12数轴相反数和绝对值
2022年秋七年级数学上册 第1章 有理数 1.2 数轴、相反数与绝对值 1.2.3 绝对值课件 (
•
9、 人的价值,在招收诱惑的一瞬间被决定 。2022/3/12022/3/1Tuesday, March 01, 2022
•
10、低头要有勇气,抬头要有低气。2022/3/12022/3/12022/3/13/1/2022 8:39:43 AM
•
11、人总是珍惜为得到。2022/3/12022/3/12022/3/1M ar-221- Mar-22
B.原点或原点左侧
C.原点右侧
D.原点或原点右侧
2. 已知在数轴上,O为原点,A,B两点所表示的数 分别为a,b,利用下列A,B,O三点在数轴上的位置关 系,可以判断|a|<|b|的选项是( B )
A
B
C
D
3. 下列说法中正确的是( C ) A.任何一个有理数的绝对值都是正数 B.负数的绝对值是负数 C.若|a|+|b|=0,则|a|=0且|b|=0 D.若a≠b,则|a|≠|b| 4. 化简:|π-3.14|= π-3.14 , -|-25|= -25 .
【解析】当 a=0 时,A、B、C 说法均不正确,而|a| +1≥1,一定是正数,故 D 项正确.
6. 若|x-3|+|y-2|=0,则|x+y|的值为 5 . 7. a,b 在数轴上位置如图,化简|a|-|b|=-a-b .
1.若|a|=-a,则实数 a 在数轴上的对应点一定在
(B) A.原点左侧
②|-6|= 6 ;|-3.1|= 3.1 ;|-2.7|= 2.7 ; ③|0|= 0 . (2)根据(1)中的规律发现,不论正数、负数和0,它 们的绝对值一定是 非负数 ,即|a|≥0.
(3)根据(2)解决下列问题: ①当x= 0 时,|x|+5有最小值,此时的最小值 是 5; ②当x= 1 时,7-|x-1|有最大值,此时的最大值 是7.
1.2 数轴、相反数和绝对值 (有教学反思)
1.2 数轴、相反数和绝对值一、教学目标1.使学生正确理解数轴的意义,掌握数轴的三要素;2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;3.使学生初步理解数形结合的思想方法.4. 使学生理解相反数的意义;5. 给出一个数,能求出它的相反数;6. 理解绝对值的意义,熟悉绝对值符号;7. 给一个数,能求它的绝对值。
二、教学重点、难点1、教学重点:⑴初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.⑵理解有理数的绝对值概念,并掌握其表示方法2、教学难点:⑴正确理解有理数与数轴上点的对应关系。
⑵熟练掌握求一个有理数的绝对值的方法。
三、课时:3课时四、教学过程㈠导入:从学生原有认知结构提出问题1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?2.用“射线”能不能表示有理数?为什么?3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.㈡讲授新课【1】数轴让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…提问:我们能不能用这条直线表示任何有理数?(可列举几个数)在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.㈢运用举例变式练习例1 画一个数轴,并在数轴上画出表示下列各数的点:例2 指出数轴上A,B,C,D,E各点分别表示什么数.课堂练习示出来.2.说出下面数轴上A,B,C,D,O,M各点表示什么数?最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.【2】相反数1. 相反数的概念:首先,咱们来画一条数轴,然后在数轴上标出下列各点:3和-3,1.6和-1.6,请同学们观察:(1)上述这两对数有什么特点?(2)表示这两对数的数轴上的点有什么特点?(3)请你再写出同样的几对点来?显然:(1)上面的这两对数中,每一对数,只有符号不同。
1.2 数轴、相反数和绝对值
1.2 数轴、相反数和绝对值知识点一 数轴★数轴:规定了原点、正方向和单位长度的直线叫做数轴。
数轴的定义包含三层含义:①数轴是一条向两方无限延伸的直线;②数轴有三要素:原点、正方向、单位长度;③注意“规定”二字,是说原点的位置、正方向的选取、单位长度大小的确定,都是根据实际需要人为规定的。
★数轴的画法画数轴时,通常按以下步骤进行一画:首先画一条直线(通常画成水平方向);二取:在这条直线上任取一点作为原点,用这点表示数0;三定:规定这条直线的一个方向为正方向(一般取从左到右的方向为正方形,并用箭头表示),相反的方向就是负方向;四选:适当地选取某一长度作为单位长度;五标:从原点向右,每隔一个单位长度取一点,依次标上1,2,3,……,从原点向左,每隔一个单位长度取一点,依次标上-1,-2,-3,……。
例1 下列数轴正确的个数为( )A. 0B. 1C. 2D. 3知识点二 有理数与数轴上点的关系★一般地,任意一个有理数,都可以用数轴上的一个点来表示。
0用原点表示,正有理数用原点右边的点表示,负有理数用原点左边的点表示。
例2 如图,指出数轴上的点A 、B 、C 、D 、E 、O 分别表示什么数。
例3 用数轴上的点表示下列各数:21,4-,0,3,3-,21-知识点三 相反数的意义★代数意义:像2与2-,4与4-,2121-与这样,只有符号不同的两个数互为相反数,这就是说,其中一个数是另一个数的相反数,如44-与互为相反数,即4的相反数是4-,4-的相反数是4。
特别规定:0的相反数是0★几何意义:两个互为相反数的数在数轴上所表示的点在原点的两旁,到原点的距离相等。
例4 分别写出下列各数的相反数:2例5 下列说法正确的是( )A. 符号不同的两个数互为相反数B.互为相反数的两个数必是一个正数,一个负数C.π的相反数是14.3-D. 0.5与21-互为相反数 知识点四 绝对值的定义★在数轴上,表示数a 的点到原点的距离,叫做数a 的绝对值,记作|a|.如:2-的绝对值记作2-,0的绝对值记作0绝对值表示两点之间的距离,它是非负数,即任何一个数的绝对值不可能是负数,它只能是正数或0★由绝对值的定义(代数意义)可知:(1)一个正数的绝对值是它本身;(2)一个负数的绝对值是它的相反数;(3)0的绝对值是0例6 求下列各数的绝对值:(1)83+;(2)5.0-;(3)0;(4)412-例7 若一个数的绝对值是2,则这个数是( )A. 2B. 2-C. 2或2-D.2121-或 知识点五 数轴上两点间的距离在数轴上,点21A A 、表示有理数21x x 、,我们把21x x 、叫做21A A 、的一维坐标。
1.2数轴、相反数与绝对值1.2.2 相反数(课件)湘教版数学七年级上册
新知探究 知识点 相反数 说一说
如图,点A 和点B 分别表示哪个有理数?点A,点 B 到原点的距离相等吗?
