统计学基础知识 PPT课件
合集下载
统计学ppt课件
![统计学ppt课件](https://img.taocdn.com/s3/m/0f81d0c3d5d8d15abe23482fb4daa58da0111c97.png)
概率的定义
从样本空间到实数的映射,满 足非负性、规范性、可数可加 性。
随机变量及其分布
随机变量的定义
定义在样本空间上的 函数,取值依赖于随 机试验的结果。
离散型随机变量
取值有限或可数可列 的随机变量。
连续型随机变量
取值连续的随机变量 。
分布函数
描述随机变量概率分 布的函数。
概率密度函数
描述连续型随机变量 的函数。
时间序列分析
使用统计方法来分析和预测金融时间序列数据,如股票价格、利率 等。
金融风险管理
使用统计方法来衡量和管理金融风险,如信用风险、市场风险等。
THANKS 感谢观看
行拟合和预测。
时间序列的季节性分析
季节性的定义
01
季节性是指时间序列数据在一年内或固定周期内重复出现的波
动。
季节性分析的意义
02
通过分析时间序列的季节性规律,可以更好地理解数据的周期
性变化,为预测提供依据。
季节性分析的方法
03
常见的季节性分析方法包括绘制季节指数图、计算季节性比率
、构建季节性回归模型等。
策。
统计学可以帮助人们理解数据背 后的规律和趋势,从而做出更明
智的决策。
统计学的应用领域
01
02
03
04
商业
市场调研、消费者行为分析、 销售预测等。
医学
临床试验、流行病学、健康状 况调查等。
社会学
社会调查、民意测验、人口统 计等。
自然科学
实验设计、质量控制、科研数 据分析等。
统计学的历史与发展
统计学的起源可以追溯到17世纪,当时欧洲的一些学者开始研究如何从数据中得出 可靠的结论。
统计学完整全套PPT课件
![统计学完整全套PPT课件](https://img.taocdn.com/s3/m/1366949351e2524de518964bcf84b9d528ea2c90.png)
介绍非线性回归模型的基本形式 、特点以及常见的非线性回归模 型,如指数模型、对数模型等。
模型的参数估计
阐述非线性回归模型的参数估计方 法,如最小二乘法、极大似然法等 ,并探讨其计算过程和注意事项。
模型的检验与诊断
介绍非线性回归模型的检验方法, 如拟合优度检验、参数的显著性检 验等,以及模型的诊断方法,如残 差分析、异常值识别等。
方差
各数据与平均数之差的平方的 平均数
03
标准差
方差的平方根04四源自位数间距上四分位数与下四分位数之差
偏态与峰态分析
01
02
03
偏态系数
描述数据分布偏斜程度的 统计量
峰态系数
描述数据分布尖峭或扁平 程度的统计量
正态性检验
如Jarque-Bera检验等, 用于判断数据是否服从正 态分布
03
推论性统计方法
模型评估与优化
预测结果展示与应用
通过比较模型的预测结果与实际股票价格 的差异,评估模型的预测性能,并进行优 化和改进。
将模型的预测结果进行可视化展示,为投资 者提供决策参考。
THANKS
感谢观看
统计学完整全套PPT课件
目录
• 统计学基本概念与原理 • 描述性统计方法 • 推论性统计方法 • 非参数统计方法 • 回归分析及其应用 • 时间序列分析与预测
01
统计学基本概念与原理
Chapter
统计学的定义及作用
统计学定义
统计学是一门研究如何收集、整理、分析和解释数 据的科学,它使用数学方法对数据进行建模和预测 ,以揭示数据背后的规律和趋势。
游程检验
游程检验的基本原理
以上内容仅供参考,具体细节和扩展内 容需要根据实际需求和背景知识进行补 充和完善。
模型的参数估计
阐述非线性回归模型的参数估计方 法,如最小二乘法、极大似然法等 ,并探讨其计算过程和注意事项。
模型的检验与诊断
介绍非线性回归模型的检验方法, 如拟合优度检验、参数的显著性检 验等,以及模型的诊断方法,如残 差分析、异常值识别等。
方差
各数据与平均数之差的平方的 平均数
03
标准差
方差的平方根04四源自位数间距上四分位数与下四分位数之差
偏态与峰态分析
01
02
03
偏态系数
描述数据分布偏斜程度的 统计量
峰态系数
描述数据分布尖峭或扁平 程度的统计量
正态性检验
如Jarque-Bera检验等, 用于判断数据是否服从正 态分布
03
推论性统计方法
模型评估与优化
预测结果展示与应用
通过比较模型的预测结果与实际股票价格 的差异,评估模型的预测性能,并进行优 化和改进。
将模型的预测结果进行可视化展示,为投资 者提供决策参考。
THANKS
感谢观看
统计学完整全套PPT课件
目录
• 统计学基本概念与原理 • 描述性统计方法 • 推论性统计方法 • 非参数统计方法 • 回归分析及其应用 • 时间序列分析与预测
01
统计学基本概念与原理
Chapter
统计学的定义及作用
统计学定义
统计学是一门研究如何收集、整理、分析和解释数 据的科学,它使用数学方法对数据进行建模和预测 ,以揭示数据背后的规律和趋势。
游程检验
游程检验的基本原理
以上内容仅供参考,具体细节和扩展内 容需要根据实际需求和背景知识进行补 充和完善。
统计学课件PPT课件
![统计学课件PPT课件](https://img.taocdn.com/s3/m/cb9f0154b6360b4c2e3f5727a5e9856a561226e7.png)
