2021相似三角形中考试卷分类汇编

合集下载

2021年最新中考数学试题分类汇编-相似

2021年最新中考数学试题分类汇编-相似

相似一、选择题1.(2021模拟年滨州)如图所示,给出下列条件:①B ACD ∠=∠;②ADC ACB ∠=∠;③AC AB CD BC =;④2AC AD AB =. 其中单独能够判定ABC ACD △∽△的个数为( )A .1B .2C .3D .4【关键词】三角形相似的判定.【答案】C2.(2021模拟年上海市)如图,已知AB CD EF ∥∥,那么下列结论正确的是( )A .AD BC DF CE =B .BC DF CE AD = C .CD BC EF BE = D .CD AD EF AF=【关键词】平行线分线段成比例【答案】A3.(2021模拟成都)已知△ABC ∽△DEF ,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为(A)1:2 (B)1:4 (C)2:1 (D)4:1【关键词】【答案】B4. (2021模拟年安顺)如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE∽△CAB,(3)△CDE的面积与△CAB 的面积之比为1:4.其中正确的有:A.0个B.1个C.2个D.3个【关键词】等边三角形,三角形中位线,相似三角形【答案】D5.(2021模拟重庆綦江)若△ABC∽△DEF,△ABC与△DEF的相似比为1∶2,则△ABC与△DEF的周长比为()A.1∶4 B.1∶2 C.2∶1 D2【关键词】【答案】B6.(2021模拟年杭州市)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值()A.只有1个B.可以有2个C .有2个以上但有限D .有无数个【关键词】相似三角形有关的计算和证明【答案】B7.2021模拟年宁波市)如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( )A .△AOM 和△AON 都是等边三角形B .四边形MBON 和四边形MODN 都是菱形C .四边形AMON 与四边形ABCD 是位似图形D .四边形MBCO 和四边形NDCO 都是等腰梯形【关键词】位似【答案】C8.(2021模拟年江苏省)如图,在55 方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平 移方法中,正确的是( )A .先向下平移3格,再向右平移1格B .先向下平移2格,再向右平移1格D B AN MOC.先向下平移2格,再向右平移2格D.先向下平移3格,再向右平移2格【关键词】平移【答案】D9.(2021模拟年义乌)在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比。

浙江省2021—2021年中考数学真题汇编专题9:相似形(解析卷)

浙江省2021—2021年中考数学真题汇编专题9:相似形(解析卷)

浙江省2021—2021年中考数学真题汇编专题9:相似形姓名:__________班级:__________考号:__________一、选择题(本大题共7小题,每小题4分,共28分)1.(2018年浙江省杭州市临安市)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.【考点】相似三角形的判定【分析】根据正方形的性质求出∠ACB,根据相似三角形的判定定理判断即可.解:由正方形的性质可知,∠ACB=180°﹣45°=135°,A.C、D图形中的钝角都不等于135°,由勾股定理得,BC=,AC=2,对应的图形B中的边长分别为1和,∵=,∴图B中的三角形(阴影部分)与△ABC相似,故选:B.【点评】本题考查的是相似三角形的判定,掌握两组对应边的比相等且夹角对应相等的两个三角形相似是解题的关键.2.(2018年浙江省绍兴市)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为()A.0.2m B.0.3m C.0.4m D.0.5m【考点】相似三角形的应用【分析】由∠ABO=∠CDO=90°、∠AOB=∠COD知△ABO∽△CDO,据此得=,将已知数据代入即可得.解:∵AB⊥BD,CD⊥BD,∴∠ABO=∠CDO=90°,又∵∠AOB=∠COD,∴△ABO∽△CDO,则=,∵AO=4m,AB=1.6m,CO=1m,∴=,解得:CD=0.4,故选:C.【点评】本题主要考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定与性质.3.(2019年浙江省杭州市)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则()A.=B.=C.=D.=【考点】相似三角形的判定与性质【分析】先证明△ADN∽△ABM得到=,再证明△ANE∽△AMC得到=,则=,从而可对各选项进行判断.解:∵DN∥BM,∴△ADN∽△ABM,∴=,∵NE∥MC,∴△ANE∽△AMC,∴=,∴=.故选:C.【点评】本题考查了相似三角形的判定与性质:三在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系.4.(2018年浙江省杭州市临安市)如图,在△ABC中,DE∥BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为()A.B.C.D.【考点】相似三角形的判定与性质【分析】根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,再根据相似三角形的对应边成比例解则可.解:∵DE∥BC,∴△ADE∽△ABC,∴===.故选:A.【点评】本题考查了相似三角形的判定和相似三角形的性质,对应边不要搞错.5.(2019年浙江省绍兴市)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A.B.C.D.【考点】勾股定理的应用,相似三角形的判定与性质【分析】设DE=x,则AD=8﹣x,由长方体容器内水的体积得出方程,解方程求出DE,再由勾股定理求出CD,过点C作CF⊥BG于F,由△CDE∽△BCF的比例线段求得结果即可.解:过点C作CF⊥BG于F,如图所示:设DE=x,则AD=8﹣x,根据题意得:(8﹣x+8)×3×3=3×3×6,解得:x=4,∴DE=4,∵∠E=90°,由勾股定理得:CD=,∵∠BCE=∠DCF=90°,∴∠DCE=∠BCF,∵∠DEC=∠BFC=90°,∴△CDE∽△BCF,∴,即,∴CF=.故选:A.【点评】本题考查了勾股定理的应用、长方体的体积、梯形的面积的计算方法,熟练掌握勾股定理,由长方体容器内水的体积得出方程是解决问题的关键.6.(2018年浙江省衢州市)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.cm C.2.5cm D.cm【考点】垂径定理.相似三角形的判定与性质【分析】根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.解:连接OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,AE=2cm,在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=8,在Rt△EBC中,BC=,∵OF⊥BC,∴∠OFC=∠CEB=90°,∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=,故选:D.【点评】此题考查垂径定理,关键是根据垂径定理得出OE的长.7.(2018年浙江省杭州市)如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2,()A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S2【考点】相似三角形的判定与性质【分析】根据题意判定△ADE∽△ABC,由相似三角形的面积之比等于相似比的平方解答.解:∵如图,在△ABC中,DE∥BC,∴△ADE∽△ABC,∴=()2,∴若2AD>AB,即>时,>,此时3S1>S2+S△BDE,而S2+S△BDE<2S2.但是不能确定3S1与2S2的大小,故选项A不符合题意,选项B不符合题意.若2AD<AB,即<时,<,此时3S1<S2+S△BDE<2S2,故选项C不符合题意,选项D符合题意.故选:D.【点评】考查了相似三角形的判定与性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.二、填空题(本大题共5小题,每小题4分,共20分)8.(2018年浙江省嘉兴市、舟山市)如图,直线l1∥l2∥l3,直线AC交l1,l2,l3于点A,B,C;直线DF交l1,l2,l3于点D,E,F,已知=,则= .【考点】平行线分线段成比例【分析】根据题意求出,根据平行线分线段成比例定理解答.解:∵=,∴=2,∵l1∥l2∥l3,∴==2,故答案为:2.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.9.(2019年浙江省宁波市)如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的⊙P与△ABC的一边相切时,AP的长为.【考点】勾股定理,切线的判定与性质,相似三角形的判定和性质【分析】根据勾股定理得到AB==6,AD==13,当⊙P于BC相切时,点P到BC的距离=6,过P作PH⊥BC于H,则PH=6,当⊙P于AB相切时,点P到AB的距离=6,根据相似三角形的性质即可得到结论.解:∵在Rt△ABC中,∠C=90°,AC=12,BD+CD=18,∴AB==6,在Rt△ADC中,∠C=90°,AC=12,CD=5,∴AD==13,当⊙P于BC相切时,点P到BC的距离=6,过P作PH⊥BC于H,则PH=6,∵∠C=90°,∴AC⊥BC,∴PH∥AC,∴△DPH∽△DAC,∴,∴=,∴PD=6.5,∴AP=6.5,当⊙P于AB相切时,点P到AB的距离=6,过P作PG⊥AB于G,则PG=6,∵AD=BD=13,∴∠PAG=∠B,∵∠AGP=∠C=90°,∴△AGP∽△BCA,∴,∴=,∴AP=3,∵CD=5<6,∴半径为6的⊙P不与△ABC的AC边相切,综上所述,AP的长为6.5或3,故答案为:6.5或3.【点评】本题考查了切线的判定和性质,勾股定理,相似三角形的判定和性质,熟练正确切线的性质是解题的关键.10.(2019年浙江省杭州市)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于.【考点】矩形的性质,翻折变换(折叠问题),勾股定理,相似三角形的判定和性质【分析】设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,因为△A′EP的面积为4,△D′PH的面积为1,推出A′E=4D′H,设D′H=a,则A′E=4a,由△A′EP∽△D′PH,推出=,推出=,可得x=2a,再利用三角形的面积公式求出a即可解决问题.解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴=,∴=,∴x2=4a2,∴x=2a或﹣2a(舍弃),∴PA′=PD′=2a,∵•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE==2,PH==,∴AD=4+2++1=5+3,∴矩形ABCD的面积=2(5+3).故答案为2(5+3)【点评】本题考查翻折变换,矩形的性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.11.(2019年浙江省台州市)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且=,则m+n的最大值为.【考点】平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线是解题的关键.【分析】过B作BE⊥l1于E,延长EB交l3于F,过A作AN⊥l2于N,过C作CM⊥l2于M,设AE =x,CF=y,BN=x,BM=y,得到DM=y﹣4,DN=4﹣x,根据相似三角形的性质得到xy=mn,y =﹣x+10,由=,得到n=m,于是得到(m+n)最大=m,然后根据二次函数的性质即可得到结论.解:过B作BE⊥l1于E,延长EB交l3于F,过A作AN⊥l2于N,过C作CM⊥l2于M,设AE=x,CF=y,BN=x,BM=y,∵BD=4,∴DM=y﹣4,DN=4﹣x,∵∠ABC=∠AEB=∠BFC=∠CMD=∠AND=90°,∴∠EAB+∠ABE=∠ABE+∠CBF=90°,∴∠EAB=∠CBF,∴△ABE∽△BFC,∴,即=,∴xy=mn,∵∠ADN=∠CDM,∴△CMD∽△AND,∴=,即=,∴y=﹣x+10,∵=,∴n=m,∴(m+n)最大=m,∴当m最大时,(m+n)最大=m,∵mn=xy=x(﹣x+10)=﹣x2+10x=m2,∴当x=﹣=时,mn最大==m2,∴m最大=,∴m+n的最大值为×=.故答案为:.【点评】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线是解题的关键.12.(2019年浙江省衢州市)如图,由两个长为2,宽为1的长方形组成“7”字图形(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形ABCDEF,其中顶点A位于x轴上,顶点B,D位于y轴上,O为坐标原点,则的值为.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F1,摆放第三个“7”字图形得顶点F2,依此类推,…,摆放第n个“7”字图形得顶点F n﹣1,…,则顶点F2019的坐标为.【考点】规律型:点的坐标,相似三角形的判定与性质【分析】(1)先证明△AOB∽△BCD,所以=,因为DC=1,BC=2,所有=;(2)利用三角形相似与三角形全等依次求出F1,F2,F3,F4的坐标,观察求出F2019的坐标.解:(1)∵∠ABO+∠DBC=90°,∠ABO+∠OAB=90°,∴∠DBC=∠OAB,∵∠AOB=∠BCD=90°,∴△AOB∽△BCD,∴=,∵DC=1,BC=2,∴=,故答案为;(2解:过C作CM⊥y轴于M,过M1作M1N⊥x轴,过F作FN1⊥x轴.根据勾股定理易证得BD==,CM=OA=,DM=OB=AN=,∴C(,),∵AF=3,M1F=BC=2,∴AM1=AF﹣M1F=3﹣2=1,∴△BOA≌ANM1(AAS),∴NM1=OA=,∵NM1∥FN1,∴,,∴FN1=,∴AN1=,∴ON1=OA+AN1=+=∴F(,),同理,F1(,),即()F2(,),即(,)F3(,),即(,)F4(,),即(,)…F2019(,),即(,405),故答案为即(,405).【点评】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.三、解答题(本大题共12小题,共72分)13.(2017年浙江省台州市)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根,比如对于方程,操作步骤是:第一步:根据方程系数特征,确定一对固定点A(0,1),B(5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C 的横坐标m即为该方程的一个实数根(如图1)第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D 的横坐标为n即为该方程的另一个实数根。

【通用版】2021年中考数学专题《相似三角形及应用》(含解析)最新人教版

【通用版】2021年中考数学专题《相似三角形及应用》(含解析)最新人教版

【通用版】中考数学精选真题专题1 相似三角形及应用学校:___________姓名:___________班级:___________1.【山西省忻州六中中考模拟三】如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A. B. C. D.【答案】B【解析】考点:相似三角形的判定与性质.2.【河北省石家庄市十八县部分重点中学联考5月中考模拟】如图,线段CD两个端点的坐标分别为C(3,3),D(4,1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的两倍,得到线段AB,则线段AB的中点E的坐标为()A.(6,6)B.(72,2) C.(7,4) D.(8,2)【答案】C.【解析】考点:1.位似变换;2.坐标与图形性质.3.【湖南中考数学试卷】如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是( )A、13B、23C、34D、45第7题图EBA【答案】C【解析】试题分析:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB//EF//CD,∴△ABE∽△DCE,△BEF∽△BCD,∴13EC DCBE AB==,14EF BE BECD BC BE EC===+,∴EF=43.考点:相似三角形的性质.4.【黑龙江哈尔滨中考数学试卷】如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,点F 在BC 的延长线上,连接EF ,分别交AD 、CD 于点G ,H ,则下列结论错误的是( )(A )EA EG BE EF = (B )EG AG GH GD = (C )AB BC AE CF = (D ) FH CF EH AD =【答案】C【解析】考点:三角形相似的应用.5.【河北省沧州市东光二中中考二模】如图,在△ABC 中,AB=9,AC=12,BC=18,D 为AC 上一点,DC=32AC .在AB 上取一点E 得△ADE .若图中两个三角形相似,则DE 的长是 .【答案】6或8.【解析】试题分析:∵AC=12,DC=32AC ;∴AD=4.若AD 与AC 对应成比例,则DE=31BC=6;若AD 与AB 对应成比例,则DE=AB AD ×BC=94×18=8.所以DE 的长为6或8.考点:相似三角形的判定.6.【辽宁本溪中考数学试题】在△ABC 中,AB=6cm ,AC=5cm ,点D 、E 分别在AB 、AC 上.若△ADE 与△ABC 相似,且ΔADE BCED :S S 四边形=1:8,则AD= cm . 【答案】2或53.【解析】试题分析:∵ΔADE BCED :S S 四边形=1:8,∴ΔADE ΔABC :S S =1:9,∴△ADE 与△ABC 相似比为:1:3,①若∠AED 对应∠B 时,则13AD AC =,∵AC=5cm ,∴AD=53cm ;②当∠ADE 对应∠B 时,则13AD AB =,∵AB=6cm ,∴AD=2cm ; 故答案为:2或53.考点:1.相似三角形的性质;2.分类讨论;3.综合题.7.【辽宁沈阳中考数学试题】如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的49,则AB:DE= .【答案】2:3.【解析】考点:位似变换.8.【河北省沧州市东光二中中考二模】晚上,小亮走在大街上.他发现:当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为3米,左边的影子长为1.5米.又知自己身高1.80米,两盏路灯的高相同,两盏路灯之间的距离为12米,则路灯的高为米.【答案】6.6.【解析】考点:相似三角形的应用.9.【辽宁抚顺中考数学试题】在Rt△ABC中,∠BAC=90°,过点B 的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图①,当∠ABC=45°时,求证:AD=DE;(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)【答案】(1)证明见解析;(2)DE=3AD;(3)AD=DE•tanα.【解析】试题分析:(1)过点D作DF⊥BC,交AB于点F,得出∠BDE=∠ADF,∠EBD=∠AFD,即可得到△BDE≌△FDA,从而得到AD=DE;(2)过点D作DG⊥BC,交AB于点G,进而得出∠EBD=∠AGD,证出△BDE∽△GDA即可得出答案;(2)DE=3AD,理由:如图2,过点D作DG⊥BC,交AB于点G,则∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠BAC=90°,∠ABC=30°,∴∠C=60°,∵MN∥AC,∴∠EBD=180°﹣∠C=120°,∵∠ABC=30°,DG⊥BC,∴∠BGD=60°,∴∠AGD=120°,∴∠EBD=∠AGD,∴△BDE∽△GDA,∴AD DGDE BD,在Rt△BDG中,DGBD=tan30°=3,∴DE=3AD;(3)AD=DE•tanα;理由:如图2,∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠EBD=90°+α,∠AGD=90°+α,∴∠EBD=∠AGD,∴△EBD∽△AGD,∴AD DGDE BD,在Rt△BDG中,DGBD=tanα,则ADDE=tanα,∴AD=DE•tanα.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.探究型;4.综合题;5.压轴题.10.【江苏省徐州市中考二模】如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0≤t≤2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ、CP,若AQ⊥CP,求t的值;(3)M是PQ的中点,请直接写出点M运动路线的长.【答案】(1)1或3241;(2)t=78.(3)3cm .【解析】试题解析:根据勾股定理得:BA=226180+=;(1)分两种情况讨论:①当△BPQ ∽△BAC 时,BP BQ BA BC =, ∵BP=5t ,QC=4t ,AB=10,BC=8,∴584108t t -=,解得,t=1; ②当△BPQ ∽△BCA 时,BP BQ BC BA =, ∴584810t t -=,解得,t=3241 ∴t=1或3241时,△BPQ ∽△BCA ;(2)过P 作PF ⊥BC 于点F ,AQ ,CP 交于点N ,如图1所示:(3)点M 运动路线的长是3cm .理由如下:如图2,连接PQ .仍有PF ⊥BC 于点F ,PQ 的中点设为M 点,再作PE ⊥AC 于点E ,DH ⊥AC 于点H ,∵∠ACB=90°,∴MH 为梯形PECQ 的中位线,∴MH=2PE QC,∵QC=4t ,PE=8-BF=8-4t ,∴MH=8442t t-+=4,∵BC=8,过BC 的中点R 作直线平行于AC ,∴RC=MH=4成立,∴M 在过R 的中位线上,∴PQ 的中点M 在△ABC 的一条中位线上运动,∴点M 的运动轨迹是△ABC 的中位线,其长度为:12AC=12×6=3(cm ). 考点:相似形综合题.专题2圆的基本性质和圆的有关位置关系学校:___________姓名:___________班级:___________1.【辽宁阜新中考数学试卷】如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是()A.30° B.40° C.50° D.60°【答案】C.【解析】考点:圆周角定理.2.【湖北襄阳中考数学试卷】点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40° B.100° C.40°或140° D.40°或100°【答案】C.【解析】试题分析:如图所示:∵O是△ABC的外心,∠BOC=80°,∴∠A=40°,∠A′=140°,故∠BAC的度数为:40°或140°.故选C.考点:1.三角形的外接圆与外心;2.圆周角定理;3.分类讨论.3.【浙江省杭州市5月中考模拟】如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是()A.35° B.55° C.65° D.70°【答案】B.【解析】考点:圆周角定理.4.【湖南省邵阳市邵阳县中考二模】如图,⊙O是△ABC的外接圆,AD是⊙O的直径,EA是⊙O的切线.若∠EAC=120°,则∠ABC的度数是()A.80° B.70° C.60° D.50°【答案】C.【解析】试题解析:∵EA是⊙O的切线,AD是⊙O的直径,∴∠EAD=90°,∵∠EAC=120°,∴∠DAC=∠EAC-∠EAD=30°,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ADC=180°-∠ACD-∠DAC=60°,∴∠ABC=∠ADC=60°(圆周角定理),故选:C.考点:切线的性质.5.【辽宁沈阳中考数学试题】如图,在△ABC中,AB=AC,∠B=30°,以点A为圆心,以3cm为半径作⊙A,当AB= cm时,BC与⊙A 相切.【答案】6.【解析】考点:切线的判定.6.【黑龙江牡丹江中考数学试题】如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE= .【答案】4-7.【解析】试题分析:连接OC,如图:∵AB=8,CD=6,∴根据垂径定理(垂直于弦的直径平分弦并且平分弦所对的弧)得出CE=ED=12CD=3,∴OC=OB=12AB=4,在Rt△OEC中,由勾股定理求出OE=2234 =7,∴BE=OB-OE=4-7.考点:1.垂径定理;2.勾股定理.7.【湖北省黄冈市启黄中学中考模拟】如图所示,经过B(2,0)、C(6,0)两点的⊙H与y轴的负半轴相切于点A,双曲线y=xk经过圆心H,则k= .【答案】﹣83.【解析】考点:1.切线的性质;2.反比例函数图象上点的坐标特征.8.【山东省枣庄市滕州市中考二模】如图,在Rt△AOB中,OA=OB=4,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ (点Q为切点),则线段PQ长度的最小值为.【答案】7.【解析】考点:切线的性质.9.【辽宁盘锦中考数学试题】如图1,AB为⊙O的直径,点P是直径AB上任意一点,过点P作弦CD⊥AB,垂足为P,过点B的直线与线段AD的延长线交于点F,且∠F=∠ABC.(1)若CD=23BP=4,求⊙O的半径;(2)求证:直线BF是⊙O的切线;(3)当点P与点O重合时,过点A作⊙O的切线交线段BC的延长线于点E,在其它条件不变的情况下,判断四边形AEBF是什么特殊的四边形?请在图2中补全图象并证明你的结论.【答案】(1)19;(2)证明见解析;(3)四边形AEBF是平行四边形,8证明见解析.【解析】(2)∵∠A=∠C,∠F=∠ABC,∴△PBC∽△BFA,∴∠ABF=∠CPB,∵CD⊥AB,∴∠ABF=∠CPB=90°,∴直线BF是⊙O的切线;(3)四边形AEBF是平行四边形;理由:如图2所示:∵CD⊥AB,垂足为P,∴当点P与点O重合时,CD=AB,∴OC=OD,∵AE是⊙O的切线,∴BA⊥AE,∵CD⊥AB,∴DC∥AE,∵AO=OB,∴OC是△ABE的中位线,∴AE=2OC,∵∠D=∠ABC,∠F=∠ABC,∴∠D =∠F ,∴CD ∥BF ,∵AE ∥BF ,∵OA =OB ,∴OD 是△ABF 的中位线,∴BF =2OD ,∴AE =BF ,∴四边形AEBF 是平行四边形.考点:1.圆的综合题;2.三角形中位线定理;3.平行四边形的判定;4.综合题.10.【浙江省宁波市江北区中考模拟】已知:如图,△ABC 中,∠BAC=90°,点D 在BC 边上,且BD=BA ,过点B 画AD 的垂线交AC 于点O ,以O 为圆心,AO 为半径画圆.(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径为8,tan ∠C=34,求线段AB 的长,sin ∠ADB 的值.【答案】(1)证明见解析;(2)10103. 【解析】试题解析:(1)连接OD,如图:∵BA=BD,BO⊥AD(已知),∴∠ABO=∠DBO(等腰三角形顶角三线合一),在△ABO和△DBO中,根据边角边判定△ABO≌△DBO,∴OD=OA.,∵OA为半径,∴OD也为半径,∴∠ODB=∠OAB=90°,∴BD⊥OD,∴BC是⊙O的切线;考点:1.切线的判定;2.三角形全等的判定和性质;3.锐角三角函数.。

2021年中考数学 专题汇编:相似三角形及其应用(含答案)

2021年中考数学 专题汇编:相似三角形及其应用(含答案)

