双代号网络图时间参数的计算
双代号网络计划时间参数的计算
双代号网络计划时间参数的计算(按节点计算法)一、节点最早时间的计算:1.节点i的最早时间应从网络图的起点节点开始,顺着箭线方向逐个累加计算,看箭头,取最大值。
2.起点节点的最早时间如无规定时,其值等于零。
3.其他节点的最早时间应为:式中——工作i-j的箭尾节点i的最早时间4.网络计划计算工期Tc为:式中——终点节点n的最早时间二、确定网络计划的计划工期Tp当已规定了要求工期Tr时Tp≤Tr;当未规定要求工期时Tp=Tc三、节点最迟时间的计算:1.节点i的最迟时间应从网络图的终点节点开始,逆着箭线的方向依次逐项递减计算,看箭尾,取最小值。
(当部分工作分期完成时,有关节点的最迟时间必须从分期完成节点开始逆向逐项计算)2.终点节点的最迟时间应按网络计划的计划工期Tp确定。
(分期完成节点的最迟时间应等于分期完成的时刻)3.其他节点的最迟时间应为:式中——工作i-j的箭头节点i的最迟时间。
四、1.工作i-j的最早开始时间ES i-j的计算应为:工作i-j的箭尾节点i的最早时间。
2.工作i-j的最早完成时间EF i-j的计算应为:式中——工作i-j的箭尾节点i的最早时间+工作i-j持续时间3.工作i-j的最迟完成时间LF i-j的计算应为:工作i-j的箭头节点i的最迟时间。
4.工作i-j的最迟开始时间LS i-j的计算应为:工作i-j的箭头节点i的最迟时间-工作i-j持续时间5.总时差TF i-j的计算:TF i-j = LS i-j - ES i-j 或TF i-j = LF i-j - EF i-j 即:工作i-j的箭头节点i的最迟时间-工作i-j持续时间-工作i-j的箭尾节点i的最早时间6.自由时差FF i-j的计算:FF i-j =工作i-j的箭头节点j的最早时间-工作i-j持续时间-工作i-j的箭尾节点i的最早时间确定关键线路(节点跟踪法)从左向右顺箭线方向,后一个节点最早时间取决于前面哪一个节点,由这些节点组成的线路就是关键线路。
3-3-3双代号网络时间参数计算
FFi-j = ETj – ETi – Di-j
1.3.2 节点计算法
50 0
50 10
40 40
TFi-j FFi-j
0 0 20 0 20 0
ETj LTj
00
0 0
00
0 0
节点时间参数的计算
• •
图上计算法 图上计算法的原理和步骤与分析计 算法相同,它是在网络图上直接进行计 算的一种方法。 • 采用图上计算法时,首先确定采用 的时间参数标注形式。
•
• •
第三步:确定计算工期TC 第四步:自下而上计算工作最迟必 须结束时间,以结束时间为依据,减去 工作持续时间即算出最迟必须开始时间, 填于第⑤栏和第⑥栏。 • 第五步:计算工作总时差 • 第六步:计算工作自由时差 • 第七步:标明关键工作和关键线路
1.3.1 工作时间计算法
③ 自由时差与总时差的关系
ESi-j = max(ESh-i +Dh-i )
式中: ESh-i工作 i-j 的紧前工作h-i持续时间。
同一节点所有外向工作最早开始时间相同
1.3.1 工作时间计算法
⑵ 最早完成时间
最早完成时间EFi-j是在各紧前工作全部完成后, 本工作有可能完成的最早时刻。最早完成时间等于 最早开始时间加上本工作的持续时间。
同一节点的所有内向工作最迟完成时间相同
EFi-j= ESi-j + Di-j
1.3.1 工作时间计算法
⑶ 最迟完成时间
是在不影响整个计划按期完成的前提下,本工作最迟必
须完成的时间。最迟完成时间LFi-j 应从终点节点开始,逆着 箭线方向依次逐项计算。
① 终节点的最迟完成时间LFi-j按该网络计划的计划工期确定:
双代号网络计划时间参数计算