直方图
用直条表示频数,用横轴表示 数据范围,纵轴表示频数。
箱线图
表示一组数据的中位数、四分 位数和异常值。
散点图
表示两个变量之间的关系。
折线图
表示时间序列数据随时间的变 化趋势。
04
概率与概方法
描述随机事件发生的可能性程度,通 常用P表示。
通过实验或经验数据计算随机事件的 概率。
表示数量、大小、距离等可以量化的 数据,如年龄、收入。
统计数据的收集方法
直接观察法
通过实地考察、观测等方式收集数据, 如市场调研人员现场观察消费者行为。
实验法
通过实验设计和实验操作获取数据, 如产品测试实验。
调查法
通过问卷、访谈等方式收集数据,如 民意调查。
行政记录法
通过政府部门或企业提供的记录获取 数据,如企业财务报表。
01
单总体参数假设检 验的概念
根据单一样本数据对总体参数进 行假设检验。
02
单总体参数假设检 验的方法
如t检验、Z检验、卡方检验等。
03
单总体参数假设检 验的应用场景
如检验单个样本的平均数、比例 等是否与已知的总体参数存在显 著差异。
两总体参数的假设检验
两总体参数假设检验的概念
根据两个样本数据对两个总体的参数进行假设检验。
04
常见概率分布及其应用
二项分布
适用于独立重复试验中成功次数的概率分布, 如抛硬币、抽奖等。
正态分布
适用于许多自然现象的概率分布,如人的身 高、考试分数等。
泊松分布
适用于单位时间内随机事件的次数概率分布, 如放射性衰变、网站访问量等。
指数分布
适用于描述时间间隔或寿命的概率分布,如 电子产品寿命、等待时间等。
用直条表示频数,用横轴表示 数据范围,纵轴表示频数。
箱线图
表示一组数据的中位数、四分 位数和异常值。
散点图
表示两个变量之间的关系。
折线图
表示时间序列数据随时间的变 化趋势。
04
概率与概方法
描述随机事件发生的可能性程度,通 常用P表示。
通过实验或经验数据计算随机事件的 概率。
表示数量、大小、距离等可以量化的 数据,如年龄、收入。
统计数据的收集方法
直接观察法
通过实地考察、观测等方式收集数据, 如市场调研人员现场观察消费者行为。
实验法
通过实验设计和实验操作获取数据, 如产品测试实验。
调查法
通过问卷、访谈等方式收集数据,如 民意调查。
行政记录法
通过政府部门或企业提供的记录获取 数据,如企业财务报表。
01
单总体参数假设检 验的概念
根据单一样本数据对总体参数进 行假设检验。
02
单总体参数假设检 验的方法
如t检验、Z检验、卡方检验等。
03
单总体参数假设检 验的应用场景
如检验单个样本的平均数、比例 等是否与已知的总体参数存在显 著差异。
两总体参数的假设检验
两总体参数假设检验的概念
根据两个样本数据对两个总体的参数进行假设检验。
04
常见概率分布及其应用
二项分布
适用于独立重复试验中成功次数的概率分布, 如抛硬币、抽奖等。
正态分布
适用于许多自然现象的概率分布,如人的身 高、考试分数等。
泊松分布
适用于单位时间内随机事件的次数概率分布, 如放射性衰变、网站访问量等。
指数分布
适用于描述时间间隔或寿命的概率分布,如 电子产品寿命、等待时间等。
统计学基础ppt课件
![统计学基础ppt课件](https://img.taocdn.com/s3/m/ea0bef2510a6f524cdbf851a.png)
➢ 调查失败的主要原因是抽样框出现了问题。在经济大萧条 时期由于电话和汽车并不普及,只是富裕阶层才会拥有, 调查有电话和汽车的人们,并不能够反映全体选民的观点
4-4
统计学 参数估计在统计方法中的地位
基础
统计方法
描述统计
推断统计
参数估计
假设检验
4-5
第 4 章 抽样与参数估计
4.1 抽样与抽样分布
4 - 14
统计学 基础
有关抽样的几个基本概念
4、抽样比 抽样比是指在抽选样本时,所抽取的样本
单位数n与总体单位数N之比。一般地讲, n≥30为大样本,n<30为小样本。研究社会 经济现象时,通常采用大样本进行抽样调查。
对于给定的研究对象,全及总体是唯一确定 的,而样本总体不是唯一的,它是随机的。
有关抽样的几个基本概念
2、抽样框
目标总体规定了理论上的抽样范围,但是进行抽样 的总体单位与目标总体有时是不一致的,因而, 在抽样之前,还必须明确实际进行抽样的总体范 围和抽样单位。
抽样框是指用以代表总体,并从中抽选样本的一个
框架。
目标总体与抽样框有时是一致的;多数情 况下,目标总体的范围要率大于抽样框。
4. 局限性
当N很大时,不易构造抽样框 抽出的单位很分散,给实施调查增加了困难 没有利用其它辅助信息以提高估计的效率
4 - 17
统计学 基础
抽样方法和样本可能数目
1、重复抽样
重复抽样也叫重置抽样,是指每次抽取一个元素 后又放回,重新参加下一次的抽选,直到抽取n个 元素为止。全及总体单位数始终保持不变,每个总 体单位都有被重复抽中的可能。 重复抽样通常要考虑单位排列顺序,如电话号 码中的“8651”和“1568”不同。
其样本可能数目为 m重 N n
4-4
统计学 参数估计在统计方法中的地位
基础
统计方法
描述统计
推断统计
参数估计
假设检验
4-5
第 4 章 抽样与参数估计
4.1 抽样与抽样分布
4 - 14
统计学 基础
有关抽样的几个基本概念