2021中考数学 专题汇编:相似三角形及其应用一、选择题(本大题共10道小题)1. 如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点,DE ∥BC ,若AD=2,AB=3,DE=4,则BC 等于 ( )A .5B .6C .7D .82. (2020·永州)如图,在ABC 中,2//,3AE EF BC EB =,四边形BCFE 的面积为21,则ABC 的面积是( )A. 913B. 25C. 35D. 633. (2020·嘉兴) 如图,在直角坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比为13的位似图形△OCD ,则点C 坐标为( )A .(﹣1,﹣1)B .(4,13--) C .(41,3--) D .(﹣2,﹣1)4. (2019•巴中)如图ABCD ,F 为BC 中点,延长AD 至E ,使13DE AD =∶∶,连接EF 交DC 于点G ,则:DEG CFG S S △△=A .2∶3B .3∶2C .9∶4D .4∶95. (2020·河南)如图,在△ABC 中,∠ACB=90°,边BC 在x 轴上,顶点A ,B的坐标分别为(-2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A. (32,2)B. (2,2)C. (114,2) D. (4,2)6. (2020·河北) 在图5所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是A.四边形NPMQB.四边形NPMRC.四边形NHMQD.四边形NHMR7. (2019•贺州)如图,在ABC △中,D E ,分别是AB AC ,边上的点,DE BC ∥,若23AD AB ==,,4DE =,则BC 等于A .5B .6C.7 D.88. 如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB 的垂直平分线,垂足为E.若BC=3,则DE的长为()A. 1B. 2C. 3D. 49. (2020•丽水)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则ABCDEFGHSS正方形正方形的值是()A.12+B.22+C.52-D.15410. (2020·新疆)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE 的面积为1,则BC的长为·······················································()A.25B.5 C.45D.10二、填空题(本大题共8道小题)11. 如图,在△ABC中,∠ACD=∠B,若AD=2,BD=3,则AC长为.12. 在某一时刻,测得一根高为1.8 m的竹竿的影长为3 m,同时同地测得一栋楼的影长为90 m,则这栋楼的高度为m.13. (2020·郴州)在平面直角坐标系中,将AOB∆以点O为位似中心,32为位似比作位似变换,得到11OBA∆.已知)3,2(A,则点1A的坐标是.14. 如图,在R t△ABC中,∠ACB=90°,AC=3,BC=4,CD⊥AB,垂足为D,E为BC的中点,AE与CD交于点F,则DF的长为_________.FE DBC A15. (2019•泸州)如图,在等腰Rt ABC△中,90C=︒∠,15AC=,点E在边CB上,2CE EB=,点D在边AB上,CD AE⊥,垂足为F,则AD长为__________.16. (2020·杭州)如图是一张矩形纸片,点E在AB边上,把BCE△沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,2AE=,则DF=______,BE=______.FDBEAC17. 如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连接AE,则△ABE的面积等于________.18. (2020·长沙)如图,点P 在以MN 为直径的半圆上运动,(点P 与M ,N 不重合)PQ ⊥MN ,NE 平分∠MNP ,交PM 于点E ,交PQ 于点F . (1)PMPEPQPF +=____________. (2)若MN PM PN •=2,则NQMQ=____________. F E NMP三、解答题(本大题共4道小题) 19. (2020·凉山州)(7分)如图,一块材料的形状是锐角三角形ABC ,边BC =120 mm ,高AD =80mm ,把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是多少?20. 如图,在Rt △ABC 中,∠ACB=90°,AB=10,BC=6,CD ∥AB ,∠ABC 的平分线BD 交AC 于点E ,求DE 的长.HKFEBA21. 已知:在等边△ABC中,D 、E 分别是AC 、BC 上的点,且∠BAE =∠CBD<60°,DH ⊥AB ,垂足为点H .(1)如图①,当点D 、E 分别在边AC 、BC 上时,求证:△ABE ≌△BCD ;(2)如图②,当点D 、E 分别在AC 、CB 延长线上时,探究线段AC 、AH 、BE 的数量关系;(3)在(2)的条件下,如图③,作EK ∥BD 交射线AC 于点K ,连接HK ,交BC 于点G ,交BD 于点P ,当AC =6,BE =2时,求线段BP 的长.22. 已知在△ABC中,AB 边上的动点D 由A 向B 运动(与A ,B 不重合),同时,点E 由点C 沿BC 的延长线方向运动(E 不与C 重合),连接DE 交AC 于点F ,点H 是线段AF 上一点.(1)如图①,若△ABC 是等边三角形,DH ⊥AC ,且D ,E 的运动速度相等,求HFAC的值.(2)如图②,若在△ABC 中,∠ABC=90°,∠ADH=∠BAC=30°,且点D ,E的运动速度之比是:1,求HFAC的值;(3)如图③,若在△ABC 中,AB=AC ,∠ADH=∠BAC=36°,记ACBC=m ,且点D ,E 的运动速度相等,试用含m 的代数式表示HFAC的值.图① 图② 图③2021中考数学 专题汇编:相似三角形及其应用-答案一、选择题(本大题共10道小题) 1. 【答案】B [解析]∵DE ∥BC ,∴△ADE ∽△ABC , ∴=,即=,解得BC=6,故选B .2. 【答案】B【详解】解:∵//EF BC ∴AEF B AFE C ∠=∠∠=∠, ∴AEF ABC ∽ ∵23AE EB = ∴25AE AB = ∴255242AEB ABCS S ⎛⎫==⎪⎝⎭ ∴421AEBBCFESS =四边形 ∵21BCFE S =四边形 ∴AEBS =4∴=25ABCS故选:B .3. 【答案】B【解析】本题考查了在坐标系中,位似图形点的坐标.在平面直角坐标系中,如果以原点为位似中心,画出一个与原图形位似的图形,使它与原图形的相似比为k ,那么与原图形上的点(x ,y )对应的位似图形上的点的坐标为(kx ,ky )或(–kx ,–ky ).由A (4,3),位似比k =13,可得C (413,--)因此本题选B .4. 【答案】D【解析】设DE x =,∵13DE AD =∶∶,∴3AD x =, ∵四边形ABCD 是平行四边形,∴AD BC ∥,3BC AD x ==, ∵点F 是BC 的中点,∴1322CF BC x ==, ∵AD BC ∥,∴DEG CFG △∽△,∴224()()392DEG CFG S DE x S CF x ===△△,故选D .5. 【答案】B【解析】∵点A ,B 的坐标分别为(-2,6)和(7,0),∴OC=2,AC=6,OB=7, ∴BC=9,正方形的边长为2.将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,设正方形与x 轴的两个交点分别为G 、F ,∵EF ⊥x 轴,EF=GF=DG=2,∴EF ∥AC ,D ,E 两点的纵坐标均为2, ∴EF BF AC BC ,即269BF ,解得BF=3.∴OG=OB-BF-GF=7-3-2=2,∴ D 点的横坐标为2,∴点D 的坐标为 (2,2).6. 【答案】A【解析】解析:连接AO 并延长AO 至点N ,连接BO 并延长PO 至点P, 连接CO 并延长CO 至点M, 连接DO 并延长DO 至Q ,可知12AO BO CO DO NO PO MO QO ====,所以以点O 为位似中心,四边形ABCD 的位似图形是四边形NPMQ ,故答案为A.7. 【答案】B【解析】∵DE BC ∥,∴ADE ABC △∽△, ∴AD DE AB BC=,即243BC =,解得:6BC =,故选B .8. 【答案】A【解析】∵AD 是∠BAC 的平分线,AC ⊥BC ,AE ⊥DE, ∴DC =DE ,AE =AC .又∵DE 是AB 的垂直平分线,∴BE =AE ,即AB =2AE =2AC, ∴∠B =30°.设DE =x ,则BD =3-x .在Rt △BDE 中,x 3-x=12,解得x =1,∴DE的长为1.9. 【答案】C【解析】∵四边形EFGH 为正方形,∴∠EGH =45°,∠FGH =90°,∵OG =GP ,∴∠GOP =∠OPG =67.5°,∴∠PBG =22.5°,又∵∠DBC =45°,∴∠GBC =22.5°,∴∠PBG =∠GBC ,∵∠BGP =∠BG =90°,BG =BG ,∴△BPG ≌△BCG ,∴PG =CG .设OG =PG =CG =x ,∵O为EG,BD的交点,∴EG=2x,FG2=x.∵四个全等的直角三角形拼成“赵爽弦图”,∴BF=CG=x,∴BG=x2+x,∴BC2=BG2+CG2()2222(21)422x x x=++=+,∴()22422222ABCDEFGHxSS x+==+正方形正方形,因此本题选D.10. 【答案】A【解析】本题考查了相似三角形的判定与性质,三角形的中位线定理.如答图,过点E作EG⊥BC于G,过点A作AH⊥BC于H.又因为DF⊥BC,所以DF∥AH∥EG,四边形DEGF是矩形.所以△BDF∽△BAH,DF=EG,所以DFAH=BDBA,因为D为AB中点,所以BDBA=12,所以DFAH =12.设DF=EG=x,则AH=2x.因为∠BAC=90°,所以∠B+∠C=90°,因为EG⊥BC,所以∠C+∠CEG=90°,所以∠B=∠CEG,又因为∠BHA=∠CGE=90°,AB=CE,所以△ABH≌△CEG,所以CG=AH=2x.同理可证△BDF∽△ECG,所以BFEG=BDEC,因为BD=12AB=12CE,所以BF=12EG=12x.在R t△BDF中,由勾股定理得BD=22DF BF+=221()2x x+=5x,所以AD=5x,所以CE=AB=2AD=5x.因为DE∥BC,所以AEAC=ADAB=12,所以AE=12AC=CE=5x.在R t△ADE中,由勾股定理得DE=22AD AE+=225()(5)2x x+=52x.因△DEF的面积为1,所以12DE·DF=1,即12×52x·x=1,解得x=255,所以DE=52×255=5,因为AD=BD,AE=CE,所以BC=2DE=25,因此本题选D.二、填空题(本大题共8道小题)11. 【答案】[解析]∵∠ACD=∠B,∠CAD=∠BAC,∴△ACD∽△ABC,∴=,即=,∴AC=或AC=-(舍去).12. 【答案】5413. 【答案】(,2)【解析】∵将△AOB 以点O 为位似中心,为位似比作位似变换,得到△A 1OB 1,A (2,3),∴点A 1的坐标是:(×2,×3),即A 1(,2).故答案为:(,2).14. 【答案】5485【解析】本题考查平行线分线段成比例定理,相似三角形的判定与性质.已知∠ACB =90°,AC =3, BC =4,由勾股定理,得AB =5.CD ⊥AB ,由三角形的面积,得CD =AC BC AB ⋅=125.易得△ABC ∽△ACD ∽△CBD ,由相似三角形对应边成比例,得AD =AC AC AB ⋅=95,BD =BC BC AB ⋅=165.过点E 作EG ∥AB 交CD于点G ,由平行线分线段成比例,得DG =12CD =65,EG =85,所以DF ADGF EG=,即956855DF DF =-,所以DF =,故答案为5485. GF E DB CA15. 【答案】92【解析】如图,过D 作DH AC ⊥于H ,则∠AHD =90°,∵在等腰Rt ABC △中,90C =︒∠,15AC =, ∴15AC BC ==,45CAD ∠=︒, ∴∠ADH =90°–∠CAD =45°=∠CAD , ∴AH DH =,∴CH =AC –AH =15–DH ,∵CF AE ⊥,∴90DHA DFA ∠=∠=︒,又∵∠ANH =∠DNF ,∴HAF HDF ∠=∠,∴ACE DHC △∽△,∴DH CH AC CE =, ∵2CE EB =,CE +BE =BC =15,∴10CE =, ∴151510DH DH -=, ∴9DH =,∴2292AD AH DH =+=,故答案为:92.16. 【答案】2 5-1【解析】设BE =x ,则AB =AE +BE =2+x .∵四边形ABCD 是矩形,∴CD =AB =2+x ,AB ∥CD ,∴∠DCE =∠BEC .由折叠得∠BEC =∠DEC ,EF =BE =x ,∴∠DCE =∠DEC .∴DE =CD =2+x .∵点D ,F ,E 在同一条直线上,∴DF =DE -EF =2+x -x =2.∵AB ∥CD ,∴△DCF ∽△EAF ,∴DC EA =DF EF .∴22x +=2x ,解得x 1=5-1,x 2=-5-1.经检验,x 1=5-1,x 2=-5-1都是分式方程的根.∵x >0,∴x =5-1,即BE =5-1.17. 【答案】78 【解析】如解图,过A 作AH ⊥BC ,∵AB =15,AC =20,∠BAC =90°,∴由勾股定理得,BC =152+202=25,∵AD =5,∴DC =20-5=15,∵DE ⊥BC ,∠BAC =90°,∴△CDE ∽△CBA ,∴CE CA =CD CB ,∴CE =1525×20=12.法一:BC·AH =AB·AC ,AH =AB·AC BC =15×2025=12,S △ABE =12×12×13=78.法二:DE =152-122=9,由△CDE ∽△CAH 可得,CD CA =ED HA ,∴AH =9×2015=12,S △ABE =12×12×13=78.18. 【答案】1;215- 【解析】本题考查了圆的基本性质,角平分线性质,平行相似,相似判定与性质,(1)作EH ⊥MN ,又∵MN 是直径,NE 平分∠MNP ,PQ ⊥MN ,∴易证出PE =EH =HF =PF ,EH ∥PQ ,∴△EMH ∽△PMQ ,∴PQ PF PQ EH PM ME ==,∴1=+=+PM PE PM ME PM PE PQ PF ; (2)由相似基本图射影型得:解得MN QN PN •=2又∵MN PM PN •=2,∴QN =PM ,设QN =PM =a ,MQ =b ,由相似基本图射影型得:解得MN MQ PM •=2,∴()b a b a +=2解得()251a b +-=或()251a b --=(舍去)∴215-==a b NQ MQ ; 因此本题答案为1;215-. F EQ N M P三、解答题(本大题共4道小题)19. 【答案】解:设这个正方形零件的边长为x mm ,则△AEF 的边EF 上的高AK =(80-x)mm .∵四边形EFHG 是正方形,∴EF ∥GH ,即EF ∥BC .∴△AEF ∽△ABC . ∴EF AK BC AD =,即8012080x x -=.∴x =48.∴这个正方形零件的边长是48 mm .20. 【答案】解:∵BD 平分∠ABC ,∴∠ABD=∠CBD.∵AB ∥CD ,∴∠D=∠ABD ,∴∠CBD=∠D ,∴CD=BC=6.在Rt △ABC 中,AC===8.∵AB ∥CD ,∴△ABE ∽△CDE ,∴====,∴CE=AE ,DE=BE ,即CE=AC=×8=3.在Rt △BCE 中,BE===3, ∴DE=BE=×3=.21. 【答案】(1)证明:∵△ABC 为等边三角形,∴∠ABC =∠C =∠CAB =60°,AB =BC ,在△ABE 和△BCD 中,⎩⎨⎧∠BAE =∠CBDAB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA);(2)解:∵△ABC 为等边三角形,∴∠ABC =∠CAB =60°,AB =BC ,∴∠ABE =∠BCD =180°-60°=120°.∴在△ABE 和△BCD 中,⎩⎨⎧∠BAE =∠CBDAB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA),∴BE =CD .∵DH ⊥AB ,∴∠DHA =90°,∵∠CAB =60°,∴∠ADH =30°,∴AD =2AH ,∴AC =AD -CD =2AH -BE ;(3)解:如解图,作DS ⊥BC 延长线于点S ,作HM ∥AC 交BC 于点M ,解图∵AC =6,BE =2,∴由(2)得AH =4,BH =2,与(1)同理可得BE =CD =2,CE =8,∵∠SCD =∠ACB =60°,∴∠CDS =30°,∴CS =1,SD =3,BS =7,∵BD 2=BS 2+SD 2=72+(3)2,∴BD =213,∵EK ∥BD ,∴△CBD ∽△CEK ,∴CB CE =CD CK =BD EK ,∴CK =CD ·CE CB =2×86=83,EK =CE ·BD CB =8×2136=8133. ∵HM ∥AC ,∴∠HMB =∠ACB =60°,∴△HMB 为等边三角形,BM =BH =HM =2, CM =CB -BM =4,又∵HM ∥AC ,∴△HMG ∽△KCG ,∴HM KC =MG CG ,即382=MG 4-MG,∴MG =127,BG =267,EG =407, ∵EK ∥BD ,∴△GBP ∽△GEK ,∴BP EK =GB GE , ∴BP =261315.22. 【答案】(1)过点D 作DG ∥BC 交AC 于点G ,解图①∵△ABC 是等边三角形,∴△AGD 是等边三角形,∴AD =GD ,由题意知CE =AD ,∴CE =GD∵DG ∥BC ,∴∠GDF =∠CEF ,在△GDF 与△CEF 中,GDF CEF GFD EFC CE GD ⎧⎪⎨⎪=∠=∠∠∠⎩=, ∴△GDF ≌△CEF (AAS ),∴CF =GF , ∵DH ⊥AG ,∴AH =GH ,∴AC =AG +CG =2GH +2GF =2(GH +GF )=2HF , ∴AC HF=2; (2)如解图②,过点D 作DG ∥BC 交AC 于点G ,解图②由题意知,点D ,E 3:1, ∴3,AD CE = ∵∠ABC =90°,∠BAC =30°,∴3,AD GD = ∴,AD AD CE GD = ∴GD =CE ,∵DG ∥BC ,∴∠GDF=∠CEF ,在△GDF 和△CEF 中,,GDF CEF GFD EFC GD CE ∠=∠∠=∠⎧⎪⎨⎪⎩=∴△GDF ≌△CEF (AAS ),∴CF =GF ,∵∠ADH =∠BAC =30°,∴AH =HD ,∵∠AGD =∠HDG =60°,∴GH =HD ,∴AH =HG ,∴AC =AG +CG =2GH +2GF =2(GH +GF )=2HF , ∴AC HF=2; (3)如解图③,过点D 作DG ∥BC 交AC 于点G ,解图③∵DG ∥BC ,∴△AGD ∽△ACB ,∴=,GD BC m AG AC = ∵∠ADH =∠BAC =36°,AC=AB ,∴∠GHD =∠HGD =72°,∴GD =HD =AH , ∴=,AH GD m AG AG= ∵AD =CE , ∴==,GD GD GD m AD AG CE = ∵DG ∥BC ,∴△GDF ∽△ECF ,∴=,GD GF m CE CF= ∴GH +FG =m (AH +FC )=m (AC-HF ), 即HF =m (AC-HF ),∴1.=AC m HF m +。