双代号网络计划时间参数计算网络计划指在网络图上标注时间参数而编制的进度计划。
网络计划的时间参数是确定工程计划工期、确定关键线路、关键工作的基础,也是判定非关键工作机动时间和进行优化,计划管理的依据。
时间参数计算应在各项工作的持续时间确定之后进行。
网络计划的时间参数主要有: ·工作的时间参数:最早开始时间 ES (Early start ) 最早完成时间 EF (Early finish ) 最迟开始时间 LS (Late start ) 最迟完成时间 LF (Late finish ) 总时差 TF (Total float ) 自由时差 FF (Free float ) ·节点的时间参数:最早开始时间 TE (Early event time ) 最早完成时间 TL (Late event time )在计算各种时间参数时,为了与数字坐标轴的规定一致,规定工作的开始时间或结束时间都是指时间终了时刻。
如坐标上某工作的开始(或完成)时间为第5天,是指第5个工作日的下班时,即第6个工作日的上班时。
在计算中,规定网络计划的起始工作从第0天开始,实际上指的是第1个工作日的上班开始。
一.双代号网络计划时间参数的计算双代号网络计划时间参数的计算有“按工作计算法”和“按节点计算法”两种。
(一)按工作计算法计算时间参数工作计算法是指以网络计划中的工作为对象,直接计算各项工作的时间参数。
计算程序如下:1.工作最早开始时间的计算工作的最早开始时间是指其所有紧前工作全部完成后,本工作最早可能的开始时刻。
工作j i -的最早开始时间以j i ES -表示。
规定:工作的最早开始时间应从网络计划的起点节点开始,顺着箭线方向自左向右依次逐项计算,直到终点节点为止。
必须先计算其紧前工作,然后再计算本工作。
(1)以网络计划起点节点为开始节点的工作的最早开始时间,如无规定时,其值等于零。
如网络计划起点节点代号为i ,则:(2)其它工作的最早开始时间等于其紧前工作的最早开始时间加上该紧前工作的工作历时所得之和的最大值,即:当工作j i -与其紧前工作i h -之间无虚工作时,有多项工作时取最大值:当工作j i -h-ii-j式中,()h g i h ES ES -- - 工作j i -的紧前工作i h -(h g -)的最早开始时间;()h g i h D D -- - 工作j i -的紧前工作i h -(h g -)的工作历时。
双代号网络计划时间参数计算
双代号网络计划时间参数计算1.最早开始时间(ES):是指一个活动在没有任何限制条件的情况下,可以开始的最早时间。
计算ES的方法是将该活动的所有前驱活动(即直接前置活动)的最早结束时间(EF)中的最大值加1、如果一个活动没有前驱活动,则其ES为12.最早结束时间(EF):是指一个活动可以结束的最早时间。
计算EF的方法是将该活动的ES加上活动持续时间(D)。
3.最迟开始时间(LS):是指一个活动在不影响后续活动的情况下,可以开始的最迟时间。
计算LS的方法是将该活动的所有后继活动(即直接后继活动)的最迟开始时间(LS)中的最小值减去活动持续时间(D)。
如果一个活动没有后继活动,则其LS等于LF减去持续时间(D)。
4.最迟结束时间(LF):是指一个活动可以结束的最迟时间。
计算LF的方法是将该活动的LS减去15.总时差(TF):是指一个活动可以延迟的时间。
计算TF的方法是将该活动的LF减去EF。
如果一个活动的TF为0,则表示该活动是关键活动,即项目进度的关键路径上的活动。
在计算双代号网络的时间参数时,需要先确定活动的依赖关系,并绘制双代号网络图。
然后按照上述方法计算每个活动的ES、EF、LS、LF和TF。
1.当一个活动有多个前驱活动时,需要选择最大的EF作为其ES。
同时,当一个活动有多个后继活动时,需要选择最小的LS作为其LF。
