(推荐)硝化与反硝化池

合集下载

硝化与反硝化反应

硝化与反硝化反应

硝化与反硝化反应一、硝化反应1、硝化:在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。

反应过程如下:亚硝酸盐菌:NH4++ 3/2 O2→ NO2-+ 2H++ H2O - △E △E=278.42KJ接着亚硝酸盐转化为硝酸盐:NO2-+ 1/2 O2→ NO3-- △E △E=278.42KJ这两个反应式都是释放能量的过程,氨氮转化为硝态氮并不是去除氮而是减少它的需氧量。

上诉两式合起来写成:NH4++ 2 O2→ NO3-+ 2H++ H2O - △E △E=351KJ综合氨氧化和细胞体合成反应方程式如下:NH4++1.83O2+1.98HCO3-→0.02C5H7O2N+0.98NO3-+1.04H2O+1.88H2CO3上式可知:在硝化过程中,1g 氨氮 NH4+-N 氧化为转化为 NO2--N 需 3.43gO2,氧化1gNO2--N 需要 1.14gO2,所以氧化 1gNH4+-N 需要 4.57gO2;硝化过程中释放出H+,将消耗废水中的碱度,每 lg 氨氮 NH4+-N 氧化为 NO3-,将消耗碱度2*50/14=7.l4g(以 CaCO3计)。

2、影响硝化过程的主要因素有:(1)pH 值和碱度当 pH 值为 8.0~8.4 时(20℃),硝化作用速度最快,其中亚硝化菌 6.0~7.5,硝化菌 7.0~8.5。

由于硝化过程中 pH 将下降,当废水碱度≤70mg/l,则需投加石灰,维持 pH 值在 7.5 以上。

(2)温度温度高时,硝化速度快。

亚硝酸盐菌的最适宜水温为35℃ ,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;5℃时完全停止。

(3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~0.5d-1 (温度20℃ ,pH8.0~8.4)。

为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。

硝化与反硝化

硝化与反硝化

3.7 硝化与反硝化废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。

生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。

一、硝化与反硝化(一) 硝化在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。

反应过程如下:亚硝酸盐菌NH4++3/2O2 NO2-+2H++H2O-△E △E=278.42KJ 第二步亚硝酸盐转化为硝酸盐:硝酸盐菌NO-+1/2O2 NO3--△E △E=278.42KJ 这两个反应式都是释放能量的过程,氨氮转化为硝态氮并不是去除氮而是减少它的需氧量。

上诉两式合起来写成:NH4++2O2 NO3-+2H++H2O-△E △E=351KJ综合氨氧化和细胞体合成反应方程式如下:NH4+1.83O2+1.98HCO3- 0.02C5H7O2N+0.98 NO3-+1.04 H2O+1.88H2CO3 由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg 氨氮,将消耗碱度(以CaCO3计) 7.lg。

影响硝化过程的主要因素有:(1)pH值当pH值为8.0~8.4时(20℃),硝化作用速度最快。

由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上;(2)温度温度高时,硝化速度快。

亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;(3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~0.5d-1(温度20℃,pH8.0~8.4)。

为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。

在实际运行中,一般应取>2 ;(4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。

一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上;(5)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。

硝化与反硝化

硝化与反硝化

污水深度处理的硝化与反硝化(2007-08-12 10:48:15)转载▼标签:环保、污水处理污水深度处理的硝化与反硝化一。

硝化(1) 微生物:自营养型亚硝酸菌(Nitrosmohas)自营养型硝酸菌(Nitrobacter)(2) 反应:城市污水中的氮化物主要是NH3,硝化菌的作用是将NH3—N氧化为NO3—NNH+4+1.5O2———NO2+H2O+H+-ΔE亚硝酸菌ΔE=278.42kJNO2+0.5O2———NO-3-ΔE硝酸菌ΔE=278.42kJNH+4+2.0O2——— NO-3+H2+2H+-ΔE硝酸菌ΔE=351kJ研究表明,硝化反应速率主要取决于氨氮转化为亚硝酸盐的反应速率。

硝酸菌的细胞组织表示为C5H7NO255NH+4+76O2+109HCO-3———C5H7NO2+54NO-2+57H2O+104H2Co3亚硝酸菌400 NO2+ NH+4+4 H2Co3+ HCO-3+195 O2——— C5H7NO2+3 H2O+400 NO-3硝酸菌NH+4+1.86 O2+1.98HCO-3——— 0.02C5H7NO2+1.04H2O+0.98 NO-3+1.88H2Co3硝酸菌(3) 保证硝化反应正常进行的必要条件:pH 8~9水温亚硝酸菌反应最佳温度 t=35 0C t>15 0CDO 2 ~ 3 mg / L > 1.0 mg / L硝化1克NH3—N:消耗4。