4、抽样比 抽样比是指在抽选样本时,所抽取的样本
单位数n与总体单位数N之比。一般地讲, n≥30为大样本,n<30为小样本。研究社会 经济现象时,通常采用大样本进行抽样调查。
对于给定的研究对象,全及总体是唯一确定 的,而样本总体不是唯一的,它是随机的。
有关抽样的几个基本概念
2、抽样框
目标总体规定了理论上的抽样范围,但是进行抽样 的总体单位与目标总体有时是不一致的,因而, 在抽样之前,还必须明确实际进行抽样的总体范 围和抽样单位。
抽样框是指用以代表总体,并从中抽选样本的一个
框架。
目标总体与抽样框有时是一致的;多数情 况下,目标总体的范围要率大于抽样框。
4. 局限性
当N很大时,不易构造抽样框 抽出的单位很分散,给实施调查增加了困难 没有利用其它辅助信息以提高估计的效率
4 - 17
统计学 基础
抽样方法和样本可能数目
1、重复抽样
重复抽样也叫重置抽样,是指每次抽取一个元素 后又放回,重新参加下一次的抽选,直到抽取n个 元素为止。全及总体单位数始终保持不变,每个总 体单位都有被重复抽中的可能。 重复抽样通常要考虑单位排列顺序,如电话号 码中的“8651”和“1568”不同。
其样本可能数目为 m重 N n
统计学ppt课件
![统计学ppt课件](https://img.taocdn.com/s3/m/136e93783868011ca300a6c30c2259010202f3fb.png)
配对样本非参数检验
包括Wilcoxon符号秩次检验、McNemar检验等,用于比较同一组 样本在两个不同条件下的差异。
多元线性回归模型构建
1 2
多元线性回归模型基本概念 介绍自变量、因变量、误差项等概念,以及模型 的数学表达式。
多元线性回归模型的参数估计 通过最小二乘法等方法估计模型参数,得到回归 方程。
概率可以通过古典概型、几何概型、频率等方法进行计算。古典概型适用于等可能 事件,几何概型适用于连续型随机变量,而频率则是在大量重复试验中出现的相对 频率。
02 描述性统计方法
数值型数据描述
集中趋势度量
01
平均数、中位数、众数
离散程度度量
02
极差、四分位差、方差、标准差
偏态与峰态度量
03
偏度系数、峰度系数
统计学ppt课件
目录
• 统计学基本概念与原理 • 描述性统计方法 • 推论性统计方法 • 非参数检验与多元统计分析 • 实验设计与抽样技术 • 数据可视化与报告撰写技巧
01 统计学基本概念 与原理
统计学定义及作用
统计学的定义
统计学是一门研究如何收集、整理、 分析、解释和呈现数据的科学。
统计学的作用
数据分布形态判断
正态性检验
直方图、QQ图、P-P图、Shapiro-Wilk检验等方 法
对称性检验
通过观察频数分布表或图形判断
峰度与偏度检验
通过计算峰度系数和偏度系数判断
03 推论性统计方法
参数估计原理及应用
点估计与区间估计
利用样本数据对总体参数进行估计,包括点估计和区间估计两种方 法。
估计量的评价标准
3
多元线性回归模型的假设检验 对模型参数进行显著性检验,判断自变量对因变 量的影响是否显著。
包括Wilcoxon符号秩次检验、McNemar检验等,用于比较同一组 样本在两个不同条件下的差异。
多元线性回归模型构建
1 2
多元线性回归模型基本概念 介绍自变量、因变量、误差项等概念,以及模型 的数学表达式。
多元线性回归模型的参数估计 通过最小二乘法等方法估计模型参数,得到回归 方程。
概率可以通过古典概型、几何概型、频率等方法进行计算。古典概型适用于等可能 事件,几何概型适用于连续型随机变量,而频率则是在大量重复试验中出现的相对 频率。
02 描述性统计方法
数值型数据描述
集中趋势度量
01
平均数、中位数、众数
离散程度度量
02
极差、四分位差、方差、标准差
偏态与峰态度量
03
偏度系数、峰度系数
统计学ppt课件
目录
• 统计学基本概念与原理 • 描述性统计方法 • 推论性统计方法 • 非参数检验与多元统计分析 • 实验设计与抽样技术 • 数据可视化与报告撰写技巧
01 统计学基本概念 与原理
统计学定义及作用
统计学的定义
统计学是一门研究如何收集、整理、 分析、解释和呈现数据的科学。
统计学的作用
数据分布形态判断
正态性检验
直方图、QQ图、P-P图、Shapiro-Wilk检验等方 法
对称性检验
通过观察频数分布表或图形判断
峰度与偏度检验
通过计算峰度系数和偏度系数判断
03 推论性统计方法
参数估计原理及应用
点估计与区间估计
利用样本数据对总体参数进行估计,包括点估计和区间估计两种方 法。
估计量的评价标准
3
多元线性回归模型的假设检验 对模型参数进行显著性检验,判断自变量对因变 量的影响是否显著。
统计基础知识ppt课件
![统计基础知识ppt课件](https://img.taocdn.com/s3/m/b6fa5e6b580102020740be1e650e52ea5518ced3.png)
统计基础知识ppt课件
目录
• 统计概述 • 描述性统计方法 • 概率论基础 • 推断性统计方法 • 方差分析与回归分析 • 时间序列分析与预测 • 统计软件应用与实例分析
01
统计概述
统计定义与作用
统计定义
统计是收集、整理、分析和解释数据 ,以揭示其数量特征和规律性的科学 。
