实验1 1位全加器设计

合集下载

全加器设计

全加器设计
通信仿真之MAX+plus II应用 38
步骤8:编程下载
(1)下载方式设定。
通信仿真之MAX+plus II应用
39
步骤8:编程下载
通信仿真之MAX+plus II应用
40
步骤8:编程下载
通信仿真之MAX+plus II应用
41
步骤8:编程下载
(2)下载。连接好硬件及下载连接线等。按“Configure”下载 配置文件。成功后通过硬件进行逻辑验证。
通信仿真之MAX+plus II应用
2
3基本设计步骤
步骤1:为本项工程设计建立文件夹 任何一项设计都是一项工程(Project),都 必须首先为此工程建立一个放置与此工程相关的 文件的文件夹,此文件夹将被EDA软件默认为工 作库(Work Library)。一般不同的设计项目最 好放在相应的文件夹中,注意,一个设计项目可 以包含多个设计文件。 假设本项设计的文件夹取名为MY_Project,路径 为D:\ MY_Project, MAX+plus II 软件装在D盘 maxplus2文件夹下。 注意:文件夹名不能用中文,且不可带空格。
通信仿真之MAX+plus II应用 8
步骤2:输入设计项目和存盘
(4)调入元件and2、not、xnor、input和output。
方法一:用鼠标双击元件 库“Symbol Libraries”中 d:\maxplus2\maxplus2\ma x2lib\prim项。在 “Symbol Files”窗口即可 看到基本逻辑元件库prim 中的所有元件,双击需要 的元件即可调入原理图编 辑窗中。
27
步骤5:时序仿真
(7)运行仿真器。

实验一 1位全加器电路设计

实验一  1位全加器电路设计

实验一1位全加器电路的设计一、实验目的1、学会利用Quartus Ⅱ软件的原理图输入方法设计简单的逻辑电路;2、熟悉利用Quartus Ⅱ软件对设计电路进行仿真的方法;3、理解层次化的设计方法。

二、实验内容1、用原理图输入方法设计完成一个半加器电路。

并进行编译与仿真。

2、设计一个由半加器构成1位全加器的原理图电路,并进行编译与仿真。

3、设计一个由1位全加器构成4位加法器的原理图电路,并进行编译与仿真。

三、实验步骤1. 使用Quartus建立工程项目从【开始】>>【程序】>>【ALtera】>>【QuartusII6.0】打开Quartus软件,界面如图1-1示。

图1-1 Quartus软件界面在图1-1中从【File】>>【New Project Wizard...】新建工程项目,出现新建项目向导New Project Wizard 对话框如图1-2所示。

该对话框说明新建工程应该完成的工作。

在图1-2中点击NEXT进入新建项目目录、项目名称和顶层实体对话框,如图1-3 所示,顶层实体名与项目名可以不同,也可以不同。

输入项目目录如E:\0512301\ first、工程项目名称和顶层实体名同为fadder。

图1-2 新建工程向导说明对话框图1-3 新建工程目录、项目名、顶层实体名对话框接着点击NEXT进入新建添加文件对话框如图1-4所示。

这里是新建工程,暂无输入文件,直接点击NEXT进入器件选择对话框如图1-5所示。

这里选择Cyclone 系列的EP1C6Q240C8。

图1-4 新建添加文件对话框图1-5器件选择对话框点击NEXT进入添加第三方EDA开发工具对话框如图1-6所示。

图1-6 添加第三方EDA开发工具对话框本实验只利用Quartus集成环境开发,不使用其它EDA开发工具,直接点击NEXT进入工程信息报告对话框如图1-7所示。

点击Finish完成新建工程项目的建立如图1-8示。

实验一 1位全加器的设计(修改后)

实验一 1位全加器的设计(修改后)

