条件概率与超几何分布及二项分布练习题

合集下载

考点36 超几何分布与二项分布——2021年高考数学专题复习真题练习

考点36 超几何分布与二项分布——2021年高考数学专题复习真题练习

考点36 超几何分布与二项分布【题组一超几何分布】1.某市调硏机构对该市工薪阶层对“楼市限购令”态度进行调查,抽调了50名市民,他们月收入频数分布表和对“楼市限购令”赞成人数如下表:月收入(单位:百元)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)频数 5 c10 5 5频率0.1 a b0.2 0.1 0.1赞成人数 4 8 12 5 2 1[35,45)a b c(1)若所抽调的50名市民中,收入在的有15名,求,,的值,并完成频率分布直方图.[55,65)(2)若从收入(单位:百元)在的被调查者中随机选取2人进行追踪调查,选中的2人中恰有X X人赞成“楼市限购令”,求的分布列与数学期望.(3)从月收入频率分布表的6组市民中分别随机抽取3名市民,恰有一组的3名市民都不赞成“楼市限购令”,根据表格数据,判断这3名市民来自哪组的可能性最大?请直接写出2.某大学数学学院拟从往年的智慧队和理想队中选拔4名大学生组成志愿者招募宣传队.往年的智慧对和理想队的构成数据如下表所示,现要求选出的4名大学生中两队中的大学生都要有.(1)求选出的4名大学生仅有1名女生的概率;X X(2)记选出的4名大学生中女生的人数为,求随机变量的分布列和数学期望.3.某电视台举行一个比赛类型的娱乐节目,两队各有六名选手参赛,将他们首轮的比赛成绩作为样A B 、本数据,绘制成茎叶图如图所示,为了增加节目的趣味性,主持人故意将队第六位选手的成绩没有给A 出,并且告知大家队的平均分比队的平均分多4分,同时规定如果某位选手的成绩不少于21分,则B A 获得“晋级”.(1)根据茎叶图中的数据,求出队第六位选手的成绩;A (2)主持人从队所有选手成绩中随机抽2个,求至少有一个为“晋级”的概率;A (3)主持人从两队所有选手成绩分别随机抽取2个,记抽取到“晋级”选手的总人数为,求的A B 、ξξ分布列.【题组二二项分布】1.某学校实行自主招生,参加自主招生的学生从8个试题中随机挑选出4个进行作答,至少答对3个才能通过初试已知甲、乙两人参加初试,在这8个试题中甲能答对6个,乙能答对每个试题的概率为,且34甲、乙两人是否答对每个试题互不影响.(1)试通过概率计算,分析甲、乙两人谁通过自主招生初试的可能性更大;(2)若答对一题得5分,答错或不答得0分,记乙答题的得分为,求的分布列及数学期望和方差. Y Y2.2020年1月10日,引发新冠肺炎疫情的病毒基因序列公布后,科学家们便开始了病毒疫9COVID 苗的研究过程.但是类似这种病毒疫苗的研制需要科学的流程,不是一朝一夕能完成的,其中有一步就是做动物试验.已知一个科研团队用小白鼠做接种试验,检测接种疫苗后是否出现抗体.试验设计是:每天接种一次,3天为一个接种周期.已知小白鼠接种后当天出现抗体的概率为,假设每次接种后当天是否出12现抗体与上次接种无关.(1)求一个接种周期内出现抗体次数的分布列;K (2)已知每天接种一次花费100元,现有以下两种试验方案:①若在一个接种周期内连续2次出现抗体即终止本周期试验,进行下一接种周期,试验持续三个接种周期,设此种试验方式的花费为元;X ②若在一个接种周期内出现2次或3次抗体,该周期结束后终止试验,已知试验至多持续三个接种周期,设此种试验方式的花费为元.本着节约成本的原则,选择哪种实验方案. Y3.某校高三男生体育课上做投篮球游戏,两人一组,每轮游戏中,每小组两人每人投篮两次,投篮投进的次数之和不少于次称为“优秀小组”.小明与小亮同一小组,小明、小亮投篮投进的概率分别为312,p p .(1)若,,则在第一轮游戏他们获“优秀小组”的概率;123p =212p =(2)若则游戏中小明小亮小组要想获得“优秀小组”次数为次,则理论上至少要进行多少1243p p +=16轮游戏才行?并求此时的值. 12,p p4.2020年1月10日,引发新冠肺炎疫情的COVID-9病毒基因序列公布后,科学家们便开始了病毒疫苗的研究过程.但是类似这种病毒疫苗的研制需要科学的流程,不是一朝一夕能完成的,其中有一步就是做动物试验.已知一个科研团队用小白鼠做接种试验,检测接种疫苗后是否出现抗体.试验设计是:每天接种一次,3天为一个接种周期.已知小白鼠接种后当天出现抗体的概率为,假设每次接种后当天是否出现抗12体与上次接种无关.(1)求一个接种周期内出现抗体次数的分布列;k (2)已知每天接种一次花费100元,现有以下两种试验方案:①若在一个接种周期内连续2次出现抗体即终止本周期试验,进行下一接种周期,试验持续三个接种周期,设此种试验方式的花费为元;X ②若在一个接种周期内出现2次或3次抗体,该周期结束后终止试验,已知试验至多持续三个接种周期,设此种试验方式的花费为元.Y 比较随机变量和的数学期望的大小. X Y【题组三超几何分布与二项分布综合运用】1.全国中小学生的体质健康调研最新数据表明我国小学生近视眼发病率为22.78%,初中生为55.22%,高中生为70.34%.影响青少年近视形成的因素有遗传因素和环境因素,主要原因是环境因素.学生长时期近距离的用眼状态,加上不注意用眼卫生、不合理的作息时间很容易引起近视.除了学习,学生平时爱看电视、上网玩电子游戏、不喜欢参加户外体育活动,都是造成近视情况日益严重的原因.为了解情况,现从某地区随机抽取16名学生,调查人员用对数视力表检查得到这16名学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶),如图:(1)写出这组数据的众数和中位数;(2)若视力测试结果不低于5.0,则称为“好视力”.①从这16名学生中随机选取3名,求至少有2名学生是“好视力”的概率;②以这16名学生中是“好视力”的频率代替该地区学生中是“好视力”的概率.若从该地区学生(人数X X较多)中任选3名,记表示抽到“好视力”学生的人数,求的分布列及数学期望.如何学好数学1.圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就ok了2.选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍的小的就是答案,屡试不爽!3.三角函数第二题,如求a(cosB+cosC)/(b+c)coA之类的先边化角然后把第一题算的比如角A等于60度直接假设B和C都等于60°带入求解。

高中试卷-7.4 二项分布与超几何分布(精练)(含答案)

高中试卷-7.4 二项分布与超几何分布(精练)(含答案)

7.4 二项分布与超几何分布(精练)【题组一 二项分布】1.(2021·北京房山区·高二期末)已知某种药物对某种疾病的治愈率为34,现有3位患有该病的患者服用了这种药物,3位患者是否会被治愈是相互独立的,则恰有1位患者被治愈的概率为( )A .2764B .964C .364D .34【答案】B【解析】由已知3位患者被治愈是相互独立的,每位患者被治愈的概率为34,则不被治愈的概率为14所以3位患者中恰有1为患者被治愈的概率为12133194464P C æöæö=´´=ç÷ç÷èøèø故选:B 2.(2020·北京高二期末)已知随机变量X 服从二项分布,即(),X B n p :,且()2E X =,() 1.6D X =,则二项分布的参数n ,p 的值为( )A .4n =,12p =B .6n =,13p =C .8n =,14p =D .10n =,15p =【答案】D【解析】随机变量X 服从二项分布,即(),X B n p :,且()2E X =,() 1.6D X =,可得2np =,()1 1.6np p -=,解得0.2p =,10n =,故选:D.3.(2020·山西晋中市)某同学参加学校篮球选修课的期末考试,老师规定每个同学罚篮20次,每罚进一球得5分,不进记0分,已知该同学罚球命中率为60%,则该同学得分的数学期望和方差分别为( ).A .60,24B .80,120C .80,24D .60,120【答案】D【解析】设该同学20次罚篮,命中次数为X ,则320,5X B æöç÷èø:,所以()320125E X =´=,()3324201555D X æö=´´-=ç÷èø,所以该同学得分5X 的期望为()551260E X =´=,方差为()224551205D X =´=.故选:D4.(2020·营口市第二高级中学高二期末)从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回地摸取6次,设摸得黑球的个数为X ,已知()3E X =,则m 等于( )A .2B .1C .3D .5【答案】C【解析】根据题意可得出63()()(33kk m k m P X k C m m-==++ ,即3(6,)3X B m ~+ 所以()36333E X m m=´=Þ=+故选C 5.(多选)(2020·全国高二单元测试)若随机变量ξ~B 1(5,)3,则P (ξ=k )最大时,k 的值为( )A .1B .2C .3D .4【答案】AB【解析】依题意5512()33kkk P k C x -æöæö==ç÷ç÷èøèø,k=0,1,2,3,4,5.可以求得P (ξ=0)=32243,P (ξ=1)=80243,P (ξ=2)=80243,P (ξ=3)=40243,P (ξ=4)=10243,P (ξ=5)=1243.故当k=2或1时,P (ξ=k )最大.故选:AB ..6.(2021·广东东莞)为迎接8月8日的“全民健身日”,某大学学生会从全体男生中随机抽取16名男生参加1500米中长跑测试,经测试得到每个男生的跑步所用时间的茎叶图(小数点前一位数字为茎,小数点的后一位数字为叶),如图,若跑步时间不高于5.6秒,则称为“好体能”.(1)写出这组数据的众数和中位数;(2)要从这16人中随机选取3人,求至少有2人是“好体能”的概率;(3)以这16人的样本数据来估计整个学校男生的总体数据,若从该校男生(人数众多)任取3人,记X 表示抽到“好体能”学生的人数,求X 的分布列【答案】(1)众数和中位数分别是5.8,5.8;(2)19140;(3)分布列见解析;【解析】(1)这组数据的众数和中位数分别是5.8,5.8;(2)设至少有2人是“好体能”的事件为A ,则事件A 包含得基本事件个数为;2134124C C C +g 总的基本事件个数为316C ,213412431619()140C C C P A C +==g (3)X 的可能取值为0,1,2,3,由于该校男生人数众多,故X 近似服从二项分布1(3,)4B 3327(0)()464P x ===,1231327(1)()4464P x C ===g ,223139(2)(4464P x C ===g ,311(3)(464P x ===X 的分布列为:X123P276427649641647.(2021·山东德州市·高三期末)某研究院为了调查学生的身体发育情况,从某校随机抽频率组距测120名学生检测他们的身高(单位:米),按数据分成[1.2,1.3],(1.3,1.4],,(1.7,1.8]L 这6组,得到如图所示的频率分布直方图,其中身高大于或等于1.59米的学生有20人,其身高分别为1.59,1.59,1.61,1.61,1.62,1.63,1.63,1.64,1.65,1.65,1.65,1.65,1.66,1.67,,1.68,1.69,1.69,1.71,1.72,1.74,以这120名学生身高在各组的身高的频率估计整个学校的学生在各组身高的概率.(1)求该校学生身高大于1.60米的频率,并求频率分布直方图中m 、n 、t 的值;(2)若从该校中随机选取3名学生(学生数量足够大),记X 为抽取学生的身高在(1.4,1.6]的人数求X 的分布列和数学期望.【答案】(1)0.25m = , 1.25n =, 3.5t =;(2)分布列见详解;2.1.【解析】(1)由题意可知120名学生中身高大于1.60米的有18人,所以该校学生身高大于1.60米的频率为180.15120= 记d 为学生身高,则()()31.2 1.3 1.7 1.80.025120p p d d ££=<£== ()()151.3 1.4 1.6 1.70.125120p p d d <£=<£==()()()11.4 1.5 1.5 1.6120.02520.1250.352p p d d <£=<£=-´-´=所以0.0250.250.1m == ,0.125 1.250.1n ==,0.353.50.1t ==;(2)由(1)知学生身高在[]1.41.6, 的概率20.350.7p =´=随机变量X 服从二项分布()~3,0.7X B 则()()33010.70.027p x C ==´-= ()()213110.70.70.189p x C ==´-´=()()1223210.70.70.441p x C ==´-´=()33330.70.343p x C ==´=所以X 的分布列为X0123P0.0270.1890.4410.34330.7 2.1EX =´=8.(2020·湖北随州市·高二期末)疫情过后,为促进居民消费,某超市准备举办一次有奖促销活动,若顾客一次消费达到500元则可参加一轮抽奖活动,超市设计了两种抽奖方案.在一个不透明的盒子中装有6个质地均匀且大小相同的小球,其中2个红球,4个白球,搅拌均匀.方案一:顾客从盒子中随机抽取一个球,若抽到红球则顾客获得50元的返金券,若抽到白球则获得30元的返金券,可以有放回地抽取3次,最终获得的返金券金额累加.方案二:顾客从盒子中随机抽取一个球,若抽到红球则顾客获得100元的返金券,若抽到白球则不获得返金券,可以有放回地抽取3次,最终获得的返金券金额累加.(1)方案一中,设顾客抽取3次后最终可能获得的返金券的金额为X ,求X 的分布列;(2)若某顾客获得抽奖机会,试分别计算他选择两种抽奖方案最终获得返金券的数学期望,并以此判断应该选择哪种抽奖方案更合适.【答案】(1)答案见解析;(2)方案一数学期望为110(元),方案二数学期望为100(元);方案一.【解析】(1)由题意易知,方案一和方案二中单次抽到红球的概率为13,抽到白球的概率为23,依题意,X 的取值可能为90,110,130,150.且30328(90)327P X C æö==×=ç÷èø,1213124(110)339P X C æöæö==××=ç÷ç÷èøèø223122(130)339P X C æöæö==××=ç÷ç÷èøèø,33311(150)327P X C æö==×=ç÷èø其分布列为X 90110130150p8274929127(2)由(1)知选择方案一时最终获得返金券金额的数学期望为8421()90110130150110279927E X =´+´+´+´=(元),选择方案二时,设摸到红球的次数为Y ,最终可能获得返金券金额为Z 元,由题意可知,1~3,3Y B æöç÷èø,得1()313E Y =´=()(100)100()100E Z E Y E Y ===由()()E X E Z >可知,该顾客应该选择方案一抽奖.【题组二 超几何分布】1.(2020·辽宁沈阳市)在箱子中有10个小球,其中有3个红球,3个白球,4个黑球.从这10个球中任取3个.求:(1)取出的3个球中红球的个数为X ,求X 的数学期望;(2)取出的3个球中红球个数多于白球个数的概率.【答案】(1)910;(2)13.【解析】(1)取出的3个球中红球的个数为X ,可能取值为:0,1,2,3,所以()37310350120p X C C===, ()2731016331120p X C C C===, ()1731022132120p X C C C===,()3103313120p X C C===.所以X 的数学期望()35632119012312012012012010E X =´+´+´+´=.(2)设“取出的3个球中红球个数多于白球个数”为事件A ,“恰好取出1个红球和2个黑球”为事件1A ,“恰好取出2个红球”为事件2A ,“恰好取出3个红球”为事件3A ,而()12341310320C C P A C ==,()()21372310217212040C C P A P X C =====,()()3037331013120C C P A P X C ×====,所以取出的3个球中红球个数多于白球个数的概率为:()()()()123371120401203P A P A P A P A =++=++=.2.(2021·山东德州市)在全面抗击新冠肺炎疫情这一特殊时期,某大型企业组织员工进行爱心捐款活动.原则上以自愿为基础,每人捐款不超过300元,捐款活动负责人统计全体员工数据后,随机抽取的10名员工的捐款数额如下表:员工编号12345678910捐款数额120802155013019530090200225(1)若从这10名员工中随机选取2人,则选取的人中捐款恰有一人高于200元,一人低于200元的概率;(2)若从这10名员工中任意选取4人,记选到的4人中捐款数额大于200元的人数为X ,求X 的分布列和数学期望.【答案】(1)25;(2)分布列见解析,65.【解析】(1)10名员工中捐款数额大于200元的有3人,低于200元的有6人故选取的人中捐款恰有一人高于200元,一人低于200元的概率为:1136210182455C C P C ===(2)由题知,10名员工中捐款数额大于200元的有3人,则随机变量X 的所有可能取值为0,1,2,3()4741035102106C P X C ====,()133********12102C C P X C ====,()2237410623221010C C P X C ====()313741071321020C C P X C ====则X 的分布列为X0123P1612310130()1131601236210305E X =´+´+´+´=;(用超几何分布公式()366105nM E X N ´===计算同样得分)3.(2020·河北省盐山中学高二期末)在某城市气象部门的数据库中,随机抽取30天的空气质量指数的监测数据,整理得如下表格:空气质量指数优良好轻度污染中度污染重度污染天数5a84b空气质量指数为优或良好,规定为Ⅰ级,轻度或中度污染,规定为Ⅱ级,重度污染规定为Ⅲ级.若按等级用分层抽样的方法从中抽取10天的数据,则空气质量为Ⅰ级的恰好有5天.(1)求a ,b 的值;(2)若以这30天的空气质量指数来估计一年的空气质量情况,试问一年(按366天计算)中大约有多少天的空气质量指数为优?(3)若从抽取的10天的数据中再随机抽取4天的数据进行深入研究,记其中空气质量为Ⅰ级的天数为X ,求X 的分布列及数学期望.【答案】(1)10a =,3b =.(2)61天(3)见解析【解析】(1)由题意知从中抽取10天的数据,则空气质量为Ⅰ级的恰好有5天,所以空气质量为Ⅰ级的天数为总天数的12,所以5+a=15,8+4+b=15,可得10a =,950.(2)依题意可知,一年中每天空气质量指数为优的概率为51306P ==,则一年中空气质量指数为优的天数约为1366616´=.(3)由题可知抽取的10天的数据中,Ⅰ级的天数为5,Ⅱ级和Ⅲ级的天数之和为5,满足超几何分布,所以X 的可能取值为0,1,2,3,4,4541051(0)21042C P X C ====,135510505(1)21021C C P X C ====,225541010010(2)21021C C P X C ====,3551410505(3)21021C C P X C ====,4541051(4)21042C P X C ====,X 的分布列为X1234P142 521 1021521 142故151051()0123424221212142E X =´+´+´+´+´=.4.(2020·延安市第一中学)在一个袋中,装有大小、形状完全相同的3个红球、2个黄球.现从中任取2个球,设随机变量x 为取得红球的个数.(1)求x 的分布列;(2)求x 的数学期望()E x 和方差()D x .【答案】(1)详见解析(2)6()5E x =,9()25D x =【解析】(1)x 的取值为0,1,2.()0232251010C C P C x ===,()113225631105C C P C x ====,()2032253210C C P C x ===,则x 的分布列为:x012P11035310(2)()1336012105105E x =´+´+´=,2226163639()0125105551025D x æöæöæö=-´+-´+-´=ç÷ç÷ç÷èøèøèø.5.(2020·西藏拉萨市)港珠澳大桥是一座具有划时代意义的大桥.它连通了珠海香港澳门三地,大大缩短了三地的时空距离,盘活了珠江三角洲的经济,被誉为新的世界七大奇迹.截至2019年10月23日8点,珠海公路口岸共验放出入境旅客超过1400万人次,日均客流量已经达到4万人次,验放出入境车辆超过70万辆次,2019年春节期间,客流再次大幅增长,日均客流达8万人次,单日客流量更是创下11.3万人次的最高纪录.2019年从五月一日开始的连续100天客流量频率分布直方图如下(1)①同一组数据用该区间的中点值代替,根据频率分布直方图.估计客流量的平均数.②求客流量的中位数.(2)设这100天中客流量超过5万人次的有n 天,从这n 天中任取两天,设X 为这两天中客流量超过7万人的天数.求X 的分布列和期望.【答案】(1)①4.15,②4.125;(2)分布列见解析,()23E X =【解析】(1)①平均值为()2.50.2 3.50.25 4.50.4 5.50.05 6.50.057.50.051 4.15´+´+´+´+´+´´=②设中位数为x ,则()0.200.250.4040.5x ++-=解得中位数为 4.125x =(2)可知15n =其中超过7万人次的有5天()2010521545301057C C P X C ====()111052155010110521C C P X C ====()02105215102210521C C P X C ====X012P371021221所以()31022012721213E X =´+´+´=6.(2021·福建莆田市)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(1)求取出的4个球中恰有1个红球的概率;(2)设x 为取出的4个球中红球的个数,求x 的分布列和数学期望.【答案】(1)715;(2)见解析.【解析】(1)记事件:A 取出的4个球中恰有1个红球,事件1:A 取出的4个球中唯一的红球取自于甲盒,事件2:A 取出的4个球中唯一的红球取自于乙盒,则12A A A =U ,且事件1A 与2A 互斥,由互斥事件的概率公式可得()()()1221134324122246715C C C C C P A P A P A C C +=+==,因此,取出的4个球中恰有1个红球的概率为715;(2)由题意知随机变量x 的可能取值为0、1、2、3,()22342246105C C P C C x ===,()7115P x ==,()111223243222463210C C C C C P C C x +===,()123222461330C C P C C x ===.所以,随机变量x 的分布列如下表所示:x123P15715310130因此,随机变量x 的数学期望为17317012351510306E x =´+´+´+´=.7.(2020·福建省南安市侨光中学高二月考)某单位组织“学习强国”知识竞赛,选手从6道备选题中随机抽取3道题.规定至少答对其中的2道题才能晋级.甲选手只能答对其中的4道题.(1)求甲选手能晋级的概率;(2)若乙选手每题能答对的概率都是34,且每题答对与否互不影响,用数学期望分析比较甲、乙两选手的答题水平.【答案】(1)45;(2)乙选手比甲选手的答题水平高【解析】解法一:(1)记“甲选手答对i 道题”为事件i A ,1,2,3i =,“甲选手能晋级”为事件A ,则23A A A =U .()()()()2134242323336645C C C P A P A A P A P A C C =È=+=+=;(2)设乙选手答对的题目数量为X ,则3~3,4X B æöç÷èø,故()39344E X =´=,设甲选手答对的数量为Y ,则Y 的可能取值为1,2,3,()124236115C C P Y C ===,()214236325C C P Y C ===,()3436135C P Y C ===,故随机变量Y 的分布列为Y123P153515所以,()1311232555E Y =´+´+´=,则()()E X E Y >,所以,乙选手比甲选手的答题水平高;解法二:(1)记“甲选手能晋级”为事件A ,则()124236141155C C P A C =-=-=;(2)同解法二.8.(2020·全国高二课时练习)某大学在一次公益活动中聘用了10名志愿者,他们分别来自于A 、B 、C 三个不同的专业,其中A 专业2人,B 专业3人,C 专业5人,现从这10人中任意选取3人参加一个访谈节目.(1)求3个人来自两个不同专业的概率;(2)设X 表示取到B 专业的人数,求X 的分布列.【答案】(1)79120(2)见解析【解析】()1令事件A 表示“3个来自于两个不同专业”,1A 表示“3个人来自于同一个专业”,2A 表示“3个人来自于三个不同专业”,()3335131011120C C P A C +==,()111235231030120C C C P A C ==,3\个人来自两个不同专业的概率:()()()1211307911120120120P A P A P A =--=--=.()2随机变量X 有取值为0,1,2,3,()0337310350120C C P X C ===,()1237310631120C C P X C ===,()2137310212120C C P X C ===,()307331013120C C P X C ===,X \的分布列为:X123P3512063120211201120【题组三 二项分布与超几何分布综合运用】1.(2020·甘肃省会宁县第四中学) 2.5PM 是指大气中直径小于或等于2.5微米的颗粒物,也称为可吸入肺颗粒物.我国 2.5PM 标准采用世卫组织设定的最宽限值,即 2.5PM 日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标,某试点城市环保局从该市市区2019年上半年每天的 2.5PM 监测数据中随机的抽取15天的数据作为样本,监测值如下茎叶图所示(十位为茎,个位为叶).(1)在这15天的 2.5PM 日均监测数据中,求其中位数;(2)从这15天的数据中任取2天数据,记x 表示抽到 2.5PM 监测数据超标的天数,求x 的分布列及数学期望;(3)以这15天的 2.5PM 日均值来估计该市下一年的空气质量情况,则一年(按365天计算)中平均有多少天的空气质量达到一级或二级.【答案】(1)45;(2)分布列见解析,45;(3)219.【解析】(1)由茎叶图可得中位数是45.(2)依据条件,x 服从超几何分布:其中15N =,6M =,2n =,x 的可能值为0,1,2,()026921512035C C P C x ===,()116921518135C C P C x ===,()2069215512357C C P C x ====,所以x 的分布列为:x012P1235183517()121814012353575E x =´+´+´=.(3)依题意可知,一年中每天空气质量达到一级或二级的概率为93=155P =,一年中空气质量达到一级或二级的天数为h ,则3365,5B h æöç÷èø:,33652195E h =´=,∴一年中平均有219天的空气质量达到一级或二级.2.(2020·山东高二期末)1933年7月11日,中华苏维埃共和国临时中央政府根据中央革命军事委员会6月30日的建议,决定8月1日为中国工农红军成立纪念日.中华人民共和国成立后,将此纪念日改称为中国人民解放军建军节.为庆祝建军节,某校举行“强国强军”知识竞赛,该校某班经过层层筛选,还有最后一个参赛名额要在A ,B 两名学生中间产生,该班委设计了一个测试方案:A ,B 两名学生各自从6个问题中随机抽取3个问题作答.已知这6个问题中,学生A 能正确回答其中的4个问题,而学生B 能正确回答每个问题的概率均为23,A ,B 两名学生对每个问题回答正确与否都是相互独立、互不影响的.(1)求A 恰好答对两个问题的概率;(2)求B 恰好答对两个问题的概率;(3)设A 答对题数为X ,B 答对题数为Y ,若让你投票决定参赛选手,你会选择哪名学生?请说明理由.【答案】(1)35 ;(2)49;(3)选择A .【解析】(1) A 恰好答对两个问题的概率为214236C C 3C 5=;(2) B 恰好答对两个问题的概率为223214339C æö´=ç÷èø;(3) X 所有可能的取值为1,2,3. ()124236C C 11C 5P X ===,214236C C 3(2)C 5P X ===,304236C C 1(3)C 5P X ===,所以131()1232555E X =´+´+´=,2221312()(12)(22)(32)5555D X =-´+-´+-´=;而23,3Y B æö-ç÷èø,2()323E Y =´=,212()3333D Y =´´=,所以()()E X E Y =,()()D X D Y <,可见,A 与B 的平均水平相当,但A 比B 的成绩更稳定.所以选择投票给学生A .3.(2021·湖南高二期末)一个袋中装有大小形状相同的标号为1,2,3,4,5,6的6个小球,某人做如下游戏,每次从袋中拿一个球(拿后放回袋中)记下标号,若拿出球的标号是奇数,则得1分,否则得0分.(1)求拿2次得分不小于1分的概率;(2)拿4次所得分数x 的分布列和数学期望()E x 【答案】(1)34;(2)分布列见解析;期望为2.【解析】(1)一次拿到奇数的概率3162P ==,所以拿2次得分为0分的概率为2021124C æö=ç÷èø所以拿2次得分不小于1分的概率为2211311244C æö-=-=ç÷èø(2)x 可以取值:0,1,2,3,4所以()404121601C P x æö=ç÷èø==()13141112124C P x æöæö´=ç÷ç÷èøèø==()22241132228C P x æöæö´=ç÷ç÷èøèø==()31341112324C P x æöæö´=ç÷ç÷èøèø==()404411122164P C x æöæö´=ç÷ç÷èøèø==分布列x01234P116143814116满足二项分布概率1~42B x æöç÷èø,1()=4=22E x \´4.(2020·武汉外国语学校高二期中)为有效预防新冠肺炎对老年人的侵害,某医院到社区检查老年人的体质健康情况.从该社区全体老年人中,随机抽取12名进行体质健康测试,根据测试成绩(百分制)绘制茎叶图如下.根据老年人体质健康标准,可知成绩不低于80分为优良,且体质优良的老年人感染新冠肺炎的可能性较低.(Ⅰ)从抽取的12人中随机选取3人,记x 表示成绩优良的人数,求x 的分布列及数学期望;(Ⅱ)将频率视为概率,根据用样本估计总体的思想,在该社区全体老年人中依次抽取10人,若抽到k 人的成绩是优良的可能性最大,求k 的值.【答案】(Ⅰ)分布列见解析;()2E x =;(Ⅱ)7k =.【解析】(Ⅰ)由题意12人中有8人体质优良,x 可能的取值为0,1,2,3,()343121055C P C x ===,()128431212155C C P C x ×===,()218431228255C C P C x ×===,()3831214355C P C x ===,所以x 的分布列为:x0123P155125528551455数学期望()1122814 01232 55555555E x=´+´+´+´=;(Ⅱ)由题意可知,抽取的10人中,成绩是优良的人数210,3X Bæöç÷èø∼,所以()10 102133k k kP X k C-æöæö==××ç÷ç÷èøèø,0,1,210k=×××,令()()10110111010101101110102121333321213333k k k kk kk k k kk kC CC C------+-++ìæöæöæöæö×׳××ïç÷ç÷ç÷ç÷ïèøèøèøèøíïæöæöæöæö×׳××ç÷ç÷ç÷ç÷ïèøèøèøèøî,解得192233k££,又kÎN,所以7k=,所以当7k=时,抽到k人的成绩是优良的可能性最大.。