【课本P9 练习 第2题】
(1)-(+8)= -8 ;(2)-(+6.7)= -6.7 ;
(3)-(-9)= 9
;(4)-
-
5 3
=
5 3.
随堂练习
【课本P9 练习 第3题】
3. 已知 a 的相反数是3.5,则 a 等于多少?
答:a 等于 -3.5 .
4.已知 a,b 为有理数,它们在数轴上的对应点的位置如 图所示,把 -a,-b 分别在数轴上表示出来.
⑥ 0的相反数是___0___; ⑦ -121与___12_1__互为相反数.
新知探究 知识点 相反数 议一议
-2.6的相反数是2.6,如何用式子表示?
通常把数a的相反数记作“-a”. 于是“-2.6 的相反数是2.6”用式子表 示就是“-(-2.6) = 2.6”.
任意一个数前面添上“-”号,新的数 就表示原数的相反数.
ABo
-6 -5 -4 -3 -2 -1 0 1 2
C
3 45 6
新知探究 知识点 相反数
例2 填空:
①6的相反数是__-__6__;
⑤ _-__1_0_0_与100互为相反数;
②-8与___8___互为相反数; ③ _-__2_._5_与2.5互为相反数; ④ -1.9的相反数是__1_._9__;
新知探究 知识点 相反数
沪科版七年级数学上第一章《有理数》第2节《数轴、相反数和绝对值》例题与讲解
1.2数轴、相反数和绝对值1.数轴(1)数轴的概念规定了原点、正方向和单位长度的直线叫做数轴.如图所示.(2)数轴的概念包涵的意思①数轴是一条直线,可以向两端无限延伸;②数轴有三要素:原点、正方向、单位长度,三者缺一不可;③原点位置的选定,单位长度大小的确定都是根据实际而定的.一般取向右的方向为正方向.(3)数轴的画法:要正确迅速地画出数轴,可按以下步骤进行:①“画”就是先画一条水平的直线;②“取”就是在直线上选取一点表示原点(原点表示的数是0);③“选”就是选择向右的方向为正方向(用箭头表示),那么相反的方向,即从原点向左为负方向,然后选取适当的长度作为单位长度,用细短线在直线上画出;④“标”就是从原点向右,依次标出1,2,3,…;从原点向左,依次标出-1,-2,-3,….画数轴的步骤可简单归纳为“一画、二取、三选、四标”.解技巧确定数轴的单位长度画数轴时根据实际问题的需要可选取不同的距离作为单位长度,同一数轴上的单位长度必须一致.【例1】观察下列图形,数轴画得正确的是______.解析:判断一条直线是否为一数轴,关键看这条直线是否具有原点、正方向和单位长度这三要素.A没有原点,B没有正方向,C的单位长度不一致,E中负方向上所标注的数字顺序错误,只有D满足条件.答案:D辨误区画数轴常见的错误画数轴常出现的错误:(1)没有方向;(2)没有原点;(3)单位长度不一致;(4)标出的数值排列错误.2.有理数与数轴上的点之间的关系(1)数对应点:任何一个有理数,都可以用数轴上的一个点来表示.(2)在数轴上,正数和负数分别位于原点的两侧,所有正数对应的点都在数轴上原点的右侧,所有负数对应的点都在数轴上原点的左侧,与正数对称.(3)找出数轴上的点对应的有理数的步骤是:①确定点与原点的位置关系(左负右正);②确定点与原点的距离.辨误区有理数与数轴上的点的对应关系所有的有理数都可以用数轴上的点表示,但不能说数轴上所有的点都表示有理数,因为数轴上除了表示所有的有理数的点之外,还有表示所有的无理数的点(以后会学习).【例2-1】指出数轴上A,B,C,D,E,F各点分别表示什么数?分析:先确定已知点的位置是在原点的左边还是右边,再确定点对应的数值,特别是B ,E 两点,要看准它们所表示的数在哪两个数之间.解:A 表示4;B 表示2.5;C 表示1;D 表示0;E 表示-1.5;F 表示-3.【例2-2】把下列各数在数轴上表示出来:32,-5,0,3.6,-3,-12,-112.分析:第一步,画出数轴(按三要素);第二步,把这些数在数轴上的对应点找出来;0在原点,容易找到对应点.正数在原点的右边,所以32,3.6在原点的右边,且分别距原点32个单位长度、3.6个单位长度.负数在原点的左边,所以-5,-3,-12,-112在原点的左边,且分别距原点5个单位长度、3个单位长度、12个单位长度、112个单位长度.解:解技巧确定数在数轴上的对应点(1)确定有理数在数轴上的对应点,要先根据正负确定该点在原点的哪一边,然后再确定距原点多少个单位长度;(2)一般情况下,原数轴上的表示单位长度的数要标在数轴的下方,而要表示的数应标在数轴的上方.3.相反数(1)相反数的定义只有符号不同的两个数互为相反数,这就是说,其中一个是另一个的相反数,特别规定:0的相反数是0.辨误区相反数的意义①“0的相反数是0”是相反数定义的一部分,千万不能漏掉;②“只有符号不同”指的是除符号不同以外,其他完全相同,不能理解为只要符号不同的两个数就互为相反数,例如:-2和+3符号不同,但它们不互为相反数.(2)相反数的几何意义两个互为相反数的数在数轴上所表示的点在原点的两侧,与原点的距离相等.如:+3和-3,+4.4和-4.4互为相反数,在数轴上的位置如图所示:(3)相反数的表示方法一般地,数a 的相反数是-a ,这里a 表示任意一个数,它可以是正数、负数或者零.析规律相反数的表示方法在任意一个数前面添上“-”号,所得的数是原数的相反数,在一个数的前面添上一个“+”号,仍是原数.【例3】填空题:(1)-5的相反数是__________;(2)-(-6)的相反数__________;(3)__________的相反数是0.7;(4)18与__________互为相反数;(5)若a =13,则-a =__________.解析:根据相反数的意义求出各数的相反数.(1)-5的相反数为5;(2)-(-6)表示-6的相反数,即-(-6)=6,所以求-(-6)的相反数就是求6的相反数;(3)-0.7的相反数是0.7;(4)18与-18互为相反数;(5)-a 表示a 的相反数,即求13的相反数,所以-a =-13.答案:(1)5(2)-6(3)-0.7(4)-18(5)-134.绝对值(1)绝对值的概念在数轴上,表示数a 的点到原点的距离,叫做数a 的绝对值,记作|a |.表示数0的点即原点,到原点的距离是0,故|0|=0.(2)一个数的绝对值与这个数的关系①一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.②绝对值实际上和四则运算“加、减、乘、除”一样,也是一种运算,绝对值运算的本质就是要把带有绝对值符号的数化为不带绝对值符号的数(即去绝对值).