统计作用
统计在各个领域都有广泛应用,如经 济、社会、医学、环境等。通过统计 ,我们可以更好地了解事物的数量特 征和规律,为决策提供依据。
演示如何对数据进行编码、转换 和标准化等预处理操作,以便进
行后续的统计分析。
基于实例数据的描述性统计结果展示
01
集中趋势度量
计算并展示实例数据的均值、中 位数和众数等集中趋势指标。
03
分布形态描述
通过绘制直方图、箱线图等图形 ,直观展示实例数据的分布形态
。
02
离散程度度量
计算并展示实例数据的标准差、 方差和四分位距等离散程度指标
03
概率论基础
事件与概率概念
事件定义与分类
事件是在一定条件下,所关心的某种 结果或某种现象的发生。根据事件之 间的关系,可以将其分为互斥事件、 对立事件、独立事件等。
概率定义与性质
古典概型与几何概型
古典概型是指具有有限个可能结果的 概率模型,几何概型是指具有无限多 个可能结果,且每个结果发生的可能 性相等的概率模型。
对模型进行检验和评估,确定 模型有效性
利用模型进行长期趋势预测并 输出结果
07
统计软件应用与实例 分析
常用统计软件介绍及功能比较
01
02
03
04
SPSS
适合社会科学领域的数据分析 ,提供丰富的统计方法和图形
目录
• 统计概述 • 描述性统计方法 • 概率论基础 • 推断性统计方法 • 方差分析与回归分析 • 时间序列分析与预测 • 统计软件应用与实例分析
01
统计概述
统计定义与作用
统计定义
统计是收集、整理、分析和解释数据 ,以揭示其数量特征和规律性的科学 。
统计作用
统计在各个领域都有广泛应用,如经 济、社会、医学、环境等。通过统计 ,我们可以更好地了解事物的数量特 征和规律,为决策提供依据。
演示如何对数据进行编码、转换 和标准化等预处理操作,以便进
行后续的统计分析。
基于实例数据的描述性统计结果展示
01
集中趋势度量
计算并展示实例数据的均值、中 位数和众数等集中趋势指标。
03
分布形态描述
通过绘制直方图、箱线图等图形 ,直观展示实例数据的分布形态
。
02
离散程度度量
计算并展示实例数据的标准差、 方差和四分位距等离散程度指标
03
概率论基础
事件与概率概念
事件定义与分类
事件是在一定条件下,所关心的某种 结果或某种现象的发生。根据事件之 间的关系,可以将其分为互斥事件、 对立事件、独立事件等。
概率定义与性质
古典概型与几何概型
古典概型是指具有有限个可能结果的 概率模型,几何概型是指具有无限多 个可能结果,且每个结果发生的可能 性相等的概率模型。
对模型进行检验和评估,确定 模型有效性
利用模型进行长期趋势预测并 输出结果
07
统计软件应用与实例 分析
常用统计软件介绍及功能比较
01
02
03
04
SPSS
适合社会科学领域的数据分析 ,提供丰富的统计方法和图形
统计学完整ppt课件完整版
![统计学完整ppt课件完整版](https://img.taocdn.com/s3/m/c5c0348fab00b52acfc789eb172ded630b1c9809.png)
假设检验的基本思想:小概率事件原 理
假设检验中的两类错误:第一类错误 、第二类错误
假设检验的步骤:建立假设、选择检 验统计量、确定拒绝域、计算p值、 作出决策
假设检验的实例分析:单样本t检验 、双样本t检验等
方差分析(ANOVA)方法介绍
方差分析的基本原理:F分布与 方差分析的关系
多因素方差分析的实现方法: 析因设计、随机区组设计等
通过观察数据的峰度,判 断是否存在尖峰或平峰分 布
03
推论性统计方法
参数估计原理及应用
01
参数估计的基本概念: 点估计、区间估计
02
估计量的评价标准:无 偏性、有效性、一致性
03
参数估计的方法:矩估 计法、最大似然估计法
04
参数估计的应用:总体 均值的区间估计、总体 比例的区间估计等
假设检验流程与实例分析
ABCD
数据筛选与排序
介绍如何使用Excel进行数据筛选和排序,以便 更好地查看和分析数据。
函数与公式应用
分享一些常用的Excel函数和公式,以便更高效 地处理和分析数据。
案例分享:使用统计软件解决实际问题
案例一
使用SPSS进行市场调研数据分析,包 括描述性统计、交叉表分析、回归分析
等。
案例三
使用Python进行电商数据分析,包 括用户行为分析、销售预测、推荐系
据的科学。
统计学的作用
描述数据特征
推断总体参数 预测未来趋势
评估决策效果
数据类型与来源
数据类型 定量数据(连续型与离散型)
定性数据(分类数据与顺序数据)
数据类型与来源
01
数据来源
02
03
04
观察数据(实验数据与观测数 据)
假设检验中的两类错误:第一类错误 、第二类错误
假设检验的步骤:建立假设、选择检 验统计量、确定拒绝域、计算p值、 作出决策
假设检验的实例分析:单样本t检验 、双样本t检验等
方差分析(ANOVA)方法介绍
方差分析的基本原理:F分布与 方差分析的关系
多因素方差分析的实现方法: 析因设计、随机区组设计等
通过观察数据的峰度,判 断是否存在尖峰或平峰分 布
03
推论性统计方法
参数估计原理及应用
01
参数估计的基本概念: 点估计、区间估计
02
估计量的评价标准:无 偏性、有效性、一致性
03
参数估计的方法:矩估 计法、最大似然估计法
04