57克O2消耗7。

14克碱度(擦C a Co3计)生成0。

17克硝酸菌细胞(4) 亚硝酸菌的增殖速度 t=25O C活性污泥中µ(Nitrosmohas)=0.18e 0.116(T-15) day –1µ(Nitrosmohas)=0.322 day –1(20OC)纯种培养:µ(Nitrosmohas)=0.41e 0.018(T-15) day -1河水中µ(Nitrosmohas)=0.79e 0.069(T-15) day -1一般它营养型细菌的比增长速度µ =1。

污水处理—硝化与反硝化

污水处理—硝化与反硝化

污水硝化—反硝化脱氮处理是一种利用硝化细菌和反硝化细菌的污水微生物脱氮处理方法。

此法分为硝化和反硝化两个阶段,在好氧条件下利用污水中硝化细菌将含氮物质转化为硝酸盐,然后在缺氧条件下利用污水中反硝化细菌将硝酸盐还原成气态氮。

两段生物脱氮法是污水微生物脱氮的有效方法,作为标准生物脱氮法已得到较广泛应用。

硝化反应过程:在有氧条件下,氨氮被硝化细菌所氧化成为亚硝酸盐和硝酸盐。

他包括两个基本反应步骤:由亚硝酸菌( Nitrosomonas sp)参预将氨氮转化为亚硝酸盐的反应;硝酸菌(Nitrobacter sp)参预的将亚硝酸盐转化为硝酸盐的反应,亚硝酸菌和硝酸菌都是化能自养菌,它们利用 CO2、CO32-、HCO3-等做为碳源,通过NH3、NH4+、或者 NO2-的氧化还原反应获得能量。

硝化反应过程需要在好氧(Aerobic 或者 Oxic)条件下进行,并以氧做为电子受体,氮元素做为电子供体。

其相应的反应式为:1.亚硝化反应方程式: 55NH4++76O2+109HCO3-→C5H7O2N ﹢ 54NO2-+57H2O+10 4H2CO32.硝化反应方程式: 400NO2-+195O2+NH4++4H2CO3+HCO3-→C5H7O2N+400NO3- +3H2O3.硝化过程总反应式: NH4++1.83O2+1.98HCO3-→0.021C5H7O2N+0.98NO3-+1. 04H2O+1.884H2CO3通过上述反应过程的物料衡算可知,在硝化反应过程中,将1 克氨氮氧化为硝酸盐氮需好氧4.57 克(其中亚硝化反应需耗氧 3.43 克,硝化反应耗氧量为1.14 克),同时约需耗 7.14 克重碳酸盐(以 CaCO3 计)碱度。

在硝化反应过程中,氮元素的转化经历了以下几个过程:氨离子 NH4-→羟胺NH2OH→硝酰基NOH→亚硝酸盐 NO2-→硝酸盐 NO3-。

反硝化反应过程:在缺氧条件下,利用反硝化菌将亚硝酸盐和硝酸盐还原为氮气而从无水中逸出,从而达到除氮的目的。

硝化曝气生物滤池与反硝化生物滤池工程实例

硝化曝气生物滤池与反硝化生物滤池工程实例

硝化曝气生物滤池与反硝化生物滤池工程实例
硝化曝气生物滤池和反硝化生物滤池是城市污水处理厂中常见的工艺。

本文将分别介绍两个工程实例。

某城市污水处理厂的设计处理能力为12万m³/d,其中硝化曝气生物滤池负责污水的初级处理和中级处理。

该工程所使用的硝化曝气生物滤池为2台,单台处理能力为6万m³/d,每台设备由6个滤池组成。

硝化曝气生物滤池的处理工艺为:初级处理采用格栅除污、沉砂池沉淀去除污泥;中级处理主要采用硝化曝气生物滤池,污水自上向下流动,通过过滤介质,利用微生物的硝化作用,将污水中的氨氮在滤料内转化为硝态氮,并通过曝气系统将氧气吹入滤料层,使微生物得到充分的氧气供应,同时将碳源转化为生物量。

通过中级处理后的污水,进一步通过深度处理系统处理,最终达到国家一级A排放标准。

该工程硝化曝气生物滤池的运行效果优良,经过多次测试,滤池出口NH3-N浓度稳定在2mg/L以下,CODCr浓度降至60mg/L以下,BOD5浓度降至15mg/L以下,达到了设计要求。

反硝化生物滤池的处理工艺为:首先经过生化池对污水进行处理,然后进入超滤池,进一步去除悬浮物、胶体物和菌类,将水质提升至高标准。

接着,污水进入反硝化生物滤池,通过厌氧反硝化的过程,将硝酸盐还原成氮,再经由硝化组织将氨氮转化为硝酸盐,将有机废物降解释放出的能量利用来还原硝酸盐,同时微生物的正向新陈代谢得以维持。