注意:既可以说0的绝对值是它本身,也可以说0的绝对值是它的相反数.故绝对值是它本身的数是正数和0;绝对值是它的相反数的数是负数和0.③互为相反数的两个数的绝对值相等;绝对值相等、符号相反的两个数互为相反数.谈重点绝对值的意义绝对值是初中代数中的重要概念,从数轴上看,一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大,离原点的距离越近,绝对值越小.由于距离总是正数或零,则有理数的绝对值不可能是负数.也就是说,任何一个有理数的绝对值都是非负数,即a 取任意有理数,都有|a |≥0,所以绝对值最小的数是0.【例4-1】下列说法正确的是().A .|-5|表示-5的绝对值,等于-5B .负数的绝对值等于它本身C .-4距离原点4个单位长度,所以-4的绝对值是4D .绝对值等于它本身的数有两个,是0和1解析:绝对值是一个距离,不能为负数,故选项A 错误;负数的绝对值等于它的相反数,故选项B 错误;一个数的绝对值是它在数轴上对应点与原点的距离,C 正确;正数的绝对值都等于它本身,故选项D 错误.答案:C【例4-2】回答问题:(1)绝对值是3的数有几个?各是什么?(2)绝对值是0的数有几个?各是什么?(3)绝对值是-2的数是否存在?若存在,请写出来.分析:本题要正确理解绝对值的概念,尤其要理解绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.(1)表示到原点距离等于3的点对应的数有几个,显然,表示数3和-3的点到原点的距离都等于3,所以绝对值等于3的数有两个,它们互为相反数.(2)到原点的距离为0的点只有原点本身,它对应的数是0.(3)任意有理数的绝对值都是非负数,故不存在绝对值是-2的数.一般地,一个有理数的绝对值只有一个,但是绝对值为一个正数的有理数都有两个,它们互为相反数,没有绝对值为负数的有理数.解:(1)绝对值是3的数有两个,它们分别是3和-3.(2)绝对值是0的数只有一个,它是0.(3)绝对值是-2的数不存在.5.数轴上两点间的距离与点表示的数之间的关系(1)数轴使数和直线上的点建立了对应关系,它揭示了数和形的内在联系.正是这种联系,使得数轴上两点之间的距离与所表示的数之间存在密切关系.(2)数轴上表示数a 的点与原点之间的距离:当a 为一个正数时,它与原点的距离是a 个单位长度,当a 是负数时,它与原点的距离是|a |个单位长度;当a 是0时,距离为0.(3)注意:到某一点距离等于a (a 是正数)的点有两个,在原点的左右两侧各一个.解技巧确定数轴上两点间的距离解决此类问题的最好方法是画出数轴,并表示出所求的数,再求两点间的距离.【例5-1】如图,A ,B 两点在数轴上,点A 对应的数为2,若线段AB 的长为3,求点B 对应的数是多少?分析:由于点A 对应的数为2,说明它到原点的距离为2,又线段AB 的长为3,则点B 对应的数就很容易确定了.解:因为点A 对应的数为2,又线段AB 的长为3,所以点B 到原点的长为1.又因为点B 在原点的左边,所以点B 对应的数为-1.【例5-2】已知数轴上A ,B 表示的数互为相反数,并且A ,B 两点间的距离为6个单位长度,求A ,B 两点表示的数(A 在B 的左边).分析:互为相反数的数,位于原点的两侧,且到原点的距离相等,根据A ,B 的距离为6个单位长度,即可求出A ,B 两点表示的数.解:由点A ,B 表示的数互为相反数,且A ,B 两点间的距离为6,可知点A ,B 在原点的两侧,到原点距离都为3,又A 在B 的左边,所以A 点表示-3,B 点表示3.6.运用相反数化简符号(1)理解:①在任意-个数前面添上“-”号,新的数就是原数的相反数.如:+5的相反数表示为-(+5),而5的相反数就是-5,所以-(+5)=-5.因此运用相反数可以进行符号化简.(2)分类:简单的符号化简共有3种情况:①-(+a )=-a ;②+(-a )=-a ;③-(-a )=a .(3)延伸:①-[-(-a )]=-a ;-[+(-a )]=a 等.②-0=0,表示0的相反数是0.多重符号的结果是由“-”号的个数决定的,与“+”号无关,据此可以对带有多重符号的数进行化简.化简时“+”号的个数不影响结果,可省去;而“-”号的个数是偶数个时也可全部省去,奇数个时,结果保留一个“-”号即可.【例6-1】填空:(1)__________;(2),那么x =__________.解析:(1)∵127,因此此题实际上是求127的相反数,∴-127;(2)是已知x 的相反数求原数x 的问题,∵-x =+(-80.5)=-80.5,∴x =80.5.答案:(1)-127(2)80.5【例6-2】化简下列各符号:(1)-[-(-2)];(2)+{-[-(+5)]};(3)-{-{-…-(-6)…}}(共n 个负号).分析:化简的法则是:结果的符号与负号的个数有关,有偶数个负号时,结果为正;有奇数个负号时,结果为负.解:(1)-2;(2)5;(3)当n 为偶数时,为6;当n 为奇数时,为-6.7.绝对值的化简和计算化简绝对值符号主要根据绝对值的非负性,解题时看清楚“-”号在绝对值符号的里面还是外面.如果“-”号在绝对值符号的里面,化简时把“-”号去掉;如果“-”号在绝对值符号的外面,化简时不能把“-”号去掉.解技巧准确化简绝对值符号化简绝对值符号的关键是判断绝对值符号内的数是正数、负数或是0.【例7】化简:(1)-|-23|;(2)+|(3)|;(4)|-(-7.5)|.分析:先判断绝对值符号内数的符号,再求绝对值.解:(1)-|-23|=-23;(2)+|;(3)|=312;(4)|-(-7.5)|=7.5.8.字母表示的数的绝对值的求法应用因为用字母所表示的数既可以是正数也可以是负数,还可以是0.它具有不确定性,而求绝对值首先要考虑的就是符号,因此求字母表示的数的绝对值时,必须考虑题目中给定的条件,若有限定条件,就按限定条件求出,若没有限定条件,则要分正、负、0三种情况讨论.解技巧求字母表示的数的绝对值(1)限制型逆用求法,如:|a |=6,那么a =±6;(2)开放型分类讨论求法:如求|x |+x 的值,当x >0时,|x |=x ,所以|x |+x =x +x =2x ,当x <0时,|x |=-x ,原式=0,当x =0时,原式=0;(3)化简型求法:如:|a |=|-8|,|-a |=|-8|,|-a |=|8|都能化为|a |=|8|=8解决.