参数估计的应用:总体 均值的区间估计、总体 比例的区间估计等
假设检验流程与实例分析
ABCD
数据筛选与排序
介绍如何使用Excel进行数据筛选和排序,以便 更好地查看和分析数据。
函数与公式应用
分享一些常用的Excel函数和公式,以便更高效 地处理和分析数据。
案例分享:使用统计软件解决实际问题
案例一
使用SPSS进行市场调研数据分析,包 括描述性统计、交叉表分析、回归分析
等。
案例三
使用Python进行电商数据分析,包 括用户行为分析、销售预测、推荐系
据的科学。
统计学的作用
描述数据特征
推断总体参数 预测未来趋势
评估决策效果
数据类型与来源
数据类型 定量数据(连续型与离散型)
定性数据(分类数据与顺序数据)
数据类型与来源
01
数据来源
02
03
04
观察数据(实验数据与观测数 据)
《统计学基础》PPT课件1
![《统计学基础》PPT课件1](https://img.taocdn.com/s3/m/cbc90c12b207e87101f69e3143323968001cf411.png)
任务二 统计学研究对象和作用
本节的重点: 统计研究对象及其特点 统计的作用
本节的难点: 统计研究对象的特点
27
一、统计学的研究对象及其特点
(一)统计学的研究对象 社会经济统计学的研究对象,是社会经济现象
的总体的数量方面,即社会经济现象总体的数 量特征和数量关系。 就是通过特有的统计指标和统计指标体系来表 明社会经济现象的规模、水平、速度、比例和 效益等,揭示现象发展的本质规律。
概率论 (包括分布理论、大数定律
和中心极限定理等)
反映客观 现象的数
据
样本数据
描述统计
(统计数据的搜集、整
总体数据 理、显示和分析等)
推断统计
(利用样本信息和概率 论对总体的数量特征进
行估计和检验等)
总体内在的 数量规律性
统计学探索现象数量规律性的过程
理论统计与应用统计
理论统计
▪ 研究统计学的一般理论 ▪ 研究统计方法的数学原理
23
三、统计学与其他学科的关系
(三)统计学与数学的关系 数学是统计学的研究工具,统计研究要
运用大量的数学知识,研究理论统计学 的人需要较深的数学功底,使用统计方 法的人要具有良好的数学基础。统计学 与数学又有着本质的区别
24
三、统计学与其他学科的关系
(四)统计学与数理统计学的关系 一方面,统计学的产生先于数理统计学,从一
12
历史上各国对统计学的译法
法国: Statistique
意大利: Statistica
英国:
Statistics
日本:
政表、政算、国势、形势等
中国: ,,,,,,,,,,统计(钮永建、林卓南于1903译)
13
统计知识讲座PPT课件
![统计知识讲座PPT课件](https://img.taocdn.com/s3/m/87fb009051e2524de518964bcf84b9d529ea2c61.png)
图表设计原则与规范
01
02
03
04
简洁明了
图表设计应简洁明了,避免过 多的装饰和复杂的背景,突出
数据本身的特点。
一致性
在同一份报告中,应保持图表 风格、字体、颜色等要素的一
致性,提高整体美观度。
数据准确性
图表中的数据应准确无误,来 源可靠,避免误导读者。
注解清晰
对于图表中的重要信息,应提 供清晰的注解和说明,帮助读
标准差
方差的算术平方根,反映 数据波动程度,标准差越 小,数据越稳定。
数据分布形态的描述
偏态分布
正态分布
数据分布不对称,偏向某一方向,可 分为左偏和右偏。
一种对称分布,其形态由均值和标准 差决定,具有广泛的应用。
峰态分布
数据分布的尖峭或扁平程度,峰度越 高,数据分布越尖峭;峰度越低,数 据分布越扁平。
假设检验与显著性水平
假设检验
先对总体参数提出某种假设,然后利用样本信息判断假设是否成立的过程。假设 检验包括原假设和备择假设的设立、检验统计量的选择、显著性水平的确一类错误的概率。通常取0.05或0.01等小概率值作为显 著性水平,表示在原假设为真时,拒绝原假设的最大允许概率。
对收集到的数据进行预处理,包括数据筛 选、缺失值处理、异常值处理等。
数据分析
结果呈现
运用统计学方法对数据进行描述性分析和 推断性分析,如均值、方差、假设检验等 。
将分析结果以图表、报告等形式呈现,为 市场决策提供支持。
案例二:医学实验数据处理
实验设计
根据研究目的和实验条件,设计合理的实验 方案和数据收集计划。
数据可视化
Python的matplotlib、seaborn等库 提供丰富的数据可视化功能,可绘制 各种静态、动态、交互式的图表。
统计学PPT课件
![统计学PPT课件](https://img.taocdn.com/s3/m/5668779b03d276a20029bd64783e0912a2167c24.png)
19世纪初,法国数学家、统计学家拉普拉斯在总结前人成果 的基础上出版了《概率的分析理论》一书,从而形成完整的应用 理论体系。
二、统计学的产生和发 展
3 古典概率论
古典概率论对统计学的贡献可归纳为以下几点:
(1) 总结了古典概率论的研究成果,初步奠定了数理统计学的 理论基础。 (2) 把大数定律作为概率论与政治算术的桥梁。 (3) 提出应以自然科学的方法研究社会现象,为数理统计的产 生提供了必要的理论依据。