通过反硝化生物滤池的处理,达到国家一级A排放标准。

该工程反硝化生物滤池的运行效果同样优秀,出水总氮稳定在15mg/L以下,达到国家要求的排放标准,对该地区的环境保护和节约资源具有重要作用。

硝化反硝化池流程

硝化反硝化池流程

硝化反硝化池流程
硝化反硝化池的工艺流程主要包括进水、曝气、硝化、沉淀、反硝化等几个阶段。

下面我们将详细介绍硝化反硝化池的工艺流程。

一、进水阶段
在进水阶段,废水首先经过预处理工艺去除污水中的大颗粒杂质,然后进入硝化反硝化系统。

污水在硝化反硝化系统进水口经过进水平整器均匀分布到硝化反硝化系统中,以便后面的处理步骤能够更加均匀地进行。

二、曝气阶段
在曝气阶段,污水中的有机物被氧化成二氧化碳和水,同时氨氮被氧化为硝态氮。

这一阶段主要通过曝气装置将空气吹入水中,利用曝气池来提供氧气,促进细菌的活动和生长,加速有机物的降解和氨氮的氧化。

三、硝化阶段
在硝化阶段,硝化细菌利用氨氮进行氧化,将其转化为亚硝酸盐和硝酸盐。

这一阶段需要控制曝气量和污水的进水量,以保证硝化细菌有足够的氧气和氨氮来进行反应。

四、沉淀阶段
在沉淀阶段,硝化后的液体经过沉淀池,使得活性污泥与水分离,进而去除污水中的悬浮物和胶体物质。

这一阶段的沉淀过程非常重要,其效果将直接影响后续的处理效果。

五、反硝化阶段
在反硝化阶段,亚硝酸盐和硝酸盐被反硝化细菌还原成氮气,从而实现对氮的去除。

这一阶段需要控制曝气量和氧气的供应,以保证反硝化细菌能够正常进行反应。

总结:
硝化反硝化池的工艺流程是一个复杂的系统工程,需要对各项操作参数进行精确控制,以确保处理效果。

同时,硝化反硝化池是一个生物处理工艺,对污水中的微生物有一定的要求,要求操作人员对污水的特性、微生物的种类和数量等有一定的了解,才能更好地控制整个处理过程。

希望本文对您有所帮助。

硝化与反硝化

硝化与反硝化

硝化与反硝化利用好氧颗粒污泥实现同步硝化反硝化1 生物脱氮与同步硝化反硝化在生物脱氮过程中,废水中的氨氮首先被硝化菌在好氧条件下氧化为NO-X然后NO-X 在缺氧条件下被反硝化菌还原为N2(反硝化)。

硝化和反硝化既可在活性污泥反应器中进行,又可在生物膜反应器中进行,目前应用最多的还是活性污泥法。

硝化菌和反硝化菌处在同一活性污泥中,由于硝化菌的好氧和自养特性与反硝化菌的缺氧和异养特性明显不同,脱氮过程通常需在两个反应器中独立进行(如Bardenpho、UCT双沟式氧化沟工艺等)或在一个反应器中顺次进行(如SBR)。

当混合污泥进入缺氧池(或处于缺氧状态)时,反硝化菌工作,硝化菌处于抑制状态;当混合污泥进入好氧池(或处于好氧状态)时情况则相反。

显然,如果能在同一反应器中使同一污泥中的两类不同性质的菌群(硝化菌和反硝化菌)同时工作,形成同步硝化反硝化(Simultaneous Nitrification Denitrification 简称SND),则活性污泥法的脱氮工艺将更加简化而效能却大为提高。

此外从工程的角度看,硝化和反硝化在两个反应器中独立进行或在同一个反应器中顺次进行时,硝化过程的产碱会导致OH-积累而引起pH 值升高,将影响上述两阶段反应过程的反应速度,这在高氨氮废水脱氮时表现得更为明显。

但对SND工艺而言,反硝化产生的OH-可就地中和硝化产生的H+,减少了pH值的波动,2 实现同步硝化反硝化的途径由于硝化菌的好氧特性,有可能在曝气池中实现SND实际上,很早以前人们就发现了曝气池中氮的非同化损失(其损失量随控制条件的不同约在10%- 20%左右),对SND的研究也主要围绕着氮的损失途径来进行,希望在不影响硝化效果的情况下提高曝气池的脱氮效①利用某些微生物种群在好氧条件下具有反硝化的特性来实现SND研究结果表明,Thiosphaera、Pseadonmonas nautica、Comamonossp等微生物在好氧条件下可利用NOX-N 进行反硝化。

污水深度处理的硝化与反硝化

污水深度处理的硝化与反硝化

污水深度处理的硝化与反硝化一。

硝化(1) 微生物:自营养型亚硝酸菌(Nitrosmohas)自营养型硝酸菌(Nitrobacter)(2) 反应:城市污水中的氮化物主要是NH3,硝化菌的作用是将NH3—N氧化为NO3—NNH+4+1.5O2———NO2+H2O+H+-ΔE亚硝酸菌ΔE=278.42kJNO2+0.5O2———NO-3-ΔE硝酸菌ΔE=278.42kJNH+4+2.0O2——— NO-3+H2+2H+-ΔE硝酸菌ΔE=351kJ研究表明,硝化反应速率主要取决于氨氮转化为亚硝酸盐的反应速率。