2021年中考数学真题汇编之相似三角形的判定与性质

2021年中考数学真题汇编之相似三角形的判定与性质

2021年中考数学真题汇编之\相似三角形的判定与性质1.(2021•贵港)下列命题是真命题的是()A.同旁内角相等,两直线平行B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.两角分别相等的两个三角形相似2.(2021•湘潭)如图,在△ABC中,点D,E分别为边AB,AC上的点,试添加一个条件:,使得△ADE与△ABC相似.(任意写出一个满足条件的即可)3.(2021•达州)在平面直角坐标系中,等边△AOB如图放置,点A的坐标为(1,0),每一次将△AOB绕着点O逆时针方向旋转60°,同时每边扩大为原来的2倍,第一次旋转后得到△A1OB1,第二次旋转后得到△A2OB2,…,依次类推,则点A2021的坐标为()A.(﹣22020,﹣×22020)B.(22021,﹣×22021)C.(22020,﹣×22020)D.(﹣22021,﹣×22021)4.(2021•镇江)如图,点D,E分别在△ABC的边AC,AB上,△ADE∽△ABC,M,N分别是DE,BC的中点,若=,则=.5.(2021•济南)如图,在△ABC中,∠ABC=90°,∠C=30°,以点A为圆心,以AB的长为半径作弧交AC于点D,连接BD,再分别以点B,D为圆心,大于BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,连接DE,则下列结论中不正确的是()A.BE=DE B.DE垂直平分线段ACC.D.BD2=BC•BE6.(2021•绵阳)如图,在△ACD中,AD=6,BC=5,AC2=AB(AB+BC),且△DAB∽△DCA,若AD=3AP,点Q是线段AB上的动点,则PQ的最小值是()A.B.C.D.7.(2021•巴中)如图,△ABC中,点D、E分别在AB、AC上,且==,下列结论正确的是()A.DE:BC=1:2B.△ADE与△ABC的面积比为1:3C.△ADE与△ABC的周长比为1:2D.DE∥BC8.(2021•湘西州)如图,在△ECD中,∠C=90°,AB⊥EC于点B,AB=1.2,EB=1.6,BC =12.4,则CD的长是()A.14 B.12.4 C.10.5 D.9.3 9.(2021•黑龙江)如图,矩形ABCD的边CD上有一点E,∠DAE=22.5°,EF⊥AB,垂足为F,将△AEF绕着点F顺时针旋转,使得点A的对应点M落在EF上,点E恰好落在点B 处,连接BE.下列结论:①BM⊥AE;②四边形EFBC是正方形;③∠EBM=30°;④S四边形BCEM:S△BFM=(2+1):1.其中结论正确的序号是()A.①②B.①②③C.①②④D.③④10.(2021•贵港)如图,在正方形ABCD中,E,F是对角线AC上的两点,且EF=2AE=2CF,连接DE并延长交AB于点M,连接DF并延长交BC于点N,连接MN,则=()A.B.C.1 D.11.(2021•大庆)如图,F是线段CD上除端点外的一点,将△ADF绕正方形ABCD的顶点A 顺时针旋转90°,得到△ABE.连接EF交AB于点H.下列结论正确的是()A.∠EAF=120°B.AE:EF=1:C.AF2=EH•EF D.EB:AD=EH:HF12.(2021•温州)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示.过点D作DF的垂线交小正方形对角线EF的延长线于点G,连结CG,延长BE交CG 于点H.若AE=2BE,则的值为()A.B.C.D.13.(2021•遂宁)如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积是3cm2,则四边形BDEC的面积为()A.12cm2B.9cm2C.6cm2D.3cm2 14.(2021•济南)如图,一个由8个正方形组成的“C”模板恰好完全放入一个矩形框内,模板四周的直角顶点M,N,O,P,Q都在矩形ABCD的边上,若8个小正方形的面积均为1,则边AB的长为.15.(2021•沈阳)如图,△ABC中,AC=3,BC=4,AB=5.四边形ABEF是正方形,点D是直线BC上一点,且CD=1.P是线段DE上一点,且PD=DE.过点P作直线l与BC平行,分别交AB,AD于点G,H,则GH的长是.16.(2021•朝阳)如图,在矩形ABCD中,AB=1,BC=2,连接AC,过点D作DC1⊥AC于点C1,以C1A,C1D为邻边作矩形AA1DC1,连接A1C1,交AD于点O1,过点D作DC2⊥A1C1于点C2,交AC于点M1,以C2A1,C2D为邻边作矩形A1A2DC2,连接A2C2,交A1D于点O2,过点D作DC3⊥A2C2于点C3,交A1C1于点M2;以C3A2,C3D为邻边作矩形A2A3DC3,连接A3C3,交A2D 于点O3,过点D作DC4⊥A3C3于点C4,交A2C2于点M3…若四边形AO1C2M1的面积为S1,四边形A1O2C3M2的面积为S2,四边形A2O3C4M3的面积为S3…四边形A n﹣1O n C n+1M n的面积为S n,则S n=.(结果用含正整数n的式子表示)17.(2021•鞍山)如图,△ABC的顶点B在反比例函数y=(x>0)的图象上,顶点C在x轴负半轴上,AB∥x轴,AB,BC分别交y轴于点D,E.若==,S△ABC=13,则k=.18.(2021•抚顺)如图,在△ABC和△DEC中,∠ACB=∠DCE=90°,∠BAC=∠EDC=60°,AC=2cm,DC=1cm.则下列四个结论:①△ACD∽△BCE;②AD⊥BE;③∠CBE+∠DAE=45°;④在△CDE绕点C旋转过程中,△ABD面积的最大值为(2+2)cm2.其中正确的是.(填写所有正确结论的序号)19.(2021•阜新)如图,已知每个小方格的边长均为1,则△ABC与△CDE的周长比为.20.(2021•牡丹江)如图,矩形ABCD中,AD=AB,点E在BC边上,且AE=AD,DF⊥AE 于点F,连接DE,BF,BF的延长线交DE于点O,交CD于点G.以下结论:①AF=DC,②OF:BF=CE:CG,③S△BCG=S△DFG,④图形中相似三角形有6对,则正确结论的序号是.21.(2021•徐州)如图,在△ABC中,点D、E分别在边BA、BC上,且==,△DBE 与四边形ADEC的面积的比.22.(2021•营口)如图,DE是△ABC的中位线,F为DE中点,连接AF并延长交BC于点G,若S△EFG=1,则S△ABC=.23.(2021•营口)如图,矩形ABCD中,AB=5,BC=4,点E是AB边上一点,AE=3,连接DE,点F是BC延长线上一点,连接AF,且∠F=∠EDC,则CF=.24.(2021•烟台)《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为米.25.(2021•包头)如图,在Rt△ABC中,∠ACB=90°,过点B作BD⊥CB,垂足为B,且BD =3,连接CD,与AB相交于点M,过点M作MN⊥CB,垂足为N.若AC=2,则MN的长为.26.(2021•东营)如图,正方形ABCB1中,AB=,AB与直线l所夹锐角为60°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4…,依此规律,则线段A2020A2021=.27.(2021•大庆)已知,如图①,若AD是△ABC中∠BAC的内角平分线,通过证明可得=,同理,若AE是△ABC中∠BAC的外角平分线,通过探究也有类似的性质.请你根据上述信息,求解如下问题:如图②,在△ABC中,BD=2,CD=3,AD是△ABC的内角平分线,则△ABC的BC边上的中线长l的取值范围是.28.(2021•随州)如图,在Rt△ABC中,∠ACB=90°,O为AB的中点,OD平分∠AOC交AC 于点G,OD=OA,BD分别与AC,OC交于点E,F,连接AD,CD,则的值为;若CE=CF,则的值为.29.(2021•山西)如图,在△ABC中,点D是AB边上的一点,且AD=3BD,连接CD并取CD 的中点E,连接BE,若∠ACD=∠BED=45°,且CD=6,则AB的长为.30.(2021•菏泽)如图,在△ABC中,AD⊥BC,垂足为D,AD=5,BC=10,四边形EFGH和四边形HGNM均为正方形,且点E、F、G、N、M都在△ABC的边上,那么△AEM与四边形BCME的面积比为.31.(2021•南充)如图,在△ABC中,D为BC上一点,BC=AB=3BD,则AD:AC的值为.32.(2021•内江)如图,在边长为a的等边△ABC中,分别取△ABC三边的中点A1,B1,C1,得△A1B1C1;再分别取ΔA1B1C1三边的中点A2,B2,C2,得△A2B2C2;这样依次下去…,经过第2021次操作后得△A2021B2021C2021,则△A2021B2021C2021的面积为()A.B.C.D.33.(2021•内江)如图,矩形ABCD中,AB=6,BC=8,对角线BD的垂直平分线EF交AD于点E、交BC于点F,则线段EF的长为.34.(2021•黔西南州)如图,在Rt△OAB中,∠AOB=90°,OA=OB,AB=1,作正方形A1B1C1D1,使顶点A1,B1分别在OA,OB上,边C1D1在AB上;类似地,在Rt△OA1B1中,作正方形A2B2C2D2;在Rt△OA2B2中,作正方形A3B3C3D3;…;依次作下去,则第n个正方形A n B n∁n D n的边长是.35.(2021•牡丹江)Rt△ABC中,∠C=90°,AB=17,BC=8,矩形CDEF的另三个顶点D,E,F均在Rt△ABC的边上,且邻边之比为1:2,画出符合题意的图形,并直接写出矩形周长的值.36.(2021•鄂州)如图,在▱ABCD中,点E、F分别在边AD、BC上,且∠ABE=∠CDF.(1)探究四边形BEDF的形状,并说明理由;(2)连接AC,分别交BE、DF于点G、H,连接BD交AC于点O.若=,AE=4,求BC的长.37.(2021•玉林)如图,在△ABC中,D在AC上,DE∥BC,DF∥AB.(1)求证:△DFC∽△AED;(2)若CD=AC,求的值.38.(2021•山西)阅读与思考请阅读下列科普材料,并完成相应的任务.图算法图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系:F=C+32得出,当C=10时,F=50.但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种利用特制的线条进行计算的方法就是图算法.再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?我们可以利用公式求得R的值,也可以设计一种图算法直接得出结果:我们先来画出一个120°的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性.任务:(1)请根据以上材料简要说明图算法的优越性;(2)请用以下两种方法验证第二个例子中图算法的正确性:①用公式计算:当R1=7.5,R2=5时,R的值为多少;②如图,在△AOB中,∠AOB=120°,OC是△AOB的角平分线,OA=7.5,OB=5,用你所学的几何知识求线段OC的长.39.(2021•黄冈)如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.(1)求证:△ABC∽△DEC;(2)若S△ABC:S△DEC=4:9,BC=6,求EC的长.参考答案:1.(2021•贵港)下列命题是真命题的是()A.同旁内角相等,两直线平行B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.两角分别相等的两个三角形相似【分析】利用平行线的判定方法、矩形及菱形的判定方法、相似三角形的判定方法分别判断后即可确定正确的选项.【解答】解:A、同旁内角互补,两直线平行,故原命题错误,是假命题,不符合题意;B、对角线相等的平行四边形是矩形,故原命题错误,是假命题,不符合题意;C、对角线互相垂直的平行四边形是菱形,故原命题错误,是假命题,不符合题意;D、两角分别相等的两个三角形相似,正确,是真命题,符合题意,故选:D.2.(2021•湘潭)如图,在△ABC中,点D,E分别为边AB,AC上的点,试添加一个条件:∠ADE=∠C(答案不唯一),使得△ADE与△ABC相似.(任意写出一个满足条件的即可)【分析】根据相似三角形判定定理:两个角相等的三角形相似;夹角相等,对应边成比例的两个三角形相似,即可解题.【解答】解:添加∠ADE=∠C,又∵∠A=∠A,∴△ADE∽△ACB,故答案为:∠ADE=∠C(答案不唯一).3.(2021•达州)在平面直角坐标系中,等边△AOB如图放置,点A的坐标为(1,0),每一次将△AOB绕着点O逆时针方向旋转60°,同时每边扩大为原来的2倍,第一次旋转后得到△A1OB1,第二次旋转后得到△A2OB2,…,依次类推,则点A2021的坐标为()A.(﹣22020,﹣×22020)B.(22021,﹣×22021)C.(22020,﹣×22020)D.(﹣22021,﹣×22021)【分析】每旋转6次,A的对应点又回到x轴正半轴,故A2021在第四象限,且OA2021=22021,画出示意图,即可得到答案.【解答】解:由已知可得:第一次旋转后,A1在第一象限,OA1=2,第二次旋转后,A2在第二象限,OA2=22,第三次旋转后,A3在x轴负半轴,OA3=23,第四次旋转后,A4在第三象限,OA4=24,第五次旋转后,A5在第四象限,OA5=25,第六次旋转后,A6在x轴正半轴,OA6=26,......如此循环,每旋转6次,A的对应点又回到x轴正半轴,而2021=6×336+5,∴A2021在第四象限,且OA2021=22021,示意图如下:OH=OA2021=22020,A2021H=OH=×22020,∴A2021((22020,﹣×22020),故选:C.4.(2021•镇江)如图,点D,E分别在△ABC的边AC,AB上,△ADE∽△ABC,M,N分别是DE,BC的中点,若=,则=.【分析】根据相似三角形对应中线的比等于相似比求出,根据相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵M,N分别是DE,BC的中点,∴AM、AN分别为△ADE、△ABC的中线,∵△ADE∽△ABC,∴==,∴=()2=,故答案为:.5.(2021•济南)如图,在△ABC中,∠ABC=90°,∠C=30°,以点A为圆心,以AB的长为半径作弧交AC于点D,连接BD,再分别以点B,D为圆心,大于BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,连接DE,则下列结论中不正确的是()A.BE=DE B.DE垂直平分线段ACC.D.BD2=BC•BE【分析】由题意不难得到BE=DE,则有∠BAE=∠DAE=30°,可判断△AEC是等腰三角形,则不难判断A、B正确;易证△ABC∽△EDC,则有,再根据,DC=,从而得到,利用相似三角形的性质可判断C错误;易证得△ABD是等边三角形,则有∠DBE=∠BDE=30°,可得△BED∽△BDC,根据相似三角形的性质可得到D正确.【解答】解:由题意可得∠ABC=90°,∠C=30°,AB=AD,AP为BD的垂直平分线,∴BE=DE,∴∠BAE=∠DAE=30°,∴△AEC是等腰三角形,∵AB=AD,AC=2AB,∴点D为AC的中点,∴DE垂直平分线段AC,故选项A,B正确,不符合题意;在△ABC和△EDC中,∠C=∠C,∠ABC=∠EDC=90°,∴△ABC∽△EDC,∴,∵,DC=,∴,∴,∴,故选项C错误,符合题意;在△ABD中,∵AB=AD,∠BAD=60°,∴△ABD是等边三角形,∴∠ABD=∠ADB=60°,∴∠DBE=∠BDE=30°,在△BED和△BDC中,∠DBC=∠EBD=30°,∠BDE=∠C=30°,∴△BED∽△BDC,∴,∴BD2=BC•BE,故选项D正确,不符合题意.故选:C.6.(2021•绵阳)如图,在△ACD中,AD=6,BC=5,AC2=AB(AB+BC),且△DAB∽△DCA,若AD=3AP,点Q是线段AB上的动点,则PQ的最小值是()A.B.C.D.【分析】根据相似三角形的性质得到,得到BD=4(负值舍去),AB=BD=4,过B作BH⊥AD于H,根据等腰三角形的性质得到AH=AD=3,根据勾股定理得到BH===,当PQ⊥AB时,PQ的值最小,根据相似三角形的性质即可得到结论.【解答】解:∵△DAB∽△DCA,∴,∴,解得:BD=4(负值舍去),∵△DAB∽△DCA,∴,∴AC=,∵AC2=AB(AB+BC),∴(AB)2=AB(AB+BC),∴AB=4,∴AB=BD=4,过B作BH⊥AD于H,∴AH=AD=3,∴BH===,∵AD=3AP,AD=6,∴AP=2,当PQ⊥AB时,PQ的值最小,∵∠AQP=∠AHB=90°,∠PAQ=∠BAH,∴△APQ∽△ABH,∴,∴=,∴PQ=,故选:A.7.(2021•巴中)如图,△ABC中,点D、E分别在AB、AC上,且==,下列结论正确的是()A.DE:BC=1:2B.△ADE与△ABC的面积比为1:3C.△ADE与△ABC的周长比为1:2D.DE∥BC【分析】根据相似三角形的判定与性质进行逐一判断即可.【解答】解:∵==,∴AD:AB=AE:AC=1:3,∵∠A=∠A,∴△ADE∽△ABC,∴DE:BC=1:3,故A错误;∵△ADE∽△ABC,∴△ADE与△ABC的面积比为1:9,周长的比为1:3,故B和C错误;∵△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC.故D正确.故选:D.8.(2021•湘西州)如图,在△ECD中,∠C=90°,AB⊥EC于点B,AB=1.2,EB=1.6,BC =12.4,则CD的长是()A.14 B.12.4 C.10.5 D.9.3【分析】由∠ABE=∠C,∠E=∠E,证明△ABE∽△DCE,得=,即可求解.【解答】解:∵EB=1.6,BC=12.4,∴EC=EB+BC=14,∵AB⊥EC,∴∠ABE=90°,∵∠C=90°,∴∠ABE=∠C,又∵∠E=∠E,∴△ABE∽△DCE,∴=,即=,解得:CD=10.5,故选:C.9.(2021•黑龙江)如图,矩形ABCD的边CD上有一点E,∠DAE=22.5°,EF⊥AB,垂足为F,将△AEF绕着点F顺时针旋转,使得点A的对应点M落在EF上,点E恰好落在点B 处,连接BE.下列结论:①BM⊥AE;②四边形EFBC是正方形;③∠EBM=30°;④S四边形BCEM:S△BFM=(2+1):1.其中结论正确的序号是()A.①②B.①②③C.①②④D.③④【分析】延长BM交AE于N,连接AM,由垂直的定义可得∠AFE=∠EFB=90°,根据直角三角形的两个锐角互余得∠EAF=67.5°,从而有∠EAF+∠FBM=90°,得到①正确;根据三个角是直角可判断四边形EFBC是矩形,再由EF=BF可知是正方形,故②正确,计算出∠EBM=22.5°得③错误;根据等腰直角三角形的性质可知AM=FM,推导得出AM=EM=FM,从而EF=EM+FM=(+1)FM,得到S△EFB:S△BFM=():1,再由S四边形BCEF=2S△EFB,得S四边形BCEM:S△BFM=(2+1):1,判断出④正确.【解答】解:如图,延长BM交AE于N,连接AM,∵EF⊥AB,∴∠AFE=∠EFB=90°,∵∠DAE=22.5°,∴∠EAF=90°﹣∠DAE=67.5°,∵将△AEF绕着点F顺时针旋转得△MFB,∴MF=AF,FB=FE,∠FBM=∠AEF=∠DAE=22.5°,∴∠EAF+∠FBM=90°,∴∠ANB=90°,∴BM⊥AE,故①正确;∵四边形ABCD是矩形,∴∠ABC=∠C=90°,∵∠EFB=90°,∴四边形EFBC是矩形,又∵EF=BF,∴矩形EFBC是正方形,故②正确;∴∠EBF=45°,∴∠EBM=∠EBF﹣∠FBM=45°﹣22.5°=22.5°,故③错误;∵∠AFM=90°,AF=FM,∴∠MAF=45°,AM=,∴∠EAM=67.5°﹣45°=22.5°,∴∠AEM=∠MAE,∴EM=AM=FM,∴EF=EM+FM=(+1)FM,∴S△EFB:S△BFM=():1,又∵四边形BCEF是正方形,∴S四边形BCEF=2S△EFB,∴S四边形BCEM:S△BFM=(2+1):1,故④正确,∴正确的是:①②④,故选:C.【点评】本题考查了矩形的性质、旋转的性质、勾股定理和正方形的判定与性质,掌握常用辅助线的添加方法,灵活运用相关知识是解题的关键.10.(2021•贵港)如图,在正方形ABCD中,E,F是对角线AC上的两点,且EF=2AE=2CF,连接DE并延长交AB于点M,连接DF并延长交BC于点N,连接MN,则=()A.B.C.1 D.【分析】设AB=AD=BC=CD=3a,首先证明AM=CN,再利用平行线分线段成比例定理求出CN=a,推出AM=a,BM=BN=2a,可得结论.【解答】解:设AB=AD=BC=CD=3a,∵四边形ABCD是正方形,∴∠DAE=∠DCF=45°,∠DAM=∠DCN=90°,在△DAE和△DCF中,,∴△DAE≌△DCF(SAS),∴∠ADE=∠CDF,在△DAM和△DCN中,,∴△DAM≌△DCN(ASA),∴AM=CN,∵AB=BC,∴BM=BN,∵CN∥AD,∴==,∴CN=AM=a,BM=BN=2a,∴===,故选:A.【点评】本题考查正方形的性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会利用参数,设正方形的边长为3a,求出AM=a,BM=BN=2a.11.(2021•大庆)如图,F是线段CD上除端点外的一点,将△ADF绕正方形ABCD的顶点A 顺时针旋转90°,得到△ABE.连接EF交AB于点H.下列结论正确的是()A.∠EAF=120°B.AE:EF=1:C.AF2=EH•EF D.EB:AD=EH:HF【考点】正方形的性质;旋转的性质;相似三角形的判定与性质.【专题】三角形;矩形菱形正方形;几何直观.【分析】由已知可得△ABE≌△ADF,从而得到∠EAB=∠DAF,AE=AF;由∠EAF=∠BAE+∠FAB=90°=∠DAF+∠FAB=90°,可知A不正确;由∠EAF=90°,AE=AF,可知△AEF 是等腰直角三角形,所以EF=AE,则B不正确;若AF2=EH•EF成立,可得EH=EF,即H是EF的中点,而H不一定是EF的中点,故C不正确;由AB∥CD,由平行线分线段成比例可得EB:BC=EH:HF,故D正确.【解答】解:∵△ADF绕正方形ABCD的顶点A顺时针旋转90°,得到△ABE,∴△ABE≌△ADF,∴∠EAB=∠DAF,∴∠EAF=∠BAE+∠FAB=90°=∠DAF+∠FAB=90°,故A不正确;∵∠EAF=90°,AE=AF,∴△AEF是等腰直角三角形,∴EF=AE,∴AE:EF=1:,故B不正确;若AF2=EH•EF成立,∵AE:EF=1:,∴EH=AF,∴EH=EF,即H是EF的中点,H不一定是EF的中点,故C不正确;∵AB∥CD,∴EB:BC=EH:HF,∵BC=AD,∴EB:AD=EH:HF,故D正确;故选:D.【点评】本题考查正方形的性质,三角形的旋转;抓住三角形旋转的本质,旋转前后的三角形全等,得到△AEF是等腰直角三角形是解本题的关键.12.(2021•温州)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示.过点D作DF的垂线交小正方形对角线EF的延长线于点G,连结CG,延长BE交CG 于点H.若AE=2BE,则的值为()A.B.C.D.【考点】正方形的性质;相似三角形的判定与性质【专题】图形的全等;矩形菱形正方形;解直角三角形及其应用;推理能力.【分析】如图,过点G作GT⊥CF交CF的延长线于T,设BH交CF于M,AE交DF于N.设BE=AN=CM=DF=a,则AE=BM=CF=DN=2a,想办法求出BH,CG,可得结论.【解答】解:如图,过点G作GT⊥CF交CF的延长线于T,设BH交CF于M,AE交DF于N.设BE=AN=CM=DF=a,则AE=BM=CF=DN=2a,∴EN=EM=MF=FN=a,∵四边形ENFM是正方形,∴∠EFH=∠TFG=45°,∠NFE=∠DFG=45°,∵GT⊥TF,DF⊥DG,∴∠TGF=∠TFG=∠DFG=∠DGF=45°,∴TG=FT=DF=DG=a,∴CT=3a,CG==a,∵MH∥TG,∴△CMH∽△CTG,∴CM:CT=MH:TG=1:3,∴MH=a,∴BH=2a+a=a,∴==,故选:C.【点评】本题考查相似三角形的判定和性质,正方形的性质,勾股定理等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.13.(2021•遂宁)如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积是3cm2,则四边形BDEC的面积为()A.12cm2B.9cm2C.6cm2D.3cm2【考点】三角形中位线定理;相似三角形的判定与性质.【专题】三角形;推理能力.【分析】由DE都是中点,可得DE是△ABC的中位线,则DE∥BC,则△ADE∽△ABC,且相似比是1:2,则△ADE的面积和△ABC的面积比是1:4,则△ADE的面积:四边形BDEC 的面积=1:3,结合已知条件,可得结论.【解答】解:如图,在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,且=,∴△ADE∽△ABC,∴△ADE的面积:△ABC的面积=1:4,∴△ADE的面积:四边形BDEC的面积=1:3,∵△ADE的面积是3cm2,∴四边形BDEC的面积是9cm2,故选:B.【点评】本题主要考查三角形中位线的性质与判定,相似三角形的性质与判定,结合背景图形,找到已知和所求面积的关系是解题关键.14.(2021•济南)如图,一个由8个正方形组成的“C”模板恰好完全放入一个矩形框内,模板四周的直角顶点M,N,O,P,Q都在矩形ABCD的边上,若8个小正方形的面积均为1,则边AB的长为.【考点】全等三角形的判定与性质;矩形的性质;正方形的性质;相似三角形的判定与性质.【专题】图形的全等;矩形菱形正方形;图形的相似;推理能力.【分析】连接EG,则∠OEP=90°,由题意得,小正方形的边长为1,根据勾股定理得出OP=,根据矩形的性质可判定△OEP∽△QBM,得到===,进而得出BM=,QB=,利用AAS证明△QBM≌△MAN,根据全等三角形的性质及线段的和差即可得解.【解答】解:连接EG,则∠OEP=90°,由题意得,小正方形的边长为1,∴OP===,∵四边形ABCD是矩形,∴∠B=∠C=∠A=90°,∠MQP=90°,∴∠BMQ=∠CQP=90°﹣∠MQP,同理∠EPO=∠CQP=90°﹣∠QPC,∴∠BMQ=∠EPO,又∠OEP=∠B=90°,∴△OEP∽△QBM,∴===,∴BM===,QB===,∵∠B=∠A=90°,∠NMQ=90°,∴∠BMQ=∠ANM=90°﹣∠AMN,在△QBM和△MAN中,,∴△QBM≌△MAN(AAS),∴AM=QB=,∴AB=BM+AM=+=.故答案为:.【点评】此题考查了相似三角形的判定与性质、全等三角形的判定与性质、矩形及正方形的性质,根据矩形及正方形的性质作出合理的辅助线构建相似三角形是解题的关键.15.(2021•沈阳)如图,△ABC中,AC=3,BC=4,AB=5.四边形ABEF是正方形,点D是直线BC上一点,且CD=1.P是线段DE上一点,且PD=DE.过点P作直线l与BC平行,分别交AB,AD于点G,H,则GH的长是或.【考点】勾股定理的逆定理;正方形的性质;相似三角形的判定与性质.【专题】推理填空题;矩形菱形正方形;图形的相似;运算能力;推理能力.【分析】结合勾股定理逆定理判断△ABC是直角三角形,通过证明△GBM∽△BCA,△AGH ∽△ABD,然后利用相似三角形的性质求解,注意对于点C的位置要进行分类讨论.【解答】解:∵△ABC中,AC=3,BC=4,AB=5,∴AC2+BC2=25,AB2=25,∴AC2+BC2=AB2,∴△ABC为直角三角形,①当点D位于C点左侧时,如图:设直线l交BE于点M,∵l∥BC,∴,∠MGB=∠ABC,又∵四边形ABEF是正方形,且PD1=D1E,∴BE=AB=5,∠EBA=90°,即,解得:BM=,∵∠MGB=∠ABC,∠EBA=∠ACB=90°,∴△GBM∽△BCA,∴,∴,解得:GB=,∴AG=AB﹣GB=,∵l∥BC,∴△AGH∽△ABD1,∴,∵CD1=1,∴BD1=BC﹣CD1=3,∴,解得:GH=;②当点D位于C点右侧时,如图:与①同理,此时CD2=BC+CD1=5,∴,解得:GH=,综上,GH的长为或,故答案为:或.【点评】本题考查勾股定理逆定理,相似三角形的判定和性质,理解题意,证明出△GBM ∽△BCA,特别注意分类思想的运用是解题关键.16.(2021•朝阳)如图,在矩形ABCD中,AB=1,BC=2,连接AC,过点D作DC1⊥AC于点C1,以C1A,C1D为邻边作矩形AA1DC1,连接A1C1,交AD于点O1,过点D作DC2⊥A1C1于点C2,交AC于点M1,以C2A1,C2D为邻边作矩形A1A2DC2,连接A2C2,交A1D于点O2,过点D 作DC3⊥A2C2于点C3,交A1C1于点M2;以C3A2,C3D为邻边作矩形A2A3DC3,连接A3C3,交A2D 于点O3,过点D作DC4⊥A3C3于点C4,交A2C2于点M3…若四边形AO1C2M1的面积为S1,四边形A1O2C3M2的面积为S2,四边形A2O3C4M3的面积为S3…四边形A n﹣1O n C n+1M n的面积为S n,则S n=.(结果用含正整数n的式子表示)【考点】规律型:图形的变化类;相似三角形的判定与性质.【专题】几何综合题;运算能力;推理能力.【分析】根据四边形ABCD是矩形,可得AC=,运用面积法可得DC1==,进而得出D∁n=()n,得出S1=,……,S n==×=.【解答】解:∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,AD=BC=2,CD=AB=1,∴AC===,∵DC1•AC=AB•BC,∴DC1===,同理,DC2=DC1=()2,DC3=()3,……,D∁n=()n,∵=tan∠ACD==2,∴CC1=DC1=,∵tan∠CAD===,∴A1D=AC1=2DC1=,∴AM1=AC1﹣C1M1=2DC1﹣DC1=×DC1=,同理,A1M2=×DC2,A2M3=×DC3,……,A n﹣1M n=×D∁n,∵四边形AA1DC1是矩形,∴O1A=O1D=O1A1=O1C1=1,同理∵DC2•A1C1=A1D•DC1,∴DC2===,在Rt△DOC中,O1C2====DC2,同理,O2C3=DC3,O3C4=DC4,……,O n C n+1=DC n+1,∴S1==﹣=×AM1×DC1﹣×O1C2×DC2=(﹣)==,同理,S2=﹣==×=,S3==×=,……,S n==×=.故答案为:.【点评】本题考查了矩形性质,勾股定理,解直角三角形,三角形面积等,解题关键是通过计算找出规律.17.(2021•鞍山)如图,△ABC的顶点B在反比例函数y=(x>0)的图象上,顶点C在x轴负半轴上,AB∥x轴,AB,BC分别交y轴于点D,E.若==,S△ABC=13,则k=18 .【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;相似三角形的判定与性质.【专题】反比例函数及其应用;应用意识.【分析】过点B作BF⊥x轴于点F,通过设参数表示出三角形ABC的面积,从而求出参数的值,再利用三角形ABC与矩形ODBF的关系求出矩形面积,即可求得k的值.【解答】解:如图,过点B作BF⊥x轴于点F.∵AB∥x轴,∴△DBE∽△OCE,∴=,∵==,∴====,设CO=3a,DE=3b,则AD=2a,OE=2b,∴,OD=5b,∴BD=,∴AB=AD+DB=,∵S△ABC===13,∴ab=,∵S矩形ODBF=BD•OD===18,又∵反比例函数图象在第一象限,∴k=18,故答案为18.【点评】本题考查了相似三角形的判定与性质,反比例函数k的几何意义,利用相似三角形的性质,通过设参数把矩形面积和三角形ABC的面积互相联系起来是解决本题的关键.18.(2021•抚顺)如图,在△ABC和△DEC中,∠ACB=∠DCE=90°,∠BAC=∠EDC=60°,AC=2cm,DC=1cm.则下列四个结论:①△ACD∽△BCE;②AD⊥BE;③∠CBE+∠DAE=45°;④在△CDE绕点C旋转过程中,△ABD面积的最大值为(2+2)cm2.其中正确的是①②④.(填写所有正确结论的序号)【考点】含30度角的直角三角形;旋转的性质;相似三角形的判定与性质.【专题】等腰三角形与直角三角形;平移、旋转与对称;图形的相似;应用意识.【分析】先证明△ACD∽△BCE,再用对应角∠EBC=∠DAC,即可判断①②③,再由D到直线AB的最大距离为CH+CD=(+1)cm,即可求得△ABD面积的最大值为=(2+2)cm2,故可判断④.【解答】解:∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,∴∠BCE=∠ACD,∵∠BAC=∠EDC=60°,AC=2cm,DC=1cm,∴tan∠BAC==,tan∠BAC==,∴BC=2cm,CE=cm,∴==2,∴△ACD∽△BCE,故①正确;∵△ACD∽△BCE,∴∠EBC=∠DAC,如图,记BE与AD、AC分别交于F、G,∵∠AGF=∠BGC,∴∠BCG=∠BFA=90°,∴AD⊥BE,故②正确;∵∠EBC=∠DAC,∴∠CBE+∠DAE=∠DAC+∠DAE=∠CAE不一定等于45°,故③错误;如图,过点C作CH⊥AB于H,∵∠ABC=30°,∴CH=BC=cm,∴D到直线AB的最大距离为CH+CD=(+1)cm,∴△ABD面积的最大值为=(2+2)cm2,故④正确.故答案为:①②④.【点评】本题主要考查了相似三角形的判定与性质、旋转的性质,证明出△ACD∽△BCE 是本题的关键.19.(2021•阜新)如图,已知每个小方格的边长均为1,则△ABC与△CDE的周长比为2:1 .【考点】相似三角形的判定与性质【专题】三角形;推理能力.【分析】根据题意构造直角三角形并根据其各边的长度证明△ABM∽△EDN,从而推出AB ∥EN,再利用平行线的性质得到∠BAC=∠EDC,进而推出△ABC∽△CDE,则两三角形的周长之比就是两三角形的相似比.【解答】解:如图,分别过点A、点E作AM⊥BD,EN⊥BD,垂足分别为点M、N,则∠AMB=∠END=90°,∵BM=2,DN=1,AM=4,EN=2,∴,∴△ABM∽△EDN,∴∠ABM=∠EDN,=2,∴AB∥EN,∴∠BAC=∠EDC,又∠ACB=∠DCE,∴△ABC∽△CDE,∴△ABC与△CDE的周长之比为2:1.故答案为:2:1.【点评】本题考查相似三角形的判定与性质,解题的关键是通过构造直角三角形推出AB ∥EN,再利用相似三角形的性质求解.20.(2021•牡丹江)如图,矩形ABCD中,AD=AB,点E在BC边上,且AE=AD,DF⊥AE 于点F,连接DE,BF,BF的延长线交DE于点O,交CD于点G.以下结论:①AF=DC,②OF:BF=CE:CG,③S△BCG=S△DFG,④图形中相似三角形有6对,则正确结论的序号是①②.【考点】全等三角形的判定与性质;矩形的性质;相似三角形的判定与性质.【专题】三角形;矩形菱形正方形;应用意识.【分析】①根据AAS证△DFE≌△DCE即可得DF=DC,根据AD=AB,得出AB=BE,即△ABE是等腰直角三角形,△AFD是等腰直角三角形,即AF=DF=DC,故①正确;②作FH⊥AD于H,得出F是BG的中点,即BF=FG,连接CF,证△OEF∽△FCG即可得证OF:BF=CE:CG,即②正确;③令AB=1,分别求出DG和CG的长度,可得出CG=DG,故S△BCG=S△DFG错误,即③不正确;④根据角相等可以得出图形中相似三角形如下:△ABE∽△AFD,这是1对;△ABF∽△OEF ∽△ADE,可组成3对;△BCG∽△DCE∽△DFE,又可组成3对;△BEF∽△BOE∽△DOG∽△FDG,还可组成6对.综上,图形中相似三角形有13对,故④不正确.【解答】解:①∵AE=AD,AD=AB,∴AE=AB,即△ABE是等腰直角三角形,∴∠BAE=45°,∴∠DAF=90°﹣45°=45°,即△AFD为等腰直角三角形,∴AF=DF,∵AD∥BC,∴∠ADE=∠DEC,∵AE=AD,∴∠AED=∠ADE,∴∠AED=∠DEC,又∵∠DFE=∠DCE=90°,DE=DE,∴△DFE≌△DCE(AAS),∴DF=DC,即AF=DC,故①正确;②由①知△AFD为等腰直角三角形,如图1,作FH⊥AD于H,连接CF,∴点H是AD的中点,∴点F是BG的中点,即BF=FG=FC,∵∠AEB=45°,∴∠EFC=∠ECF=∠AEB=22.5°,∴∠FCG=∠FGC=90°﹣22.5°=67.5°,∵∠OFE=∠AFB=(180°﹣45°)=67.5°,∠OEF=90°﹣∠EDF=90°﹣22.5°=67.5°,∴∠FCG=∠FGC=∠OFE=∠OEF,∴△GFC∽△FOE,∴OF:FC=EF:CG,又∵FC=BF,EF=CE,∴OF:BF=CE:CG,即②正确;③令AB=1,则AD=AE=BC=,∴CE=,∵∠GBC=∠EDC,∠DCE=∠BCG=90°,∴△BCG∽△DCE,∴=,即=,∴CG=2﹣,∴DG=1﹣(2﹣)=﹣1,∴CG=DG,∴S△BCG=S△DFG不成立,即③不正确;④根据角相等可以得出图形中相似三角形如下:△ABE∽△AFD,这是1对;△ABF∽△OEF∽△ADE,可组成3对;△BCG∽△DCE∽△DFE,又可组成3对;△BEF∽△BOE∽△DOG∽△FDG,还可组成6对,综上,图形中相似三角形有13对,故④不正确.故答案为:①②.【点评】本题主要考查全等三角形的判定和性质,相似三角形的判定和性质,利用辅助线构造相似三角形是解题的关键.21.(2021•徐州)如图,在△ABC中,点D、E分别在边BA、BC上,且==,△DBE 与四边形ADEC的面积的比.【考点】相似三角形的判定与性质.【专题】三角形;图形的相似;推理能力;应用意识.【分析】先由==,设AD=3m,DB=2m,CE=3k,EB=2k,证明=,又∠B=∠B,可证明△DBE∽△ABC.进而可得相似比为,面积比==,从而可得S△DBE:S四边形ADEC=4:21.【解答】解:∵==,则设AD=3m,DB=2m,CE=3k,EB=2k,∴=,=,∴=,。

2021年上海中考数学相似三角形专项训练(含答案)

2021年上海中考数学相似三角形专项训练(含答案)