统计活动、统计资料和统计学相互依存、相互联系,共同构成一个完 整的整体,这就是人们所说的统计。
二、统计学的产生和发 展
进入资本主义社会以后,随着社会生产力的发展,人们对 统计数据资料的需求增多,专业的统计机构和研究组织逐渐出 现,统计初步发展为社会分工中的一个独立部门。
到了 17世纪中叶,统计学应运而生。
三、统计学的应用
(二) 统计学在经济领域的应用
统计学最初产生于对经济现象的研究。至今,经济领域仍然是统计 学最重要的研究领域。统计学在经济领域的应用形成了经济统计学。经 济学在研究经济现象及其发展变化的规律性时,除要进行规范性的理论 分析外,还离不开对现实经济活动的实证研究。经济学家只有通过对现 实经济活动的运行条件、运行过程和运行结果的数量分析,才能得出真 正符合客观实际的规律性结论。经济现象是人类参与的活动,其影响因 素异常复杂。对社会经济现象规律性的认识,只能被动地对实际的经济 关系和经济活动的运行情况进行观测。因此,无论是宏观经济学研究还 是微观经济学分析,都需要大量地运用统计方法,通过各种调查方法来 收集实际的经济统计数据,并分析其数量规律性。
《不列颠百科全书》将统计学定义为收集、分析、表 述和解释数据的科学。
一、统计的含义
二、统计学的产生和发 展
3 古典概率论
古典概率论对统计学的贡献可归纳为以下几点:
(1) 总结了古典概率论的研究成果,初步奠定了数理统计学的 理论基础。 (2) 把大数定律作为概率论与政治算术的桥梁。 (3) 提出应以自然科学的方法研究社会现象,为数理统计的产 生提供了必要的理论依据。
统计活动、统计资料和统计学相互依存、相互联系,共同构成一个完 整的整体,这就是人们所说的统计。
二、统计学的产生和发 展
进入资本主义社会以后,随着社会生产力的发展,人们对 统计数据资料的需求增多,专业的统计机构和研究组织逐渐出 现,统计初步发展为社会分工中的一个独立部门。
到了 17世纪中叶,统计学应运而生。
三、统计学的应用
(二) 统计学在经济领域的应用
统计学最初产生于对经济现象的研究。至今,经济领域仍然是统计 学最重要的研究领域。统计学在经济领域的应用形成了经济统计学。经 济学在研究经济现象及其发展变化的规律性时,除要进行规范性的理论 分析外,还离不开对现实经济活动的实证研究。经济学家只有通过对现 实经济活动的运行条件、运行过程和运行结果的数量分析,才能得出真 正符合客观实际的规律性结论。经济现象是人类参与的活动,其影响因 素异常复杂。对社会经济现象规律性的认识,只能被动地对实际的经济 关系和经济活动的运行情况进行观测。因此,无论是宏观经济学研究还 是微观经济学分析,都需要大量地运用统计方法,通过各种调查方法来 收集实际的经济统计数据,并分析其数量规律性。
《不列颠百科全书》将统计学定义为收集、分析、表 述和解释数据的科学。
一、统计的含义
《统计基础知识》课件
![《统计基础知识》课件](https://img.taocdn.com/s3/m/953f8e633069a45177232f60ddccda38376be1f8.png)
客观性
避免主观臆断和偏见 ,客观地分析和解读 数据。
可读性
确保报告的清晰易懂 ,避免使用过于专业 或复杂的术语。
及时性
及时更新和发布数据 报告,以便决策者和 相关人员及时了解和 利用。
06
统计误区的识别与避免
常见的统计误区
样本偏差
由于样本选取不当,导致对总体特征的估 计出现偏差。
回归问题
在回归分析中,因变量的预测受到自变量 之外其他因素的影响。
04
数据可视化
通过图表、表格等形式将数据呈现出 来,以便更好地理解和解释数据的特 征和趋势。
06
结果报告
将数据分析结果以书面或口头形式报告出来, 包括数据解读、结论和建议等,以便决策者和 相关人员参考和应用。
解读与报告数据的注意事项
准确性
确保数据的准确性和 可靠性,避免误导和 错误解读。
完整性
全面收集和呈现数据 ,避免遗漏重要信息 。
03
02
了解基本概念
掌握统计学的基本概念和原理,能 够识别常见的误区。
实践检验
将统计结论与实际情况进行对比, 验证其是否符合实际情况。
04
如何避免统计误区
数据全面分析
强化变量控制
在实验或调查中,对变量进行严 格控制,避免混淆因果关系。
对数据进行全面分析,不只关注 部分数据或成功案例。
正确解读数据
对数据进行综合分析和解读,避 免片面或错误的结论。
文献法
通过查阅文献资料获取数据,适用于历史数 据和二手数据的收集。
数据收集的步骤
确定研究目的和问题
设计数据收集方案
明确研究目标和需要解决的问题,为数据 收集提供方向。
根据研究目的和问题,选择合适的数据收 集方法、工具和样本。
统计学ppt(全)
![统计学ppt(全)](https://img.taocdn.com/s3/m/b3d62fdf6429647d27284b73f242336c1fb93062.png)
1 -2
经济、管理类 基础课程
统计学
第一节 统计与统计学
一. 统计与统计学的含义 二. 统计学的性质和作用
1 -3
经济、管理类 基础课程
统计学
1 -4
一、什么是统计?
1. 统计工作
收集数据的活动
2. 统计数据
▪ 对现象计量的结果
3. 统计学
分析数据的方法与技术
经济、管理类 基础课程
统计学
什么是统计学?