硝酸菌的细胞组织表示为C5H7NO255NH+4+76O2+109HCO-3———C5H7NO2+54NO-2+57H2O+104H2Co3亚硝酸菌400 NO2+ NH+4+4 H2Co3+ HCO-3+195 O2——— C5H7NO2+3 H2O+400 NO-3硝酸菌NH+4+1.86 O2+1.98HCO-3——— 0.02C5H7NO2+1.04H2O+0.98 NO-3+1.88H2Co3硝酸菌(3) 保证硝化反应正常进行的必要条件:pH 8~9水温亚硝酸菌反应最佳温度t=35 0C t>15 0CDO 2 ~ 3 mg / L > 1.0 mg / L硝化1克NH3—N:消耗4。

57克O2消耗7。

14克碱度(擦C a Co3计)生成0。

17克硝酸菌细胞(4) 亚硝酸菌的增殖速度 t=25O C活性污泥中µ(Nitrosmohas)=0.18e 0.116(T-15) day –1µ(Nitrosmohas)=0.322 day –1(20OC)纯种培养:µ(Nitrosmohas)=0.41e 0.018(T-15) day -1河水中µ(Nitrosmohas)=0.79e 0.069(T-15) day -1一般它营养型细菌的比增长速度µ =1。

硝化与反硝化去除氨氮的原理

硝化与反硝化去除氨氮的原理

硝化与反硝化去除氨氮的原理硝化与反硝化是水处理领域中常用的一种氨氮去除方法。

硝化是指将水中的氨氮转化为硝态氮化合物(主要是亚硝酸盐和硝酸盐),而反硝化是指将水中的硝态氮还原为氨氮,从而达到去除氨氮的目的。

下面将分别介绍硝化和反硝化去除氨氮的原理。

硝化是由一种特殊的微生物完成的,这种微生物被称为硝化细菌。

硝化细菌主要有两类,一类是氧化亚硝酸细菌(Nitrosomonas),负责将氨氮氧化成亚硝酸;另一类是氧化硝酸细菌(Nitrobacter),负责将亚硝酸氧化成硝酸。