2021年上海中考数学相似三角形专项训练一、选择题1.(2021.1松江)如果两个相似三角形对应边的比为1:4,那么它们的周长比是( ) (A )1:2;(B )1:4;(C )1:8;(D )1:16.2.(2021.1崇明)已知点G 是△ABC 的重心,如果联结AG ,并延长AG 交边BC 于点D ,那么下列说法中错误..的是( ) (A)BD CD =; (B)AG GD =; (C)2AG GD =; (D)2BC BD =.3.(2021.1青浦)如图1,已知BD 与CE 相交于点A ,DE ∥BC ,如果AD =2,AB =3, AC =6,那么AE 等于( ) (A )125; (B )185; (C )4; (D )9.4. (2021.1奉贤)如图2,在梯形ABCD 中,AD //BC ,BC =3AD ,对角线AC 、BD 交于点O ,EF 是梯形ABCD 的中位线,EF 与BD 、AC 分别交于点G 、H ,如果△OGH 的面积为1,那么梯形ABCD 的面积为( )(A )12; (B )14; (C )16; (D )18.5. (2021.1杨浦)在梯形ABCD 中,AD //BC ,对角线AC 与BD 相交于点O ,下列说法中,错误的是( ) (A )DOC AOB S S ∆∆=; (B )AOB BOC S OD S OB ∆∆=; (C )AOD BOC S OA S OC ∆∆=; (D )ABD ABC S ADS BC∆∆=. 6. (2021.1宝山)如图,AB ∥DE ,BC ∥DF ,已知n m FB AF ::=,a BC =,那么CE 等于( )(A )nam; (B )m an ; (C )nm am +; (D )nm an+. (B )二、填空题7.(2021.1崇明)已知线段6AB =cm ,点C 是AB 的黄金分割点,且AC BC >,那么EDCBA (图1)ADHG F E BCO图2AB CDEF图3线段AC 的长为 cm .8.(2021.1黄浦)已知线段MN 的长为4,点P 是线段MN 的黄金分割点,则其较长 线段MP 的长是 .9.(2021.1奉贤)已知点P 是线段AB 上一点,且AB AP BP •=2,如果AB =2厘米, 那么BP = 厘米. 10.(2021.1崇明)如果两个相似三角形的一组对应边上的高之比为1:4,那么这两个三角形的面积比为 .11.(2021.1黄浦)在△ABC 中,AB =5,BC =8,∠B =60°,则△ABC 的面积是 . 12.(2021.1奉贤)如果两个相似三角形的周长之比为1:4,那么这两个三角形对应边上的高之比为 .13. (2021.1杨浦) 如图,已知在△ABC 中,∠ACB =90°,点G 是△ABC 的重心,CG =2,BC =4,那么cos GCB ∠= .14.(2021.1松江)如图4,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上.已知△ABC 的边BC =16cm ,高AH 为10cm ,则正方形DEFG 的边长为_________cm.15.(2021.1虹口)如图5,AB //CD ,AD 、BC 相交于点E ,过E 作EF //CD 交BD 于点F ,如果AB =3,CD=6,那么EF 的长是 .16.(2021.1黄浦)已知一个矩形的两邻边长之比为1∶2.5,一条平行于边的直线将该矩形分为两个小矩形,如果所得两小矩形相似,那么这两个小矩形的相似比为 . 17. (2021.1杨浦)如图6,已知在△ABC 中,∠B=45º,∠C=60º,将△ABC 绕点A 旋转,点B 、C 分别落在点B 1、C 1处,如果BB 1//AC ,联结C 1B 1交边AB 于点D ,那么1BDB D的值为 .18.(2021.1普陀)如图8,在□ABCD 中,点E 在边BC 上,将△ABE 沿着直线AE 翻折得到△AFE ,点B 的对应点F 恰好落在线段DE 上,线段AF 的延长线交边CD 于点G ,如果:3:2BE EC =,那么:AF FG 的值等于 .(图4) E H AB C D F GAD CFEB A 图5 图6CB A A DCB EF G三、解答题 19、(2020年5月徐汇二模)如图,已知直线22+=x y 与x 轴交于点A ,与y 轴交于点C ,矩形ACBE 的顶点B 在第一象限的反比例函数xmy =图像上,过点B 作OC BF ⊥.垂足为F ,设t OF =. (1)求ACO ∠的正切值;(2)求点B 的坐标(用含t 的式子表示); (3)已知直线22+=x y 与反比例函数xmy =图像都经过第一象限的点D ,联结DE ,如果x DE ⊥轴,求m 的值.20、(2020年5月杨浦二模)如图,已知在正方形ABCD 中,对角线AC 与BD 交于点O ,点M 在线段OD 上,联结AM 并延长交边DC 于点E ,点N 在线段OC 上,且ON=OM ,联结DN 与线段AE 交于点H ,联结EN 、MN .(1) 如果EN //BD ,求证:四边形DMNE 是菱形; (2) 如果EN ⊥DC ,求证:2AN NC AC =⋅.(第19题图)AD C BEOxy F第20题图ADCHMON E21、(2020年5月长宁二模)如图,已知四边形ABCD 是矩形,点E 在对角线AC 上,点F 在边CD 上(点F 与点C 、D 不重合),EF BE ⊥,且︒=∠+∠45CEF ABE .(1)求证:四边形ABCD 是正方形; (2)联结BD ,交EF 于点Q ,求证:DF CE BC DQ ⋅=⋅.22、(2020年5月长宁二模)如图,在平面直角坐标系xOy 中,已知抛物线n mx x y ++=2经过点)2-2(,A ,对称轴是直线1=x ,顶点为点B ,抛物线与y 轴交于点C . (1)求抛物线的表达式和点B 的坐标;(2)将上述抛物线向下平移1个单位, 平移后的抛物线与x 轴正半轴交于点D ,求BCD ∆的面积;(3)如果点P 在原抛物线上,且在对称轴的右侧,联结BP 交线段OA 于点Q ,51=PQ BQ , 求点P 的坐标.ADCBEF第21题图第22题图-1-2 -3 -412 3 4 -1 -2 -3 -4 1 2 3 4 Oxy第24题图EDCABGFH23、(2020年5月长宁二模)已知:如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,点E 是DB 延长线上的一点,且EA EC =,分别延长AD 、EC 交于点F . (1)求证:四边形ABCD 为菱形;(2)如果2AEC BAC ∠=∠,求证:EC CF AF AD ⋅=⋅.24、(2020年5月静安二模)已知:如图8,四边形ABCD 是平行四边形,延长BA 至点E ,使得AE=AB ,联结DE 、AC .点F 在线段DE 上,联结BF ,分别交AC 、AD 于点G 、H .(1)求证:BG =GF ;(2)如果AC =2AB ,点F 是DE 的中点,求证:BH GH AH ⋅=2.第23题图ABCDEFO25、(2020年5月闵行二模)如图,已知在□ABCD 中,AE ⊥BC ,垂足为E ,CE=AB ,点F 为CE 的中点,点G 在线段CD 上,联结DF ,交AG 于点M ,交EG 于点N ,且∠DFC=∠EGC .(1)求证:CG=DG ; (2)求证:2CG GM AG =⋅.26、(2020年5月浦东二模)已知:如图,在菱形ABCD 中,AC =2,∠B =60°.点E 为BC 边上的一个动点(与点B 、C 不重合),∠EAF =60°,AF 与边CD 相交于点F ,联结EF 交对角线AC 于点G .设CE =x ,EG = y .(1)求证:△AEF 是等边三角形;(2)求y 关于x 的函数解析式,并写出x 的取值范围;(3)点O 是线段AC 的中点,联结EO ,当EG =EO 时,求x 的值.ABEGCFD(第25题图)M N(第26题图)GFEDCBA参考答案一、选择题 1.B 2.A 3.C 4.C 5.C 6.D二、填空题7. 3 8.2 9.15-10. 1﹕16 11.12. 1:4 13.2314.801315. 2 16. 1,2,12.17. 18.214三、解答题 19.解:(1)由题意,得,;∴,;在中,,)0,1(-A )2,0(C 1=AO 2=OC AOC Rt ∆︒=∠90AOC∴. (2)∵四边形是矩形,∴;∵,∴;又,; ∴;∴; 又, ∴; ∴.(3)设轴,垂足为,与轴的交点为.又轴,∴;∴,; ∵四边形是矩形,∴,;∴;∴;又, ∴≌;∴; ∴;∴;∴; ∵点、在反比例函数图像上, ∴; 解得或(不合题意,舍去); ∴. 20.证明:(1)如图1,∵四边形是正方形,∴……(1分)21tan ==∠OC OA ACO ACBE ︒=∠90ACB OC BF ⊥︒=∠90BFC ︒=∠+∠90BCF ACO ︒=∠+∠90BCF FBC ACO FBC ∠=∠21tan tan =∠==∠ACO BF CF FBC t OF CO CF -=-=2t CF BF 242-==),24(t t B -x DE ⊥H AE y G x CO ⊥CO DH //AEH AGC ∠=∠DHCOAH AO =ACBE BC AE =BC AE //BCF AGC ∠=∠BCF AEH ∠=∠︒=∠=∠90BFC AHE AEH ∆BCF ∆t BF AH 24-==DHt 2241=-t DH 48-=)48,23(t t D --B D xmy =m t t t t =-=--)24()48)(23(56=t 2=t 254856)5624(=⨯⨯-=m ABCD OA OB OC OD AC BD ===⊥,∵,∴,∴………………(1分) 又∵,∴…………(1分) ∵, ,∴≌…………………………(1分 ∴,∵,∴ ∴………………………………………(1分)∴,∴平行…………………………(1分)(2)如图2, ∵,∴……………………(1分) ∵四边形是正方形,∴,…(1分) ∴,又∵,∴,…………………(1分)∴………………………………(1分) ∵∴……………………………………………(1分) ∴, ∴………………(1分) 21.证明:(1)∵EF BE ⊥ ∴︒=∠90BEF 即︒=∠+∠90CEF BEC (1分)∵BAC ABE BEC ∠+∠=∠ ∴︒=∠+∠+∠90CEF BAC ABE 又∵︒=∠+∠45CEF ABE ∴ ︒=∠45BAC 又∵四边形ABCD 是矩形 ∴ ︒=∠90ABC ∴ ︒=∠+∠90BCA BAC ∴︒=∠=∠45BCA BAC ∴ BC AB = (4分)∴四边形ABCD 是正方形 (1分) (2)设BD AC 、相交于点O∵四边形ABCD 是正方形 ∴BD AC ⊥ ∴︒=∠90EOQ (1分) ∴︒=∠+∠90OEQ EQOON OM =ON OMOC OD=//MN CD //EN BD DMNE 四边形是平行四边形AOM DON ∆∆在和中90AOM DON ∠=∠=︒OA OD OM ON ==,AOM ∆DON ∆OMA OND ∠=∠90OAM OMA ∠+∠=90OAM OND ∠+∠=︒90AHN ∠=︒DN ME ⊥DMNE 四边形是菱形//MN CD AN AMNC ME=ABCD //AB DC AB DC =,90ADC ∠=AD DC ⊥EN DC ⊥//EN AD AC DCAN DE=//AB DC ,AM ABME DE=AN ACNC AN =2AN NC AC =⋅第23题图1ADCHMON E B第23题图2ADCH MON E又∵︒=∠+∠90OEQ CEB ∴CEB EQO ∠=∠ (1分)∵四边形ABCD 是正方形∴ ︒=∠=∠90ADC BCD ,AC 、BD 分别平分ADC BCD ∠∠、∴ ︒=∠=∠45ECB QDF (1分)又∵ EQO DQF ∠=∠ ∴CEB DQF ∠=∠ (1分)∴DQF ∆∽CEB ∆ (1分)∴ BC DF CE DQ =即 DF CE BC DQ ⋅=⋅22.(本题满分12分,每小题各4分)解:(1) 抛物线n mx x y ++=2经过点)2,2(-A ,对称轴是直线1=x∴42212m n m ++=-⎧⎪⎨-=⎪⎩,解得22m n =-⎧⎨=-⎩ (2分)∴抛物线的解析式为222y x x =--,顶点B 的坐标是(1,3)- (2分)(2)抛物线222y x x =--与y 轴交于点),(2-0C 平移后的抛物线表达式为: 223y x x =-- ,点D 的坐标是(3,0) (2分)过点B 做y BH ⊥轴,垂足为点H∴=S S S BCD BCH COD BHOD S ∆∆∆--梯形1111=(13)31123=22222⨯+⨯-⨯⨯-⨯⨯ (2分) (3)∵直线OA 经过点00O (,)、)2,2(-A ,∴直线OA 的表达式为:y x =- 设对称轴与直线OA 相交于点E ,则11E (,-) ∵ (1,3)B - ∴2BE = (1分) 过点P 作PF//BE ,交直线OA 于点F设点)(22,2--t t t P 1t >(),则)(t t F -, ∴22PF t t =-- (1分)∵ PF//BE ∴15BE BQ PF PQ == ∴22125t t =-- ∴2120t t --= ∴3t =- (舍去)或4t = (1分) ∴)6,4(P (1分)23. 证明:(1)∵四边形ABCD 是平行四边形.∴AO CO =. ··········································································· (2分) ∵EA EC =,∴EO AC ⊥. ························································· (2分) ∴四边形ABCD 是菱形. ····························································· (2分)(2)∵四边形ABCD 是菱形,∴2BAD BAC ∠=∠,AD CD =. ······················································· (2分) ∵2AEC BAC ∠=∠,∴BAD AEC ∠=∠. ∵AB //CD ,∴BAD CDF ∠=∠.∴AEC CDF ∠=∠. ········································································· (1分) 又∵F F ∠=∠, ∴△FCD ∽△FAE . ············································· (1分) ∴CF CDAF AE=. ················································································· (1分) ∴AE CF AF CD ⋅=⋅.∴EC CF AF AD ⋅=⋅. ······································································ (1分)24.证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB //CD . ···································································· (1分) ∵AB =AE ,∴AE =CD . ··································································· (1分) ∴四边形ACDE 是平行四边形.························································· (1分) ∴AC//DE .···················································································· (1分)∴. ··········································································· (1分) 1==AEABGF BG∴BG =GF . ··················································································· (1分) (2)∵AB =AE ,∴BE =2AE . ∵AC =2AB ,∴BE =AC .∵四边形ACDE 是平行四边形,∴AC=DE . ∴DE=BE . ··················································································· (1分) ∵点F 是DE 的中点,∴ DE=2EF . ∴AE= EF . ··················································································· (1分) ∵∠E =∠E ,∴△BEF ≌△DEA . ······················································· (1分) ∴∠EBF =∠EDA . ·········································································· (1分) ∵AC //DE ,∴∠GAH =∠EDA . ∴∠EBF =∠GAH .∵∠AHG=∠BHA ,∴△AHG ∽△BHA . ·············································· (1分)∴. ∴. ······································································ (1分) 25. 证明:(1)∵□ABCD ,CE=AB ,∴AB=CD=EC ;…………………………(1分)又∵∠DFC=∠EGC ,∠BCD=∠BCD ,∴△ECG ≌△DCF ;……(1分) ∴CG=CF .…………………………………………………………(1分)∵点F 为CE 的中点,∴CF=12CE ;………………………………(1分)∴CG=12CD ,即:CG=DG .……………………………………(1分)(2)延长AG 、BC 交于点H .∵△ECG ≌△DCF ,∴∠CEG=∠CDF .…………………………(1分) ∵□ABCD ,∴AD ∥BC ,∴∠DAH=∠H ,∠ADC=∠DCH .∴△ADG ≌△HCG ,∴AG=HG .…………………………………(1分) ∵AE ⊥BC ,∴∠AEC=90°,∴AG=HG=EG .………………(1分)∴∠CEG=∠H ,∴∠CDF=∠DAH .………………………………(1分) 又∵∠AGD=∠DGA ,∴△ADG ∽△DMG .…………………………(1分)∴MG DG DG AG=,∴2DG GM AG =⋅…………………………………(1分) 又∵CG=DG ,∴2CG GM AG =⋅.……………………………………(1分)26.解:(1)∵四边形ABCD 是菱形,∴AB =BC ,∠ACB =∠ACF . ……………(1分)∵∠B =60°,∴△ABC 是等边三角形.∴AB =AC ,∠B =∠BAC =∠ACB=∠ACF =60°. …………………………(1分) ∵∠BAC=∠EAC +∠BAE =60°,∠EAF=∠EAC +∠CAF =60°,∴∠BAE =∠CAF .………………………………………………………… (1分)∴△BAE ≌△CAF .…………………………………………………………(1分) ∴AE =AF .AHGHBH AH =BH GH AH ⋅=2∵∠EAF=60°,∴△AEF是等边三角形.………………………………(1分)(2)过点A作AH⊥BC,垂足为点H.在Rt△ABH中,∠AHB=90°,∠B=60°,AB=2,∴AH BH=1.在Rt△AEH中,∠AHE=90°,AH,EH=1x-,∴AE.………………………………………………………(1分)∵∠AEG+∠CEG=∠B+∠BAE,∠B=∠AEG=60°,∴∠CEG=∠BAE.∵∠B=∠GCE=60°,∴△BAE∽△CEG.………………………………(1分)∴BA AE CE=.∴2x=.………………………………………………………(1分)∴y=…………………………………………………(1分)(0 < x < 2).…………………………………………………………(1分)(3)过点E作EM⊥AC,垂足为点M.在Rt△CEM中,∠CME=90°,∠ECM=60°,CE=x,∴CM=12x.∵点O是线段AC的中点,∴CO=1.∴OM=112x -.∵EO=EG,EM⊥AC,∴GM=OM=112x -.………………………………(1分)∴CG=1x-.…………………………………………………………………(1分)∵△BAE∽△CEG.∴BA BE CE CG=.∴22xx-=.………………………………………………………………(1分)∴x=(负值舍去)…………………………………………………(1分)。

2021年中考数学试题分类汇编之十 相似三角形

2021年中考数学试题分类汇编之十 相似三角形

中考数学试题分类汇编之十相似三角形一、选择题9.(2020成都)(3分)如图,直线123////l l l ,直线AC 和DF 被1l ,2l ,3l 所截,5AB =,6BC =,4EF =,则DE 的长为( )A .2B .3C .4D .103解:直线123////l l l ,∴AB DEBC EF=, 5AB =,6BC =,4EF =,∴564DE=, 103DE ∴=, 选:D .10.(2020哈尔滨)(3分)如图,在ABC ∆中,点D 在BC 边上,连接AD ,点E 在AC 边上,过点E 作//EF BC ,交AD 于点F ,过点E 作//EG AB ,交BC 于点G ,则下列式子一定正确的是( )A .AE EFEC CD=B .EF EGCD AB=C .AF BGFD GC=D .CG AFBC AD=解://EF BC,∴AF AE FD EC=,//EG AB,∴AE BG EC GC=,∴AF BG FD GC=,故选:C.8.(2020河北)在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A. 四边形NPMQB. 四边形NPMRC. 四边形NHMQD. 四边形NHMR解:如图所示,四边形ABCD的位似图形是四边形NPMQ.故选:A12.(2020四川绵阳)如图,在四边形ABCD 中,AD ∥BC,∠ABC=90°,AB=27,AD=2,将△ABC 绕点C 顺时针方向旋转后得'''A B C ,当''A B 恰好过点D 时,'B CD 为等腰三角形,若'BB =2,则'AA =( )A. 11B.23C.13D.14 【解析】A.解:过点D 作DE ⊥BC 于点E.则BE=AD=2,DE=AB=27, 设BC='B C=x ,CE=x -2. ∵'B CD 为等腰三角形, ∴'B C=BD=x ,∠D 'B C=90° ∴DC=2x在RT △DCE 中,由勾股定理得:222DC DE CE =+,即:2222)(27)(2)x x =+-(,解得:14x =,2-8x =(舍去)。

2021年中考数学 二轮专题汇编:相似三角形及其应用(含答案)

2021年中考数学 二轮专题汇编:相似三角形及其应用(含答案)

2021中考数学 二轮专题汇编:相似三角形及其应用一、选择题1. 如图,在△ABC 中,点D ,E 分别在AB 和AC 边上,DE ∥BC ,M 为BC 边上一点(不与点B ,C 重合),连接AM 交DE 于点N ,则( )A .=B .=C .=D .=2.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△A 1B 1C 1相似的是 ( )3. (2019•雅安)若34ab =∶∶,且14a b +=,则2a b -的值是 A .4 B .2 C .20 D .144. 如图①,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图②是此时的示意图,则图②中水面高度为 ( )A .B .C .D .5. (2020·永州)如图,在ABC 中,2//,3AE EF BC EB ,四边形BCFE 的面积为21,则ABC 的面积是( )A. 913B. 25C. 35D. 636. (2020·广西北部湾经济区)如图,在△ABC 中,BC =120,高AD =60,正方形EFGH 一边在BC 上,点E ,F 分别在AB ,AC 上,AD 交EF 于点N ,则AN 的长为( )A .15B .20C .25D .307. (2020·重庆B 卷)如图,△ABC 与△DEF 位似,点O 为位似中心.已知OA :OD =1:2,则△ABC 与△DEF 的面积比为( ) A .1:2 B .1:3 C .1:4 D .1:58. (2019•贵港)如图,在ABC △中,点D ,E 分别在AB ,AC 边上,DE BC ∥,ACD B ∠=∠,若2AD BD =,6BC =,则线段CD 的长为A .23B .32C .26D .5二、填空题9. 在某一时刻,测得一根高为1.8 m 的竹竿的影长为3 m ,同时同地测得一栋楼的影长为90 m ,则这栋楼的高度为 m .10. (2020·盐城)如图,//,BC DE 且,4,10BC DE AD BC AB DE <==+=,则AEAC的值为 .11. (2019•郴州)若32x y x +=,则yx=__________.12. (2019•百色)如图,ABC △与A'B'C'△是以坐标原点O 为位似中心的位似图形,若点()22A ,, ()34B ,,()61C ,,()68B',,则A'B'C'△的面积为__________.13. 《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是步.14.如图,在R t △ABC 中,∠ACB =90°,AC =3, BC =4, CD ⊥AB ,垂足为D , E 为BC 的中点,AE 与CD 交于点F ,则DF 的长为_________.FE DB CA15. (2019•泸州)如图,在等腰Rt ABC △中,90C =︒∠,15AC =,点E 在边CB 上,2CE EB =,点D 在边AB 上,CD AE ⊥,垂足为F ,则AD 长为__________.16. (2020·苏州)如图,在平面直角坐标系中,点A 、B 的坐标分别为()4,0-、()0,4,点()3,C n 在第一象限内,连接AC 、BC .已知2BCA CAO ∠=∠,则n =_________.三、解答题 17. (2020·杭州)如图,在ABC △中,点D ,E ,F 分别在AB ,BC ,AC 边上,DE AC ∥,EF AB ∥.FED CBA(1)求证:E BDE FC ∽△△. (2)设12AF FC =, ①若BC =12,求线段BE 的长;②若△EFC 的面积是20,求△ABC 的面积.18. (2019•广东)如图,在ABC △中,点D 是边AB 上的一点.(1)请用尺规作图法,在ABC △内,求作ADE ∠,使ADE B ∠=∠,DE 交AC 于E ;(不要求写作法,保留作图痕迹) (2)在(1)的条件下,若2ADDB =,求AE EC的值.19. 如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG 在BC上,顶点E,H分别在AB,AC上,已知BC=40 cm,AD=30 cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.20. 如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC 的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;(2)求证:AE2=EF·ED;(3)求证:AD是⊙O的切线.21. 如图,☉O是△ABC的外接圆,AB是直径,D是AC中点,直线OD与☉O 相交于E,F两点,P是☉O外一点,且P在直线OD上,连接P A,PC,AF,满足∠PCA=∠ABC.(1)求证:P A是☉O的切线;(2)证明:EF2=4OD·OP;(3)若BC=8,tan∠AFP=,求DE的长.22. 如图①,⊙O是△ABC的外接圆,AB是⊙O的直径,OD∥AC,OD交⊙O 于点E,且∠CBD=∠COD.(1)求证:BD是⊙O的切线;(2)若点E为线段OD的中点,求证:四边形OACE是菱形.(3)如图②,作CF⊥AB于点F,连接AD交CF于点G,求FGFC的值.23. 已知:在等边△ABC中,D、E分别是AC、BC上的点,且∠BAE=∠CBD <60°,DH⊥AB,垂足为点H.(1)如图①,当点D、E分别在边AC、BC上时,求证:△ABE≌△BCD;(2)如图②,当点D、E分别在AC、CB延长线上时,探究线段AC、AH、BE的数量关系;(3)在(2)的条件下,如图③,作EK∥BD交射线AC于点K,连接HK,交BC于点G,交BD于点P,当AC=6,BE=2时,求线段BP的长.24. 在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程x2-5x+2=0,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A(0,1),B(5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图①);第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D的横坐标n既为该方程的另一个实数根.(1)在图②中,按照“第四步”的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹);(2)结合图①,请证明“第三步”操作得到的m就是方程x2-5x+2=0的一个实数根;(3)上述操作的关键是确定两个固定点的位置.若要以此方法找到一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m1,n1,m2,n2与a,b,c之间满足怎样的关系时,点P(m1,n1).Q(m2,n2)就是符合要求的一对固定点?2021中考数学二轮专题汇编:相似三角形及其应用-答案一、选择题1. 【答案】C[解析]根据DE∥BC,可得△ADN∽△ABM,△ANE∽△AMC,再应用相似三角形的性质可得结论.∵DN∥BM,∴△ADN∽△ABM,∴=,∵NE∥MC,∴△ANE∽△AMC,∴=,∴=.故选C.2. 【答案】B[解析]根据勾股定理分别表示出已知三角形的各边长,同理利用勾股定理表示出四个选项中阴影三角形的各边长,利用三边长对应成比例的两个三角形相似可得结果,△A1B1C1各边长分别为1,,选项A中阴影三角形三边长分别为:,3,三边不与已知三角形各边对应成比例,故两三角形不相似;选项B中阴影三角形三边长分别为:,2,,三边与已知三角形的各边对应成比例,故两三角形相似;选项C中阴影三角形三边长分别为:1,,2,三边不与已知三角形各边对应成比例,故两三角形不相似;选项D中阴影三角形三边长分别为:2,,三边不与已知三角形各边对应成比例,故两三角形不相似,故选B.3. 【答案】A【解析】由a ∶b =3∶4知34b a =,所以43a b =. 所以由14a b +=得到:4143aa +=, 解得6a =.所以8b =.所以22684a b -=⨯-=.故选A .4. 【答案】A[解析]如图所示.设DM=x ,则CM=8-x ,根据题意得:(8-x +8)×3×3=3×3×6,解得x=4,∴DM=4.∵∠D=90°.∴由勾股定理得: BM===5.过点B 作BH ⊥水平桌面于H ,∵∠HBA +∠ABM=∠ABM +∠DBM=90°, ∴∠HBA=∠DBM , ∵∠AHB=∠D=90°, ∴△ABH ∽△MBD ,∴=,即=,解得BH=,即水面高度为.5. 【答案】B【详解】解:∵//EF BC ∴AEF B AFE C ∠=∠∠=∠, ∴AEF ABC ∽ ∵23AE EB = ∴25AE AB = ∴255242AEB ABCS S ⎛⎫== ⎪⎝⎭∴421AEBBCFESS =四边形 ∵21BCFE S =四边形∴AEBS =4∴=25ABCS故选:B .6. 【答案】B【解析】设正方形EFGH 的边长EF =EH =x , ∵四边EFGH 是正方形,∴∠HEF =∠EHG =90°,EF ∥BC , ∴△AEF ∽△ABC , ∵AD 是△ABC 的高, ∴∠HDN =90°, ∴四边形EHDN 是矩形, ∴DN =EH =x , ∵△AEF ∽△ABC , ∴(相似三角形对应边上的高的比等于相似比),∵BC =120,AD =60, ∴AN =60﹣x , ∴,解得:x =40,∴AN =60﹣x =60﹣40=20.因此本题选B .7. 【答案】C【解析】本题考查了相似三角形的性质, ∵△ABC 与△DEF 位似,且1=2OA OD ,∴211=24ABC DEFS S ⎛⎫= ⎪⎝⎭,因此本题选C .8. 【答案】C【解析】设2AD x =,BD x =,∴3AB x =, ∵DE BC ∥,∴ADE ABC △∽△, ∴DE AD AE BC AB AC ==,∴263DE xx=,∴4DE =,23AE AC =, ∵ACD B ∠=∠,ADE B ∠=∠,∴ADE ACD ∠=∠, ∵A A ∠=∠,∴ADE ACD △∽△,∴AD AE DEAC AD CD==, 设2AE y =,3AC y =,∴23AD yy AD=, ∴6AD y =,∴46CDy =,∴26CD =, 故选C .二、填空题 9. 【答案】5410. 【答案】2【解析】∵BC ∥DE ,∴△ADE ∽△ABC ,∴AE AD DEAC AB BC == ,设DE =x ,则AB =10-x ∵AD =BC =4,∴4104AE x AC x ==-,∴x 1=8 ,x 2=2(舍去), 824AE AC ==,此本题答案为2 .11. 【答案】12【解析】∵32x y x +=,∴223x y x +=, 故2y =x ,则12y x =,故答案为:12.12. 【答案】18【解析】∵ABC △与A'B'C'△是以坐标原点O 为位似中心的位似图形,若点()34B ,,()68B',,∴位似比为31=62, ∵()22A ,,()61C ,, ∴()()44122A'C',,,, ∴A'B'C'△的面积为:1116824662818222⨯-⨯⨯-⨯⨯-⨯⨯=,故答案为:18.13. 【答案】[解析]如图①,∵四边形CDEF 是正方形,∴CD=ED=CF .设ED=x ,则CD=x ,AD=12-x.∵DE ∥CF ,∴∠ADE=∠C ,∠AED=∠B , ∴△ADE ∽△ACB , ∴=,∴=,∴x=.如图②,四边形DGFE 是正方形,过C 作CP ⊥AB 于P ,交DG 于Q ,∵S △ABC =AC ·BC=AB ·CP ,则12×5=13CP ,∴CP=. 设ED=y ,同理得:△CDG ∽△CAB ,∴=,∴=,y=<,∴该直角三角形能容纳的正方形边长最大是步,故答案为:.14. 【答案】5485【解析】本题考查平行线分线段成比例定理,相似三角形的判定与性质.已知∠ACB =90°,AC =3, BC =4,由勾股定理,得AB =5.CD ⊥AB ,由三角形的面积,得CD =AC BC AB ⋅=125.易得△ABC ∽△ACD ∽△CBD ,由相似三角形对应边成比例,得AD =AC AC AB ⋅=95,BD =BC BC AB ⋅=165.过点E 作EG ∥AB 交CD于点G,由平行线分线段成比例,得DG=12CD=65,EG=85,所以DF ADGF EG=,即956855DFDF=-,所以DF=,故答案为5485.GFE DBC A15. 【答案】92【解析】如图,过D作DH AC⊥于H,则∠AHD=90°,∵在等腰Rt ABC△中,90C=︒∠,15AC=,∴15AC BC==,45CAD∠=︒,∴∠ADH=90°–∠CAD=45°=∠CAD,∴AH DH=,∴CH=AC–AH=15–DH,∵CF AE⊥,∴90DHA DFA∠=∠=︒,又∵∠ANH=∠DNF,∴HAF HDF∠=∠,∴ACE DHC△∽△,∴DH CHAC CE=,∵2CE EB=,CE+BE=BC=15,∴10CE=,∴151510DH DH-=,∴9DH=,∴2292AD AH DH=+=,故答案为:2.16. 【答案】145或2.8【解析】本题考查了平面直角坐标系中点的坐标特征,等腰三角形的性质,相似三角形的判定和性质,过点C 作CD ⊥y 轴于点D ,设AC 交y 轴于点E ,∴CD ∥x 轴,∴∠CAO=∠ACD, △DEC ∽△OEA ,∵2BCA CAO ∠=∠,∴∠BCD=∠ACD, ∴BD=DE,设BD=DE=x ,则OE=4-2x ,∴DC AO =DE EO ,即34=x4-2x ,解得x =1.2.∴OE=4-2x =1.6,∴n =OD=DE+OE=1.2+1.6=2.8.三、解答题17. 【答案】解: (1)∵DE ∥AC ,∴∠BED =∠C .∵EF ∥AB ,∴∠B =∠FEC ,∴△BDE ∽△EFC .(2)①∵EF ∥AB ,∴BE EC =AF FC =12.∵BC =12,∴12BE BE-=12,∴BE =4. ②∵EF ∥AB ,∴△EFC △BAC ,∴EFC BACS S ∆∆=2()EC BC .∵BE EC =12,∴EC BC =23.又∵△EFC 的面积是20,∴20BACS ∆=22()3,∴S △ABC =45,即△ABC 的面积是45.18. 【答案】(1)如图所示:(2)∵ADE B ∠=∠, ∴DE BC ∥. ∴2AE ADEC DB==.19. 【答案】[解析](1)根据EH ∥BC 即可证明.(2)设AD 与EH 交于点M ,首先证明四边形EFDM 是矩形,设正方形边长为x ,利用△AEH ∽△ABC ,得=,列出方程即可解决问题.解:(1)证明:∵四边形EFGH 是正方形,∴EH∥BC,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC.(2)如图,设AD与EH交于点M.∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM是矩形,∴EF=DM.设正方形EFGH的边长为x cm,∵△AEH∽△ABC,∴=,∴=,∴x=,∴正方形EFGH的边长为cm,面积为cm2.20. 【答案】(1)解:∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=12(180°-36°)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠DBC=36°,∵AD∥BC,∴∠D=∠DBC=36°,∴∠DAF=∠AFB-∠D=72°-36°=36°;(2)证明:∵∠EAF=∠FBC=∠D,∠AEF=∠AED,∴△EAF∽△EDA,∴AEDE=EF EA,∴AE2=EF·ED;(3)证明:如解图,过点A作BC的垂线,G为垂足,∵AB=AC,∴AG垂直平分BC,∴AG过圆心O,∵AD∥BC,∴AD⊥AG,∴AD是⊙O的切线.解图21. 【答案】解:(1)因为点D是AC中点,所以OD⊥AC,所以P A=PC,所以∠PCA=∠P AC,因为AB是☉O的直径,所以∠ACB=90°,所以∠ABC+∠BAC=90°,因为∠PCA=∠ABC,所以∠P AC=∠ABC,所以∠P AC+∠BAC=90°,所以P A⊥AB,所以P A是☉O的切线.(2)因为∠P AO=∠ADO=90°,∠AOD=∠POA,所以△P AO∽△ADO,所以=,所以AO2=OD·OP,所以EF2=AB2=(2AO)2=4AO2=4OD·OP.(3)因为tan∠AFP=,所以设AD=2x,则FD=3x,连接AE,易证△ADE∽△FDA,所以==,所以ED=AD=x,所以EF=x,EO=x,DO=x,在△ABC中,DO为中位线,所以DO=BC=4,所以x=4,x=,所以ED=x=.22. 【答案】(1)证明:∵AB 是⊙O 的直径, ∴∠BCA =90°,∴∠ABC +∠BAC =90°,∵OD ∥AC ,∴∠ACO =∠COD . ∵OA =OC ,∴∠BAC =∠ACO , 又∵∠COD =∠CBD , ∴∠CBD =∠BAC , ∴∠ABC +∠CBD =90°, ∴∠ABD =90°, 即OB ⊥BD ,又∵OB 是⊙O 的半径, ∴BD 是⊙O 的切线;(2)证明:如解图,连接CE 、BE , ∵OE =ED ,∠OBD =90°, ∴BE =OE =ED ,∴△OBE 为等边三角形, ∴∠BOE =60°, 又∵AC ∥OD , ∴∠OAC =60°, 又∵OA =OC ,∴△OAC 为等边三角形, ∴AC =OA =OE ,∴AC ∥OE 且AC =OE ,∴四边形OACE 是平行四边形,而OA =OE , ∴四边形OACE 是菱形;解图(3)解:∵CF ⊥AB , ∴∠AFC =∠OBD =90°,而AC ∥OD , ∴∠CAF =∠DOB , ∴Rt △AFC ∽Rt △OBD , ∴FC BD =AF OB ,即FC =BD ·AF OB , 又∵FG ∥BD ,∴△AFG ∽△ABD , ∴FG BD =AF AB ,即FG =BD ·AF AB ,∴FC FG =ABOB =2, ∴FG FC =12.23. 【答案】(1)证明:∵△ABC 为等边三角形, ∴∠ABC =∠C =∠CAB =60°,AB =BC , 在△ABE 和△BCD 中,⎩⎨⎧∠BAE =∠CBDAB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA); (2)解:∵△ABC 为等边三角形, ∴∠ABC =∠CAB =60°,AB =BC , ∴∠ABE =∠BCD =180°-60°=120°. ∴在△ABE 和△BCD 中,⎩⎨⎧∠BAE =∠CBDAB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA), ∴BE =CD . ∵DH ⊥AB , ∴∠DHA =90°, ∵∠CAB =60°, ∴∠ADH =30°, ∴AD =2AH ,∴AC =AD -CD =2AH -BE ;(3)解:如解图,作DS ⊥BC 延长线于点S ,作HM ∥AC 交BC 于点M ,解图∵AC =6,BE =2, ∴由(2)得AH =4,BH =2,与(1)同理可得BE =CD =2,CE =8, ∵∠SCD =∠ACB =60°, ∴∠CDS =30°,∴CS =1,SD =3,BS =7, ∵BD 2=BS 2+SD 2=72+(3)2, ∴BD =213, ∵EK ∥BD , ∴△CBD ∽△CEK , ∴CB CE =CD CK =BD EK ,∴CK =CD ·CE CB =2×86=83,EK =CE ·BD CB =8×2136=8133.∵HM ∥AC ,∴∠HMB =∠ACB =60°,∴△HMB 为等边三角形,BM =BH =HM =2, CM =CB -BM =4, 又∵HM ∥AC , ∴△HMG ∽△KCG ,∴HM KC =MG CG ,即382=MG 4-MG ,∴MG =127,BG =267,EG =407, ∵EK ∥BD ,∴△GBP ∽△GEK , ∴BP EK =GB GE ,∴BP =261315.24. 【答案】【思路分析】(1)因为点C 是x 轴上的一动点,且∠ACB =90°保持不变,所以由圆周角的性质得,点C 必在以AB 为直径的圆上,所以以AB 为直径画圆,与x 轴相交于两点,除点C 的另一点就是所求;(2)因为∠ACB =90°,∠AOC =90°,所以过点B 作BE ⊥x 轴,垂足为E ,则构造了一个“K”字型的基本图形,再由相似三角的性质得出比例式,化简后得m 2-5m +2=0,问题得证;(3)由(2)中的证明过程可知,一个二次项系数为1的一元二次方程,一次项系数是点A 的横坐标与点B 的横坐标的和的相反数;常数项是点A 的纵坐标与点B 的纵坐标的积,先把方程ax 2+bx +c =0,化为 x 2+b a x +ca =0,再根据上述关系写出一对固定点的坐标;(4)由(2)的证明中知,本题的关键点在“K”字型的构造,所以本小题解题的关键是要抓住图②中的“K”字型,只要P 、Q 两点分别在AD 、BD 上,过P 、Q 分别作x 轴垂线,垂足为M 、N ,这样就构造出满足条件的基本图形,再应用相似三角形的性质,可得相应的关系式.图① 图②(1)解:如解图①,先作出AB 的中点O 1,以O 1为圆心,12AB 为半径画圆. x 轴上另外一个交点即为D 点;(4分)(2)证明:如解图①,过点B 作x 轴的垂线交x 轴于点E , ∵∠ADB =90°,∴∠ADO +∠BDE =90°, ∵∠OAD +∠ADO =90°,∴∠OAD =∠BDE , ∵∠AOD =∠DEB =90°, ∴△AOD ∽△DEB ,(6分) ∴AO DE =OD EB ,即15-m=m 2,∴m 2-5m +2=0,∴m 是x 2-5x +2=0的一个实根;(8分)(3)解:(0,1),(-b a ,c a )或(0,1a ),(-ba ,c );(10分)(4)解:在解图②中,P 在AD 上,Q 在BD 上,过P ,Q 分别作x 轴的垂线交x 轴于M ,N.由(2)知△PMD∽△DNQ,∴n1m2-x=x-m1n2,(12分)∴x2-(m1+m2)x+m1m2+n1n2=0与ax2+bx+c=0同解,∴-ba=m1+m2;ca=m1m2+n1n2.(14分)【难点突破】本题是一道考查数形结合思想的题.本题解题的突破口要抓住∠ACB=90°保持不变的特征,构造相似三角形中的基本图形,通过数形结合的方法,以相似三角形的比例式为桥梁,以此获得关于m的等量关系,从而使问题得以解决.。