2.同样地,当一个活动的所有前驱活动具有相同的ES时,需要选择最大的EF作为该活动的ES。
当一个活动的所有后继活动具有相同的LS时,需要选择最小的LS作为该活动的LF。
3.当一个活动的ES等于EF时,说明该活动的前驱活动与其同时开始,即并行活动。
4.当一个活动的LS等于LF时,说明该活动的后继活动与其同时开始,即并行活动。
通过计算双代号网络的时间参数,项目经理可以确定项目关键路径以及每个活动的最早开始时间、最早结束时间、最迟开始时间、最迟结束时间和总时差,从而更好地控制和管理项目进度。
双代号网络图时间参数的计算
3.2.3 双代号网络图时间参数的计算
在网络图上加注工作的时间参数等而编成的进度计划叫网络计划。 用网络计划对任务的工作进行安排和控制,以保证实现预定目标的科 学的计划管理技术叫网络计划技术。
计算网络图时间参数的目的: 找出关键线路,向关键线路要时间; 计算非关键线路上的富余时间,向非关键线路要劳力、要资源; 确定总工期,控制进度。
6、工作最迟必须开始时间LS。不影工期条件下,该工作最迟此时 必须开始。受该工作结束节点最迟时间控制,即等于该工作结束节点最 迟时间TLj减该工作持续时间。也等于本工作最迟完成时间减去本工作持 续时间。
计算公式:
LSi-j=LFi-j-Di-j
ES EF TF
LS LF FF
3.2.3 双代号网络图时间参数的计算
(一)网络图时间参数的内容和表示方法
参数
工 期
工作 的
时间 参数
节点 的
时间 参数
名称 计算工期 要求工期 计划工期 持续时间 最早开始时间 最早完成时间 最迟完成时间 最迟开始时间
总时差 自由时差
最早时间
最迟时间
符号 Tc Tr Tp Di-j ESi-j EFi-j LFi-j LSi-j TFi-j FFi-j
k
3.2.3 双代号网络图时间参数的计算
计算LFi-j——有三种情况 第一种:所有进入终点节点的工作: LFi-n=TP 第二种:只有一项紧后工作的节点处:
i
j
k
LFi-j =LSj-K
第三种:有若
4
LF2-3=min[LS3-4,LS3-5 , LS3-6]
6
3.2.3 双代号网络图时间参数的计算
双代号网络图时间参数计算
ห้องสมุดไป่ตู้ ⑷ 最迟开始时间
是在不影响整个计划工期按时完成的条件下,本工作 i-j 最迟必须开始 的时间,最迟开始时间用LSi-j 表示。最迟开始时间应从网络计划的终 点节点开始,逆箭线方向依次计算。
① 终节点的最迟开始时间LSi-j等于该网络计划的计划工期减该工作的持
建设中的溪洛渡水电站
⑶ 最迟完成时间
是在不影响整个计划按期完成的前提下,本工作最迟必须完成的时间。 最迟完成时间LFi-j 应从终点节点开始,逆着箭线方向依次逐项计算。 ① 终节点的最迟完成时间LFi-j按该网络计划的计划工期确定:
LFi-n = Tp ② 其它工作 i-j 的最迟完成时间LFi-j等于其紧后工作最迟完成时间减紧 后工作持续时间的差:
② 自由时差的计算 自由时差是各工作在不影响后续工作最早开始时间的前提下所具有的机 动时间。 终点节点(j = n)的自由时差FFi-j按网络计划的计划工期TP 确定 FFi-n = TP -ESi-n- Di-n 工作 i-j 的自由时差FFi-j : FFi-j = ESj-k – ESi-j – Di-j 或 FFi-j = ESj-k – EFi-j
ESi-j = 0(i =1) ② 当工作i-j 有多项紧前工作,其最早开始时间ESi-j :
ESi-j = max(ESh-i +Dh-i ) 式中: ESh-i ——节点i 的紧前节点 h 的最早开始时间;
Dh-i ——工作 i-j 的持续时间。