二项分布与超几何分布的区别练习题

二项分布与超几何分布的区别练习题

超几何分布与二项分布的区别[知识点]关键是判断超几何分布与二项分布判断一个随机变量是否服从超几何分布,关键是要看随机变量是否满足超几何分布的特征:一个总体(共有N 个)内含有两种不同的事物()A M 个、()B NM 个,任取n 个,其中恰有X 个A .符合该条件的即可断定是超几何分布,按照超几何分布的分布列()k n k MN M n NC C P Xk C(0,1,2,,km )进行处理就可以了.二项分布必须同时满足以下两个条件:①在一次试验中试验结果只有A 与A 这两个,且事件A 发生的概率为p ,事件A 发生的概率为1p ;②试验可以独立重复地进行,即每次重复做一次试验,事件A 发生的概率都是同一常数p ,事件A 发生的概率为1p . 1、某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为23.现有10件产品,其中6件是一等品,4件是二等品.(Ⅰ) 随机选取1件产品,求能够通过检测的概率;(Ⅱ) 随机选取3件产品,其中一等品的件数记为X ,求X 的分布列;(Ⅲ) 随机选取3件产品,求这三件产品都不能通过检测的概率.2、第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。

将这30名志愿者的身高编成如右所示的茎叶图(单位:cm ):若身高在175cm 以上(包括175cm )定义为“高个子”,身高在175cm 以下(不包括175cm )定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”.(Ⅰ)如果用分层抽样的方法从“高个子”和“非高个子”中中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?(Ⅱ)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望.3、某地区对12岁儿童瞬时记忆能力进行调查,瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.视觉视觉记忆能力偏低中等偏高超常听觉记忆能力偏低0 7 5 1 中等 1 8 3 b 偏高 2 a0 1 超常0 2 1 1由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为25.(Ⅰ)试确定a、b的值;(Ⅱ)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为,求随机变量的分布列.4、在某校教师趣味投篮比赛中,比赛规则是: 每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖. 已知教师甲投进每个球的概率都是23.(Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;(Ⅱ)求教师甲在一场比赛中获奖的概率;(Ⅲ)已知教师乙在某场比赛中,6个球中恰好投进了4个球,求教师乙在这场比赛中获奖的概率;教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率相等吗?听觉。

7.4 二项分布与超几何分布(精讲)(解析版)

7.4 二项分布与超几何分布(精讲)(解析版)

7.4 二项分布与超几何分布(精讲)考法一 二项分布【例1】(2020·全国高二课时练习)高尔顿(钉)板是在一块竖起的木板上钉上一排排互相平行、水平间隔相等的圆柱形铁钉(如图),并且每一排铁钉数目都比上一排多一个,一排中各个铁钉恰好对准上面一排两相邻铁钉的正中央.从入口处放入一个直径略小于两颗铁钉间隔的小球,当小球从两钉之间的间隙下落时,由于碰到下一排铁钉,它将以相等的可能性向左或向右落下,接着小球再通过两铁钉的间隙,又碰到下一排铁钉.如此继续下去,在最底层的5个出口处各放置一个容器接住小球.(1)理论上,小球落入4号容器的概率是多少?(2)一数学兴趣小组取3个小球进行试验,设其中落入4号容器的小球的个数为X ,求X 的分布列. 【答案】(1)14;(2)分布列答案见解析. 【解析】(1)记“小球落入4号容器”为事件A ,若要小球落入4号容器,则需要在通过的四层中有三层向右,一层向左,∴理论上,小球落入4号容器的概率43411()C 24P A ⎛⎫== ⎪⎝⎭. (2)落入4号容器的小球的个数X 的所有可能取值为0,1,2,3,303127(0)C 1464P X ⎛⎫∴==⨯-= ⎪⎝⎭, 2131127(1)C 14464P X ⎛⎫==⨯⨯-= ⎪⎝⎭,2123119(2)C 14464P X ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,33311(3)C 464P X ⎛⎫==⨯=⎪⎝⎭, X ∴的分布列为【一隅三反】1.(2020·重庆市第七中学校高二月考)若随机变量14,2X B ⎛⎫ ⎪⎝⎭~,则()21E X +=( ) A .2 B .3C .4D .5【答案】D【解析】因为14,2X B ⎛⎫ ⎪⎝⎭~,所以1422EX =⨯=,所以()21215E X EX +=+=.故选:D. 2.(多选)(2020·全国高二单元测试)已知随机变量120,3X B ⎛⎫ ⎪⎝⎭,若使()P X k =的值最大,则k 等于( ) A .5 B .6C .7D .8【答案】BC【解析】令()()1201120202012120331221233k k k k k k C P X k kP X k k C +--+-⎛⎫⎛⎫⋅ ⎪ ⎪=+-⎝⎭⎝⎭==>=+⎛⎫⎛⎫⋅ ⎪ ⎪⎝⎭⎝⎭,得k 6<,即当k 6<时,()1()P X k P X k =+>=; 当6k =时,()()76P X P X ===; 当6k >时,()1()P X k P X k =+<=, 所以(6)P X =和()7P X =的值最大. 故选:BC .3.(2020·江苏淮安市·淮阴中学高二期末)江苏实行的“新高考方案:312++”模式,其中统考科目:“3”指语文、数学、外语三门,不分文理:学生根据高校的要求,结合自身特长兴趣,“1”指首先在在物理、历史2门科目中选择一门;“2”指再从思想政治、地理、化学、生物4门科目中选择2门某校,根据统计选物理的学生占整个学生的34;并且在选物理的条件下,选择地理的概率为23;在选历史的条件下,选地理的概率为45. (1)求该校最终选地理的学生概率;(2)该校甲、乙、丙三人选地理的人数设为随机变量X . ①求随机变量2X =的概率; ②求X 的概率分布列以及数学期望. 【答案】(1)710;(2)①4411000;②分布列见解析,()2110E X =. 【解析】(1)该校最终选地理的学生为事件A ,()32147434510P A =⨯+⨯=; 因此,该校最终选地理的学生为710; (2)①由题意可知,73,10XB ⎛⎫ ⎪⎝⎭,所以,()22373441210101000P X C ⎛⎫==⋅⋅= ⎪⎝⎭; ②由于73,10XB ⎛⎫ ⎪⎝⎭,则()33270101000P X ⎛⎫=== ⎪⎝⎭, ()121373189110101000P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()22373441210101000P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()33373433101000P X C ⎛⎫=== ⎪⎝⎭, 所以,随机变量X 的分布列如下表所示:()72131010E X ∴=⨯=.4.(2020·陕西渭南市)已知某植物种子每粒成功发芽的概率都为13,某植物研究所分三个小组分别独立进行该种子的发芽试验,每次试验种一粒种子,每次试验结果相互独立.假设某次试验种子发芽,则称该次试验是成功的,如果种子没有发芽,则称该次试验是失败的. (1)第一小组做了四次试验,求该小组恰有两次失败的概率;(2)第二小组做了四次试验,设试验成功与失败的次数的差的绝对值为X ,求X 的分布列及数学期望. 【答案】(1)827;(2)答案见解析;14881. 【解析】(1)记“该小组有两次失败”为事件A ,222412248()338127P A C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭. (2)由题意可知X 的可能取值为0,2,4.2224128(0)3327P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭, 13311344121232840(2)33338181P X C C +⎛⎫⎛⎫⎛⎫⎛⎫==+== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 444442116117(4)338181P X C C +⎛⎫⎛⎫==+== ⎪ ⎪⎝⎭⎝⎭. 故X 的分布列为:84017148()024********E X =⨯+⨯+⨯=. 考点二 超几何分布【例2】(2020·全国高二单元测试)现对某高校16名篮球运动员在多次训练比赛中的得分进行统计,将每位运动员的平均成绩所得数据用频率分布直方图表示如下.(如:落在区间[10,15)内的频率/组距为0.0125)规定分数在[10,20),[20,30),[30,40)上的运动员分别为三级篮球运动员、二级篮球运动员、一级篮球运动员,现从这批篮球运动员中利用分层抽样的方法选出16名运动员作为该高校的篮球运动员代表.(1)求a的值和选出篮球运动员代表中一级运动员的人数;(2)若从篮球运动员代表中选出三人,求其中含有一级运动员人数X的分布列;(3)若从该校篮球运动员中有放回地选三人,求其中含有一级运动员人数Y的期望.【答案】(1)a=0.0250,4人;(2)答案见解析;(3)34.【解析】(1)由频率分布直方图知:(0.0625+0.0500+0.0375+a+2×0.0125)×5=1,∴a=0.0250. 其中为一级运动员的概率为(0.012 5+0.037 5)×5=0.25,∴选出篮球运动员代表中一级运动员为0.25×16=4人.(2)由已知可得X的可能取值分别为0,1,2,3,P(X=0)=312316CC=1128,P(X=1)=21243161C CC⋅=3370,P(X=2)=24113162C CC⋅=970,P(X=3)=34316CC=1140,∴X的分布列为(3)由已知得Y~B1 (3,)4,∴E(Y)=np=3×14=34,∴含有一级运动员人数Y 的期望为34. 【一隅三反】1.(2020·全国高二课时练习)新冠肺炎疫情期间,为了更有效地进行防控,各地学校都发出延期开学的通知.很多学校及老师为响应各地教育行政部门实行“停课不停学”的号召,让学生们在家通过收看网络直播的方式进行学习,已知高一某班共有学生21人,其中男生12人,女生9人.现采用分层抽样的方法从中抽取7人,测试他们对网络课程学习的效果,效果分为优秀和不优秀两种,优秀得2分,不优秀得1分. (1)应抽取男生、女生各多少人?(2)若抽取的7人中,4人的测试效果为优秀,3人为不优秀,现从这7人中随机抽取3人. (i )用X 表示抽取的3人的得分之和,求随机变量x 的分布列及数学期望;(ii )设事件A 为“抽取的3人中,既有测试效果为优秀的,也有为不优秀的”,求事件A 发生的概率. 【答案】(1)4人;(2)(i )分布列答案见解析,数学期望:337;(ii )67.【解析】(1)因为采用分层抽样的方法进行抽样,所以应抽取女生97321⨯=人,抽取男生127421⨯=人. (2)(i )随机变量X 的所有可能取值为3,4,5,6.0343371(3)35C C P X C ===, 12433712(4)35C C P X C ===, 21433718(5)35C C P X C ===,3043374(6)35C C P X C ===, 所以随机变量X 的分布列为数学期望11218416533()345635353535357E X =⨯+⨯+⨯+⨯==. (ii )由(i )知12186()(4)(5)35357P A P X P X ==+==+=, 故事件A 发生的概率为67. 2.(2020·绵阳市·四川省绵阳江油中学)某校五四青年艺术节选拔主持人,现有来自高一年级参赛选手4名,其中男生2名;高二年级参赛选手4名,其中男生3名.从这8名参赛选手中随机选择4人组成搭档参赛.(Ⅰ)设A 为事件“选出的4人中恰有2名男生,且这2名男生来自同一个年级”,求事件A 发生的概率; (Ⅱ)设X 为选出的4人中男生的人数,求随机变量X 的分布列和数学期望. 【答案】(Ⅰ)635(Ⅱ)分布列见解析,数学期望52【解析】(Ⅰ)由已知有()2222233348635C C C C P A C +==,所以事件A 发生的概率为635.(Ⅱ)随机变量X 的所有可能取值为1,2,3,4,()()453481,2,3,4k kC C P X k k C -=== 所以随机变量X 的分布列为所以随机变量X 的数学期望()1331512341477142E X =⨯+⨯+⨯+⨯=. 3.(2021·北京东城区)为了解学生自主学习期间完成数学套卷的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.(1)从这班学生中任选一名男生,一名女生,求这两名学生完成套卷数之和为4的概率?(2)若从完成套卷数不少于4套的学生中任选4人,设选到的男学生人数为X ,求随机变量X 的分布列和数学期望;(3)试判断男学生完成套卷数的方差21s 与女学生完成套卷数的方差22s 的大小(只需写出结论). 【答案】(1)796(2)详见解析(3)2212s s > 【解析】(1)设事件A :从这个班级的学生中随机选取一名男生,一名女生,这两名学生完成套卷数之和为4,由题意可知,()1341712896P A ⨯+⨯==⨯.(2)完成套卷数不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为0,1,2,3,4.由题意可得()44481070C P X C ===;()13444816817035C C P X C ====;()224448361827035C C P X C ====; ()31444816837035C C P X C ====;()44481470C P X C ===.所以随机变量X 的分布列为随机变量X 的均值116361610123427070707070EX =⨯+⨯+⨯+⨯+⨯=. (3)2212s s >.考点三 二项分布与超几何分布综合运用【例3】(2020·浙江台州市·高二期中)2020年五一期间,银泰百货举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球2个,白球1个,黑球7个)的抽奖盒中,一次性摸出3个球其中奖规则为:若摸到2个红球和1个白球,享受免单优惠;若摸出2个红球和1个黑球则打5折;若摸出1个白球2个黑球,则打7折;其余情况不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率; (2)若某顾客消费恰好满1000元,试从概率角度比较该顾客选择哪一种抽奖方案更合算?【答案】(1)114400;(2)选择第二种方案更合算.【解析】(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件A ,则()21213101120C C P A C ==, 所以两位顾客均享受到免单的概率为()()114400P P A P A =⋅=;(2)若选择方案一,设付款金额为X 元,则X 可能的取值为0、500、700、1000.()212131010120C C P X C ===,()21273107500120C C P X C ===, ()1217310770040C C P X C ===,()177911000112012040120P X ==---=.故X 的分布列为,所以()0500700100091012012040120E X =⨯+⨯+⨯+⨯=(元). 若选择方案二,设摸到红球的个数为Y ,付款金额为Z ,则1000200Z Y =-, 由已知可得3~3,10Y B ⎛⎫⎪⎝⎭,故()3931010E Y =⨯=, 所以()()()10002001000200820E Z E Y E Y =-=-=(元). 因为()()E X E Z >,所以该顾客选择第二种抽奖方案更合算.【一隅三反】1.(2020·辽宁大连市)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (1)求在1次游戏中,①摸出3个白球的概率;②获奖的概率;(2)求在4次游戏中获奖次数X 的分布列及数学期望()E X . 【答案】(1)①15,②710;(2)分布列见解析,145. 【解析】(1)设“在1次游戏中摸出i 个白球”为事件(0,1,2,3),=i A i①2132322531().5==C C P A C C · ②设“在1次游戏中获奖”为事件B ,则23B A A =⋃,又21121332222222253531(),2=+=C C C C C P A C C C C ··且A 2,A 3互斥, 所以23117()()().2510P B P A P A (2)由题意可知X 的所有可能取值为0,1,2,3,4, 由(1)7()10P B =,3()1()10P B P B =-=, 44381(0)()1010000P X P B ⎛⎫⎡⎤==== ⎪⎣⎦⎝⎭, 331473189(1)()()410102500P X C P B P B ⎛⎫⎡⎤===⨯⨯= ⎪⎣⎦⎝⎭, []222224731323(2)()()610105000P X C P B P B ⎛⎫⎛⎫⎡⎤===⨯⨯= ⎪ ⎪⎣⎦⎝⎭⎝⎭ []3334731029(3)()()410102500P X C P B P B ⎛⎫===⨯⨯=⎪⎝⎭[]4472401(4)()1010000P X P B ⎛⎫====⎪⎝⎭ 所以X 的分布列是显然7~B 410X ⎛⎫ ⎪⎝⎭, ,所以X 的数学期望E(X)=7144105⨯=. 2.(2020·广东云浮市)甲、乙去某公司应聘面试.该公司的面试方案为:应聘者从6道备选题中一次性随机抽取3道题,按照答对题目的个数为标准进行筛选.已知6道备选题中应聘者甲有4道题能正确完成,2道题不能完成;应聘者乙每题正确完成的概率都是23,且每题正确完成与否互不影响. (1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望; (2)请分析比较甲、乙两人谁的面试通过的可能性较大?【答案】(1) 甲、乙的分布列见解析;甲的数学期望2、乙的数学期望2; (2)甲通过面试的概率较大. 【解析】(1)设X 为甲正确完成面试题的数量,Y 为乙正确完成面试题的数量, 依题意可得:~(6,3,4)X H ,∴1223461(1)5C C P X C ⋅===,4212363(2)5C C P X C ⋅===,3042361(3)5C C P X C ⋅===, ∴X 的分布列为:∴1232555EX =⨯+⨯+⨯=. 2~3,3Y B ⎛⎫ ⎪⎝⎭,∴0303211(0)3327P Y C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,12132162(1)C 33279P Y ⎛⎫⎛⎫==== ⎪⎪⎝⎭⎝⎭, 212321124(2)C 33279P Y ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,333218(3)3327P Y C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭, ∴Y 的分布列为:∴01232279927EY =⨯+⨯+⨯+⨯=.(2)2221312(12)(22)(32)5555DX =⨯-+-⨯+-⨯=, 2121333(3)DY np p =-=⨯⨯=,∵DX DY <,∴甲发挥的稳定性更强,则甲通过面试的概率较大.3.(2021·哈尔滨市)一批产品共10件,其中3件是不合格品,用下列两种不同方式从中随机抽取2件产品检验:方法一:一次性随机抽取2件;方法二:先随机抽取1件,放回后再随机抽取1件.记方法一抽取的不合格产品数为1ξ.记方法二抽取的不合格产品数为2ξ. (1)求两种抽取方式下1ξ,2ξ的概率分布列;(2)比较两种抽取方式抽到的不合格品平均数的大小?并说明理由. 【答案】(1)1ξ,2ξ的分布列见解析;(2)平均数相等,理由见解析.【解析】(1)方法一中随机变量1ξ可取的值为0,1,2,且1ξ服从超几何分布,于是()023*********C C P C ξ⋅===;()113712107115C C P C ξ⋅===; ()203712101215C C P C ξ⋅===; 因此1ξ的频率分布可表示为下表:方法二中随机变量2ξ可取的值为0,1,2,且2ξ服从二项分布,于是()02022374901010100P C ξ⎛⎫⎛⎫==⋅⋅= ⎪ ⎪⎝⎭⎝⎭;()12237211101050P C ξ==⋅⋅=; ()22223721010P C ξ⎛⎫⎛⎫==⋅⋅ ⎪ ⎪⎝⎭⎝⎭;因此2ξ的频率分布可表示为下表:(2)由(1)知,方法一中1ξ的数学期望为()10121515155E ξ=⨯+⨯+⨯=, 方法二中2ξ的数学期望为()2332105E ξ=⨯=, 所以两种方式抽到的不合格品平均数相等.。