• 步骤三:编辑全加器的原理图: 步骤三:编辑全加器的原理图:
• 由file->new,打开原理图文件Block Diaoram/Schematic File,并存盘为full_adder.bdf
左键双击原理图编辑窗空白处,弹出如下窗口
• 调入 1)半加器:half_adder, 2)二输入或门:2or, 3)输入,输出引脚
实验一 1位全加器的设计 位全加器的设计
一位全加器的原理分析
• 一位全加器可由两个一位半加器与一个或 门构成,其原理图如下图。
该设计利用层次结构描述法, • 首先设计半加器电路,将其打包为半加器 模块; • 然后在顶层调用半加器模块 半加器模块和ALTERA提供 半加器模块 的二输入或门 输入或门组成全加器电路; 输入或门 • 最后将全加器电路编译下载到实验箱,
输入是 两个加数:ain,bin, 一个进位:cin 这三个输入数据是1位(1bit),可由DE2的 SW0,SW1,SW2提供 为了显示更加清楚,可以将ain,bin,cin的输出引 出到DE2上的红色发光二极管显示,可选用 LEDR0,LEDR1,LEDR2. 输出是: 输出是: 和:sum 进位:cout 输出可由DE2的绿色发光二极管显示,可选用 LEDG0,LEDG1
• 步骤一:建立full_adder的工程 (project)
新建立full_adder工程(project)
设置project相关参数
• 设置project放置的位置及其名称,随后按 Next继续
• 添加文件到工程(project)中,在无相关文件需要 添加的情况下,按Next继续
• 选择FPGA目标器件,根据DE2的平台情况,选 择cyclone II系列的EP2C35F672C6,继续

整理实验一-一位二进制全加器设计实验

整理实验一-一位二进制全加器设计实验

整理人 尼克 实验一一位二进制全加器设计实验目录实验一Protel DXP 2004认识实验 (1)实验二两级阻容耦合三极管放大电路原理图设计 (1)实验三原理图元件库建立与调用 (3)实验四两级阻容耦合三极管放大电路PCB图设计 (5)实验五集成电路的逻辑功能测试 (7)实验六组合逻辑电路分析与设计 (12)实验七Quartus II 的使用 (17)实验八组合逻辑器件设计 (17)实验九组合电路设计 (25)实验一 Protel DXP 2004 认识实验一、实验目的1.掌握Prot e l DXP 2004 的安装、启动和关闭。

2.了解Protel DXP 2004 主窗口的组成和各部分的作用。

3.掌握Prot e l DXP 2004 工程和文件的新建、保存、打开。

二、实验内容与步骤1、Protel_DXP_2004 的安装(1)用虚拟光驱软件打开Protel_DXP_2004.iso 文件(2)运行setup\Setup.exe 文件,安装Protel DXP 2004(3) 运行破解程序后,点击“导入模版”,先导入一个ini文件模版(如果要生成单机版的License选择Unified Nexar-Protel License.ini;要生成网络版的License选择Unified Nexar-Protel Network License.ini),然后修改里面的参数:TransactorName=Your Name(将“Your Name”替换为你想要注册的用户名);SerialNumber=0000000(如果你只有一台计算机,那么这个可以不用修改,如果有两台以上的计算机且连成局域网,那么请保证每个License文件中的SerialNumber=为不同的值。

修改完成后点击“生成协议文件”,任意输入一个文件名(文件后缀为.alf)保存,程序会在相应目录中生成1个License文件。

点击“替换密钥”,选取DXP.exe (在DXP 2004安装目录里,默认路径为C:\Program Files\Altium2004\),程序会自动替换文件中的公开密钥。

实验一1 1位全加器的设计

实验一1 1位全加器的设计

实验一1位全加器的设计一、实验目的1.熟悉ISE软件的使用;2.熟悉下载平台的使用;3.掌握利用层次结构描述法设计电路。

二、实验原理及说明由数字电路知识可知,一位全加器可由两个一位半加器与一个或门构成,其原理图如图1所示。

该设计利用层次结构描述法,首先设计半加器电路,将其打包为半加器模块;然后在顶层调用半加器模块组成全加器电路;最后将全加器电路编译下载到实验板,其中a,b,cin 信号可采用实验箱上SW0,SW1,SW2键作为输入,输出sum,cout信号采用发光二极管LED3,LED2来显示。

图1 全加器原理图三、实验步骤1.在ISE软件下创建一工程,工程名为full_adder,工程路径在E盘,或DATA盘,并以学号为文件夹,注意不要有中文路径,注意:不可将工程放到默认的软件安装目录中。