硝化过程主要分为两个阶段:亚硝化和硝化。

亚硝化是亚硝酸盐菌将氨氮氧化为亚硝酸的过程,可表示为:NH4+→NO2-。

而硝化是硝酸盐菌将亚硝酸氧化为硝酸的过程,可表示为:NO2-→NO3-。

硝化微生物生长的最适pH范围一般为7.8-8.2,温度范围一般为20-35℃。

在水处理工程中,为了提高硝化细菌的活性,通常会提高水体中的DO(溶解氧)浓度,同时增加氨氮与亚硝酸之间的接触时间。

反硝化是由一种特殊的微生物完成的,这种微生物被称为反硝化细菌。

反硝化细菌的主要特点是能够利用氧化亚硝酸作为电子受体,将硝酸氮还原为氨氮,并释放出氧气或一氧化氮等气体。

反硝化细菌的代表是假单胞菌(Pseudomonas),它具有较强的还原硝酸能力。

反硝化过程一般可表示为:NO3- → NO2- → NO → N2O →N2反硝化细菌的生长最适pH范围一般为6.5-7.5,温度范围一般为25-30℃。

和硝化一样,为了提高反硝化细菌的活性,通常也需要提高水体中的DO浓度。

三、硝化与反硝化联合去除氨氮的工艺流程硝反工艺的流程一般为:先将水体中的氨氮通过硝化转化为硝酸,然后利用反硝化细菌将硝酸还原为氨氮。

硝反工艺通常包括硝化反硝化生物过滤法、硝化反硝化活性污泥法等。

其中,硝化反硝化生物过滤法是一种较常用的工艺,具有处理效果好、工艺简单、运行稳定等优点。

在硝反工艺中,硝化细菌与反硝化细菌共同生长,不仅可以去除氨氮,还可以去除有机物等其他污染物,从而对水体进行全面的处理。

硝化反应与反硝化反应原理

硝化反应与反硝化反应原理

硝化反应与反硝化反应原理硝化反应与反硝化反应是生态系统中氮循环的重要环节。

硝化反应是指将氨和铵离子转化为亚硝酸和硝酸盐的化学反应。

而反硝化反应则是将硝酸盐还原为气体态的氮,释放到大气中的化学反应。

这两种反应是氮循环在生态系统中不可或缺的环节。

硝化反应是由硝化细菌完成的。

首先,氨通过生物膜才可以进入到硝化细菌的细胞内。

目前已知的硝化细菌有两种:硝化氨氧化细菌和硝化亚硝酸氧化细菌。

前者将氨(NH3)氧化为亚硝酸(NO2-);后者将亚硝酸进一步氧化为硝酸盐(NO3-),这个过程是通过一种叫硝化酶的酶来完成的。

硝化反应在土壤和水田都会发生。

在农业生产中,土壤中增加化肥的使用,硝化反应对土壤肥力有着很大的影响。

因为硝酸盐在土壤中很容易被淋走,这会导致土壤中的氮元素流失。

此外,硝酸盐还会被植物吸收,但过多的吸收会导致植物生长,从而影响农作物的产量和质量。

反硝化反应是一个与生态系统中的微生物有关的过程,由一组还原细菌完成。

在气体态的氮缺乏的条件下,通过还原硝酸盐来释放氮气。

这种反应通常在水中或土壤中发生,微生物通过吸收和代谢硝酸盐、亚硝酸盐等物质来获得自主产生的能量,同时还可以还原硝酸盐为氮气,并释放到环境中。

反硝化反应在生态系统中,起到了重要的作用,它可以释放出大量的氮气,在一定程度上可以改善水体的气体浓度,使水体的呼吸更加顺畅。

同时,这个过程也会为氮的循环提供必要的不同形态的氮营养素。

综上所述,硝化反应与反硝化反应是生态系统中的重要过程。

硝化反应将氨或铵离子转化为亚硝酸和硝酸盐,反硝化反应则释放出大量的氮气。

它们促进了生态系统中氮循环的进行和维持生态平衡的重要作用。

硝化与反硝化去除氨氮的原理

硝化与反硝化去除氨氮的原理

硝化与反硝化去除氨氮操作
一、硝化与反硝化的作用机理:
1、硝化细菌包括亚硝化菌和硝化菌,亚硝化菌将废水中的NH3转化为亚硝酸盐,硝化菌将亚硝酸盐转化为硝酸盐,称为硝化作用。

硝化作用必须通过这两类菌的共同作用才能完成。

2、反硝化菌将硝酸盐转化为N2、NO、N2O,称为反硝化作用。

3、硝化细菌必须在好氧条件下作用。

4、反硝化菌必须在无氧或缺氧的条件下进行。

二、作用方程式:
硝化反应:
2NH3+3O2――(亚硝化菌)――2HNO2+2H2O+能量(氨的氧化)2HNO2+O2――(硝化菌)――2HNO3+能量(亚硝酸的氧化)
反硝化反应:
NO3— +CH3OH —— N2 + CO2+H2O+ OH—(以甲醇作为C源)
三、操作:
1、将购买的硝化菌投加到曝气池5、6#,亚硝化菌投加到曝气池1、
2、
3、4#,反硝化菌投加到厌氧池。

2、控制指标:
生物硝化
1 PH值:控制在7.5—8.4
2 温度:25—30℃
3 溶氧:2—4mg/L
4 污泥停留时间:必须大于硝化菌的最小世代时间,一般应大于2小时
生物反硝化:
①PH值:控制在7.0—8.0
②温度:25—30℃
③溶氧:0.5mg/L
④有机碳源:BOD5/TN>(3—5)过低需补加碳源。

AO生化的硝化与反硝化原理及控制参数-汇总重要

AO生化的硝化与反硝化原理及控制参数-汇总重要

A/O生化处理工艺的硝化和反硝化控制(天道酬勤)1、基本原理本系统生化处理段采用缺氧/好氧(A/O)工艺,A/O工艺通常是在常规的好氧活性污泥法处理系统前,增加一段缺氧生物处理过程。

在好氧段,好氧微生物氧化分解污水中的BOD5,同时进行硝化反应,有机氮和氨氮在好氧段转化为硝化氮并回流到缺氧段,其中的反硝化细菌利用氧化态氮和污水中的有机碳进行反硝化反应,使化合态氮变成分子态氮,同时获得同时去碳和脱氮的效果。

这里着重介绍生物脱氮原理。

1) 生物脱氮的基本原理传统的生物脱氮机理认为:脱氮过程一般包括氨化、硝化和反硝化三个过程。

①氨化(Ammonification):废水中的含氮有机物,在生物处理过程中被好氧或厌氧异养型微生物氧化分解为氨氮的过程;②硝化(Nitrification):废水中的氨氮在硝化菌(好氧自养型微生物)的作用下被转化为NO2-和NO3-的过程;③反硝化(Denitrification):废水中的NO2-和NO3-在缺氧条件下以及反硝化菌(兼性异养型细菌)的作用下被还原为N2的过程。

在反硝化菌的作用下,少部分亚硝酸及硝酸盐氮同化为有机氮化物,成为菌体,大部分异化为气态(70~75%)。

其中硝化反应分为两步进行:亚硝化和硝化。

2、硝化菌对环境的变化很敏感,它所需要的环境条件主要包括以下几方面:(1)好氧条件,DO≥1mg/l,并保持一定碱度,适宜的PH值为7.5~8.5,当pH值低于7.0时,硝化反应会受到抑制,但是当pH低于一定值后,硝化反应就会被抑制而停止,所以说如果废水pH由高到低,且pH小于6.5时就可以排除硝化反应导致的pH值降低。