超几何分布与二项分布

超几何分布与二项分布

最新资料推荐1. (2010 r 东,本小题满分12分)某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上40件产品作 为样本算出他们的重量(单位:克)重量的分组区间为(490, 495], (495, 500], (510)515],由此得到样本的频率分布直方图,如图所示.(I ) 根据频率分布直方图,求重量超过505克的产品数量.(II ) 在上述抽取的40件产品中任取2件,设Y 为重量超过505克的产品数呈:,求丫的分布列.(III ) 从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.解:(I )重量超过505克的产品数量是40x (0.05x5+0.01 x5)=40x0.3= 12 件. (II ) Y 的可能取值:0丄2Y 的分布列为Y 0 1 2 P6313056 13011 130(III )以下的方法①②哪个正确?①利用样本估计总体,该流水线上产品重量超过505克的概率是0.3,令§为任取的5件产品中,重量超过505克的产品数邕 则歹~ 8(5,03), 故所求概率为:P(g = 2) = C ; O.32(l- 0.3)3 = 0.3087②从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率是P(Y = 2)=c ;0" 130二遢颅资料推卷=二=¥=—二28x27x26 12x11。

28。

]2 _ 3x2x1 2x1 _ 21x11 = 231C](> ~ 40x39x38x37x36 一37x19 _ 703'5x4x3x2xl超几何分布与二项分布—、超几何分布一般地,设有总数为N件的两类物品,其中一类有M件,从所有物品中任取“件SWN),这“件中所含这类物品件数X是一个离散型随机变量,它取值为山时的概率为P(X = m)= “ j (0W mWl, /为“和M中较小的一个).5我们称离散型随机变量X的这种形式的概率分布为超儿何分布,也称X服从参数为N, M, n的超几何分布.在超几何分布中,只要知道N, M和“,就可以根据公式求出X取不同值时的概率P(X =/n),从而列出X的分布列.二、二项分布(1)独立重复试验如果每次试验,只考虑有两个可能的结果A及灭,并11事件A发生的概率相同.在相同的条件下,重复地做"次试验,各次试验的结果相互独立,那么一般就称它们为"次独立重复试验.“次独立重复试验中,事件A恰好发生R次的概率为= 於(1一卩严仗=0」,2,..・,“)•(2)二项分布若将事件A发生的次数设为X,事件A不发生的概率为q = i,那么在“次独立重复试验中,事件A恰好发生代次的概率是P(X =k) = C; P k q"'k»其中£=0,1, 2,..., 于是得到X的分布列由于表中的第二行恰好是二项展开式S + PY = C:P°g n + C;时+••• + © 如 + • • .C;:内。

二项分布与超几何分布专题训练

二项分布与超几何分布专题训练

二项分布与超几何分布专题训练一、知识梳理知识点一n重伯努利试验及其特征1.n重伯努利试验的概念将一个伯努利试验独立地重复进行n次所组成的随机试验称为n重伯努利试验.2.n重伯努利试验的共同特征(1)同一个伯努利试验重复做n次.(2)各次试验的结果相互独立.知识点二二项分布一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0<p<1),用X表示事件A发生的次数,则X的分布列为P(X=k)=C n p k(1-p)n-k,k=0,1,2,…,n.称随机变量X服从二项分布,记作X〜B(n,p).知识点三二项分布的均值与方差若X〜B(n,p),则E(X)=np,D(X)=np(1-p).知识点四超几何分布1.定义:一般地,假设一批产品共有N件,其中有M件次品,从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=C kMC N-M,k=m,m+1,m+2,其中n,N,M E N*,M W N,n W N,m=max{0,n—N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布.2•均值:E(X)=N・二、题型归纳】考点一:超几何与二项分布概念的辨析【例1-1】下列随机变量中,服从超几何分布的有.(填序号)①在10件产品中有3件次品,一件一件地不放回地任意取出4件,记取到的次品数为X;②从3台甲型彩电和2台乙型彩电中任取2台,记X表示所取的2台彩电中甲型彩电的台数;③一名学生骑自行车上学,途中有6个交通岗,记此学生遇到红灯数为随机变量X.【例1-2】下列例子中随机变量E服从二项分布的有.①随机变量E表示重复抛掷一枚骰子n次中出现点数是3的倍数的次数;②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数E;③有一批产品共有N件,其中M件为次品,采用有放回抽取方法,E表示n次抽取中出现次品的件数(M 〈N);④有一批产品共有N件,其中M件为次品,采用不放回抽取方法,E表示n次抽取中出现次品的件数.r.【考点精练】1.一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10.27 81 现从中任取4个球,有如下几种变量:① X 表示取出的最大号码;② X 表示取出的最小号码;③ 取出一个黑球记2分,取出一个白球记1分,X 表示取出的4个球的总得分;④ X 表示取出的黑球个数.这四种变量中服从超几何分布的是()A.①②B.③④C.①②④D.①②③④2•下列随机事件中的随机变量X 服从超几何分布的是()A. 将一枚硬币连抛3次,记正面向上的次数为XB. 从7男3女共10名学生干部中随机选出5名学生干部,记选出女生的人数为XC •某射手的射击命中率为0.8,现对目标射击1次,记命中的次数为XD.盒中有4个白球和3个黑球,每次从中摸出1个球且不放回,记第一次摸出黑球时摸取的次数为X 3•下列例子中随机变量服从二项分布的个数为()① 某同学投篮的命中率为0.6,他10次投篮中命中的次数g ;② 某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数g ;③ 从装有5个红球,5个白球的袋中,有放回地摸球,直到摸出白球为止,摸到白球时的摸球次数g ;④ 有一批产品共有N 件,其中M 件为次品,采用不放回抽取方法,g 表示n 次抽取中出现次品的件数4•下列选项中的随机变量不服从两点分布的是()A. 抛掷一枚骰子,所得点数XB. 某射击手射击一次,击中目标的次数X D.某医生做一次手术,手术成功的次数X 考点二:二项分布的均值与方差【例2】•已知随机变量:,耳满足2C +H =9,且匚〜B (8,p ),E (匚)二2,则E (q ),D (q )分别是()【考点精练】(1、1•设随机变量X,Y 满足:Y=3X-1,X 〜B 2,-,则V(Y)=()V 3丿 A.4B.5C.6D.72•设随机变量B (2,p),q ~B (4,p),若P(g >1)=9,则P (q >2)的值为()9 A.0 B.1 C.2D.3C. 从装有除颜色外其余均相同的5个红球,3个白球的袋中任取1个球,设X 1,取出白球 <0,取出红球A.5,3B.5,6C.8,3D.8,6A. 32 81 D. 16 813•已知随机变量X〜B(5,0.2),随机变量Y=5X+10,则()27 81A.E(Y)=5B.E(Y)=10C.D(Y)=20D.D(Y)=30考点三:二项分布【例3】很多新手拿到驾驶证后开车上路,如果不遵守交通规则,将会面临扣分的处罚,为让广大新手了解驾驶证扣分新规定,某市交警部门结合机动车驾驶人有违法行为一次记12分、6分、3分、2分的新规定设置了一份试卷(满分100分),发放给新手解答,从中随机抽取了12名新手的成绩,成绩以茎叶图表示如图所示,并规定成绩低于95分的为不合格,需要加强学习,成绩不低于95分的为合格.687288955667891000(1)求这12名新手的平均成绩与方差;(2)将频率视为概率,根据样本估计总体的思想,若从该市新手中任选4名参加座谈会,用X表示成绩合格的人数,求X的分布列与数学期望.【考点精练】1.影响青少年近视形成的因素有遗传因素和环境因素,主要原因是环境因素学生长时期近距离的用眼状态,加上不注意用眼卫生、不合理的作息时间很容易引起近视除了学习,学生平时爱看电视、上网玩电子游戏、不喜欢参加户外体育活动,都是造成近视情况日益严重的原因为了解情况,现从某地区随机抽取16名学生,调查人员用对数视力表检查得到这16名学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶),如图.学生视力测试结果666777S12(1)写出这组数据的众数和中位数.(2)若视力测试结果不低于5.0,则称为“好视力”•①从这16名学生中随机选取3名,求至少有2名学生是“好视力”的概率;②以这16名学生中是“好视力”的频率代替该地区学生中是“好视力”的概率若从该地区学生(人数较多)中任选3名,记X表示抽到“好视力”学生的人数,求X的分布列.2.甲、乙二人进行定点投篮比赛,已知甲、乙二人每次投进的概率均为丄,两人各投1次称为一轮投篮.2(1)求乙在前3次投篮中,恰好投进2个球的概率;(2)设前3轮投篮中,甲与乙进球个数差的绝对值为随机变量g,求g的分布列与期望.3.某部门在同一上班高峰时段对甲、乙两地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟)•将统计数据按[5,10),110,15),[15,20),…,[35,40]分组,制成频率分布直方图:假设乘客乘车等待时间相互独立.(1)在上班高峰时段,从甲站的乘客中随机抽取1人,记为A;从乙站的乘客中随机抽取1人,记为B.用频率估计概率,求乘客A,B乘车等待时间都小于20分钟的概率;(2)在上班高峰时段,从甲站乘车的乘客中随机抽取3人,X表示乘车等待时间小于20分钟的人数,用频率估计概率,求随机变量X的分布列与数学期望.考点四:超几何分布【例4】某班利用课外活动时间举行了一次“函数求导比赛”活动,为了解本次比赛中学生的总体情况,从中抽取了甲、乙两个小组的样本分数的茎叶图如图所示11叶6 87 24698 1391Z(1)分别求出甲、乙两个小组成绩的平均数与方差,并判断哪个小组的成绩更稳定?(2)从甲组同学成绩不低于70分的人中任意抽取3人,设X表示所抽取的3名同学的得分在[70,80)的人数,求X的分布列及数学期望.【考点精练】1.2020年5月28日,十三届全国人大三次会议表决通过了《中华人民共和国民法典》,自2021年1月1日起施行•它被称为“社会生活的百科全书”,是新中国第一部以法典命名的法律,在法律体系中居于基础性地位,也是市场经济的基本法某中学培养学生知法懂法,组织全校学生学习《中华人民共和国民法典》并组织知识竞赛.为了解学习的效果,现从高一,高二两个年级中各随机抽取20名学生的成绩(单位:分),绘制成如图所示的茎叶图:~s^rTO高二8986361269765007345799611呂025788771109133589根据学生的竞赛成绩,将其分为四个等级:(1)从样本中任取2名同学的竞赛成绩,在成绩为优秀的情况下,求这2名同学来自同一个年级的概率;(2)现从样本中成绩为良好的学生中随机抽取3人座谈,记X为抽到高二年级的人数,求X的分布列,数学期望与方差.2.为庆祝2021年中国共产党成立100周年,某校高二年级举行“党史知识你我答”活动,共有10个班,每班选5名选手参加了预赛,预赛满分为150分,现预赛成绩全部介于90分到140分之间•将成绩结果按如下方式分成五组:第一组b0,100),第二组1100,110),…,第五组1130,140]•按上述分组方法得到的频率分布直方图如图所示.(1)若成绩大于或等于100分且小于120分认为是良好的,求参赛学生在这次活动中成绩良好的人数;(2)若从第一五组中共随机取出两个成绩,记X为取得第一组成绩的个数,求X的分布列与数学期望.3.已知袋中装有5个白球,2个黑球,3个红球,现从中任取3个球.(1)求恰有一个白球的方法种数;(2)求至少有一个红球的方法种数;(3)设随机变量X为取出3球中黑球的个数,求X的概率分布及数学期望.考点五:二项分布与超几何分布的综合【例5】袋中有6个白球、3个黑球,从中随机地连续抽取2次,每次取1个球.(1)若每次抽取后都放回,设取到黑球的次数为X,求X的分布列;(2)若每次抽取后都不放回,设取到黑球的个数为Y,求Y的分布列.【考点精练】1.某校从高三年级中选拔一个班级代表学校参加“学习强国知识大赛”,经过层层选拔,甲、乙两个班级进入最后决赛,规定回答1道相关问题做最后的评判选择由哪个班级代表学校参加大赛.每个班级4名选手,现从每个班级4名选手中随机抽取2人回答这个问题.已知这4人中,甲班级有3人可以正确回答3这道题目,而乙班级4人中能正确回答这道题目的概率均为二,甲、乙两班级每个人对问题的回答都是相4互独立、互不影响的.(1)求甲、乙两个班级抽取的4人都能正确回答的概率.(2)设甲、乙两个班级被抽取的选手中能正确回答题目的人数分别为X,Y,求随机变量X,Y的期望E(X),E(Y)和方差D(X),D(Y),并由此分析由哪个班级代表学校参加大赛更好.2.PM2.5是指大气中直径小于或等于2.5pm的颗粒物,也称为可入肺颗粒物,我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35p g/m3以下空气质量为一级;在35〜75p g/m3之间空气质量为二级;在75p g/m3以上空气质量为污染•某市生态环境局从该市2021年上半年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)•PM2.5日均值(pg/m123)28537143445638791从这15天的数据中任取1天,求这天空气质量达到一级的概率;2从这15天的数据中任取3天的数据,记g表示其中空气质量达到一级的天数,求g的分布列和数学期望;3以这15天的PM2.5的日均值来估计一年的空气质量情况(一年按365天来计算),则一年中大约有多少天的空气质量达到一级?3.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的质量(单位:克),质量的分组区间为(490,495],(495,500],…,(510,515].由此得到样本的频863925(1)根据频率分布直方图,求质量超过505克的产品数量;(2)在上述抽取的40件产品中任取2件,设X为质量超过505克的产品数量,求X的分布列;(3)从该流水线上任取2件产品,设Y为质量超过505克的产品数量,求Y的分布列.考点六:二项分布与超几何分布与其他知识综合【例6】某企业为检验某种设备生产的零件质量,现随机选取20个零件进行检验,分出合格品和次品•设每个零件是次品的概率为P(0<P<1),且相互独立.(I)若20个零件中恰有2个次品的概率为f(p),求f(p)的最大值点p;(II)若合格品又分为一等品和二等品,每个零件是二等品的概率为是一等品概率的2倍.已知生产一个一等品可获利100元,生产一个二等品可获利30元,生产一个次品会亏损40元,当每个零件平均获利低于20元时,需对设备进行技术升级.当P满足什么条件时,企业需对该设备进行技术升级?【考点精练】1.某商城玩具柜台五一期间促销,购买甲、乙系列的盲盒,并且集齐所有的产品就可以赠送节日送礼,现有甲、乙两个系列盲盒,每个甲系列盲盒可以开出玩偶A,A,A中的一个,每个乙系列盲盒可以开出123玩偶B1,B2中的一个.(1)记事件E:一次性购买n个甲系列盲盒后集齐玩偶A,A,A玩偶;事件F:—次性购买n个乙系n123n列盲盒后集齐B1,B2玩偶;求概率P(三)及P(佇);(2)某礼品店限量出售甲、乙两个系列的盲盒,每个消费者每天只有一次购买机会,且购买时,只能选2择其中一个系列的一个盲盒.通过统计发现:第一次购买盲盒的消费者购买甲系列的概率为亍,购买乙系113列的概率为-;而前一次购买甲系列的消费者下一次购买甲系列的概率为;,购买乙系列的概率为匚,前344一次购买乙系列的消费者下一次购买甲系列的概率为1,购买乙系列的概率为1;如此往复,记某人第n次22购买甲系列的概率为Q.n①求{Q}的通项公式;n②若每天购买盲盒的人数约为100,且这100人都已购买过很多次这两个系列的盲盒,试估计该礼品店每天应准备甲、乙两个系列的盲盒各多少个.2.由于“新冠肺炎”对抵抗力差的人的感染率相对更高,特别是老年人群体,因此某社区在疫情控制后,及时给老年人免费体检,通过体检发现“高血糖,高血脂,高血压”,即“三高”老人较多为此社区根据医生的建议为每位老人提供了一份详细的健康安排表,还特地建设了一个老年人活动中心,老年人每天可以到该活动中心去活动,以增强体质,通过统计每周到活动中心去运动的老年人的活动时间,得到了以下频率分布直方图.(1)从到活动中心参加活动的老人中任意选取5人.①若将频率视为概率,求至少有3人每周活动时间在[8,9)(单位:h)的概率;②若抽取的5人中每周活动时间在[8,11](单位:h)的人数为2人,从5人中选出3人进行健康情况调查,记3人中每周活动时间在[8,11](单位:h)的人数为求g的分布列和期望;(2)将某人的每周活动时间量与所有老人的每周平均活动时间量比较,当超出所有老人的每周平均活动量不少于0.74h时,则称该老人为“活动爱好者”,从参加活动的老人中随机抽取10人,且抽到k人为“活动爱好者”的可能性最大,试求k的值.(每组数据以区间的中点值为代表)3.现有一批疫苗试剂,拟进入动物试验阶段,将1000只动物平均分成100组,任选一组进行试验.第一轮注射,对该组的每只动物都注射一次,若检验出该组中有9只或10只动物产生抗体,说明疫苗有效,试验终止;否则对没有产生抗体的动物进行第二轮注射,再次检验.如果被二次注射的动物都产生抗体,说明疫苗有效,否则需要改进疫苗.设每只动物是否产生抗体相互独立,两次注射疫苗互不影响,且产生抗体的概率均为P(0<P<1).(1)求该组试验只需第一轮注射的概率(用含P的多项式表示);(2)记该组动物需要注射次数X的数学期望为E(X),求证:10<E(X)<10(2-p)。