芯片名为Spartan3E系列的XC3S500E-PQG2082.新建Verilog HDL文件,首先设计半加器,输入如下源程序;module half_adder(a,b,s,co);input a,b;output s,co;wire s,co;assign co=a & b;assign s=a ^ b;endmodule3.保存半加器程序为half_adder.v,通过HDL Bench画仿真波形,获得仿真用激励文件,随后进行功能仿真、时序仿真,验证设计的正确性,观察两种仿真波形的差异。

4.在Design窗口中,选择Design Utilities→Create Schematic Symbol创建半加器模块;5.新建一原理图(Schematic)文件,在原理图中调用两个半加器模块、一个或门模块,按照图1所示连接电路,并连接输入、输出引脚。

完成后另保存full_adder.sch。

6.对设计进行综合,如出现错误请按照错误提示进行修改。

7.HDL Bench画仿真波形,获得仿真用激励文件,分别进行功能与时序仿真,验证全加器的逻辑功能,观察两类波形的差异。

实验一:用原理图设计全加器和计数译码显示电路

实验一:用原理图设计全加器和计数译码显示电路

实验一(1):用原理图输入法设计一位全加器
实验一(2):用原理图输入法设计计数器(74160)和译码器(7448),顶层用原理图设计
实验目的:
(1)熟悉应用QuartusII编译图形输入;
(2)掌握利用QuartusII对图形输入的仿真;
(3)掌握用图形设计法基本逻辑电路。

二、实验内容:
设计并调试好一个一位二进制全加器及一个计数译码显示器,并用EL-EDA-V型EDA实验开发系统进行系统仿真。

设计一个10计数器用7448及74160设计计数译码显示电路。

三、实验条件:
(1)电脑;
(2)开发软件QuartusII8.1;
(3)设备:EL—EDA—V型
EDA实验开发系统;
(4)拟用芯片:ACEX1K
EP1K100QC208-3;
四、实验设计:
1、(1)异或门与二输入端与非门构成二进制全加器逻辑电路图:
(2)仿真波形:
其封装后:
(1)仿真波形:
(1)显示电路图:
其封装后:
(2)仿真波形:
4、(1)计数译码显示电路结构图:
(2)仿真波形:
5、管脚锁定:
五、设计处理
(1)输入底层设计文本和顶层电路
(2)编译
(3)仿真
(4)选择器件、锁定引脚、再次编译
(5)硬件测试
六、实验结果及总结:
实验过程中,在执行图形输入设计计数译码显示电路的时候,出现ERROR 其原因为将74160的输入端接在高电平上,排除方法为,将高电平改成接地。

在实验中,特别是图形输入设计中,应该先了解芯片的功能,再对芯片进行输入,输出设计,这样才能减少错误的出现。

一位全加器

一位全加器

END ENTITY f_adder;ARCHITECTURE fd1 OF f_adder ISCOMPONENT h_adderPORT ( a,b : IN STD_LOGIC;co,so : OUT STD_LOGIC);END COMPONENT ;COMPONENT or2aPORT (a,b : IN STD_LOGIC;c : OUT STD_LOGIC);END COMPONENT;SIGNAL d,e,f : STD_LOGIC;BEGINu1 : h_adder PORT MAP(a=>ain,b=>bin,co=>d,so=>e);u2 : h_adder PORT MAP(a=>e, b=>cin, co=>f,so=>sum); u3 : or2a PORT MAP(a=>d, b=>f, c=>cout);END ARCHITECTURE fd1;(2)LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY h_adder ISPORT (a, b : IN STD_LOGIC;co, so : OUT STD_LOGIC);END ENTITY h_adder;ARCHITECTURE fh1 OF h_adder isSIGNAL abc : STD_LOGIC_VECTOR(1 DOWNTO 0) ;BEGINabc <= a & b ;PROCESS(abc)BEGINCASE abc ISWHEN "00" => so<='0'; co<='0' ;WHEN "01" => so<='1'; co<='0' ;WHEN "10" => so<='1'; co<='0' ;WHEN "11" => so<='0'; co<='1' ;WHEN OTHERS => NULL ;END CASE;END PROCESS;END ARCHITECTURE fh1 ;(3)LIBRARY IEEE ;USE IEEE.STD_LOGIC_1164.ALL;ENTITY or2a ISPORT (a, b :IN STD_LOGIC;c : OUT STD_LOGIC );END ENTITY or2a;ARCHITECTURE one OF or2a ISBEGINc <= a OR b ;END ARCHITECTURE one五、实验仿真、结果及分析1.仿真结果如图2.结果及分析:该一位加法器是由两个半加器组成,在半加器的基础上,采用元件的调用和例化语句,将元件连接起来,而实现全加器的VHDL编程和整体功能。