2021年河北省中考复习数学《相似三角形》专题复习(人教版)(Word版附答案)

2021年河北省中考复习数学《相似三角形》专题复习(人教版)(Word版附答案)

节相似三角形1.若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10% B.减少了10%C.增加了(1+10%) D.没有改变2.在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3,4,5的三角形按图①的方式向外扩张,得到新三角形,它们的对应边间距均为1,则新三角形与原三角形相似.图①乙:将邻边为3和5的矩形按图②的方式向外扩张,得到新矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.图②A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对3.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()4.(2020·河北中考)在如图所示的网格中,以点O 为位似中心,四边形 ABCD 的位似图形是( )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR5.在平面直角坐标系中,已知点A (-4,2),B (-6,-4),以原点O 为位似中心,相似比为12 ,把△ABO 缩小,则点B 的对应点B ′的坐标是( )A .(-3,-2)B .(-12,-8)C .(-3,-2)或(3,2)D .(-12,-8)或(12,8)6.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F .已知AB =1,BC =3,DE =1.2,则DF 的长为( )A .3.6B .4.8C .5D .5.27.如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE ∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.ABAE=AGAD B.DFCF=DGADC.FGAC=EGBD D.AEBE=CFDF8.(2020·邯郸丛台区三模)如图,△ABC中,D,E分别是AB,AC上的点,且BD=2AD,CE=2AE.(1)求证:△ADE∽△ABC;(2)若DF=2,求FC的长度.9.(2020·温州中考)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ=15,则CR的长为()A.14B.15C.83D.6510.(2020·黔东南中考)如图,矩形ABCD中,AB=2,BC=2,E为CD 的中点,连接AE,BD交于点P,过点P作PQ⊥BC于点Q,则PQ=.11.如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点的坐标分别为A(-1,2),B(2,1),C(4,5).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以原点O为位似中心,在x轴的上方画出△A2B2C2,使△A2B2C2与△ABC 位似,且相似比为2,并求出△A2B2C2的面积.12.如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,以下说法中错误的是()A.△ABC∽△A′B′C′B.点C,O,C′三点在同一直线上C.AO∶AA′=1∶2D.AB∥A′B′13.如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是个平方单位.节相似三角形1.若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比(D)A.增加了10% B.减少了10%C.增加了(1+10%) D.没有改变2.在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3,4,5的三角形按图①的方式向外扩张,得到新三角形,它们的对应边间距均为1,则新三角形与原三角形相似.图①乙:将邻边为3和5的矩形按图②的方式向外扩张,得到新矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.图②A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对3.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是(C )4.(2020·河北中考)在如图所示的网格中,以点O 为位似中心,四边形 ABCD 的位似图形是(A )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR5.在平面直角坐标系中,已知点A (-4,2),B (-6,-4),以原点O 为位似中心,相似比为12 ,把△ABO 缩小,则点B 的对应点B ′的坐标是(C )A .(-3,-2)B .(-12,-8)C .(-3,-2)或(3,2)D .(-12,-8)或(12,8)6.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F .已知AB =1,BC =3,DE =1.2,则DF 的长为(B )A .3.6B .4.8C .5D .5.27.如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE ∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是(D)A.ABAE=AGAD B.DFCF=DGADC.FGAC=EGBD D.AEBE=CFDF8.(2020·邯郸丛台区三模)如图,△ABC中,D,E分别是AB,AC上的点,且BD=2AD,CE=2AE.(1)求证:△ADE∽△ABC;(2)若DF=2,求FC的长度.【解答】(1)证明:∵BD=2AD,CE=2AE,∴ADAB=AEAC=13.又∵∠DAE=∠BAC,∴△ADE∽△ABC;(2)解:∵△ADE∽△ABC,∴DEBC=ADAB=13,∠ADE=∠ABC.∴DE∥BC.∴△DEF∽△CBF.∴DFCF=DECB,即2CF=13.∴FC=6.9.(2020·温州中考)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH 于点P,Q.若QH=2PE,PQ=15,则CR的长为(A)A.14B.15C.83D.6510.(2020·黔东南中考)如图,矩形ABCD中,AB=2,BC=2,E为CD的中点,连接AE,BD交于点P,过点P作PQ⊥BC于点Q,则PQ=4 3.11.如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点的坐标分别为A(-1,2),B(2,1),C(4,5).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以原点O为位似中心,在x轴的上方画出△A2B2C2,使△A2B2C2与△ABC 位似,且相似比为2,并求出△A2B2C2的面积.解:(1)如图,△A 1B 1C 1即为所求作的三角形; (2)如图,△A 2B 2C 2即为所求作的三角形.分别过点A 2,C 2作y 轴的平行线,过点B 2作x 轴的平行线.∵A (-1,2),B (2,1),C (4,5),△A 2B 2C 2与△ABC 位似,且相似比为2,∴A 2(-2,4),B 2(4,2),C 2(8,10).∴S △A 2B 2C 2=(2+8)×102-12 ×2×6-12 ×4×8=28., 12.如图,以点O 为位似中心,把△ABC 放大为原图形的2倍得到△A ′B ′C ′,以下说法中错误的是(C )A.△ABC ∽△A ′B ′C ′B .点C ,O ,C ′三点在同一直线上C .AO ∶AA ′=1∶2D .AB ∥A ′B ′13.如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O ,A ,B 均为网格线的交点.(1)在给定的网格中,以点O 为位似中心,将线段AB 放大为原来的2倍,得到线段A 1B 1(点A ,B 的对应点分别为A 1,B 1),画出线段A 1B 1;(2)将线段A 1B 1绕点B 1逆时针旋转90°得到线段A 2B 1,画出线段A 2B 1;初中数学精品教学(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是个平方单位.解:(1)如图,线段A1B1即为所求;(2)如图,线段A2B1即为所求;(3)20.[由图可得,四边形AA1B1A2为正方形,∴四边形AA1B1A2的面积是(22+42)2=20.]初中数学精品教学11。

中考试题分类汇编_相似三角形含答案

中考试题分类汇编_相似三角形含答案

E 图5图8中考试题分类汇编 相似三角形二、填空题 1、〔2021江苏盐城〕如图,D E ,两点分别在ABC △的边AB AC ,上,DE 与BC 不平行,当满足 条件〔写出一个即可〕时,ADE ACB △∽△.2、〔2021上海市〕如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是 .3、 〔2021上海市〕如图5,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果23BE BC =, 那么BFFD= . 4、〔2021泰州市〕在比例尺为1︰2000的地图上测得AB 两地间的图上距离为5cm ,则AB 两地间的实际距离为 m .5、〔2021年杭州市〕在Rt △ABC 中,∠C 为直角,CD ⊥AB 于点BC=3,AB=5,写出其中的一对相似三角形是 和 ;并写出它的面积比 .6、〔2021年江苏省南通市〕∠A =40°,则∠A 的余角等于=________度.7、〔08浙江温州〕如图,点1234A AA A ,,,在射线OA 上,点123B B B ,,在射线OB 上,且112233A B A B A B ∥∥,213243A B A B A B ∥∥.假设212A B B △,323A B B △的面积分别为1,4,则图中三个阴影三角形面积之和为 . 8、〔2021年荆州〕两个相似三角形周长的比为2:3,则其对应的面积比为___________. 9、〔2021年庆阳市〕 两个相似三角形的面积比S 1:S 2与它们对应高之比h 1:h 2之间的关系为 .10、〔2021年庆阳市〕 如图8,D 、E 分别是ABC △的边AB 、AC 上的点,则使AED △∽ABC △的条件是 .11、〔2021年•南宁市〕如图4,AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED=1,BD=4,那么AB=D B〔第7题图〕 1 2 34图3 〔第12题〕A BCE D A B GC D EF L ABC DEF12、(2021年福建省福州市)12.如图,在ABC △中,D E ,分别是AB AC ,的中点,假设5DE =,则BC 的长是 .13、(2021年广东梅州市) 如图3,要测量A 、B 两点间距离,在O 点打桩,取OA 的中点 C ,OB 的中点D ,测得CD =30米,则AB =______米.14、〔2021新疆建设兵团〕如图,一束光线从y 轴上点A 〔0,1〕发出,经过x 轴上点C 反射后,经过点B 〔6,2〕,则光线从A 点到B 点经过的路线的长度为 .〔精确到0.01〕 16、〔2021大连〕如图5,假设△ABC ∽△DEF ,则∠D 的度数为_____________.. 17、〔2021上海市〕如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是 . 18、 〔2021上海市〕如图,平行四边形ABCD 中,E 是边BC上的点,AE 交BD 于点F ,如果23BE BC =,那么BFFD= . 一、选择题 1、〔2021湖北襄樊〕如图1,AD 与VC 相交于点O,AB//CD,如果∠B=40°, ∠D=30°,则∠AOC 的大小为〔 〕 °°°° 2、〔2021湘潭市〕 如图,D 、E 分别是ABC ∆的AB 、 AC 边上的点,,DE BC //且1ADE DBCE S S :=:8,四边形 那么:AE AC 等于〔 〕 A .1 : 9 B .1 : 3C .1 : 8D .1 : 2 3、(2021 台湾)如图G 是❒ABC 的重心,直线L 过A 点与BC 平行。

2021年全国各地中考数学真题分类汇编(通用版)三角形(三)(含答案与解析)

2021年全国各地中考数学真题分类汇编(通用版)三角形(三)(含答案与解析)

2021年全国各地中考数学真题分类汇编(通用版)三角形(三)参考答案与试题解析一.选择题(共5小题)1.(2021•贵港)如图,在正方形ABCD中,E,F是对角线AC上的两点,且EF=2AE=2CF,连接DE并延长交AB于点M,连接DF并延长交BC于点N,连接MN,则=()A.B.C.1D.解:设AB=AD=BC=CD=3a,∵四边形ABCD是正方形,∴∠DAE=∠DCF=45°,∠DAM=∠DCN=90°,在△DAE和△DCF中,,∴△DAE≌△DCF(SAS),∴∠ADE=∠CDF,在△DAM和△DCN中,,∴△DAM≌△DCN(ASA),∴AM=CN,∵AB=BC,∴BM=BN,∵CN∥AD,∴==,∴CN=AM=a,BM=BN=2a,∴===,故选:A.2.(2021•云南)在△ABC中,∠ABC=90°.若AC=100,sin A=,则AB的长是()A.B.C.60D.80解:∵AC=100,sin A=,∴BC=60,∴AB==80,故选:D.3.(2021•贵港)如图,在△ABC中,∠ABC=90°,AB=8,BC=12,D为AC边上的一个动点,连接BD,E为BD上的一个动点,连接AE,CE,当∠ABD=∠BCE时,线段AE的最小值是()A.3B.4C.5D.6解:如图,取BC的中点T,连接AT,ET.∵∠ABC=90°,∴∠ABD+∠CBD=90°,∵∠ABD=∠BCE,∴∠CBD+∠BCE=90°,∴∠CEB=90°,∵CT=TB=6,∴ET=BC=6,AT===10,∵AE≥AT﹣ET,∴AE≥4,∴AE的最小值为4,故选:B.4.(2021•毕节市)如图,拦水坝的横断面为梯形ABCD,其中AD∥BC,∠ABC=45°,∠DCB=30°,斜坡AB长8m,则斜坡CD的长为()A.6m B.8m C.4m D.8m解:过A作AE⊥BC于E,过D作DF⊥BC于F,∴AE∥DF,∵AD∥BC,∴AE=DF,在Rt△ABE中,AE=AB sin45°=4,在Rt△DCF中,∵∠DCB=30°,∴DF=CD,∴CD=2DF=2×4=8,故选:B.5.(2021•铜仁市)如图,在Rt△ABC中,∠C=90°,AB=10,BC=8,按下列步骤作图:步骤1:以点A为圆心,小于AC的长为半径作弧分别交AC、AB于点D、E.步骤2:分别以点D、E为圆心,大于DE的长为半径作弧,两弧交于点M.步骤3:作射线AM交BC于点F.则AF的长为()A.6B.3C.4D.6解:由作法得AF平分∠BAC,过F点作FH⊥AB于H,如图,∵AF平分∠BAC,FH⊥AB,FC⊥AC,∴FH=FC,在△ABC中,∵∠C=90°,AB=10,BC=8,∴AC==6,设CF=x,则FH=x,∵S△ABF+S△ACF=S△ABC,∴×10•x+×6•x=×6×8,解得x=3,在Rt△ACF中,AF===3.故选:B.二.填空题(共9小题)6.(2021•海南)如图,△ABC的顶点B、C的坐标分别是(1,0)、(0,),且∠ABC=90°,∠A=30°,则顶点A的坐标是(4,).解:过点A作AG⊥x轴,交x轴于点G.∵B、C的坐标分别是(1,0)、(0,),∴OC=,OB=1,∴BC==2.∵∠ABC=90°,∠BAC=30°,∴AB====2.∵∠ABG+∠CBO=90°,∠BCO+∠CBO=90°,∴∠ABG=∠BCO.∴sin∠ABG===,cos∠ABG===,∴AG=,BG=3.∴OG=1+3=4,∴顶点A的坐标是(4,).故答案为:(4,).7.(2021•江西)如图,在边长为6的正六边形ABCDEF中,连接BE,CF,其中点M,N分别为BE和CF上的动点.若以M,N,D为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为9或10或18.解:连接DF,DB,BF.则△DBF是等边三角形.设BE交DF于J.∵六边形ABCDEF是正六边形,∴由对称性可知,DF⊥BE,∠JEF=60°,EF=ED=6,∴FJ=DJ=EF•sin60°=6×=9,∴DF=18,∴当点M与B重合,点N与F重合时,满足条件,∴△DMN的边长为18,如图,当点N在OC上,点M在OE上时,等边△DMN的边长的最大值为6≈10.39,最小值为9,∴△DMN的边长为整数时,边长为10或9,综上所述,等边△DMN的边长为9或10或18.故答案为:9或10或18.8.(2021•桂林)如图,在△ABC中,点D,E分别是AB,AC的中点,若DE=4,则BC=8.解:∵D、E分别是AB、AC的中点.∴DE是△ABC的中位线,∴BC=2DE,∵DE=4,∴BC=2×4=8.故答案是:8.9.(2021•梧州)某市跨江大桥即将竣工,某学生做了一个平面示意图(如图),点A到桥的距离是40米,测得∠A=83°,则大桥BC的长度是326米.(结果精确到1米)(参考数据:sin83°≈0.99,cos83°≈0.12,tan83°≈8.14)解:由题意,在Rt△ABC中,∵AC=40,∠A=83°,tan A=,∴BC=tan A•AC≈8.14×40=325.6≈326(米).故答案为:326.10.(2021•广西)如图,从楼顶A处看楼下荷塘C处的俯角为45°,看楼下荷塘D处的俯角为60°,已知楼高AB为30米,则荷塘的宽CD为(30﹣10)米(结果保留根号).解:由题意可得,∠ADB=60°,∠ACB=45°,AB=30m,在Rt△ABC中,∵∠ACB=45°,∴AB=BC,在Rt△ABD中,∵∠ADB=60°,∴BD=AB=10(m),∴CD=BC﹣BD=(30﹣10)m,故答案为:(30﹣10).11.(2021•云南)如图,在△ABC中,点D,E分别是BC,AC的中点,AD与BE相交于点F.若BF=6,则BE的长是9.解:如图,在△ABC中,点D,E分别是BC,AC的中点,∴DE∥AB,且DE=AB,∴==,∵BF=6,∴EF=3.∴BE=BF+EF=9.故答案为:9.12.(2021•毕节市)学习投影后,小华利用灯光下自己的影子长度来测量一路灯的高度.如图,身高1.7m的小明从路灯灯泡A的正下方点B处,沿着平直的道路走8m到达点D处,测得影子DE长是2m,则路灯灯泡A离地面的高度AB为8.5m.解:∵AB⊥BE,CD⊥BE,∴AB∥CD,∴△ECD∽△EAB,∴=,∴=,解得:AB=8.5,答:路灯灯泡A离地面的高度AB为8.5米,故答案为:8.5.13.(2021•黔东南州)已知在平面直角坐标系中,△AOB的顶点分别为点A(2,1)、点B(2,0)、点O(0,0),若以原点O为位似中心,相似比为2,将△AOB放大,则点A的对应点的坐标为(4,2)或(﹣4,﹣2).解:如图,观察图象可知,点A的对应点的坐标为(4,2)或(﹣4,﹣2).故答案为:(4,2)或(﹣4,﹣2).14.(2021•贵阳)在综合实践课上,老师要求同学用正方形纸片剪出正三角形且正三角形的顶点都在正方形边上.小红利用两张边长为2的正方形纸片,按要求剪出了一个面积最大的正三角形和一个面积最小的正三角形.则这两个正三角形的边长分别是2﹣2,2.解:如图,设△GEF为正方形ABCD的一个内接正三角形,作正△GEF的高EK,连接KA,KD,∵∠EKG=∠EDG=90°,∴E、K、D、G四点共圆,∴∠KDE=∠KGE=60°,同理∠KAE=60°,∴△KAD是一个正三角形,则K必为一个定点,∵正三角形面积取决于它的边长,∴当FG⊥AB,边长FG最小,面积也最小,此时边长等于正方形边长为2,当FG过B点时,即F'与点B重合时,边长最大,面积也最大,此时作KH⊥BC于H,由等边三角形的性质可知,K为FG的中点,∵KH∥CD,∴KH为三角形F'CG'的中位线,∴CG'=2HK=2(EH﹣EK)=2(2﹣2×sin60°)=4﹣2,∴F'G'====2﹣2,故答案为:2﹣2,2.三.解答题(共12小题)15.(2021•海南)如图,在某信号塔AB的正前方有一斜坡CD,坡角∠CDK=30°,斜坡的顶端C 与塔底B的距离BC=8米,小明在斜坡上的点E处测得塔顶A的仰角∠AEN=60°,CE=4米,且BC∥NE∥KD,AB⊥BC(点A,B,C,D,E,K,N在同一平面内).(1)填空:∠BCD=150度,∠AEC=30度;(2)求信号塔的高度AB(结果保留根号).解:(1)∵BC∥DK,∴∠BCD+∠D=180°,又∵∠D=30°,∴∠BCD=180°﹣30°=150°,∵NE∥KD,∴∠CEN=∠D=30°,又∵∠AEN=60°,∴∠ACE=∠AEN﹣∠CEN=60°﹣30°=30°,故答案为:150,30;(2)如图,过点C作CG⊥EN,垂足为G,延长AB交EN于点F,在Rt△CEG中,∵∠CEG=30°,CE=4m,∴CG=CE=2(m)=BF,∴EG=CG=2(m),设AB=x,则AF=(x+2)m,EF=BC+EG=(8+2)m,在Rt△AEF中,∵∠AEN=60°,∴AF=EF,即x+2=(8+2),x=(4+8)m,即信号塔的高度AB为(4+8)m.16.(2021•桂林)如图,在平行四边形ABCD中,点O是对角线BD的中点,EF过点O,交AB于点E,交CD于点F.(1)求证:∠1=∠2;(2)求证:△DOF≌△BOE.证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠1=∠2;(2)∵点O是BD的中点,∴OD=OB,在△DOF和△BOE中,,∴△DOF≌△BOE(AAS).17.(2021•贵港)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知△ABC,且AB>AC.(1)在AB边上求作点D,使DB=DC;(2)在AC边上求作点E,使△ADE∽△ACB.解:(1)如图,点D即为所求.(2)如图,点E即为所求.18.(2021•梧州)如图,在正方形ABCD中,点E,F分别为边BC,CD上的点,且AE⊥BF于点P,G为AD的中点,连接GP,过点P作PH⊥GP交AB于点H,连接GH.(1)求证:BE=CF;(2)若AB=6,BE=BC,求GH的长.(1)证明:∵AE⊥BF,∠ABE=90°,∴∠EAB+∠ABF=90°,∠ABF+∠CBF=90°,∴∠EAB=∠CBF,在△ABE与△BCF中,,∴△ABE≌△BCF(ASA),∴BE=CF;∵tan∠EAB=,∵BE=BC,∴=3,∵G为AD的中点,∴AG=3,∴HB=1,∴AH=5,∴GH==.19.(2021•贵港)已知在△ABC中,O为BC边的中点,连接AO,将△AOC绕点O顺时针方向旋转(旋转角为钝角),得到△EOF,连接AE,CF.(1)如图1,当∠BAC=90°且AB=AC时,则AE与CF满足的数量关系是AE=CF;(2)如图2,当∠BAC=90°且AB≠AC时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图3,延长AO到点D,使OD=OA,连接DE,当AO=CF=5,BC=6时,求DE的长.解:(1)结论:AE=CF.理由:如图1中,∵AB=AC,∠BAC=90°,OC=OB,∴OA=OC=OB,AO⊥BC,∵∠AOC=∠EOF=90°,∴∠AOE=∠COF,∵OA=OC,OE=OF,∴△AOE≌△COF(SAS),∴AE=CF.(2)结论成立.理由:如图2中,∵∠BAC=90°,OC=OB,∴OA=OC=OB,∵∠AOC=∠EOF,∴∠AOE=∠COF,∵OA=OC,OE=OF,∴△AOE≌△COF(SAS),∴AE=CF.(3)如图3中,由旋转的性质可知OE=OA,∵OA=OD,∴OE=OA=OD=5,∴∠AED=90°,∵OA=OE,OC=OF,∠AOE=∠COF,∴=,∴△AOE∽△COF,∴=,∵CF=OA=5,∴=,∴AE=,∴DE===.20.(2021•广西)如图,四边形ABCD中,AB∥CD,∠B=∠D,连接AC.(1)求证:△ABC≌△CDA;(2)尺规作图:过点C作AB的垂线,垂足为E(不要求写作法,保留作图痕迹);(3)在(2)的条件下,已知四边形ABCD的面积为20,AB=5,求CE的长.(1)证明:∵AB∥CD,∴∠ACD=∠CAB,在△ABC和△CDA中,,∴△ABC≌△CDA(AAS);(2)解:过点C作AB的垂线,垂足为E,如图:21.(2021•铜仁市)如图,AB交CD于点O,在△AOC与△BOD中,有下列三个条件:①OC=OD,②AC=BD,③∠A=∠B.请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法).(1)你选的条件为①、③,结论为②;(2)证明你的结论.(1)解:由AAS,选的条件是:①,③,结论是②,故答案为:①,③,②(答案不唯一);(2)证明:在△AOC和△BOD中,,∴△AOC≌△BOD(AAS),∴AC=BD.22.(2021•云南)如图,在四边形ABCD中,AD=BC,AC=BD,AC与BD相交于点E.求证:∠DAC=∠CBD.证明:在△DCA和△DCB中,,∴△CDA≌△DCB(SSS),∴∠DAC=∠CBD.23.(2021•贵阳)如图,在矩形ABCD中,点M在DC上,AM=AB,且BN⊥AM,垂足为N.(1)求证:△ABN≌△MAD;(2)若AD=2,AN=4,求四边形BCMN的面积.(1)证明:在矩形ABCD中,∠D=90°,DC∥AB,∴∠BAN=∠AMD,∵BN⊥AM,∴∠BNA=90°,在△ABN和△MAD中,,∴△ABN≌△MAD(AAS);(2)解:∵△ABN≌△MAD,∴BN=AD,∵AD=2,∴BN=2,又∵AN=4,在Rt△ABN中,AB===2,∴S矩形ABCD=2×2=4,S△ABN=S△MAD=×2×4=4,∴S四边形BCMN=S矩形ABCD﹣S△ABN﹣S△MAD=4﹣8.24.(2021•铜仁市)如图,在一座山的前方有一栋住宅,已知山高AB=120m,楼高CD=99m,某天上午9时太阳光线从山顶点A处照射到住宅的点E外.在点A处测得点E的俯角∠EAM=45°,上午10时太阳光线从山顶点A处照射到住宅点F处,在点A处测得点F的俯角∠F AM=60°,已知每层楼的高度为3m,EF=40m,问:以当天测量数据为依据,不考虑季节天气变化,至少要买该住宅的第几层楼,才能使上午10时太阳光线照射到该层楼的外墙?(≈1.73)解:根据题意可知:四边形ABDM是矩形,∴AB=MD=120m,在Rt△AME中,ME=AM tan45°=AM,在Rt△AMF中,MF=AM tan60°=AM,∵EF=MF﹣ME=40m,∴AM﹣AM=40,∴AM≈54.8(m),∴MF≈54.8×1.73≈94.80(m),∴DF=120﹣94.80=25.2(m),25.2÷3≈8.4,∴至少要买该住宅的第9层楼,才能使上午10时太阳光线照射到该层楼的外墙.答:至少要买该住宅的第9层楼,才能使上午10时太阳光线照射到该层楼的外墙.25.(2021•贵阳)随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量广场B,C两点之间的距离.如图所示,小星站在广场的B处遥控无人机,无人机在A处距离地面的飞行高度是41.6m,此时从无人机测得广场C处的俯角为63°,他抬头仰视无人机时,仰角为α,若小星的身高BE=1.6m,EA=50m(点A,E,B,C在同一平面内).(1)求仰角α的正弦值;(2)求B,C两点之间的距离(结果精确到1m).(sin63°≈0.89,cos63°≈0.45,tan63°≈1.96,sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)解:(1)如图,过A点作AD⊥BC于D,过E点作EF⊥AD于F,∵∠EBD=∠FDB=∠DFE=90°,∴四边形BDFE为矩形,∴EF=BD,DF=BE=1.6m,∴AF=AD﹣DF=41.6﹣1.6=40(m),在Rt△AEF中,sin∠AEF===,即sinα=.答:仰角α的正弦值为;(2)在Rt△AEF中,EF===30(m),在Rt△ACD中,∠ACD=63°,AD=41.6,∵tan∠ACD=,∴CD==≈21.22(m),∴BC=BD+CD=30+21.22≈51(m).答:B,C两点之间的距离约为51m.26.(2021•江西)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直.量得胳膊MN=28cm,MB=42cm,肘关节M与枪身端点A之间的水平宽度为25.3cm(即MP的长度),枪身BA=8.5cm.(1)求∠ABC的度数;(2)测温时规定枪身端点A与额头距离范围为3~5cm.在图2中,若测得∠BMN=68.6°,小红与测温员之间距离为50cm.问此时枪身端点A与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据:sin66.4°≈0.92,cos66.4°≈0.40,sin23.6°≈0.40,≈1.414)解:(1)过点B作BH⊥MP,垂足为H,过点M作MI⊥FG,垂足为I,过点P作PK⊥DE,垂足为K,∵MP=25.3cm,BA=HP=8.5cm,∴MH=MP﹣HP=25.3﹣8.5=16.8(cm),在Rt△BMH中,cos∠BMH===0.4,∴∠BMH=66.4°,∵AB∥MP,∴∠BMH+∠ABC=180°,∴∠ABC=180°﹣66.4°=113.6°;(2)∵∠BMN=68.6°,∠BMH=66.4°,∴∠NMI=180°﹣∠BMN﹣∠BMH=180°﹣68.6°﹣66.4°=45°,∵MN=28cm,∴cos45°==,∴MI≈19.80cm,∵KI=50cm,∴PK=KI﹣MI﹣MP=50﹣19.80﹣25.3=4.90≈5.0(cm),∴此时枪身端点A与小红额头的距离是在规定范围内.。