高考数学专题复习:二项分布与超几何分布

高考数学专题复习:二项分布与超几何分布

高考数学专题复习:二项分布与超几何分布一、单选题1.盒中有10只螺丝钉,其中有2只是坏的,现从盒中随机地抽取4只,那么恰好有2只是坏的的概率为( ) A .1210B .145C .215D .1152.已知某运动员每次射击击中目标的概率是p ,假设每次射击击中目标与否互不影响,设ξ为该运动员n 次射击练习中击中目标的次数,且()8E ξ=,() 1.6ξ=D ,则p 值为( ) A .0.6 B .0.8 C .0.9D .0.923.已知随机变量X 服从二项分布1(3)3B ,,当{}0123k ∈,,,时,()P X k =的最大值是( ).A .827 B .49C .19D .1274.12人的兴趣小组中有5人是“三好学生”,现从中任选6人参加竞赛.若随机变量X 表示参加竞赛的“三好学生”的人数,则3357612C C C 为( )A .P (X =6)B .P (X =5)C .P (X =3)D .P (X =7)5.袋中共有10个除了颜色外完全相同的球,其中有6个白球,4个红球.从袋中任取3个球,所取的3个球中至少有1个红球的概率为( ) A .12125 B .16C .98125D .566.某批零件的尺寸X 服从正态分布()210,N σ,且满足()196P x <=,零件的尺寸与10的误差不超过1即合格,从这批产品中抽取n 件,若要保证抽取的合格零件不少于2件的概率不低于0.9,则n 的最小值为( ) A .7B .6C .5D .47.若随机变量~(,)B n p ξ,且()2E ξ=,8()5D ξ=,则p =( ) A .15B .25C .35D .458.已知随机变量~(4,)X B p ,若8()3E X =,则(2)P X ==( )A .29B .49C .89D .827二、填空题9.学校要从5名男教师和2名女教师中随机选出3人去支教,设抽取的人中女教师的人数为X ,求(1)P X ≤=__________.10.袋中有4只红球,3只黑球,从袋中任取4只球,取到1只红球得2分,取到1只黑球得3分,设得分为随机变量ξ,则(9)P ξ≤=__________.11.若随机变量X 服从二项分布1(5,)2B ,那么(1)P X ≤=__________.12.从一批含有13件正品,2件次品的产品中,不放回地任取3件,则取得次品数为1的概率为__________(结果用最简分数表示).13.10名同学中有a 名女生,若从中抽取2个人作为学生代表,恰好抽取1名女生的概率为1645,则a =__________. 14.已知随机变量~(2,),~01X B p Y -,若()()10.64,1P X P Y p ≥===,则(0)P Y =的值等于__________. 三、解答题15.一个盒子中有10个小球,其中3个红球,7个白球.从这10个球中任取3个. (1)若采用无放回抽取,求取出的3个球中红球的个数X 的分布列; (2)若采用有放回抽取,求取出的3个球中红球的个数Y 的分布列.16.小明和小林做游戏,每人连续投掷一枚均匀的硬币5次,谁投掷出的结果的概率小,谁就获胜,概率相等则为平局.(1)小明连续5次都是正面朝上,小林前3次是反面朝上,后2次是正面朝上,两人都认为自己赢了,你认为小明和小林谁赢了(通过计算两人的概率说明); (2)如果用X 表示小明5次投掷中正面朝上的次数,求X 的分布列及期望; (3)已知在某局中小林先投,5次中出现2次正面朝上,问小明赢的概率有多大?17.某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果,某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:(1)若将频率视为概率,从这100个水果中有放回地随机抽取3个,求恰好有2个水果是礼品果的概率;(结果用分数表示)(2)用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取2个,若X 表示抽到的精品果的数量,求X 的分布列和期望.18.甲盒中装有3个红球和2个黄球,乙盒中装1红球和4个黄球.(Ⅰ)从甲盒有放回地摸球,每次摸出一个球,摸到红球记1分,摸到黄球记2分.某人摸球4次,求该人得分ξ的分布列以及数学期望()E ξ;(Ⅱ)若同时从甲、乙两盒中各取出2个球进行交换,记交换后甲、乙两盒中红球的个数分别为1ξ、2ξ,求数学期望()1E ξ,()2E ξ.19.一款小游戏的规则如下:每盘游戏都需抛掷骰子三次,出现一次或两次“6点”获得15分,出现三次“6点”获得120分,没有出现“6点”则扣除12分(即获得-12分). (1)设每盘游戏中出现“6点”的次数为X ,求X 的分布列和数学期望()E X ; (2)玩两盘游戏,求两盘中至少有一盘获得15分的概率;(3)玩过这款游戏的许多人发现,若干次游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析解释上述现象.20.一名学生每天骑自行车上学,从家到学校的途中有5个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是13.(1)求这名学生在途中遇到红灯的次数ξ的分布列;(2)求这名学生在首次遇到红灯或到达目的地停车前经过的路口数η的分布列.参考答案1.C 【分析】利用超几何分布概率公式计算概率. 【详解】解: 设X k =表示取出的螺丝钉恰有k 只是坏的,则()()428410C C 0,1,2C k k P X k k -===. ∴()2228410C C 22C 15P X ===.故选:C . 2.B 【分析】由ξ服从(,)B n p ,根据二项分布的均值和方差公式列式求解. 【详解】 由题意(,)B n p ξ,所以()8()(1) 1.6E np D np p ξξ==⎧⎨=-=⎩,解得0.810p n =⎧⎨=⎩.故选:B . 3.B 【分析】由二项分布的概率公式依次求解可得答案 【详解】解:因为随机变量X 服从二项分布1(3)3B ,,所以3312()()()33kk k P X k C -==⋅⋅,{}0123k ∈,,, 所以0033128(0)()()3327P X C ==⋅⋅=,1123124(1)()()339P X C ==⋅⋅=,2213122(2)()()339P X C ==⋅⋅=,3303121(3)()()3327P X C ==⋅⋅=,∴max 4()(1)9P X k P X ====, 故选:B . 4.C 【分析】根据题意得到变量X 服从参数为12,5,6N M n ===的超几何分布,结合概率的计算的公式,即可求解. 【详解】由题意知,随机变量X 服从参数为12,5,6N M n ===的超几何分布,由概率的计算公式()k n k M N M nN C C P X k C ---=,可得3357612C C C 表示的是3X =的取值概率. 故选:C. 5.D 【分析】根据题意,该问题符合超几何分布,利用超几何分布概率公式计算所取的3个球中没有1个红球的概率,进而可得答案. 【详解】根据题意,该问题符合超几何分布,其基本事件总数为310C , 其中所取的3个球中没有1个红球的基本事件为36C ,所求概率为36310C 1511C 66-=-=.故选:D. 6.C 【分析】由正态分布解得每个零件合格的概率为23,由对立事件得011121()()0.1333n n n n C C -⋅+⋅⋅<,即1(21)()0.13nn +⋅<,令1()(21)()(*)3n f n n n N =+⋅∈,由()f n 的单调性可解得结果.【详解】X 服从正态分布2(10,)N σ,且1(9)6P X <=, 2(911)3P X ∴≤≤=,即每个零件合格的概率为2.3合格零件不少于2件的对立事件是合格零件个数为零个或一个. 合格零件个数为零个或一个的概率为01111()()3323n n n n C C -⋅+⋅⋅, 由011121()()0.1333nn n n C C -⋅+⋅⋅<,得1(21)()0.13n n +⋅<, 令1()(21)()(*)3nf n n n N =+⋅∈,(1)231()63f n n f n n ++=<+,()f n ∴单调递减,又(5)0.1f <,(4)0.1f >, ∴不等式1(21)()0.13n n +⋅<的解集为{|5,*}.n nn N ∈n ∴的最小值为5.故选:C. 【点睛】关键点点睛:本题的关键点是:由对立事件得011121()()0.1333n n n n C C -⋅+⋅⋅<,即1(21)()0.13n n +⋅<.7.A 【分析】利用二项分布的期望公式和方差公式列方程组求解即可 【详解】解:因为随机变量~(,)B n p ξ,且()2E ξ=,8()5D ξ=, 所以28(1)5np np p =⎧⎪⎨-=⎪⎩,解得1015n p =⎧⎪⎨=⎪⎩,故选:A 8.D 【分析】根据数学期望值求出p ,再利用公式计算概率(2)P X =的值. 【详解】解:由随机变量~(4,)X B p , 且8()3E X =,即843np p ==,解得23p =; 2224228(2)()(1)3327P X C ∴==-=.故选:D . 9.67【分析】本题主要考查了超几何分步的概率计算,属于基础题.根据题意,X 的取值为0或1,代入超几何分布公式求出对应概率,再相加即可. 【详解】 解:由题意可得()305237C C 1020C 357P X ====,()215237C C 2041C 357P X ====,所以()()()246101777P X P X P X ≤==+==+=. 故答案为:67.10.1335【分析】由题知取得红球的个数为1,2,3,4,对应的黑球个数为3,2,1,0,进而根据超几何分布求概率即可. 【详解】解:由题知,取得红球的个数为1,2,3,4,对应的黑球个数为3,2,1,0,所以3144344713(9)35C C C P C ξ+≤== 故答案为:133511.316【分析】首先根据二项分布的概率公式求出(1)P X =,(0)P X =,再根据()()(1)01P X P X P X ≤==+=计算可得;【详解】解:因为随机变量X 服从二项分布1(5,)2B所以415115(1)12232P X C ⎛⎫==⋅-= ⎪⎝⎭,50511(0)1232P X C ⎛⎫==-= ⎪⎝⎭,所以()()153(1)01323216P X P X P X ≤==+==+= 故答案为:31612.1235【分析】设随机变量X 表示取出次品的个数,则X 服从超几何分布,其中15N =.2M =.3n =,根据超几何分布的概率计算公式直接求解即可. 【详解】设随机变量X 表示取出次品的个数,则X 服从超几何分布,其中15N =.2M =.3n =,它的可能的取值为0,1,2,相应的概率为1221331512(1)35C C P X C ⋅===. 故答案为:1235. 13.2或8 【分析】利用超几何分布概率公式计算即可. 【详解】根据题意,得1645=1110-210a aC C C ,解得a =2或a =8. 故答案为:2或8. 14.0.6 【分析】根据二项分布的概率性质计算求解. 【详解】12222(1)(1)(2)(1)0.64P X P X P X C p p C p ≥==+==-+=,解得0.4p =( 1.6p =舍去),(0)1(1)110.40.6P Y P Y p ==-==-=-=.故答案为:0.6.15.(1)答案见解析;(2)答案见解析. 【分析】(1)若采用无放回抽取,求取出的3个球中红球的个数X 服从超几何分布337310()k kC C P X k C -==,计算即可; (2)若采用有放回抽取,求取出的3个球中红球的个数Y 服从二项分布33()0.3(10.3)kk k P Y k C -==⨯⨯-,计算即可.【详解】解:(1)由题意知,随机变量X 的所有可能取值为0,1,2,3, 且X 服从参数为10N =,3M =,3n =的超几何分布,因此337310()k kC C P X k C -==,0,1,2,3k =, 所以03373107(0)24C C P X C ===,123731021(1)40C C P X C ===,21373107(2)40C C P X C ===,30373101(3)120C C P X C ===;所以X 的分布列为:(2)随机变量Y 的所有可能取值为0,1,2,3,且()~3,0.3Y B ,所以0033(0)0.3(10.3)0.343P Y C ==⨯⨯-=,1123(1)0.3(10.3)0.441P Y C ==⨯⨯-=,223(2)0.3(10.3)0.189P Y C ==⨯⨯-=,3303(3)0.3(10.3)0.027P Y C ==⨯⨯-=,所以Y 的分布列为:16.(1)两人为平局;(2)分布列见解析;期望为52;(3)38.【分析】(1)分别计算两者出现的概率,通过比较大小,即可求解;(2)由题意可得,X 的所有可能取值为0,1,2,3,4,5,分别求出对应的概率,即可得X 的分布列,并结合期望公式,即可求解;(3)由(2)知,小林投掷5次出现2次正面朝上的概率为516,故小明要赢,必须在投掷5次中出现0,1,4,5次正面朝上,将对应的概率求和,即可求解. 【详解】解:(1)结论:两人为平局 小明11111112222232P =⨯⨯⨯⨯= 小林211111112222232P P =⨯⨯⨯⨯==(2)由题知:0,1,2,3,4,5X =()0505111=02232P X C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()1415115=12232P X C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()232511105=2223216P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()323511105=3223216P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()4145115=42232P X C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()5055111=52232P X C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()1555515012+3453232161632322E X =⨯+⨯+⨯⨯+⨯+⨯=(3)由(2)知,小林投掷5次出现2次正面朝上的概率516, 故小明要赢,必须在投掷5次中出现0、1、4、5次正面朝上, 即小明赢的概率15513+++=323232328P = 17.(1)12125;(2)分布列见解析,45.【分析】(1)设从这100个水果中随机抽取1个,其为礼品果的事件为A ,求出()P A ,抽到礼品果的个数1~3,5X B ⎛⎫⎪⎝⎭,由概率公式()2P X =可得答案;(2)用分层抽样得到精品果和非精品果个数,精品果的数量()~10,2,4X H ,所有可能的取值为0,1,2,计算出相应的概率可得答案. 【详解】(1)设从这100个水果中随机抽取1个,其为礼品果的事件为A ,则()2011005P A ==, 现有放回地随机抽取3个,设抽到礼品果的个数为X ,则1~3,5X B ⎛⎫⎪⎝⎭,∴恰好有2个水果是礼品果的概率为()2231412255125P X C ⎛⎫===⎪⎝⎭. (2)用分层抽样的方法从这100个水果中抽取10个,其中精品果有4个, 非精品果有6个,再从中随机抽取2个,则精品果的数量()~10,2,4X H , 所有可能的取值为0,1,2,则()26210103C P X C ===,()11642108115C C P X C ===,()242102215C P X C ===.∴X 的分布列为所以,()424105E X ⨯==. 18.(Ⅰ)分布列见解析,5.6;(Ⅱ)()1 2.2E ξ=,()2 1.8E ξ=. 【分析】(Ⅰ)利用二项分布的概率公式,求出概率,列出分布列,由数学期望的计算公式求解即可; (Ⅱ) 先求出随机变量1ξ的可能取值,然后求出其对应的概率,由数学期望的计算公式求解()1E ξ,再利用()1E ξ与()2E ξ之间的关系求解()2E ξ即可. 【详解】解:(Ⅰ)()()443280,1,2,3,455k kk P k C k ξ-⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭,所以ξ的分布列为:()8121621696162845678 5.66256256256256255E ξ=⨯+⨯+⨯+⨯+⨯== (或()3288455E ξ=-⨯=)(Ⅱ)()223412255189110050C C P C C ξ⋅====⋅; ()211112314324122554812210025C C C C C C P C C ξ⋅+⋅====⋅;()221111343214122556243310010C C C C C C P C C ξ⋅+⋅+====⋅;()2112141225541410025C C C P C C ξ⋅====⋅;()191231111234 2.2502510255E ξ=⋅+⋅+⋅+⋅==, ()()214 1.8E E ξξ=-=.19.(1)答案见解析;(2)95144;(3)答案见解析. 【分析】(1)X 的取值范围为{}0,1,2,3,再依次求出对应的概率,从而可得X 的分布列和数学期望;(2)设“第i 盘游戏获得15分”为事件()1,2i A i =,则由(1)可得()()12(1)(2)P A P A P X P X ===+=,所以可求出所求概率()()121P A P A -;(3)设每盘游戏得分为Y ,则Y 的取值范围为{}12,15,120-,结合(1)可得Y 的分布列,从而可求出Y 的期望,当期望为负时,说明分数在减少 【详解】解:(1)X 的取值范围为{}0,1,2,3,每次抛掷骰子,出现“6点”的概率为16p =,1(3,)6X B ~,3031125(0)16216P X C ⎛⎫==-= ⎪⎝⎭,2131175(1)166216P X C ⎛⎫==⋅-=⎪⎝⎭, 2231115(2)166216P X C ⎛⎫⎛⎫==⋅-= ⎪⎪⎝⎭⎝⎭,33311(3)6216P X C ⎛⎫=== ⎪⎝⎭, 所以X 的分布列为:所以12525511()012321672722162E X =⨯+⨯+⨯+⨯=. (2)设“第i 盘游戏获得15分”为事件()1,2i A i =,则 ()()12905(1)(2)21612P A P A P X P X ===+===. 所以“两盘游戏中至少有一次获得15分”的概率为 ()()12951144P A P A -=, 因此,玩两盘游戏至少有一次获得15分的概率为95144. (3)设每盘游戏得分为Y ,则Y 的取值范围为{}12,15,120-, 由(1)知,Y 的分布列为:Y 的数学期望为12551512151202161221636EY =-⨯+⨯+⨯=-. 这表明,获得分数Y 的期望为负.因此,多次游戏之后分数减少的可能性更大. 20.(1)见解析(2)见解析 【分析】(1)由1~5,3B ξ⎛⎫⎪⎝⎭,求出这名学生在途中遇到红灯的次数ξ的分布列;(2)求出η的可能取值,再求出对应的概率,进而得出分布列. 【详解】(1)1~5,3B ξ⎛⎫ ⎪⎝⎭,ξ的分布列为5512()C ,0,1,2,3,4,533k kk P k k ξ-⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭故ξ的分布列为(2)η的分布列为()P k P η==(前k 个是绿灯,第1k +个是红灯)21,0,1,2,3,433kk ⎛⎫=⋅= ⎪⎝⎭ (5)P P η==(5个均为绿灯)523⎛⎫= ⎪⎝⎭故η的分布列为。

超几何分布与二项分布

超几何分布与二项分布


此时我们称随机变量X服从二项分布,记作:
n Cnn pnq0
数学期望E(X)=np,方差D(X)=np(1-p)
例题解析与示范
例1. 袋中有3个白球、2个黑球,从中随机地连续抽取3次,每 次取1个球.求有放回抽样时,取到黑球的个数X的分布列. 例2 .袋中有3个白球、2个黑球,从中任意摸出3个球, 记得到黑球的个数为Y,求随机变量Y的分布列。
【解析】(1)随机变量X的可能取值为0,1,2, 随机变量X服从超几何分布,
P( X
0)
C30C72 C120
21 7 45 15
因此,X的分布列为:
X01
2
P( X
1)
C31C71 C120
21 7 45 15
P
7 15
7 15
1 15
P( X
2)
C32C70 C120
3 45
1 15
2.在 15 个村庄中有 7 个村庄交通不方便,现从中任意选
10 个村庄,用 X 表示这 10 个村庄中交通不方便的村庄数,
下列概率等于CC471C15086的是( C ) A.P(X=2)
B.P(X≤2)
C.P(X=4)
D.P(X≤4)
解析:此为一个超几何分布问题.15 个村庄中有 7 个村庄交通 不方便,8 个村庄交通方便,C47C68表示选出的 10 个村庄中恰有 4 个交通不方便,6 个交通方便的村庄,故 P(X=4)=CC47C110568.
(1)根据频率分布直方图, 求重量超过 505 克的产品数量。 (2)在上述抽取的 40 件产品中 任取 2 件,设 Y 为重量超过 505 克的产品数量, 求 Y 的分布列。 (3)从流水线上任取 5 件产品, 求恰有 2 件产品合格的重量超过 505 克的概率。