EXP01实验一 一位全加器设计

EXP01实验一 一位全加器设计

实验一一位全加器电路设计实验目的:1.熟悉EDA软件开发工具(MAX+plus II)的基本操作;2.熟悉KHF-4型CPLD/FPGA实验箱的板上资源分布。

3. 以原理图方式设计一位全加器,进行软件仿真、下载和硬件测试。

实验设备:微型计算机一台、KHF-4型实验箱一个实验原理:全加器原理图和真值表分别如图1和表1所示:图1. 半加器原理图表1. 半加器真值表全加器原理图和真值表分别如图2和表2所示:图2. 全加器原理图表2. 全加器真值表实验步骤:1)打开MAX+plus II设计软件。

2)新建图形编辑文件(File/New/Graphic Edit file),在文件空白处双击鼠标左键(或选择菜单Symbol/Enter Symbol)打开添加符号对话框(Enter Symbol),在“Symbol Libraries”框中双击选择“../maxplus2/max2lib/prim”库,在Symbol Files添加半加器原理图中各元件、输入(input)和输出(output)管脚,修改管脚名称后完成半加器原理图的绘制如图1;保存文件到具体设计目下。

图3.新建文件、添加符号和保存文件3)将半加器文件设为顶层文件(File/Project/Set Project to Current File),打开编译器(MAX+plus II/Complier)进行编译综合。

图4.设为顶层和编译4)创建半加器符号(File/Creat Default Symble)。

5)新建图形编辑文件(File/New/Graphic Edit file),在文件空白处双击鼠标左键打开添加符号对话框(Enter Symbol),从“File Symbol”框中调用半加器符号,完成全加器原理图的绘制如图2,保存文件到具体设计目录。

6)将全加器文件设为顶层文件,打开编译器进行编译综合。

7)新建波形编辑文件(File/New/Waveform Edit file),添加节点信号(在Name下点击鼠标右键选择Enter Nodes from SNF…)并编辑输入信号波形;保存(File/Save)波形文件(按默认文件名点击OK保存)。

实验一--一位全加器的原理图设计【范本模板】

实验一--一位全加器的原理图设计【范本模板】

桂林电子科技大学实验报告2015-2016学年第二学期开课单位海洋信息工程学院适用年级、专业13级电子信息工程课程名称EDA技术与应用主讲教师覃琴实验名称一位全加器学号1316030515姓名魏春梅实验一一位全加器的原理图设计一、实验目的①掌握Quartus II原理图输入法的编辑、编译(综合)、仿真和编程下载的操作过程.②用原理图输入法设计全加器电路,并通过电路仿真和硬件验证,进一步了解全加器的功能.③熟悉EDA实训仪的使用方法。

二、实验原理考虑来自低位来的进位的加法运算称为”全加”,能实现全加运算的电路称为全加器.1位全加器的真值表如表1。

1所列,表中的A、B是两个一位二进制加数的输入端。

CI是来自低位来的进位输入端。

SO是和数输出端,CO是向高位的进位输出端。

根据真值表写出电路输出与输入之间的逻辑关系表达式为:A B CI SO CO三、实验设备①EDA实训仪1台.②计算机1台(装有Quartus II软件)。

四、实验内容在Quartus II软件中,采用原理图输入法设计1位的全加器电路,编辑、编译(综合)、仿真,引脚锁定,并下载到EDA实训仪中进行验证。

注:用EDA实训仪上的拨动开关S1、S2、SO分别作为加数A、加数B、低位进位输入端CI,用发光二极管L1、L0分别作为和输出端SO、仅为输出端CO。

五、实验预习要求①查阅资料,复习有关全加器的内容,并认真阅读实验指导书,分析、掌握实验原理.②预习理论课本有关Quartus II软件的使用方法,并简要地写出Quartus II软件的操作步骤。