2021年全国中考数学真题分类汇编-----相似三角形

2021年全国中考数学真题分类汇编-----相似三角形

2021年全国中考数学真题分类汇编-----相似三角形一、选择题1.(2021.湘西)如图,在菱形ABCD中,E是AC的中点,EF∥CD,交AD于点F,如果EF=5.5,那么菱形ABCD的周长是()A.11B.22C.33D.442.(2021.湘西)如图,在△ECD中,∠C=900,AB⊥EC于点B,AB=1.2,EB=1.6 ,BC=12.4,则CD的长是()A.14B.12.4C.10.5D.9.33.(2021.湘西)已知点M(x,y)在第一象限,且x+y=12,点A(10,0)在x轴上,当△OAM为直角三角形时,点M的坐标为()A.(10,2),(8,4)或(6,6)B.(8,4),(9,3)或(5,7)C.(8,4),(9,3)或(10,2)D.(10,2),(9,3)或(7,5)4.(2021.绵阳)如图,在△ACD中,AD=6,BC=5,AC2=AB(AB+BC),且△DAB∽△DCA,若AD=3AP,点Q是线段AB上的动点,则PQ的最小值是()A.√72B.√62C.√52D.855.(2021.绵阳)如图,在平面直角坐标系中,AB∥DC,AC⊥BC,CD=AD=5,AC=6,将四边形ABCD向左平移m个单位后,点B恰好和原点O重合,则m的值是()A.11.4B.11.6C.12.4D.12.66.(2021.雅安)如图,将△ABC沿BC边向右平移得到△DEF,DE交AC于点G.若BC:EC=3:1, S∆ADG=16,则S∆CEG的值为()A.2B.4C.6D.87.(2021.贵港)如图,在正方形ABCD中,E,F是对角线AC上的两点,且EF=2AE=2CF,连接ED并延长交AB于点M,连接DF并延长交BC于点N,连接MN,则S∆AMDS∆MBN=( )A.34B..23C.1D.128.(2021.宜宾)如图,在矩形纸片ABCD中,点E,F分别在矩形的边AB、AD上,将矩形纸片沿CE、CF折叠,点B落在H处,点D落在G处,点C、H、G恰好在同一直线上,若AB=6,AD=4,BE=2则DF的长是()A.2B. 74C.3√22D.39.(2021.百色)下列四个命题:①直径是圆的对称轴;②若两个相似四边形的相似比是1:3,则它们的周长比是1:3,面积比是1:6;③同一平面内垂直于同一直线的两条直线互相平行;④对角线相等且互相垂直的平行四边形是正方形。

(2021年整理)中考相似三角形经典题集锦

(2021年整理)中考相似三角形经典题集锦

中考相似三角形经典题集锦中考相似三角形经典题集锦编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(中考相似三角形经典题集锦)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为中考相似三角形经典题集锦的全部内容。

中考相似三角形经典题集锦中考相似三角形经典题集锦1、如图,Rt 三角形ABC 中,∠BAC=90度,AB=AC=2,点D 在BC 上运动(不能经过B 、C ), 过D 作∠ADE=45度,DE 交AC 于E 。

(1)图中有无与三角形ABD 一定相似的三角形,若有,请指出来并加以说明(2)设BD=x,AE=y,求y 与x(3)若三角形ADE 恰为等腰三角形,求AE 的长2、已知:∠A=90°,矩形DGFE 的D 、E 分别在AB 、AC 上,G 、F 在BC 上 (1)如果DGFE 为正方形,BG=22,FC=2,求正方形DGFE 的边长;(2)若AB=12cm ,AC=5cm,DGFE 的面积为y 平方厘米,写出y 关于x 的函数解析式,并求由矩形面积为10平方厘米时, 求AD 的长3如图,矩形EFGD 的边EF 在ABC ∆的BC 边上,顶点D 、G 分别在边AB 、AC 上.已知5AB AC ==,6BC =,设BE x =,EFGD S y =矩形. 范围;(1)求y 关于x 的函数解析式,并写出自变量x 的取值(2)联结EG ,当GEC ∆为等腰三角形时,求y 的值.4、在Rt ABC ∆中, ∠ACB =90°,CD AB ⊥,垂足为D 。

E 、F分别是AC 、BC 边上一点,且CE =13AC ,BF =13BC .(1 )求证∶AC BC =CDBD。

2021年中考数学真题分类汇编:专题22图形的相似(解析版)

2021年中考数学真题分类汇编:专题22图形的相似(解析版)

2021年中考数学真题分类汇编:专题22图形的相似一、单选题1.(2021·浙江温州市·中考真题)如图,图形甲与图形乙是位似图形,O 是位似中心,位似比为2:3,点A ,B 的对应点分别为点A ',B '.若6AB =,则A B ''的长为( )A .8B .9C .10D .15【答案】B 【分析】直接利用位似图形的性质得出线段比进而得出答案. 【详解】解:∵图形甲与图形乙是位似图形,O 是位似中心,位似比为2:3, ∵23AB A B ='', ∵6AB =, ∵623A B ='', ∵9A B ''= 故答案为:B . 【点睛】此题主要考查了位似变换,正确掌握位似图形的性质是解题关键.2.(2021·山东东营市·中考真题)如图,ABC 中,A 、B 两个顶点在x 轴的上方,点C 的坐标是(1,0),以点C 为位似中心,在x 轴的下方作ABC 的位似图形A B C '',并把ABC 的边长放大到原来的2倍,设点B 的横坐标是a ,则点B 的对应点B '的横坐标是( )A .23a -+B .21a -+C .22a -+D .22a --【分析】设点'B 的横坐标为x ,然后表示出BC 、'B C 的横坐标的距离,再根据位似比列式计算即可得解. 【详解】设点'B 的横坐标为x ,则B 、C 间的横坐标的差为1a -,'B 、C 间的横坐标的差为1x -+,ABC 放大到原来的2倍得到'''A B C ,∴()211a x -=-+,解得:23x a =-+. 故选:A. 【点睛】本题考查了位似变换,坐标与图形的性质,根据位似比的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.3.(2021·浙江绍兴市·中考真题)如图,树AB 在路灯O 的照射下形成投影AC ,已知路灯高5m PO =,树影3m AC =,树AB 与路灯O 的水平距离 4.5m AP =,则树的高度AB 长是( )A .2mB .3mC .3m 2D .10m 3【答案】A 【分析】利用相似三角形的性质得到对应边成比例,列出等式后求解即可.解:由题可知,CAB CPO ∽,∵AB ACOP CP =, ∵353 4.5AB =+, ∵()2AB m =, 故选A . 【点睛】本题考查了相似三角形的判定与应用,解决本题的关键是能读懂题意,建立相似关系,得到对应边成比例,完成求解即可,本题较基础,考查了学生对相似的理解与应用等.4.(2021·四川遂宁市·中考真题)如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积是3cm 2,则四边形BDEC 的面积为( )A .12cm 2B .9cm 2C .6cm 2D .3cm 2【答案】B 【分析】由三角形的中位线定理可得DE =12BC ,DE ∵BC ,可证∵ADE ∵∵ABC ,利用相似三角形的性质,即可求解. 【详解】解:∵点D ,E 分别是边AB ,AC 的中点, ∵DE =12BC ,DE ∵BC , ∵∵ADE ∵∵ABC , ∵21()4ADE ABC S DE S BC ∆∆==, ∵S ∵ADE =3, ∵S ∵ABC =12,∵四边形BDEC 的面积=12-3=9(cm 2), 故选:B . 【点睛】本题考查了相似三角形的判定和性质,三角形中位线定理,掌握相似三角形的性质是解题的关键. 5.(2021·重庆中考真题)如图,△ABC 与△BEF 位似,点O 是它们的位似中心,其中OE =2OB ,则△ABC 与△DEF 的周长之比是( )A .1:2B .1:4C .1:3D .1:9【答案】A 【分析】利用位似的性质得∵ABC ∵∵DEF ,OB :OE = 1:2,然后根据相似三角形的性质解决问题. 【详解】解:∵∵ABC 与∵DEF 位似,点O 为位似中心. ∵∵ABC ∵∵DEF ,OB :OE = 1:2, ∵∵ABC 与∵DEF 的周长比是:1:2. 故选:A . 【点睛】本题主要考查了位似变换,正确掌握位似图形的性质是解题关键. 6.(2021·江苏扬州市·中考真题)如图,点P 是函数()110,0k y k x x=>>的图像上一点,过点P 分别作x 轴和y 轴的垂线,垂足分别为点A 、B ,交函数()220,0k y k x x=>>的图像于点C 、D ,连接OC 、OD 、CD 、AB ,其中12k k >,下列结论:△//CD AB ;△122OCDk kS-=;△()21212DCPk k Sk -=,其中正确的是( )A .△△B .△△C .△△D .△【答案】B 【分析】 设P (m ,1k m ),分别求出A ,B ,C ,D 的坐标,得到PD ,PC ,PB ,P A 的长,判断PD PB和PC PA 的关系,可判断∵;利用三角形面积公式计算,可得∵PDC 的面积,可判断∵;再利用OCD OAPB OBD OCA DPC S S S S S =---△△△△计算∵OCD 的面积,可判断∵.【详解】解:∵PB ∵y 轴,P A ∵x 轴,点P 在1k y x =上,点C ,D 在2ky x=上, 设P (m ,1k m ), 则C (m ,2k m ),A (m ,0),B (0,1k m),令12k km x =,则21k m x k =,即D (21k m k ,1k m),∵PC =12k k m m -=12k k m -,PD =21k m m k -=()121m k k k -,∵()121121m k k k k k PD PB m k --==,121211k k k k PCm k PA k m --==,即PD PC PB PA =,又∵DPC =∵BP A , ∵∵PDC ∵∵PBA , ∵∵PDC =∵PBC , ∵CD ∵AB ,故∵正确;∵PDC 的面积=12PD PC ⨯⨯=()1212112m k k k k k m --⨯⨯=()21212k k k -,故∵正确;OCD OAPB OBD OCA DPC S S S S S =---△△△△=()112221222112k k k k k k ---- =()2121122k k k k k ---=()()21121112222k k k k k k k --- =()22112211222k k k k k k ---=221212k k k -,故∵错误;故选B . 【点睛】此题主要考查了反比例函数的图象和性质,k 的几何意义,相似三角形的判定和性质,解题关键是表示出各点坐标,得到相应线段的长度.7.(2021·江苏连云港市·中考真题)如图,ABC 中,BD AB ⊥,BD 、AC 相交于点D ,47AD AC =,2AB =,150ABC ∠=︒,则DBC △的面积是( )A.14B.14C.7D.7【答案】A 【分析】过点C 作CE AB ⊥的延长线于点E ,由等高三角形的面积性质得到:3:7DBCABCSS=,再证明ADBACE ,解得47AB AE =,分别求得AE 、CE 长,最后根据ACE 的面积公式解题. 【详解】解:过点C 作CE AB ⊥的延长线于点E ,DBC 与ADB △是等高三角形,43:::4:377ADB DBCSSAD DC AC AC === :3:7DBCABCSS∴=BD AB ⊥∴ADB ACE22416749ADB ACEAC SAD SAC AC ⎛⎫ ⎪⎛⎫∴===⎪ ⎪⎝⎭ ⎪⎝⎭47AB AE ∴= 2AB =72AE ∴=73222BE ∴=-=150,ABC ∠=︒18015030CBE ∴∠=︒-︒=︒tan 30CE BE ∴=︒⋅=设4,3ADBDBCSx Sx ==494ACESx ∴=∴49174222x ∴=⨯⨯x ∴=314x ∴=, 故选:A . 【点睛】本题考查相似三角形的判定与性质、正切等知识,是重要考点,掌握相关知识是解题关键. 8.(2021·浙江绍兴市·中考真题)如图,Rt ABC 中,90BAC ∠=︒,1cos 4B =,点D 是边BC 的中点,以AD 为底边在其右侧作等腰三角形ADE ,使ADE B ∠=∠,连结CE ,则CEAD的值为( )A .32B C .2D .2【答案】D 【分析】由直角三角形斜边中线等于斜边一半可得出12AD BD CD BC ===,在结合题意可得BAD B ADE ∠=∠=∠,即证明//AB DE ,从而得出BAD B ADE CDE ∠=∠=∠=∠,即易证()ADE CDE SAS ≅,得出AE CE =.再由等腰三角形的性质可知AE CE DE ==,BAD B ADE DAE ∠=∠=∠=∠,即证明ABD ADE ∼,从而可间接推出CE BDAD AB=.最后由1cos 4AB B BC ==,即可求出BD AB 的值,即CEAD的值. 【详解】∵在Rt ABC 中,点D 是边BC 的中点,∵12AD BD CD BC ===, ∵BAD B ADE ∠=∠=∠, ∵//AB DE .∵BAD B ADE CDE ∠=∠=∠=∠,∵在ADE 和CDE △中,AD CD ADE CDE DE DE =⎧⎪∠=∠⎨⎪=⎩,∵()ADE CDE SAS ≅, ∵AE CE =,∵ADE 为等腰三角形,∵AE CE DE ==,BAD B ADE DAE ∠=∠=∠=∠, ∵ABD ADE ∼,∵DE AD BD AB =,即CE BDAD AB=. ∵1cos 4AB B BC ==, ∵12AB BD =, ∵2CE BDAD AB==. 故选D . 【点睛】本题考查直角三角形的性质,等腰三角形的性质,平行线的判定和性质,全等三角形与相似三角形的判定和性质以及解直角三角形.熟练掌握各知识点并利用数形结合的思想是解答本题的关键.9.(2021·重庆中考真题)如图,在平面直角坐标系中,将OAB 以原点O 为位似中心放大后得到OCD ,若()0,1B ,()0,3D ,则OAB 与OCD 的相似比是( )A .2:1B .1:2C .3:1D .1:3【答案】D 【分析】直接利用对应边的比等于相似比求解即可. 【详解】解:由B 、D 两点坐标可知:OB =1,OD =3; ∵OAB 与∵OCD 的相似比等于13OB OD =; 故选D . 【点睛】本题考查了在平面直角坐标系中求两个位似图形的相似比的概念,同时涉及到了位似图形的概念、平面直角坐标系中点的坐标、线段长度的确定等知识;解题关键是牢记相似比等于对应边的比,准确求出对应边的比即可完成求解,考查了学生对概念的理解与应用等能力.10.(2021·浙江丽水市·中考真题)如图,在Rt ABC △纸片中,90,4,3ACB AC BC ∠=︒==,点,D E分别在,AB AC 上,连结DE ,将ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分EFB ∠,则AD 的长为( )A .259B .258C .157D .207【答案】D 【分析】先根据勾股定理求出AB ,再根据折叠性质得出∵DAE=∵DFE ,AD=DF ,然后根据角平分线的定义证得∵BFD=∵DFE =∵DAE ,进而证得∵BDF=90°,证明Rt∵ABC ∵Rt∵FBD ,可求得AD 的长. 【详解】解:∵90,4,3ACB AC BC ∠=︒==,∵AB =,由折叠性质得:∵DAE=∵DFE ,AD=DF ,则BD =5﹣AD ,∵FD 平分EFB ∠,∵∵BFD =∵DFE=∵DAE ,∵∵DAE +∵B =90°,∵∵BDF +∵B =90°,即∵BDF =90°,∵Rt∵ABC ∵Rt∵FBD , ∵BD BC DF AC =即534AD AD -=, 解得:AD =205, 故选:D .【点睛】本题考查折叠性质、角平分线的定义、勾股定理、相似三角形的判定与性质、三角形的内角和定理,熟练掌握折叠性质和相似三角形的判定与性质是解答的关键.11.(2021·山东东营市·中考真题)如图,ABC 是边长为1的等边三角形,D 、E 为线段AC 上两动点,且30DBE ∠=︒,过点D 、E 分别作AB 、BC 的平行线相交于点F ,分别交BC 、AB 于点H 、G .现有以下结论:△ABC S =;△当点D 与点C 重合时,12FH =;△AE CD +;△当AE CD =时,四边形BHFG 为菱形,其中正确结论为( )A .△△△B .△△△C .△△△△D .△△△【答案】B【分析】 过A 作AI ∵BC 垂足为I ,然后计算∵ABC 的面积即可判定∵;先画出图形,然后根据等边三角形的性质和相似三角形的性质即可判定∵;如图将∵BCD 绕B 点逆时针旋转60°得到∵ABN ,求证NE =DE ;再延长EA 到P 使AP =CD =AN ,证得∵P =60°,NP =AP =CD ,然后讨论即可判定∵;如图1,当AE =CD 时,根据题意求得CH =CD 、AG =CH ,再证明四边形BHFG 为平行四边形,最后再说明是否为菱形.【详解】解:如图1, 过A 作AI ∵BC 垂足为I∵ABC 是边长为1的等边三角形∵∵BAC =∵ABC =∵C =60°,CI =1212BC =∵AI =2∵S ∵ABC =11122AI BC =⨯=,故∵正确;如图2,当D 与C 重合时∵∵DBE =30°,ABC 是等边三角形∵∵DBE =∵ABE =30°∵DE =AE =1122AD = ∵GE //BD ∵1BG DE AG AE== ∵BG =1122AB = ∵GF //BD ,BG //DF∵HF =BG =12,故∵正确;如图3,将∵BCD绕B点逆时针旋转60°得到∵ABN∵∵1=∵2,∵5=∵6=60°,AN=CD,BD=BN∵∵3=30°∵∵2+∵4=∵1+∵4=30°∵∵NBE=∵3=30°又∵BD=BN,BE=BE∵∵NBE∵∵DBE(SAS)∵NE=DE延长EA到P使AP=CD=AN∵∵NAP=180°-60°-60°=60°∵∵ANP为等边三角形∵∵P=60°,NP=AP=CD如果AE+CD成立,则PE,需∵NEP=90°,但∵NEP不一定为90°,故∵不成立;如图1,当AE=CD时,∵GE//BC∵∵AGE =∵ABC =60°,∵GEA =∵C =60°∵∵AGE =∵AEG =60°,∵AG =AE同理:CH =CD∵AG =CH∵BG //FH ,GF //BH∵四边形BHFG 是平行四边形∵BG =BH∵四边形BHFG 为菱形,故∵正确.故选B .【点睛】本题主要考查了等边三角形的性质、旋转变换、全等三角形的判定和性质以及菱形的判定等知识点,灵活运用相关知识成为解答本题的关键.12.(2021·四川眉山市·中考真题)如图,在以AB 为直径的O 中,点C 为圆上的一点,3BC AC =,弦CD AB ⊥于点E ,弦AF 交CE 于点H ,交BC 于点G .若点H 是AG 的中点,则CBF ∠的度数为( )A .18°B .21°C .22.5°D .30°【答案】C【分析】根据直径所对的圆周角是90︒,可知90ACB AFB ∠=∠=︒,根据3BC AC =,可知ABC ∠、BAC ∠的度数,根据直角三角形斜边上的中线等于斜边的一半可知,AHC 为等腰三角形,再根据CAE BFG BCA ∽∽可求得CBF ∠的度数.【详解】解:∵AB 为O 的直径,∵90ACB AFB ∠=∠=︒,∵3BC AC =,∵=22.5ABC ∠︒,=67.5BAC ∠︒,∵点H 是AG 的中点,∵CE AH =,∵CAH ACH ∠=∠,∵CD AB ⊥,∵AEC GCA ∽,又∵,CAF CBF CGA FGB ∠=∠∠=∠,∵AEC GCA GFB ∽∽,∵90ACE ECB ABC ECB ∠+∠=∠+∠=︒,∵ABE ABC ∠=∠,∵AEC GCA GFB ACB ∽∽∽,∵22.5ABC ACE GAC GBF ∠=∠=∠=∠=︒,∵=22.5CBF ∠︒,故选:C .【点睛】本题主要考查圆周角定理,垂径定理,相似三角形,直角三角形斜边上中线等知识点,找出图形中几个相似三角形是解题关键.13.(2021·山东聊城市·中考真题)如图,四边形ABCD 中,已知AB △CD ,AB 与CD 之间的距离为4,AD =5,CD =3,△ABC =45°,点P ,Q 同时由A 点出发,分别沿边AB ,折线ADCB 向终点B 方向移动,在移动过程中始终保持PQ △AB ,已知点P 的移动速度为每秒1个单位长度,设点P 的移动时间为x 秒,△APQ 的面积为y ,则能反映y 与x 之间函数关系的图象是( )A .B .C .D .【答案】B【分析】依次分析当03t ≤≤、36t <≤、610t <≤三种情况下的三角形面积表达式,再根据其对应图像进行判断即可确定正确选项.【详解】解:如图所示,分别过点D 、点C 向AB 作垂线,垂足分别为点E 、点F ,∵已知AB∥CD ,AB 与CD 之间的距离为4,∵DE =CF =4,∵点P ,Q 同时由A 点出发,分别沿边AB ,折线ADCB 向终点B 方向移动,在移动过程中始终保持PQ ∵AB , ∵PQ∥DE∥CF ,∵AD =5,∵3=AE ,∵当03t ≤≤时,P 点在AE 之间,此时,AP =t , ∵AP PQ AE DE=, ∵4=3PQ t , ∵2142=2233APQ t S AP PQ t t ⋅=⨯=, 因此,当03t ≤≤时,其对应的图像为()22033y t t =≤≤,故排除C 和D ; ∵CD =3,∵EF =CD =3,∵当36t <≤时,P 点位于EF 上,此时,Q 点位于DC 上,其位置如图中的P 1Q 1,则111422APQ St t =⨯⨯=, 因此当36t <≤时,对应图像为()236y t t =<≤,即为一条线段;∵∵ABC =45°,∵BF =CF =4,∵AB =3+3+4=10,∵当610t <≤时,P 点位于FB 上,其位置如图中的P 2Q 2,此时,P 2B =10-t ,同理可得,Q 2P 2=P 2B =10-t ,()2221110522AP Q S t t t t =⨯-=-+, 因此当610t <≤时,对应图像为()2156102y t t t =-+<≤,其为开口向下的抛物线的610t <≤的一段图像; 故选:B .【点睛】本题考查了平行线分线段成比例的推论、勾股定理、平行线的性质、三角形的面积公式、二次函数的图像等内容,解决本题的关键是牢记相关概念与公式,能分情况讨论等,本题蕴含了数形结合与分类讨论的思想方法等.14.(2021·四川广元市·中考真题)如图,在边长为2的正方形ABCD 中,AE 是以BC 为直径的半圆的切线,则图中阴影部分的面积为( )A .32π+B .2π-C .1D .52π- 【答案】D【分析】取BC 的中点O ,设AE 与∵O 的相切的切点为F ,连接OF 、OE 、OA ,由题意可得OB =OC =OA =1,∵OF A =∵OFE =90°,由切线长定理可得AB =AF =2,CE =CF ,然后根据割补法进行求解阴影部分的面积即可.