9道题分清超几何分布和二项分布(含答案)

9道题分清超几何分布和二项分布(含答案)

9道题分清超几何分布和二项分布(含答案)一.解答题(共9小题)1.某公司的一次招聘中,应聘者都要经过三个独立项目A,B,C的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过A,B,C每个项目测试的概率都是.(1)求甲恰好通过两个项目测试的概率;(2)设甲、乙、丙三人中被录用的人数为X,求X的概率分布和数学期望.2.随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(Ⅰ)若从这10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;(Ⅱ)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求随机变量X的分布列及数学期望.3.随着全民健康运动的普及,每天一万步已经成为一种健康时尚,某学校为了教职工能够健康工作,在全校范围内倡导“每天一万步”健康走活动,学校界定一人一天走路不足4千步为“健步常人”,不少于16千步为“健步超人”,其他人为“健步达人”,学校随机抽取抽查人36名教职工,其每天的走步情况统计如下:步数[0,4000)[4000,16000)[16000,+∞]人数61812现对抽查的36人采用分层抽样的方式选出6人,从选出的6人中随机抽取2人进行调查.(1)求这两人健步走状况一致的概率;(2)求“健步超人”人数X的分布列与数学期望.4.中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,作为国家战略性空间基础设施,我国北斗卫星导航系统不仅对国防安全意义重大,而且在民用领域的精准化应用也越来越广泛.据统计,2016年卫星导航与位置服务产业总产值达到2118亿元,较2015年约增长%.下面是40个城市北斗卫星导航系统与位置服务产业的产值(单位:万元)的频率分布直方图:(1)根据频率分布直方图,求产值小于500万元的城市个数;(2)在上述抽取的40个城市中任取2个,设Y为产值不超过500万元的城市个数,求Y的分布列及期望和方差.5.生蚝即牡蛎(oyster)是所有食物中含锌最丰富的,在亚热带、热带沿海都适宜生蚝的养殖,我国分布很广,北起鸭绿江,南至海南岛,沿海皆可产生蚝,生蚝乃软体有壳,衣服寄生的动物,咸淡水交界所产尤为肥美,因此生蚝称为了一年四季不可或缺的一类美食,某饭店从某水产养殖厂购进一批生蚝,并随机抽取了40只统计质量,得到结果如表所示:质量(g)[5,15)[15,25)[25,35)[35,45)[45,55]数量 6 10 12 8 4(1)若购进这批生蚝500kg,且同一组数据用该组区间的中点值代表,试估计这批生蚝的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的生蚝中随机挑选4个,记质量在[5,25)间的生蚝的个数为X,求X的分布列及数学期望.6.随着我国互联网信息技术的发展,网络购物已经成为许多人消费的一种重要方式,某市为了了解本市市民的网络购物情况,特委托一家网络公示进行了网络问卷调查,并从参与调查的10000名网民中随机抽取了200人进行抽样分析,得到了下表所示数据:经常进行网络购物偶尔或从不进行网络购物合计男性5050100女性6040100合计11090200(1)依据上述数据,能否在犯错误的概率不超过的前提下认为该市市民进行网络购物的情况与性别有关(2)现从所抽取的女性网民中利用分层抽样的方法再抽取5人,从这5人中随机选出3人赠送网络优惠券,求出选出的3人中至少有两人是经常进行网络购物的概率;(3)将频率视为概率,从该市所有的参与调查的网民中随机抽取10人赠送礼物,记经常进行网络购物的人数为X,求X的期望和方差.附:,其中n=a+b+c+dP(K2≥k0)k07.手机QQ中的“QQ运动”具有这样的功能,不仅可以看自己每天的运动步数,还可以看到朋友圈里好友的步数.小明的QQ朋友圈里有大量好友参与了“QQ运动”,他随机选取了其中30名,其中男女各15名,记录了他们某一天的走路步数,统计数据如表所示:步数性别(0,2500)[2500,5000)[5000,7500)[7500,10000)[10000,+∞)男02472女13731(Ⅰ)以样本估计总体,视样本频率为概率,在小明QQ朋友圈里的男性好友中任意选取3名,其中走路步数低于7500步的有X名,求X的分布列和数学期望;(Ⅱ)如果某人一天的走路步数超过7500步,此人将被“QQ运动”评定为“积极型”,否则为“消极型”.根据题意完成下面的2×2列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关积极型消极型总计男女总计附:.P(K2≥k0)k08.某企业2017年招聘员工,其中A、B、C、D、E五种岗位的应聘人数、录用人数和录用比例(精确到1%)如下:岗位男性应聘人数男性录用人数男性录用比例女性应聘人数女性录用人数女性录用比例A26916762%402460%B401230%2026231%C1775732%1845932%D442659%382258%E3267%3267%总计53326450%46716936%(Ⅰ)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;(Ⅱ)从应聘E岗位的6人中随机选择2人.记X为这2人中被录用的人数,求X的分布列和数学期望;(Ⅲ)表中A、B、C、D、E各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于5%),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)9.在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,且成绩分布在[40,100],分数在80以上(含80)的同学获奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图(见图).(1)填写下面的2×2列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”(2)将上述调査所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为X,求X的分布列及数学期望.文科生理科生合计获奖5不获奖合计200附表及公式:K2=,其中n=a+b+c+dP(K2≥k)k9道题分清超几何分布和二项分布参考答案与试题解析一.解答题(共9小题)1.某公司的一次招聘中,应聘者都要经过三个独立项目A,B,C的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过A,B,C每个项目测试的概率都是.(1)求甲恰好通过两个项目测试的概率;(2)设甲、乙、丙三人中被录用的人数为X,求X的概率分布和数学期望.【分析】(1)利用二项分布计算甲恰好有2次发生的概率;(2)由每人被录用的概率值,求出随机变量X的概率分布,计算数学期望值.【解答】解:(1)甲恰好通过两个项目测试的概率为;……(4分)(2)因为每人可被录用的概率为,所以,,,;故随机变量X的概率分布表为:X0123P…………(8分)所以,X的数学期望为.……(10分)【点评】本题考查了离散型随机变量的分布列与数学期望问题,是基础题.2.随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(Ⅰ)若从这10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;(Ⅱ)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求随机变量X的分布列及数学期望.【分析】(Ⅰ)设“至少1名倾向于选择实体店”为事件A,则表示事件“随机抽取2名,(其中男、女各一名)都选择网购”,则P(A)=1﹣P.(Ⅱ)X的取值为0,1,2,3.P(X=k)=,即可得出.【解答】解:(Ⅰ)设“至少1名倾向于选择实体店”为事件A,则表示事件“随机抽取2名,(其中男、女各一名)都选择网购”,则P(A)=1﹣P=1﹣=.(Ⅱ)X的取值为0,1,2,3.P(X=k)=,P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=.X的分布列为:X0123PE(X)=0×+1×+2×+3×=.【点评】本题考查了对立与互相独立事件概率计算公式、超几何分布列与数学期望、组合计算公式,考查了推理能力与计算能力,属于中档题.3.随着全民健康运动的普及,每天一万步已经成为一种健康时尚,某学校为了教职工能够健康工作,在全校范围内倡导“每天一万步”健康走活动,学校界定一人一天走路不足4千步为“健步常人”,不少于16千步为“健步超人”,其他人为“健步达人”,学校随机抽取抽查人36名教职工,其每天的走步情况统计如下:步数[0,4000)[4000,16000)[16000,+∞]人数61812现对抽查的36人采用分层抽样的方式选出6人,从选出的6人中随机抽取2人进行调查.(1)求这两人健步走状况一致的概率;(2)求“健步超人”人数X的分布列与数学期望.【分析】(1)记事件A,这2人健步走状况一致,利用互斥事件概率计算公式能求出这两人健步走状况一致的概率.(2)X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】解:(1)记事件A,这2人健步走状况一致,则.(2)X的可能取值为0,1,2,所以,所以X的分布列为X 0 1 2P所以.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,考查互斥事件概率计算公式、古典概型等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.4.中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,作为国家战略性空间基础设施,我国北斗卫星导航系统不仅对国防安全意义重大,而且在民用领域的精准化应用也越来越广泛.据统计,2016年卫星导航与位置服务产业总产值达到2118亿元,较2015年约增长%.下面是40个城市北斗卫星导航系统与位置服务产业的产值(单位:万元)的频率分布直方图:(1)根据频率分布直方图,求产值小于500万元的城市个数;(2)在上述抽取的40个城市中任取2个,设Y为产值不超过500万元的城市个数,求Y的分布列及期望和方差.【分析】(1)根据频率分布直方图,能求出产值小于500万元的城市个数.(2)由Y的所有可能取值为0,1,2.分别滶出相应的概率,由此能求出Y的分布列及期望和方差.【解答】解:(1)根据频率分布直方图可知,产值小于500万元的城市个数为:[(+)×5]×40=14.(2)Y的所有可能取值为0,1,2.,,.∴Y的分布列为:Y012P期望为:,方差为:.【点评】本题考查概率的求法,考查离散型随机变量的分布、期望、方差等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.5.生蚝即牡蛎(oyster)是所有食物中含锌最丰富的,在亚热带、热带沿海都适宜生蚝的养殖,我国分布很广,北起鸭绿江,南至海南岛,沿海皆可产生蚝,生蚝乃软体有壳,衣服寄生的动物,咸淡水交界所产尤为肥美,因此生蚝称为了一年四季不可或缺的一类美食,某饭店从某水产养殖厂购进一批生蚝,并随机抽取了40只统计质量,得到结果如表所示:质量(g)[5,15)[15,25)[25,35)[35,45)[45,55]数量 6 10 12 8 4(1)若购进这批生蚝500kg,且同一组数据用该组区间的中点值代表,试估计这批生蚝的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的生蚝中随机挑选4个,记质量在[5,25)间的生蚝的个数为X,求X的分布列及数学期望.【分析】(1)估算妹纸生蚝的质量为,由此能估计这批生蚝的数量.(2)任意挑选一只,质量在[5,25)间的概率为,X的可能取值为0,1,2,3,4,分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】解:(1)由表中的数据可以估算妹纸生蚝的质量为:,所以购进500kg,生蚝的数量为500000÷≈17554(只).(2)由表中数据知,任意挑选一只,质量在[5,25)间的概率为,X的可能取值为0,1,2,3,4,则,,∴X的分布列为:X 0 1 2 3 4P∴.【点评】本题考查概率的求法及应用,考查离散型随机变量的分布列及数学期望的求法,考查排列组合、古典概型等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.6.随着我国互联网信息技术的发展,网络购物已经成为许多人消费的一种重要方式,某市为了了解本市市民的网络购物情况,特委托一家网络公示进行了网络问卷调查,并从参与调查的10000名网民中随机抽取了200人进行抽样分析,得到了下表所示数据:经常进行网络偶尔或从不进行网络合计购物购物男性5050100女性6040100合计11090200(1)依据上述数据,能否在犯错误的概率不超过的前提下认为该市市民进行网络购物的情况与性别有关(2)现从所抽取的女性网民中利用分层抽样的方法再抽取5人,从这5人中随机选出3人赠送网络优惠券,求出选出的3人中至少有两人是经常进行网络购物的概率;(3)将频率视为概率,从该市所有的参与调查的网民中随机抽取10人赠送礼物,记经常进行网络购物的人数为X,求X的期望和方差.附:,其中n=a+b+c+dP(K2≥k0)k0【分析】(1)由列联表数据求出K2≈<,从而不能在犯错误的概率不超过的前提下认为该市市民网购情况与性别有关.(2)由题意,抽取的5名女性网民中,经常进行网购的有3人,偶尔或从不进行网购的有2人,由此能求出从这5人中选出3人至少有2人经常进行网购的概率.(3)由列联表可知,经常进行网购的频率为,由题意,从该市市民中任意抽取1人恰好是经常进行网购的概率是,由于该市市民数量很大,故可以认为X~B(10,),由此能求出X的期望和方差.【解答】解:(1)由列联表数据计算K2=≈<,∴不能在犯错误的概率不超过的前提下认为该市市民网购情况与性别有关.(2)由题意,抽取的5名女性网民中,经常进行网购的有5×=3人,偶尔或从不进行网购的有5×=2人,故从这5人中选出3人至少有2人经常进行网购的概率是p=+=.(3)由列联表可知,经常进行网购的频率为,由题意,从该市市民中任意抽取1人恰好是经常进行网购的概率是,由于该市市民数量很大,故可以认为X~B(10,),∴E(X)=,D(X)==.【点评】本题考查独立性检验及应用,考查概率的求法,考查离散型随机变量的分布列、数学期望、方差的求法,考查二项分布等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.7.手机QQ中的“QQ运动”具有这样的功能,不仅可以看自己每天的运动步数,还可以看到朋友圈里好友的步数.小明的QQ朋友圈里有大量好友参与了“QQ运动”,他随机选取了其中30名,其中男女各15名,记录了他们某一天的走路步数,统计数据如表所示:步数性别(0,2500)[2500,5000)[5000,7500)[7500,10000)[10000,+∞)男02472女13731(Ⅰ)以样本估计总体,视样本频率为概率,在小明QQ朋友圈里的男性好友中任意选取3名,其中走路步数低于7500步的有X名,求X的分布列和数学期望;(Ⅱ)如果某人一天的走路步数超过7500步,此人将被“QQ运动”评定为“积极型”,否则为“消极型”.根据题意完成下面的2×2列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关积极型消极型总计男女总计附:.P(K2≥k0)k0【分析】(Ⅰ)在小明的男性好友中任意选取1名,其中走路步数低于7500的概率为.X可能取值分别为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和数学期望.(Ⅱ)完成2×2列联表求出k2的观测值k0≈<.据此判断没有95%以上的把握认为“评定类型”与“性别”有关.【解答】解:(Ⅰ)在小明的男性好友中任意选取1名,其中走路步数低于7500的概率为.X可能取值分别为0,1,2,3,∴,,,,∴X的分布列为X0123P则.(Ⅱ)完成2×2列联表如下:积极型消极型总计男9615女41115总计131730k2的观测值=.据此判断没有95%以上的把握认为“评定类型”与“性别”有关.【点评】本题考查离散型随机变量的分布列、数学期望的求法,考查独立检验的应用,考查古典概型、二项分布等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.8.某企业2017年招聘员工,其中A、B、C、D、E五种岗位的应聘人数、录用人数和录用比例(精确到1%)如下:岗位男性应聘人数男性录用人数男性录用比例女性应聘人数女性录用人数女性录用比例A26916762%402460%B401230%2026231%C1775732%1845932%D442659%382258%E3267%3267%总计53326450%46716936%(Ⅰ)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;(Ⅱ)从应聘E岗位的6人中随机选择2人.记X为这2人中被录用的人数,求X的分布列和数学期望;(Ⅲ)表中A、B、C、D、E各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于5%),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)【分析】(I)根据录用总人数与应聘总人数的比值得出概率;(II)根据超几何分布列的概率公式得出分布列和数学期望;(III)去掉一个岗位后计算剩余4个岗位的男女总录用比例得出结论.【解答】解:(Ⅰ)因为表中所有应聘人员总数为533+467=1000,被该企业录用的人数为264+169=433,所以从表中所有应聘人员中随机选择1人,此人被录用的概率约为.(Ⅱ)X可能的取值为0,1,2.因为应聘E岗位的6人中,被录用的有4人,未被录用的有2人,所以;;.所以X 的分布列为:X012P.(Ⅲ)取掉A岗位后,男性的总录用比例为≈%,女性的总录用比例为≈%,故去掉A岗位后,男、女总录用比例接近.∴这四种岗位是:B、C、D、E.【点评】本题考查了古典概型的概率计算,离散型随机变量的分布列,属于中档题.9.在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,且成绩分布在[40,100],分数在80以上(含80)的同学获奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图(见图).(1)填写下面的2×2列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”(2)将上述调査所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为X,求X的分布列及数学期望.文科生理科生合计获奖5不获奖合计200附表及公式:K2=,其中n=a+b+c+dP(K2≥k)k【分析】(1)列出表格根据公式计算出K2,参考表格即可得出结论.(2)由表中数据可知,抽到获奖同学的概率为,将频率视为概率,所以X可取0,1,2,3,且X~B(3,).即可得出.【解答】解:(1)文科生理科生合计获奖53540不获奖45115160合计50150200k==≈>,所以有超过95%的把握认为“获奖与学生的文理科有关”.(2)由表中数据可知,抽到获奖同学的概率为,将频率视为概率,所以X可取0,1,2,3,且X~B(3,).P(X=k)=×()k(1﹣)3﹣k(k=0,1,2,3),X0123PE(X)=3×=.【点评】本题考查了独立性检验原理、二项分布列的概率计算公式与数学期望,考查了推理能力与计算能力,属于中档题.。

2023 届高考数学复习:历年经典好题专项(二项分布与超几何分布、正态分布)练习(附答案)

2023 届高考数学复习:历年经典好题专项(二项分布与超几何分布、正态分布)练习(附答案)
广,发明了“三系法”籼型杂交水稻,成功研究出“两系法”杂交水稻,创建了超级杂交稻技术体系,为我国
粮食安全、农业科学发展和世界粮食供给做出了杰出贡献.某杂交水稻种植研究所调查某地水稻的
(-100)
1
e- 200
10√2π
株高,得出株高 X(单位:cm)服从正态分布,其密度曲线函数为 f(x)=
法正确的是(
4
5
率为 ,则连续测试 4 次,至少有 3 256
625
64
625
B.
C.
)
D.
64
125
3.从 4 名男生和 2 名女生中任选 3 人参加演讲比赛,设随机变量 ξ 表示所选 3 人中女生的人数,则
P(ξ≤1)等于
A.
(
1
5
2
5
3
5
B.
C.
D.
)
4
5
4.(历年福建福州高三检测)某市一次高三年级数学统测,经抽样分析,成绩 X 近似服从正态分布
)
A.该地水稻的平均株高为 100 cm
B.该地水稻株高的方差为 10
2
,x∈(-∞,+∞),则下列说
C.随机测量一株水稻,其株高在 120 cm 以上的概率比株高在 70 cm 以下的概率大
D.随机测量一株水稻,其株高在(80,90)和在(100,110)(单位:cm)的概率一样大
8.设事件 A 在每次试验中发生的概率相同,且在三次独立重复试验中,若事件 A 至少发生一次的概率
到样本的频率分布直方图,如图所示.
(1)根据频率分布直方图,求质量超过 500 克的产品数量;
(2)在上述抽取的 40 件产品中任取 2 件,设 Y 为质量超过 505 克的产品数量,求 Y 的分布列.