(2)有机物含量不宜过高,污泥负荷≤0.15kgBOD/kgMLVSS·d,因为硝化菌是自养菌,有机基质浓度高,将使异氧菌快速增殖而成为优势。

(3)适宜温度20~30℃。

(4)硝化菌在反应器中的停留时间必须大于最小世代时间。

(5)抑制浓度尽可能的低,除重金属外,抑制硝化菌的物质还有高浓度有机基质,高浓度氨氮、NOx-N 以及络合阳离子。

硝化与反硝化池

硝化与反硝化池

硝化与反硝化池 The manuscript was revised on the evening of 2021■反硝化池反硝化池主要是去除废水中的氨氮,同时降解废水中其他的污染物质。

反硝化细菌在缺氧条件下,还原硝酸盐,释放出分子态氮(N2)或一氧化二氮(N2O)的过程。

微生物和植物吸收利用硝酸盐有两种完全不同的用途,一是利用其中的氮作为氮源,称为同化性硝酸还原作用:NO3-→NH4+→有机态氮。

许多细菌、放线菌和霉菌能利用硝酸盐做为氮素营养。

另一用途是利用NO2-和NO3-为呼吸作用的最终电子受体,把硝酸还原成氮(N2),称为反硝化作用或脱氮作用:NO3-→NO2-→N2↑。

能进行反硝化作用的只有少数细菌,这个生理群称为反硝化菌。

大部分反硝化细菌是异养菌,例如脱氮小球菌、反硝化假单胞菌等,它们以有机物为氮源和能源,进行无氧呼吸,其生化过程可用下式表示:C6H12O6+12NO3-→6H2O+6CO2+12NO2-+能量CH3COOH+8NO3-→6H2O+10CO2+4N2+8OH-+能量少数反硝化细菌为自养菌,如脱氮硫杆菌,它们氧化硫或硝酸盐获得能量,同化二氧化碳,以硝酸盐为呼吸作用的最终电子受体。

可进行以下反应:5S+6KNO3+2H2O→3N2+K2SO4+4KHSO4■硝化池这里的硝化主要是指生化处理工艺段的好养段,将氨氮氧化成亚硝酸氮或者硝态氮的过程。

由于污水氨氮较高。

该反应历程为:亚硝化反应(2-6)硝化反应(2-7)总反应式(2-8)亚硝酸菌有亚硝酸单胞菌属、亚硝酸螺杆菌属和亚硝酸球菌属。

硝酸菌有硝酸杆菌属、硝酸球菌属。

亚硝酸菌和硝酸菌统称为硝化菌。

发生硝化反应时细菌分别从氧化NH3-N和NO2--N的过程中获得能量,碳源来自无机碳化合物,如CO32-、HCO-、CO2等。

假定细胞的组成为C5H7NO2,则硝化菌合成的化学计量关系可表示为:亚硝化反应(2-9) 硝化反应(2-10)工艺中采用了两段硝化工艺设施。

污水处理—硝化与反硝化

污水处理—硝化与反硝化

污水处理—硝化与反硝化反硝化反应过程:在缺氧条件下,硝酸盐被反硝化细菌还原成为氮气和氧气。

反硝化细菌利用硝酸盐作为电子受体,有机物或者无机物作为电子供体,从而获得能量。

反硝化反应过程需要在缺氧(n)条件下进行,其相应的反应式为:1.反硝化反应方程式:C5H7O2N+5H2O+4NO3-→5NO2-+CO2+7H2O2.反硝化过程总反应式:C5H7O2N+2.5NO3-+3.5H2O→0.5N2+CO2+5H2O通过上述反应过程的物料衡算可知,在反硝化反应过程中,将1克硝酸盐氮还原为氮气需缺氧2.86克,同时产生0.57克有机物或无机物作为电子供体。

在反硝化反应过程中,氮元素的转化经历了以下几个过程:硝酸盐NO3-→亚硝酸盐NO2-→一氧化氮NO→氮气N2.三、硝化反硝化反应过程硝化反硝化反应过程:硝化反应和反硝化反应是一个连续的过程,需要在好氧条件下进行硝化反应,然后在缺氧条件下进行反硝化反应。