【例8-1】已知a =-5,|a |=|b |,则b 的值等于().A .+5B .-5C .0D .±5解析:因为a =-5,所以|a |=5.所以|b |=5.所以b =±5.注:本题常见的思维误区是由|a |=|b |推出a =b ,错选B.事实上,由|a |=|b |,可得b =±a ,所以b =a 或b =-a ,即b =5或b =-5.答案:D【例8-2】下面推理正确的是().A .若|m |=|n |,则m =nB .若|m |=n ,则m =nC .若|m |=-n ,则m =nD .若m =n ,则|m |=|n |解析:A 中若|m |=|n |,则m =±n ;B 中若|m |=n (n 一定是非负数),则m =±n ,例如|±2|=2,此时m =±2,n =2,显然m =±n ;C 中若|m |=-n ,则m =n 或m =-n ,例如|±3|=-(-3)(n 一定是非正数),此时m =±3,n =-3,所以m =±n .答案:D 9.利用数轴解决生活中的实际问题本节知识常与运动问题结合在一起,利用数形结合将运动问题解决.这种利用数形结合解决问题的方法是中考考查的热点题型之一.数轴是一种数学工具,它使数和数轴上的点建立了对应关系,运用数轴可以直观表示点的移动,正确找出数在数轴上的对应点,会由数轴上的点的位置确定对应的数,是解决这类问题的关键.解题时,通常根据题意正确地画出数轴,在选取长度单位时,要根据题目中的实际情况来确定,再在数轴上表示点的移动过程,用箭头和竖线来表示.【例9】超市、书店、玩具店依次坐落在一条东西走向的大街上,超市在书店西边20米处,玩具店位于书店东边50米处.小明从书店出来沿街向东走了50米,接着又向东走了-80米,此时小明的位置在何处?在数轴上标出超市、书店、玩具店的位置以及小明最后的位置.分析:书店处于超市和玩具店之间,且书店与玩具店之间的距离是50米,书店与超市之间的距离是20米,这样可以画出数轴,即可表示出小明最后的位置.解决点的移动问题,可画出数轴,在数轴上表示点的移动,关键是确定原点,最后的点相对于原点来说,若在原点的右侧,表示的是正数,若在原点的左侧,则表示的是负数.解:根据题意可以画出如图所示的数轴,小明位于超市西边10米处.10.利用绝对值解决实际问题绝对值的产生来源于实际问题的需要,反过来又可以运用它解决一些实际问题.利用绝对值求距离路程问题中,当出现用“+”、“-”号表示带方向的路程,求最后实际路程时,实际上是求绝对值的和.方法:①求各个数的绝对值;②求所有数的绝对值的和;③写出答案.【例10】一天上午,出租车司机小王在东西走向的中山路上营运,如果规定向东为正,向西为负,出租车的行车里程如下(单位:千米):+15,-3,+12,-11,-13,+3,-12,-18,请问小王将最后一位乘客送到目的地时,共行驶了多少千米?分析:本题是绝对值意义在实际问题中的具体应用,有理数中的“+”和“-”在本题中表示的是方向,而它们的绝对值是小王在营运中所行驶的路程,因此求共行驶的路程应是每次行车里程绝对值之和.解:|+15|+|-3|+|+12|+|-11|+|-13|+|+3|+|-12|+|-18|=15+3+12+11+13+3+12+18=87(千米).答:小王将最后一位乘客送到目的地时共行驶了87千米.。
湘教版数学七年级上册1.2数轴、相反数与绝对值(含答案)
初中数学试卷1.2数轴、相反数与绝对值专题一绝对值的非负性1.小明、小亮、小花、小倩四人是一个学习小组的同学,下面是该小组学习有理数的绝对值时进行的小组讨论:小明说:“﹣a的绝对值是它的相反数a”;小亮说:“如果有理数a的绝对值是它本身,那么a一定是正数”;小花说:“如果a为有理数,那么﹣|a|一定是负数”;小倩说:“你们说得都不对”.你认为这四位同学中谁说错了?谁说对了?错的该怎样改正?2.若a、b、c都是有理数,且|a﹣1|+|b+2|+|c﹣4|=0,求a+|b|+c的值.3.探究题(1)比较下列各式的大小:|﹣2|+|3| |﹣2+3|;|﹣3|+|﹣5| |(﹣3)+(﹣5)|;|0|+|﹣5| |0+(﹣5)|;…(2)通过(1)的比较,请你分析,归纳出当a,b为有理数时,|a|+|b|与|a+b|的大小关系.(3)根据(2)中你得出的结论,求当|x|+5=|x﹣5|时,求x的取值范围.专题二数轴、相反数与绝对值的“大融合”4.已知有理数a与b互为相反数,有理数c到原点的距离为1,有理数d为绝对值最小的数,求式子2013(a+b)+c+2013d的值.5.如图,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A表示﹣4,点G 表示8.(1)点B表示的有理数是,表示原点的是点是.(2)图中的数轴上另有点M到点A,点G距离之和为13,则这样的点M表示的有理数是.(3)若将原点取在点D,则点C表示的有理数是,此时点B与点表示的有理数互为相反数.6.一个有理数x在数轴上对应的点为A,将A点向左移动3个单位长度,再向左移动2个单位长度,得到点B,点B所对应的数和点A对应的数的绝对值相等,求点A的对应的数x是多少?【知识要点】1.规定了原点、正方向和单位长度的直线叫作数轴.任何有理数都可以用数轴上唯一的一个点来表示.2.如果两个数只有符号不同,那么其中的一个数叫作另一个数的相反数.0的相反数是0.3.一个数的绝对值等于数轴上表示这个数的点与原点的距离.正数的绝对值是它的本身;负数的绝对值是它的相反数;0的绝对值是0.互为相反数的两个数的绝对值相等.一般地,如果a表示一个数,则:(1)当a(2)当a=0(3)当a a和-a中非负数的那一个.【温馨提示】(针对易错)1.画数轴时必须具备三要素:原点、正方向和单位长度.2.任何一个数都有相反数,两个互为相反数的绝对值相等.3.一个数的绝对值是一个非负数,在求一个数的绝对值时,不能只是去掉绝对值符号,一定要考虑绝对值符号内的式子表示的数是正数还是负数.【方法技巧】1.求一个数的相反数,在这个数的前面加上负号即可.2.求一个数的绝对值时,先分清这个数是正数、0还是负数,再按照相应的情况“对号入座”,即去掉绝对值后是否添上负号.3.几个非负数之和等于零,其中每一个数都等于零.参考答案1.解:小明、小亮、小花都说错了.只有小倩是对的.小明说错了,因为﹣a的绝对值应该分情况进行讨论,小亮说错了,因为﹣a的绝对值等于本身的数除了正数还有0;小花说错了,因为﹣|﹣a|不一定是负数,还可能是0,即﹣|﹣a|≤0.故小倩是对的.2.