③复习数字逻辑电路有关全加器的内容,设计1位全加器的逻辑电路图。

1、实验电路图路径:E/1316030515/adder2、实验波形仿真图路径:E/1316030515/adder3、实验结果图六、实验总结①用Quartus II软件的原理图输入法进行数字电路设计的方法及步骤。

1、建立工程项目(文件夹、工程名、芯片选择);2、编辑设计文件(元件、连线、输入输出、检查电路正确性);3、时序仿真(波形验证设计结果);4、引脚锁定(参考文件锁定输入输出引脚);5、编译下载;6、硬件调试。

FPGA一位全加器设计

FPGA一位全加器设计

实验一一位全加器的设计一. 实验目的1.熟悉QUARTUSII软件的使用;2.熟悉实验硬件平台的使用;3.掌握利用层次结构描述法设计电路。

二. 实验原理三.由于一位全加器可由两个一位半加器与一个或门构成, 首先设计半加器电路, 将其打包为半加器模块;从输出的波形图来验证半加器正确性, 然后在顶层调用半加器模块组成全加器电路;。

从全加器的波形图来验证全加器正确性。

四.实验步骤1.在QUARTUSII软件下创建一工程, 工程名为full_adder, 芯片名为****(查看硬件平台);新建Verilog语言文件, 输入如下半加器Verilog语言源程序;module half_adder(a,b,s,co);input a,b;output s,co;wire s,co;assign co=a & b;assign s=a ^ b;Endmodule保存半加器程序为half_adder.v, 进行功能仿真、时序仿真, 验证设计的正确性。

其初始值、功能仿真波形和时序仿真波形分别如下所示仿真前的波形:仿真后的波形:4.选择菜单File→Create/Update →Create Symbol Files for current file, 创建半加器模块;5.新建一原理图文件, 在原理图中调用半加器、或门模块和输入, 输出引脚, 按照图1所示连接电路。

并将输入ain,bin,cin连接到FPGA的输出端, 便于观察。

完成后另保存full_adder。

电路图如下6.对设计进行全编译, 然后分别进行功能与时序仿真, 验证全加器的逻辑功能。

其初始值、功能仿真波形和时序仿真波形分别如下所示四.思考题为什么在实验步骤3中, 将半加器保存为half_adder, 可否保存为full_adder?答:不能, 因为在程序中, module half_adder(a,b,s,co)已经给程序定义了一个名字叫half_adder, VHDL语言中, 要求程序名与实体名一致, 因此保存的文件名必须和程序名一致, 否则在编译程序的时候就会出现错误。

1位全加器原理图输入设计

1位全加器原理图输入设计
(4)设定仿真时间宽度。选择File End time选项,选择适当的仿真时间域,(如可选 34us(微秒),以便有足够长的观察时间)。 (5)加上输入信号。现在可以为输入信号a和b设 定测试电平了。利用必要的功能键为a和b加上适 当的电平,以便仿真后能。
实验步骤
(6)波形文件存盘。 (7)运行仿真器。 (注意,刚进入窗口时,应该将最下方的滑标拖 向最左侧,以便可观察到初始波形)。 (8)观察分析波形。 MAX+plusII项及其中的Timing Analyzer选 项,点击跳出的分析器窗口中的Start键。
实验步骤
6. 包装元件入库 7. 设计顶层文件 (1)仿照前面的“步骤2”,打开一个新的原理图 编辑窗,然后在元件输入窗的本工程目录中找到 已包装好的半加器元件,并将它调入原理图编辑 窗中。这时如果对编辑窗中的半加器元件双击, 即刻弹出此元件内部的原理图。 (2)完成全加器原理图设计。 (3)将当前文件设置成Project。
实验步骤
最后启动编译器,首先选择左上角MAX+plusII 选项,在其下拉菜单中选择编译器项Compiler。 点击Start,开始编译!如果发现有错,排除错误 后再次编译。 5. 时序仿真 (1)建立波形文件。选菜单 FileNew,再选择 Waveform Editer..项,打开波形编辑窗。
实验步骤
首先在Assign选项的下拉菜单中选择器件选择项 Device,此窗口的Device Family是器件序列 栏,应该首先在此拦中选定目标器件对应的序列 名,为了选择EPF10K10LC84-4器件,应将此 栏下方标有Show only Fastest Speed Grades 的勾消去以便显示出所有速度级别的器件。完成 器件选择后,按OK键。