⑵ 最早完成时间 最早完成时间EFi-j是在各紧前 工作全部完成后,本工作有可 能完成的最早时刻。最早完成 时间等于最早开始时间加上本 工作的持续时间。 EFi-j= ESi-j + Di-j
双代号网络图(箭线图)的时间参数
工作时间
• 在双代号网络图中,工作是节点i和j之间的间隔, 因此用i-j表示。
o 工作持续时间D i-j就是单个工作的工期
• 由此时间参数的下标也用i-j表示
o o o o o o 最早开始时间ESi-j=ETj ; 最早结束时间EFi-j=ETj+ D i-j ; 最迟开始时间LSi-j=LTj ; 最迟结束时间LFi-j=LTj+ D i-j ; 总时差TFi-j=LTi-ETj-D i-j ; 自由时差FFi-j=ETi-ETj- D i-j j
双代号网络图(箭线图)的时间参数 计算
时间参数的概念
• 双代号网络图的时间参数分为两类:
o 节点的时间:最早/最迟时间 o 工作的时间:
• 工作的最早/最迟时间 • 自由时间
时间参数的含义
• 双代号网络图的工作时间参数有6个:
o 最早开始时间ESi-j:所有紧前工作完成后,本工作开始的最 早时间; o 最早结束时间EFi-j:所有紧前工作完成后,本工作完成的最 早时间;
o 最迟开始时间LSi-j:在不影响工期的情况下,本工作开始的 最迟时间; o 最迟结束时间LFi-j:在不影响工期的情况下,本工作结束的 最迟时间;
o 总时差TFi-j:在不影响总工期的情况下,本工作可以利用的 机动时间; o 自由时差FFi-j:在不影响其紧后工作最早开始时间的的情况 下,本工作可以利用的机动时间;
ESiห้องสมุดไป่ตู้j LSi-j TFi-j EFi-j LFi-j FFi-j
i
时间参数的功能
• 通过计算时间参数,我们可以准确地计算关键路径; • 可以把任意两个节点间的工作进行定量描述,并由此对项 目管理中的一些变动因素产生的后果加以分析。
双代号网络图参数计算
双代号网络计划时间参数的计算 (一) 、计算目的
1.计算工期Tc 2.确定关键线路 3.确定非关键工作的机动时间
(二) 、网络计划各项时间参数及其符号
1、双代号网络计划时间参数及其含义
(1) 工作的时间参数 ①工作的持续时间(Di-j) ②工作的最早开始时间(ESi-j) ③工作的最早完成时间(EFi-j) ④工作的最迟开始时间(LSi-j) ⑤工作的最迟完成时间(LFi-j) ⑥工作的总时差(TFi-j) ⑦工作的自由时差 (FFi-j)
时差的概念:
1、时差 在一定的前提条件下,本工作可利用的机动时间。 没有时差的工作称为关键工作。 2、总时差 不影响总工期的前提下,本工作可利用的机动时间, 称为总时差。 3 、自由时差 不影响其紧后工作最早可能开始的前提下,本工作可利 用的机动时间。
按工作计算法计算时间参数
(1) 工作时间参数与工期的计算公式
⑦ 工作的自由时差 当 时,
FF i
j
FF i j Tp EF i 当 j n 时,
-
j
FFi j minESj k EFi j
FFi-j的计算:FF本=ES紧后-EF本 = ES紧后- ES本-D本
3. 图上计算法
图上计算法是在图上直接计算时间参 数,将所算数值标注于网络图上的一种方 法。
例
LSi j LFi j Di j
⑤工作的最迟完成时间
n 时, 当 j 时, n
当j
LFi j minLSi j
-LFi j LFi j NhomakorabeaTp逆线相减、逢圈取小 ⑥工作的总时差( TF) j i
TFi j LSi j ESi j TFi j LFi j EFi j
双代号网络图中时间参数的计算