解:因为|a﹣1|+|b+2|+|c﹣4|=0,所以|a﹣1|=0,|b+2|=0,|c﹣4|=0,所以a=1,b=﹣2,c=4,所以a+|b|+c=1+2+4=7.3.解:(1)因为|﹣2|+|3|=5,|﹣2+3|=1,所以|﹣2|+|3|>|﹣2+3|.因为|﹣3|+|﹣5|=8,|(﹣3)+(﹣5)|=8,所以|﹣3|+|﹣5|=|(﹣3)+(﹣5)|.因为|0|+|﹣5|=5,|0+(﹣5)|=5,所以|0|+|﹣5|=|0+(﹣5)|.故答案为>,=,=.(2)根据(1)中规律可得出:|a|+|b|≥|a+b|.(3)因为|﹣5|=5,所以|x|+5=|x|+|﹣5|=|x+(﹣5)|=|x﹣5|.所以x<0.即当|x|+5=|x﹣5|时,x<0.4.解:因为有理数a与b互为相反数,所以a+b=0.因为有理数c到原点的距离为1,所以c=1 或c=-1.因为有理数d为绝对值最小的数,所以d=0.所以当c=1时,原式=2013×0+1+0=1;当c=-1时,原式=2013×0+(-1)+0=-1.所以原式的值为1或-1.5.(1) ﹣2,C;(2) ﹣4.5或8.5;(3) ﹣2;F 【解析】(1)因为数轴上标出了7个点,相邻两点之间的距离都相等,已知点A表示﹣4,点G表示8,所以AG=|8+4|=12,所以相邻两点之间的距离==2,所以点B表示的有理数是﹣4+2=﹣2,点C表示的有理数﹣2+2=0.故答案为﹣2,C;(2)设点M表示的有理数是m,则|m+4|+|m﹣8|=13,所以m=﹣4.5或m=8.5.故答案为﹣4.5或8.5;(3)若将原点取在点D,因为每两点之间距离为2,所以点C表示的有理数是﹣2.因为点B与点F在原点D的两侧且到原点的距离相等,所以此时点B与点F表示的有理数互为相反数.6.解:由题意得:点A对应的数为x,则点B所对应的数x﹣3﹣2=x﹣5,又点B所对应的数和点A对应的数的绝对值相等,|x|=|x﹣5|,所以x=2.5.。
七年级上册数学1.2数轴、相反数与绝对值
向东走 3m 到达点 C , 向西走 3m 到达点 D , 就让点 C 表示 3 ; 就让点D表示-3.
从上面的例子受到启发,我们可以用一 条直线上的点来直观地表示数.
结论
画一条直线(通常把它水平放置), 在直线 上取一点O,把点O叫做原点, 用原点表示数0.
O 0
规定直线的正方向(标上箭头). 通常把直 线上从原点向右的方向规定为正方向,从原点 向左的方向规定为负方向.
9 0 1
-1
-9
2.5
-2.5
0
2. 填空: -(+6.7)= -6.7 ;-(+8)=
5 ; - - 3 =
-8
5 3
;
-(-4)=
4
.
3. 已知a的相反数是3.5,则a等于多少?
答:a 是-3.5 .
1.2.3 绝对值
动脑筋
小明家、学校、小李家在数轴上的位置分别如图 中点A, O, B所示. 若数轴的单位长度表示1km,则A, B两点表示的有理数分别是多少? 小明、小李各自 从家到学校要走多远?
说一说
-(+1)= ? - ( - 1) = ?
因为+1的相反数是-1, 所以-(+1)=-1.
因为-1的相反数是1, 所以-(-1)=1.
例4 填空: -(+0.8)= ; - ( - 3) =
-0.8 3
.
解: -(+0.8)= - ( - 3) =
; .
练习
1. 把右边各数中互为相反数的两个数用线连起 来,并在一条数轴上标出表示它们的点.
1km
点A表示-4,小明从 点B表示2,小李从家 家到学校要走4km 到学校要走2km.
1·2数轴、绝对值和相反数
【知识与技能】1.掌握数轴的概念,理解数轴上的点和有理数的对应关系.2.会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数.3.使学生理解相反数的意义,给出一个数能求出它的相反数.4.借助数轴初步理解绝对值的概念,熟悉绝对值符号,理解绝对值的几何意义和作用;给出一个数,能求它的绝对值.【过程与方法】从一个学生熟悉的生活实例中抽象出“数轴”的概念,并通过各种师生活动加深学生对“数轴”和“用数轴上的点表示有理数”的理解;从一个学生熟悉的生活实例中抽象出“相反数”、“绝对值”的概念,通过各种师生活动加深学生对“相反数”和“绝对值”的理解;让学生在经历知识的获得过程中,体会数形结合的数学思想,为利用绝对值比较有理数的大小及以后的相关计算打下良好的基础.【情感态度】通过画数轴,增强学生学习的耐心和细心,认识到数轴在生活中的应用.感受在特定的条件下数与形是可以相互转化的,体会生活中的数学,增强学生学习数学的欲望.1.下列有关数轴的说法正确的是( )A .数轴是一条直线B .数轴是一条线段C .数轴是一条射线D .直线是数轴2.已知A 为数轴上表示-1的点,将A 点沿数轴向左移动2个单位长度到B 点,则B 点所表示的数为( )A .-3B .3C .1D .1或-33.下列几组数中互为相反数的一组为( )A .-(-5)和+(+5)B .-(+6)与+(-6)C .+(-7)与-(+7)D .-(-8)与-(+8)4.-3.8是的相反数 , 的相反数是0.5.5.-5的绝对值是在 上表示-5的点到 的距离,-5的绝对值是 .6.绝对值是3的正数是 ,绝对值是3.2的负数是 .绝对值是0的有理数是 ,绝对值是343的有理数是 . 7.绝对值是2的数有 个,分别是 和 ;绝对值相等的两个数在数轴上的对应点之间的距离为4,则这两个数分别为 .8.在下面数轴上:(1)分别指出表示-2,3,-4,0,1各数的点.(2)A ,H ,D ,E ,O 各点分别表示什么数?9.求下列各数的绝对值:-221,+154,-4.75,0.8. 10.小明、小兵、小颖三人的家和学校在同一条东西走向的大街上,星期天老师到这三家进行家访,从学校出发先向东走250m 到小明家,后又向东走350m 到小兵家,再向西行800m 到小颖家,最后又回到学校.(1)以学校为原点,画出数轴并在数轴上分别表示出小明、小兵、小颖家的位置.(2)小明家距离小颖家多远?。
《数轴、相反数和绝对值》word教案 (公开课获奖)2022沪科版 (3)
1.2数轴教学目标知识与技能:了解数轴的概念,如何画数轴,知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴都有唯一的点与之对应。
过程与方法:通过现实生活中的例子,从直观认识到理性认识,从而建立数轴概念;通过学习,初步体会对应的思想、数形结合的思想。