一位全加器_可编程逻辑器件VHDL实验报告

一位全加器_可编程逻辑器件VHDL实验报告

1.一位全加器实验报告一、实验目的要求学习计数器的设计、仿真和硬件测试,进一步熟悉VHDL设计技术。

设计程序独立完成全加器的仿真。

全加器由两个半加器组合而成,原理类似。

半加器不考虑低位进位,但有高位进位;全加器要考虑低位的进位且该进位和求和的二进制相加,可能获得更高的进位。

二、设计方法与原理图图1是一个一位二进制全加器电路图,由图1所示,由两个半加器和一个或门构成一个一位二进制全加器;ain,bin为全加器的输入端,cin为全加器的低位进位,sum是全加器的全加和,cout是全加器的全加进位端;从而实现一位二进制全加器。

(图1)一位二进制全加器原理图三、实验内容按照教材上的步骤,在max plus II上进行编辑、编译、综合、适配、仿真。

说明例中各语句的作用,详细描述示例的功能特点,给出其所有信号的时序仿真波形。

四、源程序library ieee;use ieee.std_logic_1164.all;entity full_adder isport(a,b,cin:in std_logic;cout,sum:out std_logic);end entity full_adder;architecture fd1 of full_adder iscomponent h_adderport(a,b:in std_logic;co,so:out std_logic);end component;component or2aport(a,b:in std_logic;c:out std_logic);end component;signal d,e,f:std_logic;beginu1:h_adder port map(a=>ain,b=>bin,co=>d,so=>e); u2:h_adder port map(a=>e,b=>cin,co=>f,so=>sum); u3:or2a port map(a=>d,b=>f,c=>cout);end fd1;五过程性截图六、仿真结果(图2)一位二进制全加器仿真结果七、分析结果与总结由图2,本实验的目标已达成,及通过编写VHDL语言实现一个一位二进制全加器。

实验一一位二进制全加器设计实验

实验一一位二进制全加器设计实验

大学实验报告学生: 学 号: 专业班级: 中兴101实验类型:■ 验证 □ 综合 □设计 □ 创新 实验日期: 2012 9 28 实验成绩:实验一 一位二进制全加器设计实验一.实验目的(1)掌握Quartus II 的VHDL 文本设计和原理图输入方法设计全过程; (2)熟悉简单组合电路的设计,掌握系统仿真,学会分析硬件测试结果; (3) 熟悉设备和软件,掌握实验操作。

二.实验容与要求(1)在利用VHDL 编辑程序实现半加器和或门,再利用原理图连接半加器和或门完成全加器的设计,熟悉层次设计概念;(2)给出此项设计的仿真波形;(3)参照实验板1K100的引脚号,选定和锁定引脚,编程下载,进行硬件测试。

三.设计思路一个1位全加器可以用两个1位半加器及一个或门连接而成。

而一个1位半加器可由基本门电路组成。

(1) 半加器设计原理能对两个1位二进制数进行相加而求得和及进位的逻辑电路称为半加器。

或:只考虑两个一位二进制数的相加,而不考虑来自低位进位数的运算电路,称为半加器。

图1为半加器原理图。

其中:a 、b 分别为被加数与加数,作为电路的输入端;so 为两数相加产生的本位和,它和两数相加产生的向高位的进位co 一起作为电路的输出。

半加器的真值表为表1 半加器真值表absoco0 0 0 0 0 1 1 0 1 0 1 0 111由真值表可分别写出和数so ,进位数co 的逻辑函数表达式为:b a b a b a so ⊕=+=--(1)ab co = (2)图1半加器原理图(2) 全加器设计原理除本位两个数相加外,还要加上从低位来的进位数,称为全加器。