双代号网络图中时间参数的计算双代号网络图中时间参数的计算3.双代号网络图中时间参数的计算(1)时间参数计算数学模型:下面取一网络片断(图9-24)作为计算简图。
图9-24计算简图节点编号:令整个计划的开始时间为第0天,则:最早时间:工作最早开始时间等于其紧前工作最早完成时间的最大值。
令整个计划的总工期为一常数,则:最迟时间:工作最迟完成时间等于其紧后工作最迟开始时间的最小值。
总时差:TF ij=自由时差:在网络计划中,总时差最小的工作为关键工作。
特别地,当网络计划的计划工期等于计算工期时,总时差为零的工作就是关键工作。
由于工作的自由时差是总时差的构成部分,所以,当工作的总时差为零时,其自由时差必然为零。
即:关键工作:如果网络计划中工作数量比较多,一般用项目管理软件进行计算。
如果数量不多也可用手工进行计算。
(2)计算步骤时间参数的计算方法很多,可人工计算,也可通过计算机计算。
手工计算一般采用图上计算法或表上计算法。
不管采用哪种方法,其计算步骤大致相同,具体步骤为:1)计算工作的最早时间。
工作的最早时间是从左向右逐项工作进行计算。
先定计划的开始时间,网络图中的起始节点一般取相对时间为第0天,则第一项工作的最早开始时间为第0天,将它与第一项工作的持续时间相加,即为该工作的最早完成时间。
逐项进行计算,一直算到最后一项工作,其最早完成时间即为该计划的计算工期。
2)确定网络计划的计划工期。
如果项目的总工期没有特殊的规定,一般取项目的计划工期为计算工期。
3)计算工作的最迟时间。
工作的最迟时间是从右向左逐项进行计算。
先定计划工期,最后一项工作的完成时间即为所定的计划工期时间,将它与其持续时间相减,即为最后一项工作的最迟开始时间。
逆方向逐项进行计算,一直算到第一项工作。
4)计算工作的总时差。
每一工作的最迟时间与最早时间之差,即为该工作的总时差。
5)计算工作的自由时差。
某一工作的自由时差为其紧后工作的最早开始时间最小值减去本工作的最早完成时间。
双代网络计划时间参数计算
A
D
G
2
4
1
4
5
ET1=0 ET2=1
C E2
3
1
6 ET3=5
B
3 5
工作24:
F
H
5
4
2
ES24=ET2=1 EF24=ES24+D24=1+4=5 LF24=LT4=8 LS24=LF24D24=84=4
ET4=8 ET5=9 ET6=13
LT1=0 LT2=3 LT3=5 LT4=8 LT5=11 LT6=13
时间参数
A 2
1
1
B 3
5
C E2 3
D
G
4
4
5
6
F
H
5
4
2
ET1=0
ET2=1
ET3=5
ET4=8 ET5=9
E5T m a E Ex 4 3T T D D 3 4 5 5 m a 8 5 x 0 4 9
3 3 双代号网络计划时间参数计算
例 试按分析法计算图中所示某双代号网络计划的各项
3 3 双代号网络计划时间参数计算
3 3 3 1 各种时间参数在图上的表示方法
ETi LTi
i
ES EF TF IF
LS LF FF DF ETj LTj
工作名称 j
工 作 持 续 时 间 Di-j
最早开 最迟开 始时间 始时间
i
j
最早开 最迟开 始时间 始时间
总时差 自由时差
i
j
最早开 最早完 始时间 成时间 总时差
例 试按分析法计算图中所示某双代号网络计划的各项
时间参数
A 2
1
1
双代号网络图6个时间参数简单计算方法
双代号网络图6个时间参数简单计算方法双代号网络图(也称为双代号网)是一种用来表达工程项目或生产流程中各个活动之间的先后关系的工具。
它通过使用箭头来表示活动,箭头的方向表示活动的先后顺序,箭头上的时间参数表示活动的开始时间和持续时间。
在双代号网络图中,有六个重要的时间参数,分别是:最早开始时间(ES)、最早结束时间(EF)、最晚开始时间(LS)、最晚结束时间(LF)、总时差(TF)和自由时差(FF)。