重点:理解数形结合的数学方法,掌握数轴画法和用数轴上的点表示有理数难点:正确理解有理数和数轴上的点的对应关系教学过程一设置情境(10分钟)(1)在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.1.画一条直线表示马路,从左到右表示从西到东的方向2。
因为柳树、杨树都在汽车站的东面,即在汽车站的右边,槐树、电线杆在汽车站的西面,即在汽车站的左边,它们都相对汽车站而言,所以在直线上任意取一个点O表示汽车站的位置,规定1个单位长度,(线段OA的长代表1m长)3。
分别标出柳树、槐树、电线杆一汽车站的位置老师引导学生完成,注意讲解思路和方法阅读P10倒数第一自然段问题1:怎样用数简明地表示这些树、电线杆、与汽车站的相对位置关系?(方向和距离)问题2:-4.8中的负号“-”与“4.8”各表示什么意思?处理:以上分析,教师应边讲边画边引导,分步进行(2)P11“观察”温度计可以看作表示正数、0、负数的直线吗?它和刚才那个的图有什么共同点,有什么不同点?教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?P11的内容处理:引导学生讨论参与到数轴的建立过程中,让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。
注意强调“-”号所代表的意思,结论:像这样规定的原点、正方向、单位长度的直线叫做数轴原点、正方向、单位长度称为数轴的三要素,缺一不可单位长度的大小可以根据不同的需要选择任何一个有理数都可以用数轴上的点表示,例如2.5,数轴上从原点向右2.5个单位长度的点表示2.5等师:现在请两位同学随意各举2个有理数让老师在数轴上画出来,看看有没有不能在数轴上表示的有理数?二堂上练习:(3分钟)1、分层导学P7-12、画出一条数轴三寻找规律(5分钟)归纳结论问题3:1,你能举出一些在现实生活中用直线表示数的实际例子吗?2,如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?4,每个数到原点的距离是多少?由此你会发现了什么规律?(小组讨论,交流归纳)归纳出一般结论,教科书第12的归纳。
2024年秋新湘教版七年级上册数学课件 1.2 数轴、相反数与绝对值
感悟新知
2.画数轴的步骤:
知1-讲
(1) 画直线, 取原点: 画一条直线,在直线上任取一个点表
示数 0,这个点叫作原点;
(2) 标正方向: 通常规定直线上从原点向右的方向为正方向,
从原点向左的方向为负方向;
(3) 选取单位长度, 标数: 选取适当的长度为单位长度,直
感悟新知
知1-练
5
感悟新知
例2
的特征及数与点的关系描点. 解:如图1.2-2所示.
知1-练
感悟新知
方法:标出已知数在数轴上的对应点的步骤:
知1-练
第 1 步:根据数的正负性确定其在数轴上的对应
点在原点的左侧还是右侧;
第 2 步:确定数在数轴上的对应点与原点之间的
表示
-a是负数,在原点的左边 a 是正数,在原点的右边
感悟新知
知1-练
例1 [母题 教材P8说一说]如图 1.2-1,数轴上的点A, B, C分别表示哪个有理数?
感悟新知
解题秘方:紧扣点的位置特征与点表示的数的关 系读数 .
知1-练
方法技巧:点所在区域的位置(原点的左右两侧) 决定正负;点到原点的距离决定数值 .
线上从原点向右,每隔一个单位长度取一个点,依次表示
1,2, 3,… ;从原点向左,用类似方法依次表示 -1,
-2,-3,… .
感悟新知
知1-讲
3. 对应关系: 有理数都可以用数轴上的点表示,但数轴上的
点不都表示有理数 .
数 a(a>1) 示 和-a 在
-a 到原点的距离 a 到原点的距离
例 数轴上的
别在原点的左右两边,它们所表示的数互为相反数.
数轴、相反数和绝对值
0
B
b
x
综上,数轴上 A、B 两点的距离|AB|=|a-b|.
当A、B两点都不在原点时, ( 3)如图 )如图 4 ,点 A 、 在原点的两边, (( 1 2)如图 2,点 3,点 A、 A 、 B 都在原点的右边, BB 都在原点的左边, |AB |AB |=| |=| OB OB |||OA AB |=| |+| OB |=| a |+| |= |OA |=| |=| bOA |-| b|-| a|= a|=b-a b=| +a a =| -a b-b || ; ; a+(-b)=|a-b|;
D C
A
B
3/4 < 3 < > 4或8
2C
7.7;存在,点C所对应的有理数是0.45.
A ).
D.|a| >|c|
A.| b|<| c|
B.|b| >|c|
C.|a| <|b|
类似性问题
3. 已知数轴上 A、B 两点所表示的数分别为-3、-6,若在数轴上找一点 C,使得 A 与 C 的距离为 4;找一点 D,使得 B 与 D 的距离为 1,则下列哪个数不可能 为 C 与 D 的距离( A.0
5. 有理数的大小比较
(1)利用数轴: 在数轴上表示的两个数,右边的数总比左边 的数大. (2)利用法则: 正数大于0,0大于负数,正数大于负数; 两个负数,绝对值大的反而小.
探究类型之一 实数的分类
例 1 将下列各数填入相应的横线上:
1 -6, 9.3, - , 42, 0, -0.33,- 0.3 , 1.41421356, 2π , 3.3030030003…, -3.1415926. 6
正数:_____________________________________________; 负有理数:_________________________________________________; ﹡无理数:_______________________________________________.
2024秋季新教材湘教版七年级上册数学1.2.1 数轴 课件
–5 –4 –3 –2 –1 0 1 2 3 4 5
2. (滨州) 在数轴上,点 A 表示 -2 . 若从点 A 出发,
沿数轴的正方向移动 4 个单位长度到达点 B,则点 B
表示的数是 A. -6
B. -4
(C)
C. 2
D. 4
数形结合:
A
B
–4 –3 –2 –1 0 1 2 3 4 5
x
课堂小结
C
AB
–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6
解:(2) 可以看作蚂蚁从原点向左爬了 4 个单位长度达到.