硝化反应将氨氮转化为硝酸盐氮,反硝化反应将硝酸盐氮还原为氮气。

硝化反硝化反应过程是一种高效的污水微生物脱氮方法,可以有效地去除污水中的氮元素。

四、污水硝化反硝化脱氮处理技术的应用污水硝化反硝化脱氮处理技术是一种成熟的污水处理方法,已经被广泛应用于城市污水处理厂和工业污水处理厂中。

该技术可以有效地去除污水中的氮元素,降低氮污染物排放,保护水环境。

同时,该技术具有工艺简单、运行成本低等优点,适用于不同规模的污水处理厂。

好氧池是指充氧池,其溶解氧浓度一般不小于2mg/L。

其主要功能是降解有机物和进行硝化反应。

当除磷为主要目标时,应采用厌氧/好氧工艺。

其基本工艺流程如下:当除氮为主要目标时,宜采用缺氧/好氧工艺。

其基本工艺流程如下:如果需要同时脱氮除磷,则应采用厌氧/缺氧/好氧(A/A/O)工艺。

在厌氧条件下,VFA(挥发性脂肪酸)、PHA(聚羟基脂肪酸)、PO(磷酸盐)和PP(多聚磷酸盐)可以被PAOs吸收和转化为PHA。

硝化曝气生物滤池与反硝化生物滤池工程实例

硝化曝气生物滤池与反硝化生物滤池工程实例

硝化曝气生物滤池与反硝化生物滤池工程实例1. 引言1.1 硝化池和反硝化池简介硝化池是一种用于将氨氮通过硝化作用转化为硝酸盐的设施,主要包括硝化桶和曝气装置。

硝化池通常是废水处理系统中的重要部分,用于降低废水中的氨氮浓度,同时提高水质。

硝化池的运作原理是利用硝化细菌将氨氮氧化为硝酸盐,从而使废水中的氨氮得到有效去除。

反硝化池则是一种用于将硝酸盐通过反硝化作用转化为氮气的设施,主要由反硝化池和生物填料组成。

反硝化池通常是在硝化池之后设置,用于进一步处理废水中的硝酸盐,以减少对环境的污染。

硝化池和反硝化池在废水处理工程中起着至关重要的作用,能有效地降低废水对环境的影响。

它们不仅能够去除废水中的氨氮和硝酸盐,还能提高水质,保护水资源。

硝化池和反硝化池的设计和运行对于环境保护和水资源利用至关重要。

1.2 硝化曝气生物滤池和反硝化生物滤池工程应用硝化曝气生物滤池和反硝化生物滤池是水处理领域常见的工艺设备,广泛应用于城市污水处理厂和工业废水处理工程中。

硝化曝气生物滤池主要用于将废水中的氨氮通过硝化作用转化为硝态氮,达到去除氨氮的效果。

而反硝化生物滤池则是将硝态氮通过反硝化作用还原为氮气,从而达到去除硝态氮的目的。

在实际工程应用中,硝化曝气生物滤池和反硝化生物滤池经常联合使用,形成硝化-反硝化池组合工艺,以实现高效、稳定的氮素去除效果。

这种工艺组合不仅能够降低处理成本,还可以减少对环境的负面影响,是目前常见的氮素去除工艺之一。

硝化曝气生物滤池和反硝化生物滤池工程应用具有灵活性大、处理效果好、运行稳定等优点,被广泛应用于各种规模的污水处理项目中。

随着技术的不断进步和工艺的不断完善,硝化曝气生物滤池和反硝化生物滤池在水处理领域的应用前景将会更加广阔,为改善水质和保护环境发挥着重要作用。

2. 正文2.1 硝化曝气生物滤池设计实例第一步是确定处理规模和工艺流程。

根据水处理厂的实际情况和需求,确定硝化曝气生物滤池的处理规模和工艺流程,包括污水进出口位置、流程图、设备布置等。

反硝化和硝化区别

反硝化和硝化区别

生物脱氮过程中的硝化和反硝化,把这两个过程专门针对性的作一个对比,其实对于加深对两个过程的认识,帮助还是挺大的,下面就本人对这两过程的了解作一对比:
1、菌种方面的对比:从对氧气需求的角度,硝化菌是好氧菌,反硝化菌是兼氧菌;从对有机物的需求角度,硝化菌是化能自养菌,反硝化菌是异养菌;
2、两种过程对碱度的要求:硝化过程消耗碱度,没有足够的碱度缓冲pH值会下降;而反硝化产生碱度,但还不足以弥补硝化所消耗的碱度;
3、基于上述特征对运行参数的控制:(1)碳源。

反硝化需碳源,所以大部分脱氮工艺采用前置反硝化,既可充分利用原水中的碳源,也可为后续硝化去除BOD5。

有时也补充外加碳源,如加入甲醇;而硝化要求进水BOD5最好不超过20mg/L,否则有机物对自养硝化菌会产生毒性,或者硝化池内异养菌大量生长与硝化菌争夺氧气。

(2)溶解氧,反硝化池保持缺氧环境,硝化池保持好氧环境。

(3)碱度,反硝化前置,产生的碱度可部分补偿后续硝化消耗的碱度,若原水中碱度不足,还需向硝化池中额外补充碱度。

(4)泥龄的控制,反硝化菌是异养菌,世代期与一般异养菌类似,而硝化菌是自养菌,世代时间长,因此硝化池需较长的泥龄才可保证硝化菌的正常生长。

AO生化处理工艺的硝化和反硝化原理及控制参数的汇总

AO生化处理工艺的硝化和反硝化原理及控制参数的汇总

A/O生化处理工艺的硝化和反硝化控制1、基本原理本系统生化处理段采用缺氧/好氧(A/O)工艺,A/O工艺通常是在常规的好氧活性污泥法处理系统前,增加一段缺氧生物处理过程。

