ) z z Hz
E ( ) e
内外导体间的电位差
l 2π
b
b U E ( ) e d l a 2π
1
a
d
b
a
l ln(b / a) 2π
同轴线
故得同轴线单位长度的电容为 C1
l
U
2π ln(b / a)
(F/m)
3、静电场的能量分布与计算公式,和能量密度的表达式。
5、 媒质的本构关系。 各向同性线性媒质的本构关系为(电磁场的辅助方程)
a
a
D E B H
J E
6、 感应电场的特点(有旋无源场) 。 感应电场是有旋场,变化的磁场是电场的旋度源,因此,产生电场的源有两种:电荷(散度 源)和时变磁场(旋度源) 。 7、 位移电流密度的求解。
故体分布电荷的电场能量为 对于面分布电荷,电场能量为 对于线分布电荷,电场能量为
•
1 电场能量密度:we D E 2
4、恒定电场的概念。静电比拟法的应用。 由 J=E 可知,导体中若存在恒定电流,则必有维持该电流的电场,虽然导体中产生电场 的电荷作定向运动,但导体中的电荷分布是一种不随时间变化的恒定分布,这种恒定分布电 荷产生的电场称为恒定电场。 如果两种场,在一定条件下,场方程有相同的形式,边界形状相同,边界条件等效,则其解 也必有相同的形式,求解这两种场分布必然是同一个数学问题。只需求出一种场的解,就可 以用对应的物理量作替换而得到另一种场的解。这种求解场的方法称为比拟法。 5、矢量磁位和磁感应强度的关系式。 D Jd t第二章 电磁场的基本规律
例 1
海水的电导率为4S/m,相对介电常数为81,求频率为
1MHz时,位移电流振幅与传导电流振幅的比值。 解:设电场随时间作正弦变化,表示为
E ex Em cos t
则位移电流密度为 其振幅值为
J dm
D Jd ex 0 r Em sin(t ) t 0 r Em 4.5 103 Em
传导电流的振幅值为 故
J cm Em 4 Em
J dm 1.125 103 J cm
8、 麦克斯韦方程组的积分形式、微分形式;这些方程的物理意义。利用麦克斯韦方程组进 行计算。 麦克斯韦方程组的微分形式与麦克斯韦方程组的积分形式 麦克斯韦第一方程,表明传导电流和变化的电场都能产生磁场 麦克斯韦第二方程,表明变化的磁场产生电场 麦克斯韦第三方程表明磁场是无散场,磁感线总是闭合曲线 麦克斯韦第四方程,表明电荷产生电场
第二章 电磁场的基本规律
例 2
在无源 ( J 0、 0) 的电介质 ( 0) 中,若已知电场强
度矢量 E ex Em cos(t kz) V/m ,式中的E0为振幅、ω为角频率、
k为相位常数。试确定k与ω 之间所满足的关系,并求出与 E 相应
的其他场矢量。
解: E 是电磁场的场矢量,应满足麦克斯韦方程组。因此,利 用麦克斯韦方程组可以确定 k 与ω 之间所满足的关系,以及与 E 相应的其他场矢量。 B E (ex ey ez ) ex E x t x y z E ey x ey Em cos(t kz ) ey kEm sin(t kz ) z z 对时间 t 积分,得