【详解】解:取BC 的中点O ,设AE 与∵O 的相切的切点为F ,连接OF 、OE 、OA ,如图所示:∵四边形ABCD 是正方形,且边长为2,∵BC=AB =2,∥ABC=∥BCD =90°,∵AE 是以BC 为直径的半圆的切线,∵OB =OC =OF =1,∵OF A =∵OFE =90°,∵AB =AF =2,CE =CF ,∵OA =OA ,∵Rt ∵ABO ∵Rt ∵AFO (HL ),同理可证∵OCE ∵∵OFE ,∵,AOB AOF COE FOE ∠=∠∠=∠,∵90AOB COE AOB BAO ∠+∠=︒=∠+∠,∵COE BAO ∠=∠,∵ABO OCE ∽, ∵OC CE AB OB=, ∵12CE =, ∵15222222ABO OCE ABCE S S S SS S ππ-=-=+-=+-=阴影半圆半圆四边形; 故选D .【点睛】本题主要考查切线的性质定理、切线长定理、正方形的性质及相似三角形的性质与判定,熟练掌握切线的性质定理、切线长定理、正方形的性质及相似三角形的性质与判定是解题的关键.15.(2021·四川自贡市·中考真题)如图,在正方形ABCD 中,6AB =,M 是AD 边上的一点,:1:2AM MD =.将BMA △沿BM 对折至BMN △,连接DN ,则DN 的长是( )A .52B .8C .3D 【答案】D【分析】延长MN 与CD 交于点E ,连接BE ,过点N 作NF CD ⊥,根据折叠的正方形的性质得到NE CE =,在Rt MDE 中应用勾股定理求出DE 的长度,通过证明MDE NFE ∽,利用相似三角形的性质求出NF 和DF 的长度,利用勾股定理即可求解.【详解】解:如图,延长MN 与CD 交于点E ,连接BE ,过点N 作NF CD ⊥,∵6AB =,M 是AD 边上的一点,:1:2AM MD =,∵2AM =,4DM =,∵将BMA △沿BM 对折至BMN △,四边形ABCD 是正方形,∵90BNE C ∠=∠=︒,AB AN BC ==,∵Rt BNE Rt BCE ≌(HL),∵NE CE =,∵2EM MN NE NE =+=+,在Rt MDE 中,设DE x =,则628ME x x =-+=-,根据勾股定理可得()22248x x +=-,解得3x =, ∵3NE DE ==,5ME =,∵NF CD ⊥,90MDE ∠=︒,∵MDE NFE ∽, ∵25EF NF NE DE MD ME ===, ∵125NF =,95EF =, ∵65DF =,∵DN ==, 故选:D .【点睛】本题考查折叠的性质、相似三角形的判定与性质、勾股定理的应用等内容,做出合适的辅助线是解题的关键.16.(2021·四川泸州市·中考真题)如图,△O 的直径AB =8,AM ,BN 是它的两条切线,DE 与△O 相切于点E ,并与AM ,BN 分别相交于D ,C 两点,BD ,OC 相交于点F ,若CD =10,则BF 的长是A B C D 【答案】A【分析】过点D 作DG ∵BC 于点G ,延长CO 交DA 的延长线于点H ,根据勾股定理求得6GC =,即可得AD=BG =2,BC= 8,再证明∵HAO∵∵BCO,根据全等三角形的性质可得AH=BC=8,即可求得HD= 10;在Rt∵ABD中,根据勾股定理可得BD=;证明∵DHF∵∵BCF,根据相似三角形的性质可得DH DFBC BF=,由此即可求得BF=【详解】过点D作DG∵BC于点G,延长CO交DA的延长线于点H,∵AM,BN是它的两条切线,DE与∵O相切于点E,∵AD=DE,BC=CE,∵DAB=∵ABC=90°,∵DG∵BC,∵四边形ABGD为矩形,∵AD=BG,AB=DG=8,在Rt∵DGC中,CD=10,∵6GC===,∵AD=DE,BC=CE,CD=10,∵CD= DE+CE = AD+BC =10,∵AD+BG +GC=10,∵AD=BG=2,BC=CG+BG=8,∵∵DAB=∵ABC=90°,∵AD∵BC,∵∵AHO=∵BCO,∵HAO=∵CBO,∵OA=OB,∵∵HAO∵∵BCO,∵AH=BC =8,∵AD =2,∵HD=AH +AD =10;在Rt∵ABD 中,AD =2,AB =8,∵BD ==∵AD ∵BC ,∵∵DHF ∵∵BCF , ∵DH DF BC BF=,∵108BF BF=,解得,BF =故选A .【点睛】本题是圆的综合题,考查了切线长定理、勾股定理、全等三角形的判定及性质、相似三角形的判定于性质,熟练运用相关知识是解决问题的关键.17.(2021·内蒙古通辽市·中考真题)如图,已知//AD BC ,AB BC ⊥,3AB =,点E 为射线BC 上一个动点,连接AE ,将ABE △沿AE 折叠,点B 落在点B '处,过点B '作AD 的垂线,分别交AD ,BC 于M ,N 两点,当B '为线段MN 的三等分点时,BE 的长为( )A .32BC .32D 【答案】D【分析】因为点'B 为线段MN 的三等分点,没有指明线段'B M 的占比情况,所以需要分两种情况讨论:∵1'3B M MN =;∵ 2'3B M MN =.然后由一线三垂直模型可证 'AMB ∵'B NE ,再根据相似三角形的性质求得 EN 的值,最后由 BE BN EN =-即可求得 BE 的长.【详解】当点'B 为线段MN 的三等分点时,需要分两种情况讨论:∵如图1,当1'3B M MN =时,∵AD ∵BC ,AB BC ⊥, MN BC ⊥,∵四边形ABNM 为矩形, ∵11'133B M MN AB ===, 22'233B N MN AB ===, BN AM =. 由折叠的性质可得'3A B AB ==,'90AB E ABC ∠=∠=︒.在'Rt AB M 中,AM ==.∵''90AB M MAB ∠+∠=︒, ''90AB M EB N ∠+∠=︒,∵''EB N MAB ∠=∠,∵'B NE ∵'AMB ,∵''EN B N B M AM =,即 1EN = 2EN =,∵22BE BN EN =-==. ∵如图2,当2'3B M MN =时, ∵AD ∵BC ,AB BC ⊥, MN BC ⊥,∵四边形ABNM 为矩形, ∵22'233B M MN AB ===, 11'133B N MN AB ===, BN AM =. 由折叠的性质可得'3AB AB ==,'90AB E ABC ∠=∠=︒.在'Rt AB M 中,AM ===∵''90AB M MAB ∠+∠=︒, ''90AB M EB N ∠+∠=︒,∵''EB N MAB ∠=∠,∵'B NE ∵'AMB ,∵''EN B N B M AM =,即 2EN =EN =,∵55BE BN EN =-==.综上所述,BE 的长为2或 . 故选:D .【点睛】 本题考查了矩形的判定,勾股定理,相似三角形的判定和性质,由'B 为线段MN 的三等分点,分两种情况讨论线段'B M 的占比情况,以及利用K 型相似进行相关计算是解决此题的关键.18.(2021·四川资阳市·中考真题)如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH 组成,恰好拼成一个大正方形ABCD .连结EG 并延长交BC 于点M .若1AB EF ==,则GM 有长为( )A .5B .3C .4D .5【分析】添加辅助线,过F 点作FI ∵HM ,通过证明两组三角形相似,得到FI 和GM 的两个关系式,从而求解GM .【详解】如图所示,过F 点作FI ∵HM ,交BC 于点I ,证明勾股定理的弦图的示意图是由四个全等的直角三角形和一个小正方形EFGH 组成∴=90AEB ∠︒,BF AE CG ==,CF BE =,1FG EF ==,EG又1AB EF ==∴222AE BE AB +=,即 ()2221BF BF ++=解得2BF =或3BF =-(舍去) ∴=2BF AE CG ==,=3CF BE =FI∵HM∴CGMCFI ∆,~BFI BEM ∆ ∴32FI CF GM CG ==, 32EM BE FI BF == ∴32FI GM =,32EG GM GM FI FI +==∴3322GM GM =解得:GM =经检验:GM = 故选:D .本题考查了相似三角形和勾股定理.本题的关键在于添加辅助线,建立所求线段与已知条件之间的联系.19.(2021·河北中考真题)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB=()A.1cm B.2cmC.3cm D.4cm【答案】C【分析】先求出两个高脚杯液体的高度,再通过三角形相似,建立其对应边的比与对应高的比相等的关系,即可求出AB.【详解】解:由题可知,第一个高脚杯盛液体的高度为:15-7=8(cm),第二个高脚杯盛液体的高度为:11-7=4(cm),因为液面都是水平的,图1和图2中的高脚杯是同一个高脚杯,所以图1和图2中的两个三角形相似,∵4 68 AB=,∵=3AB(cm),故选:C.【点睛】本题考查了相似三角形的判定与性质,解决本题的关键是读懂题意,与图形建立关联,能灵活运用相似三角形的判定得到相似三角形,并能运用其性质得到相应线段之间的关系等,本题对学生的观察分析的能力有一定的要求.20.(2021·四川宜宾市·中考真题)如图,在矩形纸片ABCD 中,点E 、F 分别在矩形的边AB 、AD 上,将矩形纸片沿CE 、CF 折叠,点B 落在H 处,点D 落在G 处,点C 、H 、G 恰好在同一直线上,若AB =6,AD =4,BE =2,则DF 的长是( )A .2B .74C .2D .3【答案】A【分析】 构造如图所示的正方形CMPD ,然后根据相似三角形的判定和性质解直角三角形FNP 即可.【详解】如图,延长CE ,FG 交于点N ,过点N 作//l AB ,延长,CB DA 交l 于,M P ,∵∵CMN =∵DPN =90°,∵四边形CMPD 是矩形,根据折叠,∵MCN =∵GCN ,CD =CG ,DF FG =,∵∵CMN =∵CGN =90°,CN =CN ,∵Rt MNC Rt GNC ∆≅∆,∵6CM CG CD ===,MN NG =∴四边形CMPD 为正方形,//BE MN∵CBE CMN , ∵4263BE CB MN CM ===, 2BE =,3MN ∴=,3NP ∴=,设DF x =,则4AF x =-, 在Rt PNF 中,由222FP NP NF +=可得222(42)3(3)x x -++=+解得2x=;故选A.【点睛】本题考查了折叠问题,正方形的性质与判定,矩形的性质,平行线的性质,全等三角形的性质和判定,相似三角形,勾股定理等知识点的综合运用,难度较大.作出合适的辅助线是解题的关键.21.(2021·湖北恩施土家族苗族自治州·中考真题)如图,在44⨯的正方形网格中,每个小正方形的边长都为1,E为BD与正方形网格线的交点,下列结论正确的是()A.12CE BD≠B.ABC CBD≌C.AC CD=D.ABC CBD∠=∠【答案】D【分析】由题意易得CE∵AB,然后根据相似三角形的性质与判定、直角三角形斜边中线定理及全等三角形的判定可排除选项.【详解】解:∵每个小正方形的边长都为1,∵4,2,5AB AC BC CD BD =====,∵22225BC CD BD +==,AC CD ≠,故C 错误;∵∵BCD 是直角三角形,∵90BCD BAC ∠=∠=︒,∵5AB AC BC CD ==, ∵C ABC BD ∽△△,故B 错误;∵ABC CBD ∠=∠,故D 正确;∵E 为BD 与正方形网格线的交点,∵CE ∵AB ,∵ABC BCE CBD ∠=∠=∠,∵90DBC BDC BCE ECD ∠+∠=∠+∠=︒,∵BDC ECD ∠=∠, ∵12BE CE ED BD ===,故A 错误; 故选D .【点睛】本题主要考查勾股定理的逆定理、相似三角形的性质与判定及直角三角形斜边中线定理,熟练掌握勾股定理的逆定理、相似三角形的性质与判定及直角三角形斜边中线定理是解题的关键.22.(2021·山东威海市·中考真题)如图,在ABC 和ADE 中,36CAB DAE ∠=∠=︒,AB AC =,AD AE =.连接CD ,连接BE 并延长交AC ,AD 于点F ,G .若BE 恰好平分ABC ∠,则下列结论错误的是( )A .ADC AEB ∠=∠ B .//CD ABC .DE GE =D .2BF CF AC =⋅ 【答案】C【分析】根据SAS 即可证明DAC EAB △≌△,再利用全等三角形的性质以及等腰三角形的性质,结合相似三角形的判定和性质,即可一一判断【详解】,,36AB AC AD AE CAB DAE ==∠=∠=︒DAC EAB ∴∠=∠∴DAC EAB △≌△ADC AEB ∴∠=∠,故选项A 正确;,36AB AC CAB =∠=︒72ABC ACB ∴∠=∠=︒ BE 平分ABC ∠1362ABE CBF ABC ∴∠=∠=∠=︒ DAC EAB △≌△36ACD ABE ∴∠=∠=︒ACD CAB ∴∠=∠//CD AB ∴,故选项B 正确;,36AD AE DAE =∠=︒72ADE ∴∠=︒72DGE DAE EAB ABE EAB ∠=∠+∠+∠=︒+∠即ADE DGE ∠≠∠DE GE ∴≠,故选项C 错误;72,36ABC ACB CAB CBF ∠=∠=︒∠=∠=︒72CFB ∴∠=︒BC BF ∴=ABC BFC ∴△∽△BF CF AB BC∴= AB AC =BF CF AC BF ∴=2BF CF AC =⋅,故选项D 正确;故答案选:C .【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,相似三角形的判定和性质,平行线的判定,能利用全等三角形的判定和性质以及等腰三角形的性质是解题关键.二、填空题23.(2021·江苏无锡市·中考真题)下列命题中,正确命题的个数为________.△所有的正方形都相似△所有的菱形都相似△边长相等的两个菱形都相似△对角线相等的两个矩形都相似【答案】∵【分析】根据多边形的判定方法对∵进行判断;利用菱形的定义对∵进行判断;根据菱形的性质对∵进行判断;根据矩形的性质和相似的定义可对∵进行判断.【详解】解:所有的正方形都相似,所以∵正确;所有的菱形不一定相似,所以∵错误;边长相等的两个菱形,形状不一定相同,即:边长相等的两个菱形不一定相似所以∵错误;对角线相等的两个矩形,对应边不一定成比例,即不一定相似,所以∵错误;故答案是:∵.【点睛】本题考查了判断命题真假,熟练掌握图形相似的判定方法,菱形,正方形,矩形的性质,是解题的关键. 24.(2021·内蒙古中考真题)如图,在Rt ABC 中,90ACB ∠=︒,过点B 作BD CB ⊥,垂足为B ,且3BD =,连接CD ,与AB 相交于点M ,过点M 作MN CB ⊥,垂足为N .若2AC =,则MN 的长为__________.【答案】65【分析】 根据MN ∵BC ,AC ∵BC ,DB ∵BC ,得,BNM BCA CNM ABD ,可得,MN BN MN CN AC BC BD BC ,因为1BNCN BC BC ,列出关于MN 的方程,即可求出MN 的长.【详解】∵MN ∵BC ,DB ∵BC , 90ACB ∠=︒∵AC ∵MN ∵DB ,∵,BNM BCA CNM ABD , ∵,MN BN MN CN AC BC BD BC 即,23MN BN MN CN BC BC , 又∵1BN CN BCBC , ∵123MN MN , 解得65MN =, 故填:65. 【点睛】本题考查相似三角形的判定和性质,解题关键是根据题意得出两组相似三角形以及它们对应边之比的等量关系.25.(2021·山东东营市·中考真题)如图,正方形纸片ABCD 的边长为12,点F 是AD 上一点,将CDF 沿CF 折叠,点D 落在点G 处,连接DG 并延长交AB 于点E .若5AE =,则GE 的长为________.【答案】4913【分析】因为折叠,则有DG CF ⊥,从而可知AED HDC △∽△,利用线段比求出DG 的长,即可求出EG .【详解】如图, 四边形ABCD 是正方形12=90∴∠+∠︒因为折叠,DG CF ∴⊥,设垂足为HDH HG ∴=2390∴∠+∠=︒13∠∠∴=AED HDC ∴△∽△AE DH ED DC= 5AE =,12AD DC ==51312DH ∴= 6013DH ∴= EG ED GD ∴=-2ED GH =-6013213=-⨯ 4913=故答案为4913. 【点睛】本题考查了正方形的性质,轴对称的性质,三角形相似的判定与性质,勾股定理,找到AED HDC △∽△是解题的关键.26.(2021·四川南充市·中考真题)如图,在ABC 中,D 为BC 上一点,3BC BD ==,则:AD AC的值为________.【答案】3. 【分析】 证明∵ABD ∵∵CBA ,根据相似三角形的性质即可解答.【详解】∵3BC BD ==,∵AB BC ==BD AB =∵3AB BD BC AB ==, ∵∵B =∵B ,∵∵ABD ∵∵CBA ,∵AD BD AC AB ==.【点睛】本题考查了相似三角形的判定及性质,证明∵ABD ∵∵CBA 是解决问题的关键.27.(2021·湖北随州市·中考真题)如图,在Rt ABC 中,90ACB ∠=︒,O 为AB 的中点,OD 平分AOC ∠交AC 于点G ,OD OA =,BD 分别与AC ,OC 交于点E ,F ,连接AD ,CD ,则OG BC 的值为______;若CE CF =,则CF OF的值为______.【答案】12【分析】(1)根据条件,证明AOD COD ≅△△,从而推断90OGA ∠=,进一步通过角度等量,证明AOG ABC △△,代入推断即可.(2)通过OA OD OC OB ===,可知,,,A B C D 四点共圆,通过角度转化,证明ODF CBF △△,代入推断即可.【详解】解:(1)∵90ACB ∠=︒,O 为AB 的中点∵OA OC =又∵OD 平分AOC ∠∵AOD COD ∠=∠又∵OD OD =∵AOD COD ≅△△∵AD CD =∵OD AC ⊥∵90OGA ∠=在AOG 与ABC 中GAO BAC ∠=∠,90OGA BCA ∠=∠=∵AOG ABC △△12OG AO BC AB == (2∵OA OD OC OB ===∵,,,A B C D 四点共圆,如下图:∵CE CF =∵CEF CFE ∠=∠又∵CFE BFO ∠=∠∵CEF BFO ∠=∠∵AOD COD ≅△△∵AD CD =∵AD CD =∵OBF CBE ∠=∠∵90BFO OBF CEF CBE ∠+∠=∠+∠=即90BOC ∠=∵OB OC =∵BC ==∵90OGA BCA ∠=∠=∵ODB FBC ∠=∠∵OFD CFB ∠=∠∵ODF CBF △△∵CF BC OF OD ==故答案为:12【点睛】本题考查三角形的相似,三角形的全等以及圆的相关知识点,根据图形找见相关的等量关系是解题的关键. 28.(2021·四川广元市·中考真题)如图,在正方形ABCD 中,点O 是对角线BD 的中点,点P 在线段OD 上,连接AP 并延长交CD 于点E ,过点P 作PF AP ⊥交BC 于点F ,连接AF 、EF ,AF 交BD 于G ,现有以下结论:△AP PF =;△DE BF EF +=;△PB PD -=;△AEF S 为定值;△APG PEFG S S =四边形.以上结论正确的有________(填入正确的序号即可).【答案】∵∵∵∵【分析】由题意易得∵APF =∵ABC =∵ADE =∵C =90°,AD =AB ,∵ABD =45°,对于∵:易知点A 、B 、F 、P 四点共圆,然后可得∵AFP =∵ABD =45°,则问题可判定;对于∵:把∵AED 绕点A 顺时针旋转90°得到∵ABH ,则有DE =BH ,∵DAE =∵BAH ,然后易得∵AEF ∵∵AHF ,则有HF =EF ,则可判定;对于∵:连接AC ,在BP 上截取BM =DP ,连接AM ,易得OB =OD ,OP =OM ,然后易证∵AOP ∵∵ABF ,进而问题可求解;对于∵:过点A 作AN ∵EF 于点N ,则由题意可得AN =AB ,若∵AEF 的面积为定值,则EF 为定值,进而问题可求解;对于∵由∵可得2AP AF =,进而可得∵APG ∵∵AFE ,然后可得相似比为2AP AF =,最后根据相似三角形的面积比与相似比的关系可求解.【详解】解:∵四边形ABCD 是正方形,PF AP ⊥,∵∵APF =∵ABC =∵ADE =∵C =90°,AD =AB ,∵ABD =45°,∵∵180ABC APF ∠+∠=︒,∵由四边形内角和可得180BAP BFP ∠+∠=︒,∵点A 、B 、F 、P 四点共圆,∵∵AFP =∵ABD =45°,∵∵APF 是等腰直角三角形,∵AP PF =,故∵正确;∵把∵AED 绕点A 顺时针旋转90°得到∵ABH ,如图所示:∵DE =BH ,∵DAE =∵BAH ,∵HAE =90°,AH =AE ,∵45HAF EAF ∠=∠=︒,∵AF =AF ,∵∵AEF ∵∵AHF (SAS ),∵HF =EF ,∵HF BH BF =+,∵DE BF EF +=,故∵正确;∵连接AC ,在BP 上截取BM =DP ,连接AM ,如图所示:∵点O 是对角线BD 的中点,∵OB =OD ,BD AC ⊥,∵OP =OM ,∵AOB 是等腰直角三角形,∵AB =,由∵可得点A 、B 、F 、P 四点共圆,∵APO AFB ∠=∠,∵90ABF AOP ∠=∠=︒,∵∵AOP ∵∵ABF ,∵OPOAAPBF AB AF ===,∵2OP BF =,∵2BP DP BP BM PM OP -=-==,∵PB PD -=,故∵正确;∵过点A 作AN ∵EF 于点N ,如图所示:由∵可得∵AFB =∵AFN ,∵∵ABF =∵ANF =90°,AF =AF ,∵∵ABF ∵∵ANF (AAS ),∵AN =AB ,若∵AEF 的面积为定值,则EF 为定值,∵点P 在线段OD 上,∵EF 的长不可能为定值,故∵错误;∵由∵可得22AP AF =, ∵∵AFB =∵AFN =∵APG ,∵F AE =∵P AG ,∵∵APG ∵∵AFE ,∵22GP AP EF AF ==, ∵22122AGPAEF SS ⎛⎫== ⎪ ⎪⎝⎭, ∵12AGP AEF S S =,∵APG PEFG S S =四边形,故∵正确;综上所述:以上结论正确的有∵∵∵∵;故答案为∵∵∵∵.【点睛】本题主要考查正方形的性质、旋转的性质、圆的基本性质及相似三角形的性质与判定,熟练掌握正方形的性质、旋转的性质、圆的基本性质及相似三角形的性质与判定是解题的关键.29.(2021·江苏南京市·中考真题)如图,将ABCD 绕点A 逆时针旋转到AB C D '''的位置,使点B '落在BC 上,B C ''与CD 交于点E ,若3,4,1AB BC BB '===,则CE 的长为________.【答案】98【分析】 过点C 作CM //C D ''交B C ''于点M ,证明ABB ADD ''∆∆∽求得53C D '=,根据AAS 证明ABB B CM ''∆≅∆可求出CM =1,再由CM //C D ''证明∵CME DC E '∆∽,由相似三角形的性质查得结论.【详解】解:过点C 作CM //C D ''交B C ''于点M ,∵平行四边形ABCD 绕点A 逆时针旋转得到平行四边形AB C D '''∵AB AB '=,,AD AD '=B AB C D D '''∠=∠=∠=∠,BAD B AD ''∠=∠∵BAB DAD ''∠=∠,B D '∠=∠∵ABB ADD ''∆∆∽ ∵3,4BB AB AB DD AD BC ''=== ∵1BB '= ∵43DD '= ∵C D C D DD ''''=-CD DD '=-AB DD '=-433=- 53=。