考点20 超几何分布与二项分布(新高考地区专用)(解析版)

考点20 超几何分布与二项分布(新高考地区专用)(解析版)

考点20 超几何分布与二项分布一.分布列1.离散型随机变量的分布列(1)随着试验结果变化而变化的变量叫做随机变量.所有取值可以一一列出的随机变量叫做离散型随机变量. (2)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则称表为离散型随机变量X 的概率分布列,简称为X 的分布列,具有如下性质: ①p i ≥0,i =1,2,…,n ;①p 1+p 2+…+p i +…+p n =1.离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和. 二.两点分布如果随机变量X 的分布列为其中0<p <1,则称离散型随机变量X =1)称为成功概率. 三.超几何分布1.概念:一般地,设有N 件产品,其中有M (M ≤N )件次品.从中任取n (n ≤N )件产品,用X 表示取出的n 件产品中次品的件数,那么P (X =k )=C k M C n -kN -MC n N(k =0,1,2,…,m ).即其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ①N *.如果一个随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布. 2.特征(1)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数 (2)考察对象分两类 (3)已知各类对象的个数(4)从中抽取若干个个体,考查某类个体数X 的概率分布.,超几何分布主要用于抽检产品、摸不同类别的知识理解小球等概率模型,其实质是古典概型 四.独立重复试验与二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n 次独立重复试验中,用X 表示事件A 发生的次数.设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ),并称p 为成功概率.五.条件概率及其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=P ABP A(P (A )>0).在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n ABn A .(2)条件概率具有的性质①0≤P (B |A )≤1;①如果B 和C 是两个互斥事件,则P (B ①C |A )=P (B |A )+P (C |A ).考向一 离散型随机变量的分布列的性质【例1】(1)(2020·全国高三专题练习)随机变量X 的分布列如表:X124P12ab若()2E X =,则()D X =( ) A .32B .43C .54D .65(2)(2021·浙江高三)已知随机变量X 的分布列是X123P1213a则()2E X a +=( )考向分析A .53B .73C .72D .236【答案】(1)A (2)C【解析】(1)由分布列的性质以及期望公式可得()1242212E X a b a b ⎧=++=⎪⎪⎨⎪+=⎪⎩,解得14a b ==.()()()()22211131222422442D X =-+-+-=.故选:A. (2)由分布列的性质可得11123a ++=,得16a =,所以,()11151232363E X =⨯+⨯+⨯=,因此,()()11517222266362E X a E X E X ⎛⎫+=+=+=⨯+= ⎪⎝⎭.故选:C.【方法总结】1.随机变量是否服从超几何分布的判断若随机变量X 服从超几何分布,则满足如下条件:(1)该试验是不放回地抽取n 次;(2)随机变量X 表示抽取到的次品件数(或类似事件),反之亦然. 2.离散型随机变量分布列的求解步骤三.若Y =aX +b ,其中a ,b 是常数,X 是随机变量,则 (1)E (k )=k ,D (k )=0,其中k 为常数; (2)E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ); (3)E (X 1+X 2)=E (X 1)+E (X 2); (4)D (X )=E (X 2)-(E (X ))2;(5)若X 1,X 2相互独立,则E (X 1·X 2)=E (X 1)·E (X 2);(6)若X ~N (μ,σ2),则X 的均值与方差分别为:E (X )=μ,D (X )=σ2.【举一反三】1.(2020·全国高三专题练习)随机变量X 的分布列如下,()14P X ≤<的值为( )A .0.6B .0.7C .0.8D .0.9【答案】C【解析】随机变量X 的分布列知:10.10.20.30.10.3x =----=,()()()()14123P X P P P ≤<=++0.20.30.3=++0.8=.故选:C .2.(2020·全国高三专题练习)随机变量ξ的分布列如表所示,若1()E X =-,则(31)D X +=( )A .4B .5C .6D .7【答案】B【解析】根据题意,可知:112a b ++=,则12a b +=,()13E X =-,即:1123b -+=-,解得:16b =,13a ∴=,()22211111151013233369X D ⎛⎫⎛⎫⎛⎫∴=-+⨯++⨯++⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()59959(31)D D X X ==⨯+=,∴5(31)D X +=.故选:B. 3.(2020·全国高三专题练习)若随机变量X 的分布列为则a 的值为( )A .0.1B .0.2C .0.3D .0.4【答案】B【解析】由题意可得,0.231a a ++=,解得0.2a =.故选:B.4.(2020·浙江高三其他模拟)随机变量X 的分布列如下表,已知()122P x ≤=,则当b 在10,2⎛⎫⎪⎝⎭内增大时( )A .()E X 递减,()D X 递减B .()E X 递增,()D X 递减C .()E X 递减,()D X 递增 D .()E X 递增,()D X 递增【答案】B【解析】因为()122P x ≤=,所以12a b +=,12c =, 所以()232E X a b c b =++=+,所以当b 在10,2⎛⎫ ⎪⎝⎭内增大时,()E X 递增;所以()()()()2222115122232224D X a b b b b b ⎛⎫=-++-++-+=-++⎡⎤⎡⎤⎡⎤ ⎪⎣⎦⎣⎦⎣⎦⎝⎭, 所以当b 在10,2⎛⎫ ⎪⎝⎭内增大时,()D X 递减.故选:B.考向二 超几何分布【例2】(2020·全国高三)“花开疫散,山河无恙,心怀感恩,学子归来,行而不缀,未来可期”,为感谢全国人民对武汉的支持,今年樱花节武汉大学在其属下的艺术学院和文学院分别招募8名和12名志愿者参与网络云直播.将这20名志愿者的身高编成如下茎叶图(单位:厘米).若身高在175cm 及其以上定义为“高个子”,否则定义为“非高个子”,且只有文学院的“高个子”才能担任兼职主持人.(1)根据志愿者的身高茎叶图指出文学院志愿者身高的中位数.(2)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,则从这5人中选2人,那么至少有一人是“高个子”的概率是多少;(3)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“兼职主持人”的人数,试写出ξ的分布列,并求ξ的数学期望.【答案】(1)168.5cm ;(2)710;(3)分布列见解析,98. 【解析】(1)根据志愿者的身高茎叶图知文学院志愿者身高为:158,159,161,162,165,168,169,173,174,176,180,181,其升高的中位数为:168169168.52+=cm ; (2)由茎叶图可知,“高个子”有8人,“非高个子”有12人, ∴按照分层抽样抽取的5人中“高个子”为85220⨯=人,“非高个子”为125320⨯=人, 则从这5人中选2人,至少有1人为高个子的概率23257110C P C =-=;(3)由题可知:文学院的高个子只有3人,则ξ的可能取值为0、1、2、3,故305338105(0)5628C C P C ξ⋅====,2153383015(1)5628C C P C ξ⋅====, 12533815(2)56C C P C ξ⋅===,0353381(3)56C C P C ξ⋅===, 即ξ的分布列为:所以19()0123282856568E ξ=⨯+⨯+⨯+⨯=. 【举一反三】1.(2021·全国高三专题练习)为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘制成折线图如下:(1)已知该校有400名学生,试估计全校学生中,每天学习不足4小时的人数;(2)若从学习时间不少于4小时的学生中选取4人,设选取的男生人数为X ,求随机变量X 的分布列及均值E (X );(3)试比较男生学习时间的方差21s 与女生学习时间的方差22s 的大小.(只需写出结论) 【答案】(1)240人;(2)分布列见解析,2;(3)2212s s >.【解析】(1)由折线图可得共抽取了20人,其中男生中学习时间不足4小时的有8人,女生中学习时间不足4小时的有4人.故可估计全校学生中每天学习时间不足4小时的人数为400×1220=240. (2)学习时间不少于4小时的学生共8人,其中男生人数为4, 故X 的所有可能取值为0,1,2,3,4. 由题意可得P (X=0)=4448170C C =,P (X=1)=1344481687035C C C ==, P (X=2)=22444836187035C C C ==, P (X=3)=3144481687035C C C ==, P (X=4)=4448170C C =.所以随机变量X 的分布列为 ∴均值E (X )=0×170+1×835+2×1835+3×835+4×170=2.(3)由折线图可得2212s s >.2.(2020·全国高三专题练习)为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名五年级学生进行了问卷调查得到如下列联表(平均每天喝500mL 以上为常喝,体重超过50kg 为肥胖):已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为415. (1)请将上面的列联表补充完整;(2)是否在犯错误概率不超过0.005的前提下认为肥胖与常喝碳酸饮料有关?请说明你的理由; (3)若常喝碳酸饮料且肥胖的学生中有2名女生,现从常喝碳酸饮料且肥胖的学生中抽取2人参加电视节目,设正好抽到的女生为X 名,求随机变量X 的分布列与期望.参考数据:(参考公式:22()()()()()n ad bc K a b a c c d b d -=++++,其中n a b c d =+++)【答案】(1)答案见解析;(2)在犯错误概率不超过0.005的前提下认为肥胖与常喝碳酸饮料有关;理由见解析;(3)答案见解析.【解析】(1)设常喝碳酸饮料肥胖的学生有x人,则243015x +=,解得6x =, 填表如下:(2)由已知数据可求得:2230(61824)8.5237.8791020822K ⨯⨯-⨯=≈>⨯⨯⨯,因此在犯错误概率不超过0.005的前提下认为肥胖与常喝碳酸饮料有关; (3)依题意,常喝碳酸饮料的肥胖者男生有4名,女生有2名, 随机变量X 的取值分别为0、1、2,∴0224262(0)5C C P X C ⋅===, 1124268(1)15C C P X C ⋅===, 2024261(2)15C C P X C ⋅===, 则随机变量X 的分布列为:因此随机变量X的期望2812 ()0121515153E X=⨯+⨯+⨯=.3.(2020·全国高三)巴西世界杯足球赛正在如火如荼进行.某人为了了解我校学生“通过电视收看世界杯”是否与性别有关,从全校学生中随机抽取30名学生进行了问卷调查,得到了如下列联表:已知在这30名同学中随机抽取1人,抽到“通过电视收看世界杯”的学生的概率是8 15.(1)请将上面的列联表补充完整,并据此资料分析“通过电视收看世界杯”与性别是否有关?(2)若从这30名同学中的男同学中随机抽取2人参加一活动,记“通过电视收看世界杯”人数为X,求X 的分布列和均值.附:参考公式:22()()()()()n ad bcKa b a c c d b d-=++++,n a b c d=+++.【答案】(1)填表见解析;没有充足的理由认为“通过电视收看世界杯”与性别有关;(2)分布列见解析;均值为54.【解析】(1)设“通过电视收看世界杯”的女生为x人,则1083015x+=,解得6x=,由已知数据得:2230(10866) 1.158 3.84116141614K ⨯⨯-⨯=≈<⨯⨯⨯,∴没有充足的理由认为“通过电视收看世界杯”与性别有关; (2)X 可能取值为0、1、2,则:262161(0)8C P X C ===,116102161(1)2C C P X C ===, 2102163(2)8C P X C ===,∴X 的分布列为:X 的均值为:()0128284E X =⨯+⨯+⨯=.考向三 条件概率【例3】(2020·四川省新津中学高三开学考试)长春气象台统计,7月15日净月区下雨的概率为415,刮风的概率为215,既刮风又下雨的概率为110,设事件A 为下雨,事件B 为刮风,那么()|P A B =( )A .12B .34C .25D .38【答案】B【解析】由题意,可知421(),(),()151510P A P B P AB ===, 利用条件概率的计算公式,可得1()310(|)2()415P AB P A B P B ===,故选B.【举一反三】1.(2020·江苏省溧阳中学高三开学考试)甲、乙、丙、丁四名同学分别从篮球、足球、排球、羽毛球四种球类项目中选择一项进行活动,记事件A 为“四名同学所选项目各不相同”,事件B 为“只有甲同学选羽毛球”,则()|P A B =( )A .89B .29C .38D .34【答案】B【解析】事件AB :甲选羽毛球且四名同学所选项目各不相同,所以其它3名同学排列在其它3个项目,且互不相同为33A ,事件B :甲选羽毛球,所以其它3名同学排列在其它3个项目,可以安排在相同项目为33,()()()3343424|394A P AB P A B P B ===.故选:B(2)(2020·四川眉山市·仁寿一中高三月考)现从4名男医生和3名女医生中抽取两人加入“援鄂医疗队”,用A 表示事件“抽到的两名医生性别相同”,B 表示事件“抽到的两名医生都是女医生”,则()P B A =( ) A .13B .47C .23D .34【答案】A【解析】由已知得22432793()217C C P A C +===,232731()217C P AB C ===, 则()P B A =1()173()37P AB P A ==,故选:A 3.(2020·黑龙江大庆市·大庆实验中学高三开学考试)2020年初,我国派出医疗小组奔赴相关国家,现有四个医疗小组甲、乙、丙、丁,和有4个需要援助的国家可供选择,每个医疗小组只去一个国家,设事件A =“4个医疗小组去的国家各不相同”,事件B =“小组甲独自去一个国家”,则P (A |B )=( ) A .29B .13C .49D .59【答案】A【解析】由题意444()4A P A =,()()P AB P A =,3443()4P B ⨯=, ∴44434()24(|)43()94A P AB P A B P B ===⨯.故选:A . 4.(2020·黑龙江牡丹江市·牡丹江一中高三开学考试)一个不透明的袋子中,放有大小相同的5个小球,其中3个黑球,2个白球,如果不放回的依次取出2个球.在第一次取出的是黑球的条件下,第二次取出的是白球的概率是( ) A .12B .310C .35D .25【答案】A【解析】第一次取出黑球后,剩余4个球,其中2个白球,所以第二次取出的是白球的概率是2142=.故选:A.考向四 二项分布【例4】(2020·全国高三专题练习)某高三毕业班甲、乙两名同学在连续的8次数学周练中,统计解答题失分的茎叶图如图:(1)比较这两名同学8次周练解答题失分的平均数和方差的大小,并判断哪位同学做解答题相对稳定些; (2)以上述数据统计甲、乙两名同学失分超过15分的频率作为概率,假设甲、乙两名同学在同一次周练中失分多少互不影响,预测在接下来的2次周练中,甲、乙两名同学失分均超过15分的次数X的分布列和均值.【答案】(1)甲、乙两名同学解答题失分的平均数相等;甲同学解答题失分的方差比乙同学解答题失分的方差大,乙同学做解答题相对稳定些;(2)分布列见解析,38. 【解析】(1) 1=8x 甲(7+9+11+13+13+16+23+28)=15, 1=8x 乙(7+8+10+15+17+19+21+23)=15,21=8s 甲 [(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75,21=8s 乙[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.甲、乙两名同学解答题失分的平均数相等;甲同学解答题失分的方差比乙同学解答题失分的方差大.所以乙同学做解答题相对稳定些.(2)根据统计结果,在一次周练中,甲和乙失分超过15分的概率分别为P 1=38,P 2=12, 两人失分均超过15分的概率为P 1P 2=316, X 的所有可能取值为0,1,2.依题意,32,16XB ⎛⎫ ⎪⎝⎭, ()22313,0,1,21616kkk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则X 的分布列为X 的均值E (X )=2168⨯=. 【举一反三】1.(2020·全国高三专题练习)为研究家用轿车在高速公路上的车速情况,交通部门随机选取100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h 的有40人,不超过100km/h 的有15人;在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h 的有25人.(1)在被调查的驾驶员中,从平均车速不超过100km/h 的人中随机抽取2人,求这2人恰好有1名男性驾驶员和1名女性驾驶员的概率;(2)以上述样本数据估计总体,从高速公路上行驶的家用轿车中随机抽取3辆,记这3辆车平均车速超过100km/h 且为男性驾驶员的车辆为X ,求X 的分布列. 【答案】(1)2552;(2)分布列答案见解析. 【解析】(1)平均车速不超过100km/h 的驾驶员有40人,从中随机抽取2人的方法总数为240C ,记“这2人恰好有1名男性驾驶员和1名女性驾驶员”为事件A ,则事件A 所包含的基本事件数为111525C C ⋅,所以所求的概率()1115252402552C C P A C ==. (2)根据样本估计总体的思想,从总体中任取1辆车,平均车速超过100km/h 且为男性驾驶员的概率为4021005=,故2(3,)5X B .所以()03032327055125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()12132354155125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()2232336255125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()3033238355125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭所以X 的分布列为2.(2020·全国高三专题练习)某学校用“10分制”调查本校学生对教师教学的满意度,现从学生中随机抽取16名,以茎叶图记录了他们对该校教师教学满意度的分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):(1)若教学满意度不低于9.5分,则称该生对教师的教学满意度为“极满意”.求从这16人中随机选取3人,至少有1人是“极满意”的概率;(2)以这16人的样本数据来估计整个学校的总体数据,若从该校所有学生中(学生人数很多)任选3人,记X 表示抽到“极满意”的人数,求X 的分布列及数学期望.【答案】(1)1728;(2)分布列见解析,()34E X =.【解析】(1)16人中满意的有4人,不满意的有12人,设i A 表示所抽取的3人中有i 个人是“极满意”,至少有1人是“极满意”记为事件A ,则抽出的3人都不满意的概率为()31203161128C P A C ==,所以()()01117112828P A P A =-=-=, (2)X 的所有可能取值为0,1,2,316人中满意的有4人,不满意的有12人,随机抽取一人极满意的概率为41164=, 所以13,4X B ⎛⎫~ ⎪⎝⎭,所以()33270464P X ⎛⎫===⎪⎝⎭,()213132714464P X C ⎛⎫==⨯⨯=⎪⎝⎭, ()22313924464P X C ⎛⎫==⨯⨯= ⎪⎝⎭,()333113464P X C ⎛⎫==⨯= ⎪⎝⎭.所以X 的分布列为所以()1236464644E X =⨯+⨯+⨯=.3.(2020·凯里市第三中学高三月考)北京是历史悠久的千年古都,现在是中国的政治、经济、文化等多领域的中心,历史文化积淀深厚,自然人文景观丰富,科学技术发达,教育资源众多,成为当代绝大多数人的理想向往之地.凯里市为了将来更好的推进“研学游学”项目来丰富中学生的课余生活,帮助中学生树立崇高理想,更好地实现人生价值.为了更好了解学生的喜好情况,某组织负责人把项目分为历史人文游、科技体验游、自然风光游三种类型,并在全市中学中随机抽取10所学校学生意向选择喜好类型,统计如下:在这10所中小学中,随机抽取了3所学校,并以统计的频率代替学校选择研学游学意向类型的概率(假设每所学校在选择研学游学类型时仅能选择其中一类,且不受其他学校选择结果的影响).(1)若这3所学校选择的研学游学类型是历史人文游、自然风光游,求这两种都有学校选择的概率; (2)设这3所学校中选择科技体验游学校的随机数X ,求X 的分布列与数学期望. 【答案】(1)18125;(2)分布列见解析,6()5E X =. 【解析】(1)由题设学校选择历史人文游、科技体验游、自然风光游的概率分别为()P A 、()P B 、(C)P ,则易知2()5P A =,2()5P B =,1()5P C =, 所以这3所学校选择的研学游学类型是历史人文游、自然风光游的概率为1222133()()()()P C P A P C C P A P C =⋅+⋅1222332121()()5555C C =+61218125125125=+=; (2)由题知这3所学校中选择科技体验游学校的概率为2()5P B =, 选择非科技体验游学校的概率为2213()()555P P A P C =+=+=,所以X 的所有可能值有:0,1,2,3, 则03033232327(0)()()()55125P X C P B P C ====,1121123232354(1)()()()55125P X C P B P C ====,2212213232336(2)()()()55125P X C P B P C ====,330330323238(3)()()()55125P X C P B P C ====,所以X 的分布列如下:所以X 的数学期望为86()01231251251251255E X =⨯+⨯+⨯+⨯=.1.(2020·全国高三专题练习)已知随机变量X 的分布列如下:若随机变量Y 满足31Y X =-,则Y 的方差()D Y =( )A .1B .2C .3D .9【答案】D【解析】由分布列的性质,可得11132a ++=,解得16a =,则()1110121326E X =⨯+⨯+⨯=, 所以()()()()2221110111311326D X =-⨯+-⨯+-⨯=,又因为31Y X =-,所以()()23919D Y D X =⨯=⨯=.故选:D.2.(2020·全国高三专题练习)随机变量ξ的分布列如下:强化练习其中a ,b ,c 成等差数列,则D ξ的最大值为( ) A .23B .59C .29D .34【答案】A【解析】因为a ,b ,c 成等差数列,122b a c,a b c 1,b ,c a,33∴=+++=∴==-2E ξa c 2a 3∴=-+=-+,2222222D ξ12a a 2a b 12a a 3333⎛⎫⎛⎫⎛⎫⎛⎫=-+-⨯+-⨯++-⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22821224a a 439333a ⎛⎫=-++=--+≤ ⎪⎝⎭.则D ξ的最大值为233.(2020·全国高三专题练习)已知ξ的分布列为设25ηξ=-,则()E η=( ) A .12B .13C .23D .32【答案】C【解析】由分布列的性质可得:1111663m +++=,解得13m =所以()111117123466336E ξ=⨯+⨯+⨯+⨯=因为25ηξ=-,所以()()172252563E E ηξ=-=⨯-=故选:C 4.(2020·内蒙古包头市·高三二模)X 表示某足球队在2次点球中射进的球数,X 的分布列如下表,若()1E X =,则()D X =( )A .3B .2C .4 D .3【答案】D【解析】由()1E X =,可得1()01213E X a b =⨯+⨯+⨯=①,又由113a b ++=②,由①和②可得,13a =,13b =,所以,2221112()(01)(11)(21)3333D X =⨯-+⨯-+⨯-=故选:D 5.(2020·全国高三专题练习)某射手射击所得环数ξ的分布列如下:已知ξ的数学期望()8.9E ξ=,则y 的值为( )A .0.8B .0.6C .0.4D .0.2【答案】C【解析】由表格可知:0.10.31780.190.3108.9x y x y +++=⎧⎨+⨯+⨯+⨯=⎩ , 解得0.4y =.故选:C .6.(2020·全国高三专题练习)某小组有5名男生、3名女生,从中任选3名同学参加活动,若X 表示选出女生的人数,则()2P X ≥=( ) A .17B .1556C .27D .57【答案】C【解析】当2X =时,()12533815256C C P X C ===; 当3X =时,()33381356C P X C ===,则()()()151222356567P X P X P X ≥==+==+=, 故选:C.7.(2020·莆田第二十五中学高三期中)2019年10月20日,第六届世界互联网大会发布了15项“世界互联网领先科技成果”,其中有5项成果均属于芯片领域.现有3名学生从这15项“世界互联网领先科技成果”中分别任选1项进行了解,且学生之间的选择互不影响,则恰好有1名学生选择“芯片领域”的概率为( ) A .49B .427C .1927D .48125【答案】A【解析】由题意知,有3名学生且每位学生选择互不影响,从这15项“世界互联网领先科技成果”中分别任选1项,5项成果均属于芯片领域,则: 芯片领域被选的概率为:51153=;不被选的概率为:12133-=;而选择芯片领域的人数{0,1,2,3}X =,∴X 服从二项分布1~3(,3)X B ,3321()()()33nnn P X n C -==,那么恰好有1名学生选择“芯片领域”的概率为123214(1)()()339P X C ===. 故选:A.8.(2020·全国高三专题练习)一个盒子中装有6个完全相同的小球,将它们进行编号,号码分別为1、2、3、4、5、6,从中不放回地随机抽取2个小球,将其编号之和记为S .在已知S 为偶数的情况下,S 能被3整除的概率为( ) A .14B .13C .512D .23【答案】B【解析】记“S 能被3整除”为事件A ,“S 为偶数”为事件B ,事件B 包括的基本事件有{1}3,,{1}5,,{3}5,,{24},,{26},,{46},共6个. 事件AB 包括的基本事件有{1}5,、{24},共2个.则()21(|)()63n AB P A B n B ===,故选:B . 9.(2020·全国高三专题练习)袋中有5个球(3个白球,2个黑球)现每次取一球,无放回抽取2次,则在第一次抽到白球的条件下,第二次抽到白球的概率为( )A .3/5B .3/4C .1/2D .3/10【答案】C【解析】记事件A 为“第一次取到白球”,事件B 为“第二次取到白球”, 则事件AB 为“两次都取到白球”, 依题意知3()5P A =,3263()542010P AB =⨯==, 所以,在第一次取到白球的条件下,第二次取到白球的概率是3110()325P B A ==.故选:C.10.(2020·全国高三专题练习)甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询这三个项目,每人限报其中一项,记事件A 为“恰有2名同学所报项目相同”,事件B 为“只有甲同学一人报关怀老人项目”,则()|P B A =( )A .16B .13C .23D .56【答案】A【解析】事件AB 为“4名同学所报项目恰有2名同学所报项目相同且只有甲同学一人报关怀老人项目”.()2143421439C C P A ⨯⨯== , ()21324112327C C P AB ⨯⨯==所以()()()2127|469P AB P B A P A ===故选:A 11.(2020·浙江高三专题练习)已知随机变量X 的分布列如表,且()4(1)E X P X =,则a b +=__,()E X 的取值范围为__.【答案】12 6[5,3]2【解析】由概率之和等于1可得12a b +=, 由1()22E X a b =++,可知1242a b a ++,即1132()22a a --,解得310a , 又0a ,故3010a .又13()222E X a b a =++=-,∴63()52E X , 故答案为:12,6[5,3]212.(2020·全国高三专题练习)随机变量ξ的分布列如表格所示,0ab ≠,则14a b+的最小值为______.【答案】9【解析】根据概率分布得1a b +=,且0,0a b >>,14144()()559b a a b a b a b a b ∴+=++=++≥+= 当且仅当223b a ==时取等号 即14a b+的最小值为9 故答案为:913.(2020·全国高三专题练习)小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A 为“4个人去的景点不相同”,事件B 为“小赵独自去一个景点”,则()P A B =________. 【答案】29【解析】小赵独自去一个景点共有4333108⨯⨯⨯=种情况,即()108n B =,4个人去的景点不同的情况有4424A =种,即()24n AB =,所以()()242()1089n AB P A B n B ===.故答案为:29. 14.(2020·全国高三其他模拟)伟大出自平凡,英雄来自人民.在疫情防控一线,北京某大学学生会自发从学生会6名男生和8名女生骨干成员中选出2人作为队长率领他们加入武汉社区服务队,用A 表示事件“抽到的2名队长性别相同”,B 表示事件“抽到的2名队长都是男生”,则()|P B A =______.【答案】1543【解析】由已知得()22682144391C C P A C +==,()262141591C P AB C ==, 则()()()151591|434391P AB P B A P A ===. 故答案为:154315.(2020·全国高三专题练习)夏、秋两季,生活在长江口外浅海域的中华鱼洄游到长江,历经三千多公里的溯流搏击,回到金沙江一带产卵繁殖,产后待幼鱼长到15厘米左右,又携带它们旅居外海.一个环保组织曾在金沙江中放生一批中华鱼鱼苗,该批鱼苗中的雌性个体能长成熟的概率为0.15,雌性个体长成熟又能成功溯流产卵繁殖的概率为0.05,若该批鱼苗中的一个雌性个体在长江口外浅海域已长成熟,则其能成功溯流产卵繁殖的概率为_________. 【答案】13【解析】解析设事件A 为鱼苗中的一个雌性个体在长江口外浅海域长成熟,事件B 为该雌性个体成功溯流产卵繁殖,由题意可知()0.15P A =,()0.05P AB =,()0.051(|)()0.153P AB P B A P A ===. 故答案为:13. 16.(2020·全国高三)一个袋中装有大小相同的5个白球和3个红球,现在不放回的取2次球,每次取出一个球,记“第1次拿出的是白球”为事件A ,“第2次拿出的是白球”为事件B ,则()P B A 是________【答案】47【解析】由题可知:()()5545=,88714P A P AB ⨯==⨯所以()()()47P AB P B A P A ==故答案为:4717.(2020·四川省内江市第六中学高三)某校组织甲、乙、丙、丁、戊、己等6名学生参加演讲比赛,采用抽签法决定演讲顺序,在“学生甲和乙都不是第一个出场,且甲不是最后一个出场”的前提下,学生丙第一个出场的概率为__________. 【答案】14【解析】设事件A :“学生甲和乙都不是第一个出场,且甲不是最后一个出场”;事件B :“学生丙第一个出场”,对事件A ,甲和乙都不是第一个出场,第一类:乙在最后,则优先从中间4个位置中选一 个给甲,再将余下的4个人全排列有1444C A ⋅种;第二类:乙没有在最后,则优先从中间4个位置中选两个给甲乙,再将余下的4个人全排列有2444A A ⋅种,故总的有()14244444n A C A A A =⋅+⋅.对事件AB ,此时丙第一个出场,优先从除了甲以外的4人中选一人安排在最后,再将余下的4人全排列有1444C A ⋅种故()()()14441424444414n AB C A P B A n A C A A A ⋅===⋅+⋅. 故答案为:1418.(2020·浙江高三其他模拟)随机变量X 分布列如下表,则a =______;()E X =______.【答案】2; 1; 【解析】23224a a +=,∴12a =,∴()1110121424E X =⨯+⨯+⨯=.故答案为:12;1.19.(2020·全国高三专题练习)已知随机变量ξ的分布列如下:则a =___,方差()=D ξ___. 【答案】12 1116【解析】由题意可得22112201012a a a a⎧++=⎪⎪<<⎨⎪⎪<<⎩,解得12a =,()112P ξ==,()124P ξ==,()134P ξ==,()11171232444E ξ=⨯+⨯+⨯=,()2221717171112324444416D ξ⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,综上,12a =,()1116D ξ=. 故答案为:12;1116.20.(2020·四川内江市·高三一模)网购是当前民众购物的新方式,某公司为改进营销方式,随机调查了100名市民,统计其周平均网购的次数,并整理得到如下的频数分布直方图.这100名市民中,年龄不超过40岁的有65人,将所抽样本中周平均网购次数不小于4次的市民称为网购迷,且已知其中有5名市民的年龄超过40岁.(1)根据已知条件完成下面的22⨯列联表,能否在犯错误的概率不超过0.10的前提下认为网购迷与年龄不超过40岁有关?(2)若从网购迷中任意选取2名,求其中年龄超过40岁的市民人数ξ的分布列.(附:()()()()()22n ad bc k a b c d a c b d -=++++)【答案】(1)列联表答案见解析,可以在犯错误的概率不超过0.10的前提下认为网购迷与年龄不超过40岁有关;(2)分布列答案见解析. 【解析】(1)由题意可得列联表如下:根据列联表中的数据可得,()2100203045565352575k ⨯⨯-⨯=⨯⨯⨯1003 3.297 2.706137⨯=≈>⨯所以可以在犯错误的概率不超过0.10的前提下认为网购迷与年龄不超过40岁有关;(2)由频率分布直方图可知,网购迷共有25名,由题意得年龄超过40岁的市民人数ξ的所有值为0,1,2,则()22022519030C P C ξ===,()11205225113C C P C ξ===,()252251230C P C ξ===∴ξ的分布列为21.(2020·全国高三专题练习)我国城市空气污染指数范围及相应的空气质量类别如下表:我们把空气污染指数在0~100内的称为A 类天,在101~200内的称为B 类天,大于200的称为C 类天.某市从2014年全年空气污染指数的监测数据中随机抽取了18天的数据制成如下茎叶图(百位为茎):(1)从这18天中任取3天,求至少含2个A 类天的概率;(2)从这18天中任取3天,记X 是达到A 类天或B 类天的天数,求X 的分布列. 【答案】(1)23408;(2)分布列见解析. 【解析】(1)从这18天中任取3天,取法种数为318816C =种不同的取法, 其中3天中至少有2个A 类天的取法种数为213315346C C C +=种,所以这3天至少有2个A 类天的概率为4623816408P ==. (2)X 的所有可能取值是3,2,1,0,当3X =时,()3831873102C P X C ===,当2X =时,()21810318352102C C P X C ===, 当1X =时,()1281031815134C C P X C ===,当X 0=时,()3103185034C P X C ===, 所以X 的分布列为22.(2020·全国高三专题练习)2020年五一期间,银泰百货举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球2个,白球1个,黑球7个)的抽奖盒中,一次性摸出3个球其中奖规则为:若摸到2个红球和1个白球,享受免单优惠;若摸出2个红球和1个黑球则打5折;若摸出1个白球2个黑球,则打7折;其余情况不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率; (2)若某顾客消费恰好满1000元,试从概率角度比较该顾客选择哪一种抽奖方案更合算? 【答案】(1)114400;(2)选择第二种方案更合算.【解析】(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件A ,则()21213101120C C P A C ==, 所以两位顾客均享受到免单的概率为()()114400P P A P A =⋅=;(2)若选择方案一,设付款金额为X 元,则X 可能的取值为0、500、700、1000.()212131010120C C P X C ===,()21273107500120C C P X C ===, ()1217310770040C C P X C ===,()177911000112012040120P X ==---=.故X 的分布列为,所以()0500700100091012012040120E X =⨯+⨯+⨯+⨯=(元). 若选择方案二,设摸到红球的个数为Y ,付款金额为Z ,则1000200Z Y =-, 由已知可得3~3,10Y B ⎛⎫⎪⎝⎭,故()3931010E Y =⨯=,。