总量指标、相对指标和平均指标
3. 按计量单位
实物指标、价格指标和劳动量指标
1 - 35
经济、管理类 基础课程
统计学
统计指标体系
由若干个相互联
系相互制约的统计指 标组成的一个统计指 标系统
•基本统计指标体系
•专题统计指标体系
1 - 36
经济、管理类 基础课程
2. 17世纪中叶的政治算术学派可看作是统计学的开端
3. 19世纪,沿着约翰·格朗特所开创的人口统计以及 沿着威廉·配第所开创的经济统计有了进一步的发 展
4. 威廉·配第为以后经济统计的发展开拓了道路;约 翰·格朗特为人口统计的发展开拓了道路
5. 政治算术学派则为后来的社会经济统计的发展奠定 了基础
Thomas Robert Malthus (马尔萨斯) (1766-1834)
1 - 19
Johann Gregor Mendel (孟德尔) (1822-1884) Pierre Simon Laplace (拉普拉斯) (1749-1827)
经济、管理类 基础课程
统计学
历史上著名的统计学家
Jacob Bernoulli (伯努利) (1654-1705) Edmond Halley (哈雷) (1656-1742) De Moivre (棣美佛) (1667-1754) Thomas Bayes (贝叶斯) (1702-1761) Leonhard Euler (欧拉) (1707-1783) Pierre Simon Laplace (拉普拉斯) (1749-1827) Adrien Marie Legendre (勒让德) (1752-1833) Thomas Robert Malthus (马尔萨斯) (1766-1834) Friedrich Gauss (高斯) (1777-1855) Johann Gregor Mendel (孟德尔) (1822-1884) Karl Pearson (皮尔森) (1857-1936) Ronald Aylmer Fisher (费歇) (1890-1962) Jerzy Neyman (内曼)(1894-1981) Egon Sharpe Pearson (皮尔森) (1895-1980)
统计学PPTPPT课件
![统计学PPTPPT课件](https://img.taocdn.com/s3/m/594f5e86a0c7aa00b52acfc789eb172ded639928.png)
假设检验
零假设和备择假设
零假设是我们要检验的假设,备择假 设是与零假设相对立的假设。
第一类错误和第二类错误
第一类错误是拒绝了正确的零假设, 第二类错误是接受了错误的零假设。
显著性水平
显著性水平表示在零假设为真的情况 下,拒绝零假设的概率。
样本容量和样本误差
样本容量越大,样本误差越小,推断 的准确性越高。
通过观察记录的方式收集数据,适用于小样本的定性研究。
实验法
通过实验的方式控制变量,收集数据,适用于因果关系的研究。
数据的整理和展示
数据整理
对数据进行清洗、分类、 编码等处理,使其符合统 计分析的要求。
数据展示
通过图表、表格等形式展 示数据,以便更好地理解 和分析数据。
数据可视化
利用图形、图像等技术将 数据可视化,以便更直观 地展示数据的特征和关系。
在生物统计学中,统计学方法用于遗 传学、分子生物学等领域的研究。
在商业决策中的应用
市场调查
通过统计学方法进行市场调查,了解客户需 求和市场趋势。
预测分析
利用统计学方法进行销售预测、需求预测等, 为决策提供依据。
质量控制
通过统计学方法监控生产过程,确保产品质 量符合标准。
风险评估
统计学用于评估商业风险,如信用评级、投 资组合优化等。
010203定量数据数值型数据,如身高、体 重、年龄等,可以通过测 量或计数得到。
定性数据
非数值型数据,如性别、 婚姻状况、文化程度等, 通常通过分类或编码得到。
数据来源
数据可以来源于调查、观 察、实验、档案资料等途 径。
数据收集的方法
调查法
通过问卷、访谈等方式收集数据,适用于大样本的定量研究。
统计基础知识ppt课件
![统计基础知识ppt课件](https://img.taocdn.com/s3/m/7887e723852458fb770b56c5.png)
资产总额 员工数
纳税总额 总资产周转率 流动资产周转率
资产负债率 产权比率
销售净利率 净资产收益率 人均技术装备水平
劳动生产率 人均利税率 年营业收入增长率 净利润增长率 国际化销售密度
27
二、 统计调查方法
1
统计调查概念和分类
统计的涵义
2 统计调查方案
4
3
统计调查的组织方式
统计的涵义
28
1、统计调查概念和分类
总量指标:反映总体现象规模的统计指标,一般用绝对 数表示。
例如:民营企业报表中的企业个数、职工人数、产品产量等。 相对指标:是两个相互联系的总量指标之比,一般用相对
数表示。 计量单位:无名数、有名数。 主要类型:结构相对数、比例相对数、比较相对数、
动态相对数、强度相对数、计划完成程 度相对数。
例如:民营企业:职工文化结构、各部门发展的比例关系、单位 能源消耗量、利润增长速度、增加值年计划完成程度等。
20
变异标志和不变标志
△标志按其总体单位的表现不同,分为不变标志和 变异标志(可变标志)。
不变标志:指对所有总体单位都有完全相同的具体 表现的标志。构成同质总体。
变异标志:在总体单位之间具有不同标志表现的标 志。
例如:昌平区所有工业企业这个总体中,不变标志是“昌平 区”、“工业”,构成企业的同质性;每个工业企业的 职工人数、产量、产值等都可能不同,是可变标志,构 成总体单位的变异性。
特例:人的年龄是连续变量但常用整数统计
23
变量的分类:
变量按其受影响因素的不同,可分为确定性变量和随机 变量两种。
受确定性因素影响的变量称为确定性变量,这种影响变 量值变化的因素是明显的、可以解释的,其影响变量值 变化的大小、方向都可以确定。
纳税总额 总资产周转率 流动资产周转率
资产负债率 产权比率
销售净利率 净资产收益率 人均技术装备水平
劳动生产率 人均利税率 年营业收入增长率 净利润增长率 国际化销售密度
27
二、 统计调查方法
1
统计调查概念和分类
统计的涵义
2 统计调查方案
4
3
统计调查的组织方式
统计的涵义
28
1、统计调查概念和分类
总量指标:反映总体现象规模的统计指标,一般用绝对 数表示。
例如:民营企业报表中的企业个数、职工人数、产品产量等。 相对指标:是两个相互联系的总量指标之比,一般用相对
数表示。 计量单位:无名数、有名数。 主要类型:结构相对数、比例相对数、比较相对数、
动态相对数、强度相对数、计划完成程 度相对数。
例如:民营企业:职工文化结构、各部门发展的比例关系、单位 能源消耗量、利润增长速度、增加值年计划完成程度等。
20
变异标志和不变标志
△标志按其总体单位的表现不同,分为不变标志和 变异标志(可变标志)。
不变标志:指对所有总体单位都有完全相同的具体 表现的标志。构成同质总体。
变异标志:在总体单位之间具有不同标志表现的标 志。
例如:昌平区所有工业企业这个总体中,不变标志是“昌平 区”、“工业”,构成企业的同质性;每个工业企业的 职工人数、产量、产值等都可能不同,是可变标志,构 成总体单位的变异性。