1. 最早开始时间(Early Start,ES):指一个活动可以开始的最早时间。
对于一个活动,它的最早开始时间等于它的前驱活动的最早结束时间(EF)。
2. 最早结束时间(Early Finish,EF):指一个活动结束的最早时间。
对于一个活动,它的最早结束时间等于最早开始时间(ES)加上该活动的持续时间(D)。
3. 最晚开始时间(Late Start,LS):指一个活动可以开始的最晚时间。
对于一个活动,它的最晚开始时间等于它的后继活动的最早开始时间(ES)减去该活动的持续时间(D)。
4. 最晚结束时间(Late Finish,LF):指一个活动结束的最晚时间。
对于一个活动,它的最晚结束时间等于它的后继活动的最早开始时间(ES)减去15. 总时差(Total Float,TF):指一个活动可以延迟的最长时间,而不会导致项目整体工期延长。
总时差等于最晚开始时间(LS)减去最早开始时间(ES),或等于最晚结束时间(LF)减去最早结束时间(EF)。
6. 自由时差(Free Float,FF):指一个活动可以延迟的最长时间,而不会导致后续活动受到延迟的影响。
自由时差等于后继活动的最早开始时间(ES)减去该活动的最早结束时间(EF)减去1计算这六个时间参数的方法如下:1.计算最早开始时间(ES)和最早结束时间(EF):根据箭头的方向,从左往右依次确定每个活动的最早开始时间和最早结束时间。
对于第一个活动,最早开始时间为0,最早结束时间为持续时间(D)。
建筑工程技术 教材 双代号网络图时间参数计算
分类 时间参数 符号
中文含义
工作
i-j
节点 i
工作持续时间 最早开始时间 最早完成时间 最迟开始时间
最迟完成时间
自由时差 总时差
节点最早时间
节点最迟时间
Di-j
一项工作从开始到完成的时间。
ESi-j
各紧前工作全部完成后,本工作有可能开始的最早时刻。
EFi-j
各紧前工作全部完成后,本工作有可能完成的最早时刻。
2
12 六日
14 一二
16 三四
3
节点计算法
➢ 快速计算节点时参,用节点时参快速计算工作时参
➢ 首先确定各项工作的持续时间。虚工作必须视同实 工作进行计算,其持续时间为零。
(1 计算节点最早时间 ETi :节点最早时间(ETi )从起
)
点节点开始顺着箭线方向依次计算。有2种情况
1) 2)
英文
duration earliest start time earliest finish time latest start time latest finish time
free float total float earliest event time latest event time
时间参数的中文含义
三、双代号网络图时间参数计算
时间参数及其符号
分类
工作参数 i—j
节点参数 节点i
时间参数 工作持续时间 最早开始时间 最早完成时间 最迟开始时间 最迟完成时间
自由时差 总时差 节点最早时间 节点最迟时间
符号 Di-j ESi-j EFi-j LSi-j LFi-j FFi-j TFi-j ETi LTi
)
)从起点节点开始顺着箭线方向依次计算。有2种情况
双代号网络图时间参数计算技巧
双代号网络图作为工程项目进度管理中,是最常用的工作进度安排方法,也是工程注册类执业考试中必考内容,对它的掌握程度,决定了实务考试的通过概率大小。
双代号网络图时间参数主要为6个时间参数(最早开始时间、最早完成时间、最迟开始时间、最迟完成时间、总时差和自由时差)的计算,按计算方法可以分为:1、节点计算法2、工作计算法3、表格计算法节点计算法最适合初学者,其计算方法简单、快速。
计算案例:某工程项目的双代号网络见下图。