高三数学概率专题复习:二项分布、几何分布、超几何分布、正态分布、离散型随机变量的期望与方差等五大专题

高三数学概率专题复习:二项分布、几何分布、超几何分布、正态分布、离散型随机变量的期望与方差等五大专题

2011年高考数学正态分布几何分布超几何分布离散型随机变量专项突破精选真题汇编与讲解分析答案第一部分第五节离散型随机变量的分布列一、选择题1.抛掷两颗骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是()A.两颗都是2点B 一颗是3点,一颗是1点C.两颗都是4点D.一颗是3点,一颗是1点或两颗都是2点解析:对A、B中表示的随机试验的结果,随机变量均取值4,而D是ξ=4代表的所有试验结果.掌握随机变量的取值与它刻画的随机试验的结果的对应关系是理解随机变量概念的关键.答案:D2.下列分布列中,是离散型随机变量分布列的是()A.B.C.D.解析:只有选项C中的概率之和等于1,选C.答案:C3.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次该项试验的成功次数,则P (ξ=0)等于( )A .0 B.13 C.12 D.23解析:1-P (ξ=0)=2P (ξ=0),即P (ξ=0)=13.答案:B4.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,下列概率中等于C47C68C1015的是( )A .P (X =2)B .P (X ≤2)C .P (X =4)D .P (X ≤4)解析:由分子C47C68可知是从7个不方便的村庄中选4个,从8个方便的村庄中选6个,∴X =4,∴是P (X =4)的概率.答案:C5.若离散型随机变量X 的分布列为:则常数q 的值为( )A .1 B. 1±22 C. 1+22 D. 1-22解析:由12+(1-2q )+q 2=1,解得q =1-22或q =1+22,又∵q 2∈[0,1],∴q =1+22舍去.∴q =1-22. 答案:D 二、填空题6.随机变量X 等可能取值为1,2,3,……,n ,如果P (X <4)=0.3,那么n =________. 解析:∵P (X <4)= P (X =1)+P (X =2)+P (X =3)=3n =0.3,∴n =10. 答案:107.随机变量ξ的分布列为若a +c =2b ,则P (|ξ|=1)=________.解析:∵a +c =2b ,又∵a +b +c =1,∴b =13,a +c =23,于是P (|ξ|=1)=P (ξ=1)+P (ξ=-1)=a +c =23.答案:238.若离散型随机变量X 的分布列为P (X =k )=c2k ,k =1,2,3,4,5,6.其中c 为常数,则P (X ≤2)的值是________.解析:由c 2+c 4+c 8+c 16+c 32+c 64=1,可得c =6463.∴P (X ≤2)=P (X =1)+P (X =2)=3263+1663=4863=1621.答案:1621三、解答题9.(2009年广州调研)一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.(1)求这箱产品被用户接收的概率; (2)记抽检的产品件数为ξ,求ξ的分布列.解析:(1)设“这箱产品被用户接收”为事件A ,P (A )=8×7×610×9×8=715,即这箱产品被用户接收的概率为715. (2)ξ的可能取值为1,2,3.P (ξ=1)=210=15,P (ξ=2)=810×29=845,P (ξ=3)=810×79=2845,∴ξ的分布列为10.(2009年广州模拟)50名一线教师参加,使用不同版本教材的教师人数如下表所示:(1)从这50(2)若随机选出2名使用人教版的教师发言,设使用人教A 版的教师人数为ξ,求随机变量ξ的分布列. 解析:(1)从50名教师中随机选出2名的方法数为C250=1225. 选出2人使用版本相同的方法数为C 220+C 215+C 25+C 210=350, 故2人使用版本相同的概率为:P =3501225=27.(2)∵P (ξ=0)=C215C235=317,P (ξ=1)=C120C115C235=60119,P (ξ=2)=C220C235=38119,∴ξ的分布列为第二部分第六节 二项分布、超几何分布、正态分布一、选择题1.设随机变量ξ~B ⎝⎛⎭⎫6,12,则P (ξ=3)的值为( ) A.516 B.316 C.58 D.716 解析:P (ξ=3)=C36⎝⎛⎭⎫123⎝⎛⎭⎫1-123=516. 答案:A2.设随机变量ξ ~ B (2,p ),随机变量η ~ B (3,p ),若P (ξ ≥1) =59,则P (η≥1) =( )A.13B.59C.827D.1927解析:∵P (ξ≥1) =2p (1-p )+p 2=59, ∴p =13,∴P (η≥1) =C 13⎝⎛⎭⎫13⎝⎛⎭⎫232+C 23⎝⎛⎭⎫132⎝⎛⎭⎫23+C 33⎝⎛⎭⎫133=1927,故选D. 答案:D3.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)=( )A .C 1012⎝⎛⎭⎫3810·⎝⎛⎭⎫582B .C 911⎝⎛⎭⎫389⎝⎛⎭⎫582·38C .C 911⎝⎛⎭⎫589·⎝⎛⎭⎫382D .C 911⎝⎛⎭⎫389·⎝⎛⎭⎫582 解析:P (ξ=12)表示第12次为红球,前11次中有9次为红球,从而P (ξ=12)=C 911·⎝⎛⎭⎫389⎝⎛⎭⎫582×38. 答案:B4.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( )A .[0.4,1)B .(0,0.6]C .(0,0.4]D .[0.6,1)解析:C14p (1-p )3≤C24p 2(1-p )2,即2(1-p )≤3p , ∴p ≥0.4.又∵p <1,∴0.4≤p <1. 答案:A5.(2009年湖南四市联考)已知随机变量ξ服从正态分布N (2,σ2),P (ξ≤4)=0.84,则P (ξ<0)=( ) A .0.16 B .0.32 C .0.68 D .0.84 解析:∵P (ξ≤4)=0.84,μ=2,∴P (ξ<0) =P (ξ>4)=1-0.84=0.16.故选A. 答案:A 二、填空题6.某篮运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率________.(用数值作答)解析:由题意知所求概率P =C 310⎝⎛⎭⎫123⎝⎛⎭⎫127=15128. 答案:151287.从装有3个红球,2个白球的袋中随机取出两个球,设其中有X 个红球,则X 的分布列为________.解析:这是超几何分布,P (X =0)=C 03C 22C 25=0.1;P (X =1)=C 13C 12C 25=0.6; P (X =2)=C 23C 02C 25=0.3,分布列如下表:答案:8.某厂生产的圆柱形零件的外径ε1000件零件中随机抽查一件,测得它的外径为5.7 cm.则该厂生产的这批零件是否合格________.解析:根据3σ原则,在4-3×0.5=2.5——4+3×0.5=5.5之外为异常,所以这批零件不合格. 答案:不合格 三、解答题9.(2008年四川延考)一条生产线上生产的产品按质量情况分为三类:A 类、B 类、C 类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C 类产品或2件都是B 类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为A 类品,B 类品和C 类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.(1)求在一次抽检后,设备不需要调整的概率;(2)若检验员一天抽检3次,以ξ表示一天中需要调整设备的次数,求ξ的分布列. 解析:(1)设A i 表示事件“在一次抽检中抽到的第i 件产品为A 类品”, i =1,2.B i 表示事件“在一次抽检中抽到的第i 件产品为B 类品”, i =1,2.C 表示事件“一次抽检后,设备不需要调整”. 则C =A 1·A 2+A 1·B 2+B 1·A 2.由已知P (A i )=0.9,P (B i )=0.05 i =1,2. 所以,所求的概率为P (C )=P (A 1·A 2)+P (A 1·B 2)+P (B 1·A 2) =0.92+2×0.9×0.05=0.9.(2)由(1)知一次抽检后,设备需要调整的概率为p =P (C )=1-0.9=0.1,依题意知ξ~B (3,0.1),ξ的分布列为10.(2009年南海一中月考的方式来进行,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.(1)求甲答对试题数ξ的概率分布; (2)求甲、乙两人至少有一人入选的概率.解析:(1)依题意,甲答对试题数ξ的可能取值为0、1、2、3,则 P (ξ=0)=C 34C 310=130,P (ξ=1)=C 16·C 24C 310=310,P (ξ=2)=C 26·C 14C 310=12,P (ξ=3)=C 36C 310=16,其分布列如下:(2)法一:设甲、乙两人考试合格的事件分别为A 、B ,则P (A )=C 26C 14+C 36C 310=60+20120=23, P (B )=C 28C 12+C 38C 310=56+56120=1415.因为事件A 、B 相互独立,∴甲、乙两人考试均不合格的概率为 P()A ·B =P ()A ·P ()B =⎝⎛⎭⎫1-23⎝⎛⎭⎫1-1415=145, ∴甲、乙两人至少有一人考试合格的概率为 P =1-P()A ·B =1-145=4445. 答:甲、乙两人至少有一人考试合格的概率为4445.法二:甲、乙两人至少有一个考试合格的概率为 P =P ()A ·B+P ()A ·B +P ()A ·B =23×115+13×1415+23×1415=4445. 答:甲、乙两人至少有一人考试合格的概率为4445第三部分第七节 离散型随机变量的期望与方差一、选择题1.下列是4个关于离散型随机变量ξ的期望和方差的描述①Eξ与Dξ是一个数值,它们是ξ本身所固有的特征数,它们不具有随机性 ②若离散型随机变量一切可能取值位于区间[]a ,b 内,则a ≤Eξ≤b③离散型随机变量的期望反映了随机变量取值的平均水平,而方差反映的是随机变量取值的稳定与波动,集中与离散的程度④离散型随机变量的期望值可以是任何实数,而方差的值一定是非负实数 以上4个描述正确的个数是( )A .1B .2C .3D .4 答案:D2.设Eξ=10,Eη=3,则E (3ξ+5η)=( ) A .45 B .40 C .35 D .15 解析:E (3ξ+5η)=3Eξ+5Eη=3×10+5×3=45. 答案:A3.已知随机变量X 的分布列是:且EX =7.5,则a 的值为( A .5 B .6 C .7 D .8 解析:b =1-0.3-0.1-0.2=0.4EX =4×0.3+a ×0.1+9×0.4+10×0.2=7.5. ∴a =7. 答案:C4.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目ξ的期望为( )A .2.44B .3.376C .2.376D .2.4 解析:ξ=0,1,2,3,此时P (ξ=0)=0.43,P (ξ=1)=0.6×0.42,P (ξ=2)=0.6×0.4,P (ξ=3)=0.6,Eξ=2.376. 答案:C5.口袋中有5只相同的球,编号为1、2、3、4、5,从中任取3球,用ξ表示取出的球的最大号码,则Eξ=( )A .4B .4.75C .4.5D .5 解析:P (ξ=3)=1C 35=110, P (ξ=4)=C 23C 35=310,P (ξ=5)=C 24C 35=35Eξ=3×0.1+4×0.3+5×0.6=4.5. 答案:C 二、填空题6.利用下列盈利表中的数据进行决策,应选择的方案是______.解析:EA 1=50×0.25+65×0.30+26×0.45=43.7, EA 2=70×0.25+26×0.30+16×0.45=32.5, EA 3=-20×0.25+52×0.30+78×0.45=45.7, EA 4=98×0.25+82×0.30+(-10)×0.45=44.6. 在四个均值中,EA 3最大,所以应选择的方案是A 3. 答案:A 37.(2009年上海卷)某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ=________(结果用最简分数表示).解析:首先ξ∈{0,1,2}.∴P (ξ=0)=C25C27=1021,P (ξ=1)=C12C15C27=1021,P (ξ=2)=C22C27=121.∴Eξ=0·1021+1·1021+2·121=1221=47.答案:478.一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次,则向上的数之积的方差是________.解析:一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,向上的数之积可能为ξ=0,1,2,4,则P (ξ=0)=C 13C 13+C 13C 12+C 12C 13+C 13C 11+C 11C 13C 16C 16=34, P (ξ=1)=C 12C 12C 16C 16=19,P (ξ=2)=C 12C 11+C 11C 12C 16C 16=19,P (ξ=4)=C 11C 11C 16C 16=136, ∴ Eξ=19+29+436=49.∴Dξ=⎝⎛⎭⎫0-492×34+⎝⎛⎭⎫1-492×19+⎝⎛⎭⎫2-492×136=182729. 答案:182729三、解答题9.(2009年浙江卷)在1,2,3,…,9这9个自然数中,任取3个数. (1)求这3个数中恰有1个偶数的概率;(2)记ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列数学期望Eξ及方差Dξ. 解析:(1)记“这3个数中恰有一个是偶数”为事件A , 则P (A )=C14C25C39=1021.(2)随机变量ξ的取值为0,1,2.ξ的分布列是所以ξ的数学期望Eξ=0×512+1×12+2×112=23. Dξ=⎝⎛⎭⎫0-232×512+⎝⎛⎭⎫1-232×12+⎝⎛⎭⎫2-232×112=2154. 10.(2009年山东卷)在某学校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次.某同学在A 处的命中率q 1为0.25,在B 处的命率为q 2.该同学选择先在A 处投一球,以后都在B 处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为(1)求q 2的值;(2)求随机变量ξ的数学期望Eξ;(3)试比较该同学选择都在B 处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小. 解析:(1)由题设知,“ξ=0”对应的事件为“在三次投篮中没有一次投中”,由对立事件和相互独立事件性质可知P (ξ=0)=(1-q 1)(1-q 2)2=0.03,解得q 2=0.8.(2)根据题意P 1=P (ξ=2)=(1-q 1)C12(1-q 2)q 2=0.75×2×0.2×0.8=0.24.P 2=P (ξ=3).=q 1(1-q 2)2=0.25×(1-0.8)2=0.01.P 3=P (ξ=4)=(1-q 1)q 22=0.75×0.82=0.48.P 4=P (ξ=5)=q 1q 2+q 1(1-q 2)q 2=0.25×0.8+0.25×0.2×0.8=0.24.因此Eξ=0×0.03+2×0.24+3×0.01+4×0.48+5×0.24=3.63.(3)用C表示事件“该同学选择第一次在A处投,以后都在B处投,得分超过3分”,用D表示事件“该同学选择都在B处投,得分超过3分”,则P(C)=P(ξ=4)+P(ξ=5)=P3+P4=0.48+0.24=0.72.P(D)=q22+C12q2(1-q2)q2=0.82+2×0.8×0.2×0.8=0.896.故P(D)>P(C).即该同学选择都在B处投篮得分超过3分的概率大于该同学选择第一次在A处投以后都在B处投得分超过3分的概率。