专题09 三角形(第04期)-2021年中考数学试题分项版解析汇编(解析版)

专题09 三角形(第04期)-2021年中考数学试题分项版解析汇编(解析版)

一、选择题1. (2021贵州遵义第6题)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为()A.45°B.30°C.20°D.15°【答案】D.考点:平行线的性质..2. (2021贵州遵义第10题)如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是()A.4.5 B.5 C.5.5 D.6【答案】A.考点:三角形中位线定理;三角形的面积.3. (2021贵州遵义第12题)如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为()A.11 B.12 C.13 D.14【答案】C.【解析】试题分析:∵AD是∠BAC的平分线,AB=11,AC=15,∴1115 BD ABCD AC==,∵E是BC中点,∴11151321515 CECA+==,∵EF∥AD,.∴1315 CF CECA CD==,∴CF=1315CA=13.故选C.考点:平行线的性质;角平分线的性质..4. (2021湖南株洲第5题)如图,在△ABC中,∠BAC=x°,∠B=2x°,∠C=3x°,则∠BAD=()A.145°B.150°C.155°D.160°【答案】B.考点:三角形内角和定理.5. (2021湖南株洲第10题)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.2D.2【答案】D.【解析】试题分析:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF =∠3+∠DFQ =45°,∴∠QEF =∠DFQ ,∵∠2=∠3, ∴△DQF ∽△FQE ,∴12DQ FQ DF FQ QE EF ===, ∵DQ =1,∴FQ =2,EQ =2,∴EQ +FQ =2+2, 故选D. .考点:旋转的性质;平行线的判定与性质;等腰直角三角形.6. (2021内蒙古通辽第7题)志远要在报纸上刊登广告,一块cm cm 510⨯的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费( ) A .540元 B .1080元 C.1620元 D .1800元 【答案】C考点:相似三角形的应用7. (2021郴州第8题)小明把一副45,30的直角三角板如图摆放,其中00090,45,30C F A D ∠=∠=∠=∠=,则αβ∠+∠等于 ( )A .0180 B .0210 C .0360 D .0270【答案】B .【解析】试题分析:∵∠α=∠1+∠D ,∠β=∠4+∠F ,∴∠α+∠β=∠1+∠D +∠4+∠F =∠2+∠D +∠3+∠F =∠2+∠3+30°+90°=210°,故选B .考点:三角形的外角的性质. .8. (2021广西百色第10题)如图,在距离铁轨200米处的B 处,观察由南宁开往百色的“和谐号”动车,当动车车头在A 处时,恰好位于B 处的北偏东60︒方向上,10秒钟后,动车车头到达C 处,恰好位于B 处西北方向上,则这时段动车的平均速度是( )米/秒.A .20(31)+B .20(31)- C. 200 D .300 【答案】A考点:1.解直角三角形的应用﹣方向角问题;2.勾股定理的应用.9. (2021哈尔滨第8题)在Rt ABC △中,90C ∠°,4AB ,1AC ,则cos B 的值为( ) A.154B.14C.1515D.41717【答案】A 【解析】试题分析:∵在Rt △ABC 中,∠C =90°,AB =4,AC =1,∴BC =2241- =15,则cosB =BCAB=154,故选A .考点:锐角三角函数的定义.10. (2021哈尔滨第9题)如图,在ABC △中,,D E 分别为,AB AC 边上的点,DE BC ∥,点F 为BC 边上一点,连接AF 交DE 于点E ,则下列结论中一定正确的是( )A.ADAEAB ECB.AC AEGF BDC.BD CEAD AED.AG ACAF EC【答案】C考点:相似三角形的判定与性质.11. (2021黑龙江绥化第6题)如图, A B C '''∆是ABC ∆在点O 为位似中心经过位似变换得到的,若A B C '''∆的面积与ABC ∆的面积比是4:9,则:OB OB '为( )A.2:3B.3:2C.4:5D.4:9【答案】A考点:位似变换.12. (2021黑龙江绥化第9题)某楼梯的侧面如图所示,已测得BC的长约为3.5米,BCA约为29,则该楼梯的高度AB可表示为()A.3.5sin29米B.3.5cos29米C.3.5tan29米D.3.5 cos29米【答案】A 【解析】试题分析:在Rt△ABC中,∵sin∠ACB=ABBC,∴AB=BCsin∠ACB=3.5sin29°,故选A..考点:解直角三角形的应用﹣坡度坡角问题.13. (2021湖南张家界第5题)如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC的周长是()A .6B .12C .18D .24 【答案】B . 【解析】试题分析:∵D 、E 分别是AB 、AC 的中点,∴AD =12AB ,AE =12AC ,DE =12BC ,∴△ABC 的周长=AB +AC +BC =2AD +2AE +2DE =2(AD +AE +DE )=2×6=12.故选B .. 考点:相似三角形的判定与性质;三角形中位线定理.14. (2021辽宁大连第8题)如图,在ABC ∆中,090=∠ACB ,AB CD ⊥,垂足为D ,点E 是AB 的中点,a DE CD ==,则AB 的长为( )A .a 2B .a 22 C. a 3 D .a 334 【答案】B.考点:直角三角形斜边上的中线.15. (2021海南第13题)已知△ABC 的三边长分别为4、4、6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条. A .3B .4C .5D .6【答案】B.考点:等腰三角形的性质.16. (2021河池第9题)三角形的下列线段中,能将三角形分成面积相等的两部分是() A .中线 B .角平分线 C.高 D .中位线 【答案】A. 【解析】试题分析:根据等底等高的三角形的面积相等解答. ∵三角形的中线把三角形分成两个等底同高的三角形, ∴三角形的中线将三角形的面积分成相等两部分. 故选A .考点:三角形的面积;三角形的角平分线、中线和高.17. (2021河池第12题)已知等边ABC ∆的边长为12,D 是AB 上的动点,过D 作AC DE ⊥于点E ,过E 作BC EF ⊥于点F ,过F 作AB FG ⊥于点G .当G 与D 重合时,AD 的长是() A .3 B .4 C. 8 D .9 【答案】B. 【解析】试题分析:设AD =x ,根据等边三角形的性质得到∠A =∠B =∠C =60°,由垂直的定义得到∠ADF =∠DEB =∠EFC =90°,解直角三角形即可得到结论.. 设AD =x ,∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°, ∵DE ⊥AC 于点E ,EF ⊥BC 于点F ,FG ⊥AB ,∴∠ADF =∠DEB =∠EFC =90°,∴AF =2x ,∴CF =12﹣2x , ∴CE =2CF =24﹣4x ,∴BE =12﹣CE =4x ﹣12,∴BD =2BE =8x ﹣24,∵AD+BD=AB,∴x+8x﹣24=12,∴x=4,∴AD=4.故选B.考点:等边三角形的性质;含30度角的直角三角形. .18. (2021贵州六盘水第12题)三角形的两边,a b的夹角为60°且满足方程23240x x,则第三边长的长是( )A.6B.22C.23D.32【答案】考点:一元二次方程;勾股定理.二、填空题1. (2021湖南株洲第11题)如图示在△ABC中∠B=.【答案】25°. 【解析】试题分析:∵∠C =90°,∴∠B =90°﹣∠A =90°﹣65°=25°; 故答案为:25°..考点:直角三角形的性质.2. (2021湖北咸宁第16题)如图,在ACB Rt ∆中,30,2=∠=BAC BC ,斜边AB 的两个端点分别在相互垂直的射线ON OM ,上滑动,下列结论: ①若O C 、两点关于AB 对称,则32=OA ; ②O C 、两点距离的最大值为4; ③若AB 平分CO ,则CO AB ⊥; ④斜边AB 的中点D 运动路径的长为2π. 其中正确的是 .【答案】①②③.④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的14,则:902180π⨯=π.所以④不正确;综上所述,本题正确的有:①②③;考点:三角形综合题..3. (2021湖南常德第14题)如图,已知Rt△ABE中∠A=90°,∠B=60°,BE=10,D是线段AE上的一动点,过D作CD交BE于C,并使得∠CDE=30°,则CD长度的取值范围是.【答案】0≤CD ≤5. 【解析】试题分析:当点D 与点E 重合时,CD =0,当点D 与点A 重合时,∵∠A =90°,∠B =60°,∴∠E =30°,∴∠CDE =∠E ,∠CDB =∠B ,∴CE =CD ,CD =CB ,∴CD =12BE =5,∴0≤CD ≤5,故答案为:0≤CD ≤5. 考点:含30度角的直角三角形;直角三角形斜边上的中线..4. (2021黑龙江齐齐哈尔第17题)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD 是ABC ∆的“和谐分割线”,ACD ∆为等腰三角形,CBD ∆和ABC ∆相似,46A ∠=︒,则ACB ∠的度数为 .【答案】113°或92°.考点:1.相似三角形的性质;2.等腰三角形的性质.5. (2021黑龙江齐齐哈尔第19题)如图,在平面直角坐标系中,等腰直角三角形12OA A 的直角边1OA 在y轴的正半轴上,且1121OA A A ==,以2OA 为直角边作第二个等腰直角三角形23OA A ,以3OA 为直角边作第三个等腰直角三角形20172018OA A ,则点2017A 的坐标为 .【答案】(0,(2)2016)或(0,21008).考点:规律型:点的坐标.6. (2021黑龙江绥化第20题)在等腰ABC ∆中,AD BC ⊥交直线BC 于点D ,若12AD BC =,则ABC ∆的顶角的度数为 . 【答案】30°或150°或90°.. 【解析】试题分析:①BC 为腰, ∵AD ⊥BC 于点D ,AD =12BC ,∴∠ACD =30°, 如图1,AD 在△ABC 内部时,顶角∠C =30°,如图2,AD 在△ABC 外部时,顶角∠ACB =180°﹣30°=150°,②BC 为底,如图3, ∵AD ⊥BC 于点D ,AD =12BC ,∴AD =BD =CD ,∴∠B =∠BAD ,∠C =∠CAD ,∴∠BAD +∠CAD =12×180°=90°, ∴顶角∠BAC =90°,综上所述,等腰三角形ABC 的顶角度数为30°或150°或90°..考点:1.含30度角的直角三角形;2.等腰三角形的性质.7. (2021黑龙江绥化第21题)如图,顺次连接腰长为2 的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n 个小三角形的面积为 .【答案】2n-112考点:1.三角形中位线定理;2.等腰直角三角形.8. (2021上海第15题)如图,已知AB ∥CD ,CD =2AB ,AD 、BC 相交于点E ,设AE a = ,BE b =,那么向量CD 用向量a 、b 表示为 .【答案】2b a +考点:1.平面向量;2.平行线的性质9. (2021辽宁大连第15题)如图,一艘海轮位于灯塔P 的北偏东060方向,距离灯塔nmile 86的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东045方向上的B 处.此时,B 处与灯塔P 的距离约为 nmile .(结果取整数,参考数据:4.12,7.13≈≈)【答案】102. 【解析】试题分析:根据题意得出∠MPA =∠PAD =60°,从而知PD =AP •sin ∠PAD =433,由∠BPD =∠PBD =45°根据BP =sin PDB∠,即可求出即可..考点:解直角三角形的应用﹣方向角问题;勾股定理的应用.三、解答题1. (2021湖南株洲第22题)如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.【答案】①.证明见解析;②证明见解析. .【解析】试题分析:①由正方形ABCD与等腰直角三角形DEF,得到两对边相等,一对直角相等,利用SAS即可得证;考点:相似三角形的判定;全等三角形的判定与性质;等腰直角三角形;正方形的性质.2. (2021湖南株洲第23题)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=23,无人机的飞行高度AH为5003米,桥的长度为1255米.①求点H到桥左端点P的距离;②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度A B.【答案】①求点H到桥左端点P的距离为250米;②无人机的长度AB为5米.考点:解直角三角形的应用﹣仰角俯角问题.3. (2021郴州第19题)已知ABC ∆中,ABC ACB ∠=∠,点,D E 分别为边,AB AC 的中点,求证:BE CD =.【答案】详见解析. 【解析】试题分析:由∠ABC =∠ACB 可得AB =AC ,又点D 、E 分别是AB 、AC 的中点.得到AD =AE ,通过△ABE ≌△ACD ,即可得到结果.考点:全等三角形的判定及性质.4. (2021郴州第22题)如图所示,C城市在A城市正东方向,现计划在,A C两城市间修建一条高速铁路60方向上,在线段AC上距A城市(即线段AC),经测量,森林保护区的中心P在城市A的北偏东030方向上,已知森林保护区是以点P为圆心,100km为半径的圆形区域,120km的B处测得P在北偏东0请问计划修建的这条高速铁路是否穿越保护区,为什么?)(参考数据:3 1.732【答案】这条高速公路不会穿越保护区,理由详见解析.【解析】试题分析:作PH⊥AC于H.求出PH与100比较即可解决问题.试题解析:结论;不会.理由如下:作PH⊥AC于H.考点:解直角三角形的应用.5. (2021郴州第26题)如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1/cm s 的速度运动,当D 不与点A 重合是,将ACD ∆绕点C 逆时针方向旋转060得到BCE ∆,连接DE .(1)求证:CDE ∆是等边三角形;(2)当610t <<时,的BDE ∆周长是否存在最小值?若存在,求出BDE ∆的最小周长;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以,,D E B 为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.【答案】(1)详见解析;(2)存在,23+4;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD3,∴△BDE的最小周长=CD3;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,③当6<t <10s 时,由∠DBE =120°>90°,∴此时不存在;④当t >10s 时,由旋转的性质可知,∠DBE =60°,又由(1)知∠CDE =60°,∴∠BDE =∠CDE +∠BDC =60°+∠BDC ,而∠BDC >0°,∴∠BDE >60°,∴只能∠BDE =90°,从而∠BCD =30°,∴BD =BC =4,∴OD =14cm ,∴t =14÷1=14s ,综上所述:当t =2或14s 时,以D 、E 、B 为顶点的三角形是直角三角形.考点:旋转与三角形的综合题.6. (2021湖北咸宁第18题) 如图,点F C E B ,,,在一条直线上,FC BE DE AC DF AB ===,,.⑴求证:DFE ABC ∆≅∆;⑵连接BD AF ,,求证:四边形ABDF 是平行四边形.【答案】详见解析.考点:全等三角形的判定与性质;平行四边形的判定.7. (2021湖南常德第24题)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC =0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,3≈1.732,2≈1.414)【答案】3.05.考点:解直角三角形的应用.8. (2021湖南常德第26题)如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD =4DC ,取AB 的中点G ,连接CG 交AD 于M ,求证:①GM =2MC ;②AG 2=AF •A C .【答案】(1)证明见解析;(2)①证明见解析;②证明见解析.考点:相似三角形的判定与性质;全等三角形的判定与性质;和差倍分.9. (2021哈尔滨第24题)已知:ACB △和DCE △都是等腰直角三角形,90ACB DCE ∠∠°,连接AE ,BD 交于点O ,AE 与DC 交于点M ,BD 与AC 交于点N .(1)如图1,求证:AE BD ; (2)如图2,若AC DC ,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【答案】(1)证明见解析;(2)△ACB ≌△DCE (SAS ),△EMC ≌△BCN (ASA ),△AON ≌△DOM (AAS ),△AOB ≌△DOE (HL )考点:1.全等三角形的判定与性质;2.等腰直角三角形.10. (2021黑龙江齐齐哈尔第23题)如图,在ABC ∆中,AD BC ⊥于D ,BD AD =,DG DC =,E ,F 分别是BG ,AC 的中点.(1)求证:DE DF =,DE DF ⊥;(2)连接EF ,若10AC =,求EF 的长.【答案】(1)证明见解析;(2)EF =52 .考点:1.全等三角形的判定与性质;2.勾股定理.11. (2021湖北孝感第18题)如图,已知,,AB CD AE BD CF BD =⊥⊥ ,垂足分别为,,E F BF DE = .求证AB CD .【答案】证明见解析【解析】试题分析:根据全等三角形的判定与性质,可得∠B =∠D ,根据平行线的判定,可得答案.试题解析:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵BF=DE,∴BF+EF=DE+EF,∴BE=DF.在Rt△AFB和Rt△CFD中,AB CDBE DF=⎧⎨=⎩,∴Rt△AFB≌Rt△CFD(HL),∴∠B=∠D,∴AB∥C D.考点:全等三角形的判定与性质.12. (2021内蒙古呼和浩特第18题)如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.(1)求证:BD CE=;(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点.当ABC∆的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.【答案(1)证明见解析;(2)四边形DEMN是正方形.(2)四边形DEMN是正方形,理由:∵E、D分别是AB、AC的中点,∴AE=12AB,AD=12AC,ED是△ABC的中位线,∴ED∥BC,ED=12BC,∵点M、N分别为线段BO和CO中点,∴OM=BM,ON=CN,MN是△OBC的中位线,∴MN∥BC,MN=12 BC,∴ED∥MN,ED=MN,∴四边形EDNM是平行四边形,由(1)知BD=CE,又∵OE=ON,OD=OM,OM=BM,ON=CN,∴DM=EN,∴四边形EDNM是矩形,在△BDC与△CEB中,BE CDCE BDBC CB=⎧⎪=⎨⎪=⎩,∴△BDC≌△CEB,∴∠BCE=∠CBD,∴OB=OC,∵△ABC的重心到顶点A的距离与底边长相等,∴O到BC的距离=12BC,∴BD⊥CE,∴四边形DEMN是正方形.考点:1.全等三角形的判定与性质;2.三角形的重心;3.等腰三角形的性质.13.(2021内蒙古呼和浩特第22题)如图,地面上小山的两侧有A,B两地,为了测量A,B两地的距离,让一热气球从小山西侧A地出发沿与AB成30︒角的方向,以每分钟40m的速度直线飞行,10分钟后到达C处,此时热气球上的人测得CB与AB成70︒角,请你用测得的数据求A,B两地的距离AB长.(结果用含非特殊角的三角函数和根式表示即可)【答案】A,B两地的距离AB长为200(3﹣tan20°)米.在直角△BCM中,∵tan20°=BMCM,∴BM=200tan20°,∴AB =AM ﹣BM =2003﹣200tan 20°=200(3﹣tan 20°),因此A ,B 两地的距离AB 长为200(3﹣tan 20°)米.考点:解直角三角形的应用.14. (2021青海西宁第24题)如图,建设“幸福西宁”,打造“绿色发展样板城市”.美丽的湟水河宛如一条玉带穿城而过,已形成“水清、流畅、岸绿、景美”的生态环境新格局.在数学课外实践活动中,小亮在海湖新区自行车绿道北段AC 上的,A B 两点分别对南岸的体育中心D 进行测量,分别没得0030,60,200DAC DBC AB ∠=∠==米,求体育中心D 到湟水河北岸AC 的距离约为多少米(精确到1米,3 1.732≈)?【答案】体育中心D 到湟水河北岸AC 的距离约为173米.在直角△BHD 中,sin 60°=32002DH DH BD ==,∴DH =1003≈100×1.732≈173.答:体育中心D到湟水河北岸AC的距离约为173米.考点:解直角三角形的应用.15. (2021上海第21题)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥B C.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.【答案】(1)sinB=21313;(2)DE =5.考点:1.解直角三角形的应用;2.平行线分线段成比例定理.16. (2021湖南张家界第19题)位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD 和底座CD 两部分组成.如图,在Rt △ABC 中,∠ABC =70.5°,在Rt △DBC 中,∠DBC =45°,且CD =2.3米,求像体AD 的高度(最后结果精确到0.1米,参考数据:sin 70.5°≈0.943,cos 70.5°≈0.334,tan 70.5°≈2.824)【答案】4.2m .考点:解直角三角形的应用.17. (2021辽宁大连第24题)如图,在ABC ∆中,090=∠C ,4,3==BC AC ,点E D ,分别在BC AC ,上(点D 与点C A ,不重合),且A DEC ∠=∠.将DCE ∆绕点D 逆时针旋转090得到''E DC ∆.当''E DC ∆的斜边、直角边与AB 分别相交于点Q P ,(点P 与点Q 不重合)时,设y PQ x CD ==,.(1)求证:DEC ADP ∠=∠;(2)求y 关于x 的函数解析式,并直接写出自变量x 的取值范围.【答案】(1)见解析;(2)5512(3),627255612.12257x xyx x⎧-+<<⎪⎪=⎨⎛⎫⎪-<≤⎪⎪⎝⎭⎩(2)解:如图1中,当C′E′与AB相交于Q时,即61257x<≤时,过P作MN∥DC′,设∠B=α∴MN⊥AC,四边形DC′MN是矩形,∴PM=PQ•cosα=45y,PN=43×12(3﹣x),∴23(3﹣x)+45y=x,∴255122y x=-,考点:旋转的性质;函数关系式;矩形的判定与性质;解直角三角形.18. (2021辽宁大连第25题)如图1,四边形ABCD 的对角线BD AC ,相交于点O ,OD OB =,m AD AB OA OC =+=,,n BC =,ACB ADB ABD ∠=∠+∠.(1)填空:BAD ∠与ACB ∠的数量关系为 ;(2)求nm 的值; (3)将ACD ∆沿CD 翻折,得到CD A '∆(如图2),连接'BA ,与CD 相交于点P .若215+=CD ,求PC 的长.【答案】(1)∠BAD +∠ACB =180°;(2)512;(3)1.考点:相似三角形的判定和性质;解一元二次方程;三角形的内角和定理.19. (2021海南第22题)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度B C.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【答案】水坝原来的高度为12米..考点:解直角三角形的应用,坡度.20. (2021新疆乌鲁木齐第21题)一艘渔船位于港口A的北偏东60方向,距离港口20海里B处,它沿北偏西37方向航行至C处突然出现故障,在C处等待救援,,B C之间的距离为10海里,救援船从港口A≈≈≈,结果取整数)出发20分钟到达C处,求救援的艇的航行速度.(sin370.6,cos370.8,3 1.732【答案】救援的艇的航行速度大约是64海里/小时.【解析】∵cos 37°=EB BC, ∴EB =BC •cos 37°≈0.8×10=8海里,EF =AD =17.32海里,∴FC =EF ﹣CE =11.32海里,AF =ED =EB +BD =18海里,在Rt △AFC 中,AC =22221811.32AF FC +=+≈21.26海里, 21.26×3≈64海里/小时.答:救援的艇的航行速度大约是64海里/小时.考点:解直角三角形的应用﹣方向角问题。

中考数学专题14 相似三角形-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

中考数学专题14 相似三角形-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

专题14.相似三角形一、单选题1.(2021·浙江温州市·中考真题)如图,图形甲与图形乙是位似图形,O 是位似中心,位似比为2:3,点A ,B 的对应点分别为点A ',B '.若6AB =,则A B ''的长为( )A .8B .9C .10D .152.(2021·四川遂宁市·中考真题)如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积是3cm 2,则四边形BDEC 的面积为( )A .12cm 2B .9cm 2C .6cm 2D .3cm 23.(2021·重庆中考真题)如图,△ABC 与△BEF 位似,点O 是它们的位似中心,其中OE =2OB ,则△ABC 与△DEF 的周长之比是( )A .1:2B .1:4C .1:3D .1:94.(2021·江苏连云港市·中考真题)如图,ABC 中,BD AB ⊥,BD 、AC 相交于点D ,47AD AC =,2AB =,150ABC ∠=︒,则DBC △的面积是( )A B C D5.(2021·浙江绍兴市·中考真题)如图,Rt ABC 中,90BAC ∠=︒,1cos 4B =,点D 是边BC 的中点,以AD 为底边在其右侧作等腰三角形ADE ,使ADE B ∠=∠,连结CE ,则CE AD的值为( )A .32BCD .26.(2021·重庆中考真题)如图,在平面直角坐标系中,将OAB 以原点O 为位似中心放大后得到OCD ,若()0,1B ,()0,3D ,则OAB 与OCD 的相似比是( )A .2:1B .1:2C .3:1D .1:37.(2020·广西贵港市·中考真题)如图,在ABC 中,点D 在AB 边上,若3BC =,2BD =,且BCD A ∠=∠,则线段AD 的长为( )A .2B .52C .3D .928.(2020·云南昆明市·中考真题)在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC 是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE (不含△ABC ),使得△ADE ∽△ABC (同一位置的格点三角形△ADE 只算一个),这样的格点三角形一共有( ) A .4个 B .5个 C .6个 D .7个9.(2020·湖南益阳市·中考真题)如图,在矩形ABCD 中,E 是CD 上的一点,ABE ∆是等边三角形,AC 交BE 于点F ,则下列结论不成立的是( )A .30DAE ∠=B .45BAC ∠= C .12EF FB =D .2AD AB =10.(2020·湖南永州市·中考真题)如图,在ABC 中,2//,3AE EF BC EB =,四边形BCFE 的面积为21,则ABC 的面积是( )A .913B .25C .35D .6311.(2020·海南中考真题)如图,在矩形ABCD 中,6,10,AB BC ==点E F 、在AD 边上,BF 和CE 交于点,G 若12EF AD =,则图中阴影部分的面积为( ) A .25 B .30 C .35 D .4012.(2020·广西中考真题)如图,在ABC 中,120BC =,高60AD =,正方形EFGH 一边在BC 上,点,E F 分别在,AB AC 上,AD 交EF 于点N ,则AN 的长为( )A .15B .20C .25D .3013.(2020·海南中考真题)如图,在ABCD 中,10,15,AB AD BAD ==∠的平分线交BC 于点,E 交DC 的延长线于点,F BG AE ⊥于点G ,若8BG =,则CEF △的周长为( )A .16B .17C .24D .2514.(2020·云南中考真题)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E 是CD 的中点,则DEO 与BCD △的面积的比等于( )A .12B .14C .16D .1815.(2020·山西中考真题)泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。

2021中考数学真题8 相似三角形

2021中考数学真题8 相似三角形

专题八相似三角形1.如图,在正方形ABCD中,△BPC是等边三角形,BP,CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H。

给出下列结论:①△ABE≌△DCF;②FP:PH=3:5 ;③DP2=PH·PB;④2.设△ABC的面积为1,如图①将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2,……,依此类推,则Sn可表示为_____ 。

3.已知正方形ABC1D1的边长为,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推若A1C1=2,且点A,D2,D3,,D10都在同一直线上,则正方形A9C9C10D10的边长是_____ 。

4.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_____ 。

5.如图,已知点C为线段AB的中点,CD⊥AB且CD=AB=4,连接AD,BE⊥AB,AE是∠DAB的平分线,与DC相交于点F,EH⊥DC于点G,交AD于点H,则HG的长为_____ 。

6.如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP,EC。

当BP所在直线与EC所在直线第一次垂直时,点P的坐标为_____ 。

7.如图的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG分别交DE、BC于M、N两点.若∠B=90°,AB=4,BC=3,EF=1,则BN的长度为____________8.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相9. 如图①,△ ABC 中,∠ ABC =45°, AH ⊥ BC 于 H ,点 D 在 AH 上,且 DH = CH ,连结 BD.将△ BHD 绕点 H 旋转,得到△ EHF(点 B , D 分别与点 E , F 对应),连接 AE.如图②,当点 F 落在 AC 上时( F 不与 C 重合),若 BC =4,tan ∠ ACH =3,则 AE =_____.10. 如图,在反比例函数xy 2-=的图象上有一动点A ,连接AO 并延长交图象的另一支于点B ,在第一象限内有一点C ,满足AC=BC ,当点A 运动时,点C 始终在函数xk y =的图象上运动,若tan ∠CAB=2,则k 的值为________边形的变形度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021相似三角形中考试卷分类汇编篇一:2021-2021初三(九年级)数学相似三角形练习题及答案初三(九年级)数学相似三角形练习题一、填空题:1、若a?3m,m?2b,则a:b?_____。

2、已知xyz??,且3y?2z?6,则x?____,y?______。

356_____3、在等腰Rt△ABC中,斜边长为c,斜边上的中线长为m,则m:c?_。

4、反向延长线段AB至C,使AC=1AB,那么BC:AB=。

25、如果△ABC∽△A′B′C′,相似比为3:2,若它们的周长的差为40厘米,则△A′B′C′的周长为厘米。

6、如图,△AED∽△ABC,其中∠1=∠B,则?___???___?。

AD?___BCAB B第6题图第7题图7、如图,△ABC中,∠ACB=90°,CD⊥AB于D,若∠A=30°,则BD:BC=。

若BC=6,AB=10,则BD=,CD=。

8、如图,梯形ABCD中,DC∥AB,DC=2cm,AB=3.5cm,且MN∥PQ∥AB, DM =MP=PA,则MN=,PQA第8题图第9题图9、如图,四边形ADEF为菱形,且AB=14厘米,BC=12厘米,AC=10厘米,那BE=厘米。

10、梯形的上底长1.2厘米,下底长1.8厘米,高1厘米,延长两腰后与下底所成的三角形的高为厘米。

二、选择题:11、下面四组线段中,不能成比例的是()A、a?3,b?6,c?2,d?4B、a?1,b?,c?,d?C、a?4,b?6,c?5,d?10D、a?2,b?5,c?,d?2312、等边三角形的中线与中位线长的比值是()1A、3:1 B、3:2 C、: D、1:3 2213、已知xyz??,则下列等式成立的是() 457A、x?y?z7x?y1x?y?z8??B、?C、z16x?y9x?y?z3D、y?z?3x?a?0,b?0?,14、已知直角三角形三边分别为a,a?b,a?2b,则a:b?()A、1:3B、1:4C、2:1D、3:115、△ABC中,AB=12,BC=18,CA=24,另一个和它相似的三角形最长的一边是36,则最短的一边是()篇二:2021年中考数学试卷分类汇编解析:图形的相似与位似图形的相似与位似一、选择题1.(2021·湖北十堰)如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A.1:3 B.1:4 C.1:5 D.1:9【考点】位似变换.【分析】先求出位似比,根据位似比等于相似比,再由相似三角形的面积比等于相似比的平方即可.【解答】解:∵OB=3OB′,∴,∵以点O为位似中心,将△ABC缩小后得到△A′B′C′,∴△A′B′C′∽△ABC,∴=.∴故选D =,【点评】此题是位似变换,主要考查了位似比等于相似比,相似三角形的面积比等于相似比的平方,解本题的关键是掌握位似的性质.2. (2021·湖北咸宁)如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:①BC=2;②△DOE△COB=2;③=;④△△ADE=.其中正确的个数有()A. 1个B. 2个C.3个D. 4个(第2题)【考点】三角形中位线定理,相似三角形的判定和性质.【分析】①DE是△ABC的中位线,根据三角形的中位线等于第三边长度的一半可判断;②利用相似三角形面积的比等于相似比的平方可判定;③利用相似三角形的性质可判断;④利用相似三角面积的比等于相似比的平方可判定.【解答】解:①∵DE是△ABC的中位线,∴DE=2BC,即BC=2;故①正确;②∵DE是△ABC的中位线,∴DE∥BC∴△DOE∽△COB △DOE∴△CO B③∵DE∥BC =(BC)=(2)=4, 22故②错误;∴△ADE∽△ABC∴=△DOE∽△COB∴OB=BC ∴AB=OB,故③正确;④∵△ABC的中线BE与CD交于点O。

∴点O是△ABC的重心,根据重心性质,BO=2OE,△ABC的高=3△BOC的高,且△ABC与△BOC同底(BC)∴S△ABC =3S△BOC,由②和③知,S△ODE=4S△COB,S△ADE=4S△BOC,△∴△ADE=3.故④正确.综上,①③④正确.故选C.【点评】本题考查了三角形中位线定理,相似三角形的判定和性质.要熟知:三角形的中位线平行于第三边并且等于第三边长度的一半;相似三角形面积的比等于相似比的平方.3. (2021·新疆)如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是()A.DE=BC B. =C.△ADE∽△ABC D.S△ADE:S△ABC=1:2【考点】相似三角形的判定与性质;三角形中位线定理.【分析】根据中位线的性质定理得到DE∥BC,DE=BC,再根据平行线分线段成比例定理和相似三角形的性质即可判定.【解答】解:∵D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴∴∴A,B,C正确,D错误;故选:D.【点评】该题主要考查了平行线分线段成比例定理和相似三角形的性质即可判定;解题的关键是正确找出对应线段,准确列出比例式求解、计算、判断或证明. =,△ADE∽△ABC,,4. (2021·云南)如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为()A.15 B.10 C. D.5【考点】相似三角形的判定与性质.【分析】首先证明△ACD∽△BCA,由相似三角形的性质可得:△AC D的面积:△ABC的面积为1:4,因为△ABD的面积为9,进而求出△A CD的面积.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴△ACD的面积:△ABC的面积为1:4,∴△ACD的面积:△A BD的面积=1:3,∵△ABD的面积为15,∴△ACD的面积∴△ACD的面积=5.故选D.【点评】本题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型.5. (2021·云南)在四边形ABCD中,∠B=90°,AC=4,AB∥C D,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为() A. B. C. D.【考点】相似三角形的判定与性质;函数的图象;线段垂直平分线的性质.【分析】由△DAH∽△CAB,得问题. =,求出y与x关系,再确定x的取值范围即可解决【解答】解:∵DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴=,∴=,∴y=,∵AB<AC,∴x<4,∴图象是D.故选D.【点评】本题科学相似三角形的判定和性质、相等垂直平分线性质、反比例函数等知识,解题的关键是正确寻找相似三角形,构建函数关系,注意自变量的取值范围的确定,属于中考常考题型.6. (2021·四川达州·3分)如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2 B.3 C.4 D.5篇三:2021年中考数学试卷分类汇编解析:图形的相似图形的相似一、选择题1.(2021·湖北十堰)如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A.1:3 B.1:4 C.1:5 D.1:9【考点】位似变换.【分析】先求出位似比,根据位似比等于相似比,再由相似三角形的面积比等于相似比的平方即可.【解答】解:∵OB=3OB′,∴,∵以点O为位似中心,将△ABC缩小后得到△A′B′C′,∴△A′B′C′∽△ABC,∴=.∴故选D =,【点评】此题是位似变换,主要考查了位似比等于相似比,相似三角形的面积比等于相似比的平方,解本题的关键是掌握位似的性质.2. (2021·湖北咸宁)如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:①BC=2;②△DOE△COB=2;③=;④△△ADE=.其中正确的个数有()A. 1个B. 2个C.3个D. 4个(第2题)【考点】三角形中位线定理,相似三角形的判定和性质.【分析】①DE是△ABC的中位线,根据三角形的中位线等于第三边长度的一半可判断;②利用相似三角形面积的比等于相似比的平方可判定;③利用相似三角形的性质可判断;④利用相似三角面积的比等于相似比的平方可判定.【解答】解:①∵DE是△ABC的中位线,∴DE=2BC,即BC=2;故①正确;②∵DE是△ABC的中位线,∴DE∥BC∴△DOE∽△COB △DOE∴△COB③∵DE∥BC =(BC)=(2)=4, 22故②错误;∴△ADE∽△ABC∴=△DOE∽△COB∴OB=BC ∴AB=OB,故③正确;④∵△ABC的中线BE与CD交于点O。

∴点O是△ABC的重心,根据重心性质,BO=2OE,△ABC的高=3△BOC的高,且△ABC与△BOC同底(BC)∴S△ABC =3S△BOC,由②和③知,S△ODE=4S△COB,S△ADE=4S△BOC,△∴△ADE=3.故④正确.综上,①③④正确.故选C.【点评】本题考查了三角形中位线定理,相似三角形的判定和性质.要熟知:三角形的中位线平行于第三边并且等于第三边长度的一半;相似三角形面积的比等于相似比的平方.3. (2021·新疆)如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是()A.DE=BC B. =C.△ADE∽△ABC D.S△ADE:S△ABC=1:2【考点】相似三角形的判定与性质;三角形中位线定理.【分析】根据中位线的性质定理得到DE∥BC,DE=BC,再根据平行线分线段成比例定理和相似三角形的性质即可判定.【解答】解:∵D、E分别是AB、AC的中点,∴DE∥B C,DE=BC,∴∴∴A,B,C正确,D错误;故选:D.【点评】该题主要考查了平行线分线段成比例定理和相似三角形的性质即可判定;解题的关键是正确找出对应线段,准确列出比例式求解、计算、判断或证明. =,△ADE∽△ABC,,4. (2021·云南)如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为()A.15 B.10 C. D.5【考点】相似三角形的判定与性质.【分析】首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为9,进而求出△ACD的面积.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴△ACD的面积:△ABC的面积为1:4,∴△ACD的面积:△ABD的面积=1:3,∵△ABD的面积为15,∴△ACD的面积∴△ACD的面积=5.故选D.【点评】本题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型.5. (2021·云南)在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为() A. B. C. D.【考点】相似三角形的判定与性质;函数的图象;线段垂直平分线的性质.【分析】由△DAH∽△CAB,得问题. =,求出y与x关系,再确定x的取值范围即可解决【解答】解:∵DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴=,∴=,∴y=,∵AB<AC,∴x<4,∴图象是D.故选D.【点评】本题科学相似三角形的判定和性质、相等垂直平分线性质、反比例函数等知识,解题的关键是正确寻找相似三角形,构建函数关系,注意自变量的取值范围的确定,属于中考常考题型.6. (2021·四川达州·3分)如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2 B.3 C.4 D.5。

相关文档
最新文档