(时间单位:月)[问题]计算时间参数和判断关键线路。
[解答]1、计算时间参数(1)计算节点最早时间,计算方法:最早时间:从左向右累加,取最大值。
(2)计算最迟时间,最迟时间计算方法:从右向左递减,取小值。
2、计算工作的六个时间参数自由时差:该工作在不影响其紧后工作最早开始时间的情况下所具有的机动时间。
总时差:该工作在不影响总工期情况下所具有的机动时间.通过前面计算节点的最早和最迟时间,可以先确定工作的最早开始时间和最迟完成时间,根据工作持续时间,计算出最早完成时间和最迟开始时间,以F工作为例,计算F工作的4个参数(以工作计算法标示)如下:注:EF=ES+工作持续时间LF=LS+工作持续时间接下来计算F工作的总时差TF,在工作计算法中,总时差TF=LS-ES或LF—EF,在节点计算法,总时差TF可以紧后工作的最迟时间—本工作的最早完成时间,或者是紧后工作最迟时间—最早时间,以F工作为例计算它的TF:接下来计算F工作的自由时差FF,根据定义:该工作在不影响其紧后工作最早开始时间的情况下所具有的机动时间,自由时差FF=紧后工作最早(或最小)开始时间—本工作最早完成时间ES,以F工作为例,F的紧后工作为G和H,G工作的最早开始时间为10(即4节点的最早时间),H工作的最早开始时间为11(即5节点的最早时间),G工作的时间最小,所以F的自由时差FF=G工作的最早开始时间ES—F工作的最早完成时间EF:最后计算所有工作的时间参数如图:通过上图我们得知:(1)关键线路为1-3-5-6,计算工期为16个月。
双代号网络图6个时间参数的计算方法
一、双代号网络图6个时间参数的计算方法(图上计算法)从左向右累加,多个紧前取大,计算最早开始结束;从右到左累减,多个紧后取小,计算最迟结束开始。
紧后左上-自己右下=自由时差。
上方之差或下方之差是总时差。
计算某工作总时差的简单方法:①找出关键线路,计算总工期;②找出经过该工作的所有线路,求出最长的时间③该工作总时差=总工期-②二、双代号时标网络图双代号时标网络计划是以时间坐标为尺度编制的网络计划,以实箭线表示工作,以虚箭线表示虚工作,以波形线表示工作的自由时差。
双代号时标网络图1、关键线路在时标双代号网络图上逆方向看,没有出现波形线的线路为关键线路(包括虚工作)。
如图中①→②→⑥→⑧2、时差计算1)自由时差双代号时标网络图自由时差的计算很简单,就是该工作箭线上波形线的长度。
如A工作的FF=0,B工作的FF=1但是有一种特殊情况,很容易忽略。
如上图,E工作的箭线上没有波形线,但是E工作与其紧后工作之间都有时间间隔,此时E工作的自由时差=E与其紧后工作时间间隔的最小值,即E的自由时差为1。
2)总时差。
总时差的简单计算方法:计算哪个工作的总时差,就以哪个工作为起点工作(一定要注意,即不是从头算,也不是从该工作的紧后算,而是从该工作开始算),寻找通过该工作的所有线路,然后计算各条线路的波形线的长度和,该工作的总时差=波形线长度和的最小值。
还是以上面的网络图为例,计算E工作的总时差:以E工作为起点工作,通过E工作的线路有EH和EJ,两条线路的波形线的和都是2,所以此时E的总时差就是2。
再比如,计算C工作的总时差:通过C工作的线路有三条,CEH,波形线的和为4;CEJ,波形线的和为4;CGJ,波形线的和为1,那么C的总时差就是1。
双代号网络图时间参数计算
双代号网络图时间参数计算网络图时间参数计算的目的是确定各节点的最早可能开始时间和最迟必须开始时间,以及各工作的最早可能开始时间和最早可能完成时间,最迟必须开始时间和最迟必须完成时间,各工作的总时差和自由时差,以便确定整个计划的完成日期、关键工作和关键线路,从而为网络计划的执行、调整和优化提供科学的数据。