(3) 如果移动点 A,B,C 中的两个点,使得三个点重 合,你有几种移动方法?请分别求出移动的长度之和.
C
①A B
–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6
七年级上册数学(湘教版)
第1章 有理数
1.2 数轴、相反数与绝对值
1.2.1 数轴
÷
教学目标
1. 理解数轴的概念,能够正确地画出数轴. 2. 经历数轴三要素的探究,学会由数轴上的已知点说
出它所表示的数,能用数轴上的点将有理数表示出 来. 重点:数轴的概念和用数轴上的点表示有理数. 难点:了解数形结合与转化的思想.
情境导入
你能联想到生活中的哪些用直线上的点表示数的 工具,请举例说明.
它们有什 么共同特点?
温度计
注射器
0 1 2 3 4 5 6 7 8 9 10
直尺
探究新知
1 数轴的概念
小玲从点 O 出发,沿一条笔直的东西向人行道行 走,分别到达 A,B,C,D 四点处. 其中点 A 在点 O 东边 10 m 处,点 B 在点 O 西边 10 m 处,点 C 在点 O 东边 30 m 处,点 D 在点 O 西边 30 m 处.
专题:数轴、相反数与绝对值高频考题及易错题(浙教版)(原卷版)
专题01数轴、相反数与绝对值高频考题及易错题【考点简介】数轴、相反数与绝对值考点中易错题极多,且都属于高频题,是大部分七年级学生考试的集中失分点,但这些易错题本质都是围绕的相对应的性质出题,本篇题目都选自于各大真题卷中且集中了各类易错题,有助于学生集中吸收与掌握。
【必备方法大招】1.数轴:①三要素:单位长度、正方向、原点②数轴上有A 、B 两点:.a 求A 、B 两点间的距离:若能确定左右位置: AB 右—左若无法确定左右位置:BA AB .b 求A 、B 的中点:2B A ③易错点:.a 数轴是一条直线,而不是线段或射线;.b 已知两点间的距离时,要注意点的左右位置,即数轴分左右;.c 所有的有理数都能在数轴上表示,但是数轴上的点表示的不都是有理数。
2.相反数:①性质:相加和为0,即若a ,b 互为相反数,则0 b a ;反之,若0 b a ,则a ,b 互为相反数。
②常见相反数形式:.a b a 的相反数是b a ;.b b a 的相反数是b a 或ab 即每一项的符号都进行改变。
3.绝对值:性质:①非负性:任何数的绝对值都是非负数,即0 a ;经典题型:若0 b a ,则0 a ,0 b ②绝对值为a 的数有两个,即a ;易错考点:容易忽视a 。
③绝对值相等的两个数相等或互为相反数,即b a ,则0 b a b a 或;易错考点:容易忽视互为相反数0 b a 情况。
④绝对值是他本身的数是非负数;绝对值是它相反数的数是非正数易错考点:容易忽视0的本身与相反数都是0。
注:绝对值性质每条都属于易错考点,且属于高频题,需反复牢记!【真题演练】1.(2021•南充)数轴上表示数m和m+2的点到原点的距离相等,则m为()A.﹣2B.2C.1D.﹣12.(2021•莱西市模拟)下列说法正确的是()A.﹣|a|一定是负数B.只有两个数相等时,它们的绝对值才相等C.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数为负数3.(2020秋•岳池县期中)a、b是有理数,下列各式中成立的是()A.若a≠b,则|a|≠|b|B.若|a|≠|b|,则a≠bC.若a>b,则a2>b2D.若a2>b2,则a>b4.(2020•岱岳区二模)下列各组数中,相等的是()A.﹣9和﹣B.﹣|﹣9|和﹣(﹣9)C.9和|﹣9|D.﹣9和|﹣9|5.(2019秋•贵港期末)下列说法正确的是()A.一个数的绝对值等于它本身,这个数一定是正数B.一个数的绝对值等于它的相反数,这个数一定是负数C.绝对值越大,这个数越大D.两个负数,绝对值大的那个数反而小6.(2019•邛崃市模拟)如果|a|=a,下列各式成立的是()A.a>0B.a<0C.a≥0D.a≤07.(2019秋•天津期末)下列说法正确的有()①正有理数是正整数和正分数的统称;②整数是正整数和负整数的统称;③有理数是正整数、负整数、正分数、负分数的统称;④0是偶数,但不是自然数;⑤偶数包括正偶数、负偶数和零.A.1个B.2个C.3个D.4个8.(2019秋•翁牛特旗期中)已知|x﹣2|=3,则x的值为()A.﹣5B.﹣1C.﹣5,﹣1D.5,﹣19.下列说法错误的是()A.最小自然数是0B.最大的负整数是﹣1C.没有最小的负数D.最小的整数是010.(2019秋•东台市月考)下列关于数轴的概念叙述不正确的是()A.数轴是一条直线B.数轴上位于原点的两侧且到原点距离相等的点表示的数互为相反数C.数轴上的点只能表示有理数D.数轴上表示的两个数,左边的数总比右边的小11.(2020秋•万州区校级期中)已知a与b互为相反数,则下列式子:①a+b=0;②a=﹣b;③a=b;④<0,其中一定成立的是()A.1个B.2个C.3个D.4个12.(2019秋•东台市期中)已知x与y互为相反数,那么|x﹣3+y|的值是()A.3B.0C.﹣3D.无法确定13.(2020秋•顺义区期末)在数轴上从左到右有A,B,C三点,其中AB=1,BC=2,如图所示.设点A,B,C所对应数的和是x,则下列说法错误的是()A.若以点A为原点,则x的值是4B.若以点B为原点,则x的值是1C.若以点C为原点,则x的值是﹣4D.若以BC的中点为原点,则x的值是﹣2 14.(2019秋•宁波期中)若﹣|a|=﹣3.5,则a=()A.3.5B.﹣3.5C.±3.5D.以上都不对15.(2019秋•雁塔区校级月考)已知a、b、c三个数在数轴上对应的点如图所示,下列结论错误的是()A.a+c<0B.b﹣c>0C.c<﹣b<a D.﹣b<﹣c<a16.(2020秋•诸暨市期中)在数轴上与表示﹣2的点的距离等于4的点表示的数是.17.已知数轴上有A、B两点,A、B之间的距离为1,点A与原点O的距离为2,则所有满足条件的点B 与原点O的距离之和为.18.若代数式a﹣1与2a+10的值互为相反数,则a=.19.已知数轴上点A和点B分别表示互为相反数的两个数a、b(a<b),并且A、B两点之间相距10个单位.那么a、b分别为、.20.若|m+5|=|n+5|,则m、n之间的关系为.21.如果a•b<0,那么=.22.(2019秋•大连月考)如果a、b、c是非零有理数,且a+b+c=0,那么的所有可能的值为.23.股民老宋上周五在股市以收盘价(股市收市时的价格)每股36元购买进某公司股票1000股,周六,周日股市不交易,在接下来的一周交易日内,老宋记下该股票每日收盘价格相比前一天的涨跌情况如表:(单位:元)星期一二三四五每股涨跌(元)+3﹣0.5+2+1﹣1.5(1)星期三收盘时,每股是多少元?(2)已知买入股票与卖出股票均需支付成交额的1.5%的手续费,并且卖出股票还要交成交额的1%的交易税,如果股民老宋在周五以收盘价将全部股票卖出,他的收益情况如何?。