特例:人的年龄是连续变量但常用整数统计
23
变量的分类:
变量按其受影响因素的不同,可分为确定性变量和随机 变量两种。
受确定性因素影响的变量称为确定性变量,这种影响变 量值变化的因素是明显的、可以解释的,其影响变量值 变化的大小、方向都可以确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究长沙市2011年7岁男孩身高的正常值范围? 同质:同长沙市、7岁、男孩、无影响身高的疾病。 变异:长沙市2011年7岁男孩身高有高有矮
பைடு நூலகம்
3、总体(population)和样本(sample) (1)总体:是根据研究目的确定的同质研究单位的全体。 更确切地说是同质研究单位某种变量值的集合。 例如:调查某地2011年正常成年男子的红细胞数的正 常值范围。 总体:1)某地所有的正常成年男子 2)某地所有的正常成年男子的红细胞数
6、频率(frequency)、概率(probability)、小概率 事件 (1)频率: 一次随机试验出现各种可能结果的比例。
例如,投掷一枚硬币,结果不外乎出现“正面”与
“反面”两种,在重复多次后,出现“正面” 或“反
面”这个结果的比例称之为频率。
(2)概率(probability ) 概率是度量随机事件发生可
4.有序分类变量与等级资料
1)有序分类变量(ordinal categories variable) :变量值 是定性的、 分等级。 特点:等级是主观划分的,各级有秩序,从低到高或 由高到低;级和级之间界限模糊,可能错判。 如:疗效:无效、好转、显效、治愈。 血清反应:–、+、++ 2)等级资料(ranked data):一群个体按有序分类变量的级别 清点每级有多少个个体,即分级个体数。 如:某地某人群EB病毒抗体反应: –:65, +:5, ++:6
三、统计资料的类型
变量与统计资料的分类方法 1. 概述 数值变量…………..构成计量资料 分类变量 无序分类变量………构成计数资料 有序分类变量………构成等级资料
2. 数值变量与计量资料
1) 数值变量(numerical variable) :变量值是定量的, 表现为数值大小,一般有度量衡单位。如:身高(cm)、 体重(kg)。 2) 计量资料(measurement data) :由一群个体的数值变 量值构成的资料,即一群变量值。
统计学基础知识
一.医学统计学的意义
1.统计学(statistics):应用数学的原理与方 法,研究数据的搜集、整理与分析的科学,对 不确定性数据作出科学的推断。 2.医学统计学(statistics of medicine):应 用统计学的原理与方法进行医学科研与实践。
3.统计学方法的特点: (1)用数量反映质量
4、参数(parameter)和统计量(statistic) (1)参数:根据总体个体值统计计算出来的描述总体的 特征量。 一般用希腊字母表示 (2)统计量:根据样本个体值统计计算出来的描述样本 的特征量。 一般用拉丁字母表示
总体参数一般是不知道的 统计学抽样研究的目的就是: 样本统计量→总体参数 5、抽样误差 由于抽样原因所造成的样本统计量与总体参数之间的 差别。 特点:1)抽样误差是不可避免; 2)有统计规律性。 产生原因:个体差异(生物变异)
108 名高血压患者治疗后的临床记录如下: ---------------------------------------------------------------------------------------------------------------------患者编号 年龄 性别 职业 治疗分组 收缩压(kpa) 舒张压(kpa) 心电图 疗效 ---------------------------------------------------------------------------------------------------------------------1 37 男 工人 甲药 18.67 11.47 正常 显效 2 45 女 医生 乙药 21.00 12.35 正常 有效 3 43 男 教师 乙药 17.33 10.93 异常 无效 … … … … … … … … … 108 54 女 其他 甲药 16.80 11.73 正常 有效 ----------------------------------------------------------------------------------------------------------------------
能性大小的一个数值。
频率是就样本而言的,而概率从总体的意义上说的。
0< P(A) <1
P(A)=1
随机事件
必然事件
P(A)=0
不可能事件。
(3)小概率事件:统计分析中的很多结论都基于 一定置信程度下的概率推断,习惯上将
P( A) 0.05或 P( A) 0.01
称为小概率事件。
湖南风采: 中奖概率大约为: 1/671万 交通事故: 发生概率为:1/20万
1)体格检查(量血压、脉搏…)→个体健康质量 2)考试分数→个体学习质量 3)期望寿命→反映人群健康状况 4)婴儿死亡率→反映卫生服务质量
(2)用群体归纳个体
2011年长沙市7岁男孩有多高? 7岁男孩身高有高有矮,平均身高=119.5cm 95%的长沙市7岁男孩的身高在110.20cm~ 129.20cm之间
1)有限总体(finite population):研究单位数是 有限的。 例如:调查某地2011年正常成年男子的红细胞数的正 常值范围。 2)无限总体(infinite population):研究单位数 是无限的。 例如:高血压患者←无时间、空间限制。
(2)样本(sample):是总体中抽取的有代表性的一部分。 注意:随机抽样(无主观性) 样本含量(sample size):样本中包含的研究单位数。 例如:某药治疗高血压患者30名 样本含量(n)为30
如:长沙市2011年7岁男孩身高值(118.6cm,121.8cm…)
3.无序分类变量与计数资料 1)无序分类变量(unordered categories variable):变量值 是定性的,有类别。 特点:类别是客观存在的,各类无秩序,可任意排列; 类与类之间界限清楚,(理论上)不会错判。 如:性别:男、女。 血型:O、A、B、AB。 2)计数资料(enumeration data):一群个体按无序分类变量 的类别清点每类有多少个个体,即分类个体数。 如:某人群性别构成:男:6, 女:7。 某人群血型构成:O:20, A:35, B:30, AB:15
二、基本概念
1、研究单位(观察单位、unit)、变量(variable)、变 量值(value of variable)
(1)研究单位(unit):研究中的个体。
如:研究2011年长沙市7岁男孩身高的正常值范围 1个人
测得的身高值(120.2cm,118.6cm,121.8cm,…)
2、同质(homogeneity)和变异(variation)