时间参数的计算可采用不同方法,如图上作业法、表上作业法和电算法等,这里主要介绍图上作业法和表上作业法。
1.各项时间参数的符号表示图1∙1时间参数关系简图设有线路h~Hfjfk,则:D i.——工作i—j的施工持续时间;Dj——工作i—/的紧前工作h-i的施工持续时间;D hk——工作i—/♦的紧后工作/一k的施工持续时间;T iε——节点①最早时间;T;——节点①最迟时间;里——工作i-∕的最早开始时间;——工作i-j的最早完成时间;坐——工作i-∕的最迟开始时间;T£——工作,一/的最迟完成时间;用——工作,一/的总时差;电——工作,一/的自由时差;2.时间参数间的关系分析图1-1这条线路,可以得出如下结论:睛=T i εT 苔=需+ %丐=T-* =哨-0T3 .图上作业法当工作数目不太多时•,直接在网络图上进行时间参数的计算十分方便。
由于双代号 网络图的节点时间参数与工作时间参数紧密相关,因此,在图上进行计算时.,通常只需 标出节点(或工作)的时间参数。
现以图1-2为例介绍图上作业法的步骤:(I )计算各个节点的最早时间7"节点的最早时间就是该节点前面的工作全部完成,后面的工作最早可能开始的时间。
计算节点的最早开始时间应从网络图的起点节点开始,顺着箭线方向依次逐项计算,直 到终点节点为止。
计算方法是:先假定起点节点①的最早时间为零,即7丁=0;中间节 点的最早时间为该节点前各紧前工作最早完成时间中的最大值。
根据公式(1-2),工作 的最早完成时间为工作的最早开始时间(即工作的开始节点的最早时间)加上工作的持 续时间,故:T=ma⅛" + %∙} (1-5)在图1-2中,各节点的最早时间计算如下:(1-1) (1-2) (1-3) (1-4)图1・2图上作业法示意图4^=7]E+D1,2=0+7=7*=7]E + %=0 + 4 = 47]E+D1,4=0+4=4'乃= max<琛+ 2 .4 =7 + 2 = 91 = 9* +。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双代号网络图时间参数的计算
二、工作计算法
(二)工作的最早完成时间 EF i-j EF i-j =ES i-j + D i-j
1.计算工期T c 等于一个网络计划关键线路所花的时间,即网络计划结束工作最早完成时间 的最大值,即 T c =max {EF i-n }
2.当网络计划未规定要求工期 T r 时, T p =T c 3.当规定了要求工期 T r 时,T c ≤T p ,T p ≤T r --
各紧前工作全部完成后,本工作可能完成的最早时刻。
一)工作的最早开始时间 ES
--各紧前工作全部完成后,本工作可能开始的最早时刻。
(三)工作最迟完成时间LF i-j
1.结束工作的最迟完成时间LF i-j=T p
2. 其他工作的最迟完成时间按“逆箭头相减,箭尾相碰取小值”计算。
--在不影响计划工期的前提下,该工作最迟必须完成的时刻。
(四)工作最迟开始时间LS i-j LS i-j=LF i-j-D i-j
--在不影响计划工期的前提下,该工作最迟必须开始的时刻。
(五)工作的总时差TF i-j TF i-j=LS i-j-ES i-j 或TF i-j=LF i-j-EF i-j
--在不影响计划工期的前提下,该工作存在的机动时间。
(六)自由时差FF i-j
FF i-j=ES j-k-EF i-j
--在不影响紧后工作最早开始时间的前提下,该工作存在的机动时间。
工作 A B C D E F
紧前
- A A B B、C D、E 工作
时间
2 5
3
4 8 5
工作 A B C D E F G H
紧前工
- A B B B C、D C、E F、G 作
时间
1 3 1 6
2 4 2 1。