图2全加器原理图。

全加器的真值表如下:表2全加器真值表c a b co so0 0 0 0 00 0 1 0 10 1 0 0 10 1 1 1 01 0 0 0 11 0 1 1 01 1 0 1 01 1 1 1 1其中a为加数,b为加数,c为低位向本位的进位,co为本位向高位的进位,so为本位和。

数电实验——全加器设计

数电实验——全加器设计

五、实验验证 A = 0 , B = 0 , ������1 = 0 , S = 0, ������0 = 0 ,红灯灭,绿灯灭
A = 0 , B = 0 , ������1 = 1 , S = 1, ������0 = 0 ,红灯亮,绿灯灭 A = 0 , B = 1 , ������1 = 0 , S = 1, ������0 = 0 ,红灯亮,绿灯灭
������ = ������ ⊕ ������ ⊕ ������1 {
������0 = ������������ ∙ ������������1 ∙ ������������1 ∙ 1
实验原理图:
用红灯的亮灭来表示 S 输出 1/0 用绿灯的亮灭来表示 C0 输出 1/0 二、实验目的 完成 1 位全加器的设计,用逻辑门实现,完成输入输出真值表验证 三、实验器材 1. 实验材料
A = 1 , B = 1 , ������1 = 1 , S = 1, ������0 = 1 ,红灯亮,绿灯亮
实验 3.2
一、实验原理图 由真值表得 S 和 C0 表达式: ������ = ������ ������ ������1 ∙ ������ ������ ������1 ∙ ������ ������ ������1 ∙ ������ ������ ������1 { ������0 = ������ ������ ������ ∙ ������ ������ ������ ∙ ������ ������ ������ ∙ ������ ������ ������
第三次实验报告
第三次实验要求学生完成如下任务: 1 位全加器设计,包括: 1) 完成 1 位全加器的设计,用逻辑门实现,完成输入输出真值表验证 2) 完成 1 位全加器的设计,用中规模逻辑器件(74138)实现,完成输入输出真值表 验证

数字电路实验报告-组合逻辑电路的设计:一位全加器

数字电路实验报告-组合逻辑电路的设计:一位全加器
Bi
Si
Ci
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
0
1
1
0
1
1
0
0
1
0
1
0
1
0
1
1
1
0
0
1
1
1
1
1
1
描述
一位全加器的表达式如下:
Si=Ai⊕Bi⊕Ci-1
实验仪器
1.电子技术综合实验箱
2.芯片74LS86、74LS08、74LS32
实验内容及步骤
各芯片的管脚图如下图所示:
一位全加器逻辑电路图如下所示:
1.按上图连线
电学实验报告模板
电学虚拟仿真实验室
实验名称
组合逻辑电路的设计:一位全加器
实验目的
1.学习组合逻辑电路的设计方法
2.掌握组合逻辑电路的调试方法
实验原理
真值表
一位全加器的真值表如下图,其中Ai为被加数,Bi为加数,相邻低位来的进位数为Ci-1,输出本位和为Si。向相邻高位进位数为Ci
输入
输出
Ci-1
Ai
2.测试其逻辑功能,并记录数据
实验结果及分析
实验数据:
Ci-1
Ai
Bi
Si
Ci
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
0
1
1
0
1
10010 Nhomakorabea1
0
1
0
1

EDA实验一 1位全加器和四位全加器的设计

EDA实验一 1位全加器和四位全加器的设计

实验一1位全加器和四位全加器的设计一、实验目的1、掌握Quartus Ⅱ6.0软件使用流程。

2、初步掌握VHDL的编程方法。

3、掌握图形层次设计方法;4、掌握全加器原理,能进行多位加法器的设计。

二、实验原理(一位全加器的逻辑表达式为:sum=a^b^Cl;Ch= a&b|(a^b)&Cl.(2)四位加法器加法器是数字系统中的基本逻辑器件。

多位加法器的构成有两种方式:并行进位和串行进位方式。

并行进位加法器设有并行进位产生逻辑,运算速度快;串行进位方式是将全加器级联构成多位加法器。

通常,并行加法器比串行级联加法器占用更多的资源,并且随着位数的增加,相同位数的并行加法器比串行加法器的资源占用差距也会越来越大。

三、实验连线(1)一位全加器1、将EP2C5适配板左下角的JTAG用十芯排线和万用下载区左下角的SOPC JTAG 口连接起来,万用下载区右下角的电源开关拨到SOPC下载的一边2、将JPLED1短路帽右插,JPLED的短路帽全部上插。