第1章《有理数》易错题集(02):12数轴、相反数与绝对值
第1章《有理数》1.2 数轴、相反数与绝对值选择题1.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“15cm”分别对应数轴上的﹣3.6和x,则()A.9<x<10 B.10<x<11 C.11<x<12 D.12<x<132.在数轴上,与表示数﹣1的点的距离是2的点表示的数是()A.1 B.3 C.±2 D.1或﹣33.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是()A.2002或2003 B.2003或2004 C.2004或2005 D.2005或20064.数轴上的点A表示的数是+2,那么与点A相距5个单位长度的点表示的数是()A.5 B.±5 C.7 D.7或﹣35.如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C表示的数是()A.﹣0.5 B.﹣1.5 C.0 D.0.56.点M在数轴上距原点4个单位长度,若将M向右移动2个单位长度至N点,点N表示的数是()A.6 B.﹣2 C.﹣6 D.6或﹣27.如图,A、B、C、D、E为某未标出原点的数轴上的五个点,且AB=BC=CD=DE,则点D所表示的数是()A.10 B.9 C.6 D.08.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8 B.2 C.8或﹣2 D.﹣8或29.若|a﹣3|﹣3+a=0,则a的取值范围是()A.a≤3 B.a<3 C.a≥3 D.a>310.若ab<0,且a>b,则a,|a﹣b|,b的大小关系为()A.a>|a﹣b|>b B.a>b>|a﹣b| C.|a﹣b|>a>b D.|a﹣b|>b>a11.下列说法正确的是()A.﹣|a|一定是负数B.只有两个数相等时,它们的绝对值才相等C.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数为负数A.3 B.﹣1 C.±1或±3 D.3或﹣113.有理数a、b在数轴上的位置如图所示,下列各式成立的是()A.b﹣a>0 B.﹣b<0 C.﹣|a|>﹣b D.ab<014.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A.1﹣b>﹣b>1+a>a B.1+a>a>1﹣b>﹣b C.1+a>1﹣b>a>﹣b D.1﹣b>1+a>﹣b>a 15.已知a是有理数,且|a|=﹣a,则有理数a在数轴上的对应点在()A.原点的左边B.原点的右边C.原点或原点的左边D.原点或原点的右边16.绝对值相等的两个数在数轴上对应的两个点的距离为6,则这两个数为()A.+6和﹣6 B.+3和﹣3 C.+6和﹣3 D.+3和+617.下列说法正确的是()A.有理数的绝对值一定是正数B.一个负数的绝对值是它的相反数C.如果两个数的绝对值相等,那么这两个数相等D.如果一个数的绝对值是它本身,那么这个数是正数18.在数轴上,表示点中,在原点右边的点有()A.4个B.3个C.2个D.1个19.若=﹣1,则a为()A.a>0 B.a<0 C.0<a<1 D.﹣1<a<020.已知|a|=﹣a,且a<,若数轴上的四点M,N,P,Q中的一个能表示数a,(如图),则这个点是()A.M B.N C.P D.Q填空题21.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是_________.22.若|a|=3,则a的值是_________.23.﹣|﹣2|的绝对值是_________.24.绝对值比2大比6小的整数共有_________个.25.数,,,﹣|﹣5|,﹣0.5中,分数有_________个.26.有理数a、b、c在数轴的位置如图所示,且a与b互为相反数,则|a﹣c|﹣|b+c|=_________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通常称原点、正方向和单位长度叫做数轴的 三要素.
请观察下列四组数,它们有什么共同特征?
+5 和–5 , - 1.5 和 +1.5
? 6和6, 77
? 5 1 和5 1 22
共同点: 只有符号不同.
只有符号不同的两个数叫做互为相反数.
负数或0.求一个数的相反数即在它前面加一个 “-”号.
-a就是表示数a的相反数.
例题尝试
例2:说出下列各式的意义并化简符号. (1)-(+3) (2)-(-4)
解 (1) -(+3)表示+3的相反数 所以 -(+3)=-3
(2)-(-4)表示-4的相反数 所以-(-4)=4
例题尝试
例3:说出下列各式的意义并化简符号.
(3)-[-(-2)] (4)+{-[-(+5)]} (5)-{-{-…-(-6)}}(共n个负号)
化简的规律是:一个正数前有偶数个 负号,结果为正;有奇数个负号,结 果为负.
互为相反数的两个数在数轴上的特点:
画数轴,并表示出下列各对相反数所在的点 .
-6 和6
1.5 和 - 1.5
观察这两对点,每对点各有什么相同和不同 .
例题尝试
例1:下列各数的相反数是什么?
4,
? 3, 7
12 , 5
解: 4 的相反数是 ? 4,
? 5 , ? 15, a
9
? 3 的相反数是
7
3, 7
12 的相反数是 ? 12 ,
5
5
? 5 的相反数是
9
5, 9
? 15 的相反数是 15, a的相反数是 -a .
一般地,数 a 的相反数是 -a,a可以是正数,也可以是
(3) ___0__的相反数是它本身.
2、判断题
(1) 符号不同的两数叫做相反数( 错) (2) 0的相反数是它本身.(对 ) (3) a的相反数-a一定是负数.( 错)
思考:
设a表示一个数, -a一定是负数吗? 试试写出 -5的相反数 .
概括
? 正数的相反数小于本身 ? 负数的相反数大于本身 ? 零的相反数等于本身
课堂小结
(1) 只有符号不同的两个数叫做互为相反数;
(2) 相反数成对出现; (3) 数轴上表示相反数的两个对应点,分别位于原点
两侧,它们到原点距离相等; (4) 符号的化简 .
-6
- 1.5 0 1.5 2
6
相同点: 与原点的距离相等.
不同点: 位于原点的两旁.
-6
- 1.5 0 1.5 2
6
互为相反数的两个数在数轴上的特点是:
位于原点的两侧,且与原点的距离相等.
随堂练习
1、(1) 正数的相反数一定是___负____数; (2) 负数的相反数一定是___正____数;