在好氧段,好氧微生物氧化分解污水中的BOD5,同时进行硝化反应,有机氮和氨氮在好氧段转化为硝化氮并回流到缺氧段,其中的反硝化细菌利用氧化态氮和污水中的有机碳进行反硝化反应,使化合态氮变成分子态氮,同时获得同时去碳和脱氮的效果。

这里着重介绍生物脱氮原理。

1) 生物脱氮的基本原理传统的生物脱氮机理认为:脱氮过程一般包括氨化、硝化和反硝化三个过程。

①氨化(Ammonification):废水中的含氮有机物,在生物处理过程中被好氧或厌氧异养型微生物氧化分解为氨氮的过程;②硝化(Nitrification):废水中的氨氮在硝化菌(好氧自养型微生物)的作用下被转化为NO2-和NO3-的过程;③反硝化(Denitrification):废水中的NO2-和NO3-在缺氧条件下以及反硝化菌(兼性异养型细菌)的作用下被还原为N2的过程。

在反硝化菌的作用下,少部分亚硝酸及硝酸盐氮同化为有机氮化物,成为菌体,大部分异化为气态(70~75%)。

其中硝化反应分为两步进行:亚硝化和硝化。

2、硝化菌对环境的变化很敏感,它所需要的环境条件主要包括以下几方面:(1)好氧条件,DO≥1mg/l,并保持一定碱度,适宜的PH值为7.5~8.5,当pH值低于7.0时,硝化反应会受到抑制,但是当pH低于一定值后,硝化反应就会被抑制而停止,所以说如果废水pH由高到低,且pH小于6.5时就可以排除硝化反应导致的pH值降低。

(2)有机物含量不宜过高,污泥负荷≤0.15kgBOD/kgMLVSS·d,因为硝化菌是自养菌,有机基质浓度高,将使异氧菌快速增殖而成为优势。

(3)适宜温度20~30℃。

(4)硝化菌在反应器中的停留时间必须大于最小世代时间。

(5)抑制浓度尽可能的低,除重金属外,抑制硝化菌的物质还有高浓度有机基质,高浓度氨氮、NOx-N 以及络合阳离子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

■反硝化池
反硝化池主要是去除废水中的氨氮,同时降解废水中其他的污染物质。

反硝化细菌在缺氧条件下,还原硝酸盐,释放出分子态氮(N
2
)或一氧化二
氮(N
2
O)的过程。

微生物和植物吸收利用硝酸盐有两种完全不同的用途,一
是利用其中的氮作为氮源,称为同化性硝酸还原作用:NO
3-→NH
4
+→有机态氮。


多细菌、放线菌和霉菌能利用硝酸盐做为氮素营养。

另一用途是利用NO2-和NO
3
-
为呼吸作用的最终电子受体,把硝酸还原成氮(N
2
),称为反硝化作用或脱氮作
用:NO
3-→NO
2
-→N
2
↑。

能进行反硝化作用的只有少数细菌,这个生理群称为反硝
化菌。

大部分反硝化细菌是异养菌,例如脱氮小球菌、反硝化假单胞菌等,它们以有机物为氮源和能源,进行无氧呼吸,其生化过程可用下式表示:
C 6H
12
O
6
+12NO
3
-→6H
2
O+6CO
2
+12NO
2
-+能量
CH
3COOH+8NO
3
-→6H
2
O+10CO
2
+4N
2
+8OH-+能量
少数反硝化细菌为自养菌,如脱氮硫杆菌,它们氧化硫或硝酸盐获得能量,同化二氧化碳,以硝酸盐为呼吸作用的最终电子受体。

可进行以下反应:
5S+6KNO
3+2H
2
O→3N
2
+K
2
SO
4
+4KHSO
4
■硝化池
这里的硝化主要是指生化处理工艺段的好养段,将氨氮氧化成亚硝酸氮或者硝态氮的过程。

由于污水氨氮较高。

该反应历程为:
亚硝化反
应(2-6)
硝化反

(2-7)
总反应
式(2-8)
亚硝酸菌有亚硝酸单胞菌属、亚硝酸螺杆菌属和亚硝酸球菌属。

硝酸菌有硝酸杆菌属、硝酸球菌属。

亚硝酸菌和硝酸菌统称为硝化菌。

发生硝化反应时细菌
分别从氧化NH
3-N和NO
2
--N的过程中获得能量,碳源来自无机碳化合物,如CO
3
2
-、HCO-、CO
2等。

假定细胞的组成为C
5
H
7
NO
2
,则硝化菌合成的化学计量关系可表
示为:
亚硝化反
应(2-9)
硝化反

(2-10)
工艺中采用了两段硝化工艺设施。

最大限度上降低生化手段降低氨氮的浓度,同时减少其他污染物的浓度。

同时废水中的其他污染物质在两段反硝化+硝化的过程中得到有效降解。

(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档