3、请将JP103的短路帽全部插上,,打开实验箱电源。

( 2 ) 四位加法器1、将EP2C5适配板左下角的JTAG用十芯排线和万用下载区左下角的SOPC JTAG 口连接起来,万用下载区右下角的电源开关拨到SOPC下载的一边2、JPLED1短路帽右插,JPLED的短路帽全部上插。

3、请将JP103的短路帽全部插上,,打开实验箱电源。

四、实验代码LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;ENTITY fulladder ISPORT(A,B,C1 :IN STD_LOGIC;CH,SUM : OUT STD_LOGIC);END ENTITY fulladder;ARCHITECTURE ADO OF fulladder isSIGNAL AB :STD_LOGIC;BEGINSUM<=A XOR B XOR C1;AB<=A XOR B;CH<=(A AND B) OR (AB AND C1);END ARCHITECTURE ADO;一位全加器波形如下:图4-1四位加法器波形如下:图4-2五、实验仿真过程SW1,SW2,SW3对应a,b,Cl;D101,D102分别对应sum和Ch,当结果为0时彩色LED灯熄灭,当结果为1时彩灯点亮,改变SW1,SW2,SW3的输入状态,观察实验结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验1 一位全加器设计
【实验目的】
1.掌握数字电路的两种设计方法
2.掌握在Cadence中绘制原理图的方法
3.掌握芯片外围特性与实现硬件电路
4.掌握Verilog HDL设计电路的方法。

【实验内容】
1.设计1位全加器
2.绘制1位全加器原理图
3.在面包板上实现1位全加器设计
4.用Verilog HDL行为描述法设计实现1位全加器并仿真
【实验器件】
1.异或门电路74HC86一片,内含四个异或门,异或门的引脚封装图与内部原理如图1-1所示。

图1-1 异或门74HC86的内部原理图与芯片封装图
2.与门电路芯片74HC08一片,内含四个与门,与门的引脚封装图与内部原理如图1-2所示。

图1-2与门74HC08的内部原理图与芯片封装图
3.或门电路芯片74HC32一片,内含四个或门,或门的引脚封装图与内部原理如图1-3所示。

图1-3或门74HC32的内部原理图与芯片封装图
4.3个1k的电阻和两个发光二极管,一个8路开关,5v电源,面包板一块,导线若干条。

【实验步骤】
1.设计1位全加器
1)设1位全加器的输入为被加数为A,加数B,低位进位Cin;输出为本位和Sum,对高位的进位为Cout。

2)根据1位加法器的运算{Cout,Sum}=A+B+Cin列真值表如表吗-1所示。

表1-1 1位加法器真值表
3)根据真值表列出逻辑表达式
Cin
B
A
Cin
B
A
Cin
B
A
Cin
B
A
B
A
Cin
AB
B
A
ABCin
Cin
B
A
Cin
B
A
Cin
B
A
Sum


=

+

=
+
+
+
=
+
+
+
=
)
(
)
(
)
(
)
(
AB
Cin
B
A
ABCin
Cin
AB
Cin
B
A
BCin
A
Cout+

=
+
+
+
=)
(
4)手动绘制该原理图,为电路加上开关控制数据输入,用发光二极管显示输出,电路图如图1-4所示。

图1-4 1位全加器原理图
2.在实验板上连接实现该电路并分析电路元件构成
3.在protel软件中绘制原理图
1)绘制元件符号
2)绘制原理图
4. .在protel软件中绘制pcb
1)封装绘制
2)pcb绘制。

相关文档
最新文档