7.4 二项分布与超几何分布(原卷版) 人教版高中数学精讲精练选择性必修三

7.4 二项分布与超几何分布(原卷版) 人教版高中数学精讲精练选择性必修三

7.4二项分布与超几何分布考法一二项分布【例1】(2024上·安徽合肥·高三合肥一六八中学校联考期末)甲、乙两人进行射击比赛,每次比赛中,甲、乙各射击一次,甲、乙每次至少射中8环.根据统计资料可知,甲击中8环、9环、10环的概率分别为0.7,0.2,0.1,乙击中8环、9环、10环的概率分别为0.6,0.2,0.2,且甲、乙两人射击相互独立.(1)在一场比赛中,求乙击中的环数少于甲击中的环数的概率;(2)若独立进行三场比赛,其中X场比赛中甲击中的环数多于乙击中的环数,求X的分布列与数学期望.【一隅三反】1.(2024·内蒙古赤峰)已知某单位招聘程序分两步:第一步是笔试,笔试合格才能进入第二步面试;面试合格才算通过该单位的招聘.现有A,B,C三位毕业生应聘该单位,假设A,B,C三位毕业生笔试合格的概率分别是13,12,14;面试合格的概率分别是12,13,23.(1)求A,B两位毕业生中有且只有一位通过招聘的概率;(2)记随机变量X为A,B,C三位毕业生中通过招聘的人数,求X的分布列与数学期望.2.(2024上·内蒙古鄂尔多斯)为了检查工厂生产的某产品的质量指标,随机抽取了部分产品进行检测,所得数据统计如下图所示.(注:产品质量指标达到130及以上为优质品);(1)求a的值以及这批产品的优质率;(2)以本次抽检的频率作为概率,从工厂生产的所有产品中随机抽出4件,记这4件中优质产品的件数为X,求X的分布列与数学期望.考法二超几何分布【例2】(2023上·内蒙古呼伦贝尔)已知盒子内有大小相同的10个球,其中红球有m个,已知从盒子中任取2个球都是红球的概率为2 15 .(1)求m的值;(2)现从盒子中任取3个球,记取出的球中红球的个数为X,求X的分布列和数学期望.【一隅三反】1.(2023·全国·高三专题练习)“英才计划”最早开始于2013年,由中国科协、教育部共同组织实施,到2022年已经培养了6000多名具有创新潜质的优秀中学生,为选拔培养对象,某高校在暑假期间从武汉市的中学里挑选优秀学生参加数学、物理、化学、信息技术学科夏令营活动.若化学组的12名学员中恰有5人来自同一中学,从这12名学员中选取3人,ξ表示选取的人中来自该中学的人数,求ξ的分布列和数学期望.2.(2023上·江苏南通·高三海门中学校考阶段练习)某班为了庆祝我国传统节日中秋节,设计了一个小游戏:在一个不透明箱中装有4个黑球,3个红球,1个黄球,这些球除颜色外完全相同.每位学生从中一次随机摸出3个球,观察颜色后放回.若摸出的球中有X 个红球,则分得X 个月饼;若摸出的球中有黄球,则需要表演一个节目.(1)求一学生既分得月饼又要表演节目的概率;(2)求每位学生分得月饼数的概率分布和数学期望.3.(2023·陕西商洛·陕西省丹凤中学校考模拟预测)某乒乓球队训练教官为了检验学员某项技能的水平,随机抽取100名学员进行测试,并根据该项技能的评价指标,按[)[)[)[)[)[)[)[]60,65,65,70,70,75,75,80,80,85,85,90,90,95,95,100分成8组,得到如图所示的频率分布直方图.(1)求a 的值,并估计该项技能的评价指标的中位数(精确到0.1);(2)若采用分层抽样的方法从评价指标在[)70,75和[)85,90内的学员中随机抽取12名,再从这12名学员中随机抽取5名学员,记抽取到学员的该项技能的评价指标在[)70,75内的学员人数为X ,求X 的分布列与数学期望.考法三二项分布与超几何分布的辨析【例3-1】(2023湖南)下列随机事件中的随机变量X服从超几何分布的是()A.将一枚硬币连抛3次,记正面向上的次数为XB.从7男3女共10名学生干部中随机选出5名学生干部,记选出女生的人数为XC.某射手的射击命中率为0.8,现对目标射击1次,记命中的次数为XD.盒中有4个白球和3个黑球,每次从中摸出1个球且不放回,记第一次摸出黑球时摸取的次数为X【例3-2】(2023上海)下列例子中随机变量服从二项分布的个数为()①某同学投篮的命中率为0.6,他10次投篮中命中的次数ξ;②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数ξ;③从装有5个红球,5个白球的袋中,有放回地摸球,直到摸出白球为止,摸到白球时的摸球次数ξ;④有一批产品共有N件,其中M件为次品,采用不放回抽取方法,ξ表示n次抽取中出现次品的件数A.0B.1C.2D.3【例3-3】(2024·天津)已知条件①采用无放回抽取:②采用有放回抽取,请在上述两个条件中任选一个,补充在下面问题中横线上并作答,选两个条件作答的以条件①评分.问题:在一个口袋中装有3个红球和4个白球,这些球除颜色外完全相同,若___________,从这7个球中随机抽取3个球,记取出的3个球中红球的个数为X,求随机变量X的分布列和期望.【一隅三反】1.(2024北京)(多选)下列随机变量中,服从超几何分布的有()A.在10件产品中有3件次品,一件一件地不放回地任意取出4件,记取到的次品数为XB.从3台甲型彩电和2台乙型彩电中任取2台,记X表示所取的2台彩电中甲型彩电的台数C.一名学生骑自行车上学,途中有6个交通岗,记此学生遇到红灯的数为随机变量XD.从10名男生,5名女生中选3人参加植树活动,其中男生人数记为X2.(2023安徽)(多选)下列事件不是n重伯努利试验的是()A.运动员甲射击一次,“射中9环”与“射中8环”B.甲、乙两运动员各射击一次,“甲射中10环”与“乙射中9环”C.甲、乙两运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没射中目标”D.在相同的条件下,甲射击10次,5次击中目标3(2023上·陕西西安)某中学进行校庆知识竞赛,参赛的同学需要从10道题中随机抽取4道来回答.竞分.赛规则规定:每题回答正确得10分,回答不正确得5(1)已知甲同学每题回答正确的概率均为0.5,且各题回答正确与否之间没有影响,记甲的总得分为X,求X 的期望和方差;(2)已知乙同学能正确回答10道题中的6道,记乙的总得分为Y,求Y的分布列.4(2023云南)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的质量(单位:克),质量的分组区间为(490,495],(495,500],…,(510,515].由此得到样本的频率分布直方图如图.(1)根据频率分布直方图,求质量超过505克的产品数量;(2)在上述抽取的40件产品中任取2件,设X为质量超过505克的产品数量,求X的分布列;(3)从该流水线上任取2件产品,设Y为质量超过505克的产品数量,求Y的分布列.考法四二项分布与超几何分布随机变量概率最值【例4-1】(2024上·北京丰台)2023年冬,甲型流感病毒来势汹汹.某科研小组经过研究发现,患病者与未患病者的某项医学指标有明显差异.在某地的两类人群中各随机抽取20人的该项医学指标作为样本,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值a ,将该指标小于a 的人判定为阳性,大于或等于a 的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p a ;误诊率是将未患病者判定为阳性的概率,记为()q a .假设数据在组内均匀分布,用频率估计概率.(1)当临界值20a =时,求漏诊率()p a 和误诊率()q a ;(2)从指标在区间[20,25]样本中随机抽取2人,记随机变量X 为未患病者的人数,求X 的分布列和数学期望;(3)在该地患病者占全部人口的5%的情况下,记()f a 为该地诊断结果不符合真实情况的概率.当[20,25]a ∈时,直接写出使得()f a 取最小值时的a 的值.【例4-2】(2024上·河南漯河)为了引导居民合理用电,国家决定实行合理的阶梯电价,居民用电原则上以住宅为单位(一套住宅为一户).阶梯级别第一阶梯第二阶梯第三阶梯+∞月用电范围(度)[0,210](210,400](400,)某市随机抽取10户同一个月的用电情况,得到统计表如下:居民用电户编号12345678910用电量(度)538690124214215220225420430(1)若规定第一阶梯电价每度0.5元,第二阶梯超出第一阶梯的部分每度0.6元,第三阶梯超出第二阶梯的部分每度0.8元,试计算某居民用电户用电450度时应交电费多少元?(2)现要从这10户家庭中任意选取3户,求取到第二阶梯电量的户数的分布列与期望;(3)以表中抽到的10户作为样本估计全市居民用电,现从全市中依次抽取10户,记取到第一阶梯电量的户=时对应的概率为k P,求k P取得最大值时k的值.数为Y,当Y k【一隅三反】1.(2024·全国·模拟预测)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为(01)αα<<,收到0的概率为1α-;发送1时,收到0的概率为(01)ββ<<,收到1的概率为1β-.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).(1)当25α=时,若发送0,则要得到正确信号,试比较单次传输和三次传输方案的概率大小;(2)若采用三次传输方案发送1,记收到的信号中出现2次信号1的概率为()f β,出现3次信号1的概率为()g β,求()()f g ββ-的最大值.2.(2024上·陕西西安·高二西安市铁一中学校考期末)某种植户对一块地的()*,2n n N n ∈>个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为12,且每粒种子是否发芽相互独立,对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种.(1)从n 个坑中选两个坑进行观察,两坑不能相邻,有多少种方案?(2)对于单独一个坑,需要补播种的概率是多少?(3)当n 取何值时,有3个坑要补播种的概率最大?最大概率为多少?3.(2024上·北京昌平)某汽车生产企业对一款新上市的新能源汽车进行了市场调研,统计该款车车主对所90,100,100,110,110,120,120,130,130,140,并整理得到如下购汽车性能的评分,将数据分成5组:[)[)[)[)[]频率分布直方图:(1)求m的值;(2)该汽车生产企业在购买这款车的车主中任选3人,对评分低于110分的车主送价值3000元的售后服务项目,对评分不低于110分的车主送价值2000元的售后服务项目.若为这3人提供的售后服务项目总价值为E X;X元,求X的分布列和数学期望()(3)用随机抽样的方法从购买这款车的车主中抽取10人,设这10人中评分不低于110分的人数为Y,问()=的值最大?(结论不要求证明)P Y kk k=⋯为何值时,()0,1,2,,10考法五二项分布与超几何分布与其他知识的综合【例5】(2024上·山东日照·高二统考期末)普法宣传教育是依法治国、建设法治社会的重要内容,也是构建社会主义和谐社会的应有之意.为加强对学生的普法教育,某校将举办一次普法知识竞赛,共进行5轮比赛,每轮比赛结果互不影响.比赛规则如下:题库中有法律文书题和案例分析题两类问题,每道题满分10分.每一轮比赛中,参赛者在30分钟内完成法律文书题和案例分析题各2道,若有不少于3道题得分超过8分,将获得“优胜奖”,5轮比赛中,至少获得4次“优胜奖”的同学将进入决赛.甲同学经历多次限时模拟训练,指导老师从训练题库中随机抽取法律文书题和案例分析题各5道,其中有4道法律文书题和3道案例分析题得分超过8分.(1)从这10道题目中,随机抽取法律文书题和案例分析题各2道,求该同学在一轮比赛中获“优胜奖”的概率;(2)将上述两类题目得分超过8分的频率作为概率.为提高甲同学的参赛成绩,指导老师对该同学进行赛前强化训练,使得法律文书题和案例分析题得分超过8分的概率共增加了0.1,以获得“优胜奖”的次数期望为参考,试预测该同学能否进入决赛.【一隅三反】1.(2023下·江西赣州·高二校联考阶段练习)(多选)在等差数列{}n a 中,238,4a a =-=-.现从数列{}n a 的前10项中随机抽取3个不同的数,记取出的数为正数的个数为X .则下列结论正确的是()A .X 服从二项分布B .X 服从超几何分布C .()123P X ==D .()95E X =2.(2024·江苏)某学校有甲,乙两个餐厅,经统计发现,前一天选择餐厅甲就餐第二天仍选择餐厅甲就餐的概率为15,第二天选择餐厅乙就餐的概率为45;前一天选择餐厅乙就餐第二天仍选择餐厅乙就餐的概率为25,第二天选择餐厅甲就餐的概率为35.若学生第一天选择餐厅甲就餐的概率是12,选择餐厅乙就餐的概率是12,记某同学第n 天选择餐厅甲就餐的概率为n P .(1)记某班3位同学第二天选择餐厅甲的人数为X ,求随机变量X 的分布列及期望()E X ;(2)学校为缓解就餐压力,决定每天从各年级抽调21人到甲乙两个餐厅参加志愿服务,请求出{}n P 的通项公式,根据以上数据合理分配甲,乙两个餐厅志愿者人数,并说明理由.3.(2024·山西吕梁)吕梁市举办中式厨师技能大赛,大赛分初赛和决赛,初赛共进行3轮比赛,每轮比赛结果互不影响.比赛规则如下:每一轮比赛,参赛选手要在规定的时间和范围内,制作中式面点和中式热菜各2道,若有不少于3道得到评委认可,将获得一张通关卡,3轮比赛中,至少获得2张通关卡的选手将进入决赛.为能进入决赛,小李赛前在师傅的指导下多次进行训练,师傅从小李训练中所做的菜品中随机抽取了中式面点和中式热菜各4道,其中有3道中式面点和2道中式热菜得到认可.(1)若从小李训练中所抽取的8道菜品中,随机抽取中式面点、中式热菜各2道,由此来估计小李在一轮比赛中的通关情况,试预测小李在一轮比赛中通关的概率;(2)若以小李训练中所抽取的8道菜品中两类菜品各自被师傅认可的频率作为该类菜品被评委认可的概率,经师傅对小李进行强化训练后,每道中式面点被评委认可的概率不变,每道中式热菜被评委认可的概率增加了16,以获得通关卡次数的期望作为判断依据,试预测小李能否进入决赛?4.(2024·黑龙江哈尔滨)这个冬季,哈尔滨文旅持续火爆,喜迎大批游客,冬天里哈尔滨雪花纷飞,成为无数南方人向往的旅游胜地,这里的美景,美食,文化和人情都让人流连忘返,严寒冰雪与热情服务碰撞出火花,吸引海内外游客纷至沓来.据统计,2024年元旦假期,哈尔滨市累计接待游客304.79万人次,实现旅游总收入59.14亿元,游客接待量与旅游总收入达到历史峰值.现对某一时间段冰雪大世界的部分游客做问卷调查,其中75%的游客计划只游览冰雪大世界,另外25%的游客计划既游览冰雪大世界又参观群力音乐公园大雪人.每位游客若只游览冰雪大世界,则得到1份文旅纪念品;若既游览冰雪大世界又参观群力音乐公园大雪人,则获得2份文旅纪念品.假设每位来冰雪大世界景区游览的游客与是否参观群力音乐公园大雪人是相互独立的,用频率估计概率.(1)从冰雪大世界的游客中随机抽取3人,记这3人获得文旅纪念品的总个数为X,求X的分布列及数学期望;n+个的概率为n a,求{}n a的前n项和n S;(2)记n个游客得到文旅纪念品的总个数恰为1(3)从冰雪大世界的游客中随机抽取100人,这些游客得到纪念品的总个数恰为n个的概率为n b,当n b取最大值时,求n的值.一.单选题1.(2024下·山东东营)随机变量X 服从二项分布:()10,0.5X B ,则它的期望()E X =()A .0.5B .2.5C .5D .102.(2023上·广东深圳·高二校考期末)若100件产品中包含10件次品,有放回地随机抽取6件,下列说法正确的是()A .其中的次品数X 服从超几何分布B .其中的正品数Y 服从二项分布C .其中的次品数X 的期望是1D .其中的正品数Y 的期望是53.(2024上·广西桂林·高二统考期末)已知在10件产品中有2件次品,现从这10件产品中任取3件,用X 表示取得次品的件数,则()1P X ==()A .12310C C B .1228310C C C C .2138310C C CD .1123310C C C 4.(2023下·宁夏石嘴山·高二石嘴山市第三中学校考期末)在10件工艺品中,有3件二等品,7件一等品,现从中抽取5件,则抽得二等品件数X 的数学期望为().A .2B .4C .32D .925.(2024上·广东深圳)一袋中装有大小、质地均相同的5个白球,3个黄球和2个黑球,从中任取3个球,则至少含有一个黑球的概率是()A .715B .815C .15D .126.(2021上·高二课时练习)一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10.现从中任取4个球,有如下几种变量:①X 表示取出的最大号码;②X 表示取出的最小号码;③X 表示取出的白球个数;④取出一个黑球记2分,取出一个白球记1分,X 表示取出的4个球的总得分减去4的差.这四种变量中服从超几何分布的是()A .①②B .③④C .①②④D .①②③④7.(2023下·上海浦东新·高二上海市建平中学校考期末)经检测一批产品中每件产品的合格率为35,现从这批产品中任取5件,设取得合格产品的件数为X ,则以下选项正确的是()A .X 的可能取值为1,2,3,4,5B .322532(2)C 55P X ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭C .3X =的概率最大D .X 服从超几何分布8.(2024上·河南·高二校联考期末)一个不透明的袋子有10个除颜色不同外,大小、质地完全相同的球,其中有6个黑球,4个白球.现进行如下两个试验,试验一:逐个不放回地随机摸出3个球,记取到白球的个数为1X ,期望和方差分别为()()11,E X D X ;试验二:逐个有放回地随机摸出3个球,记取到白球的个数为2X ,期望和方差分别为()()22,E X D X .则下列判断正确的是()A .()()12E X E X <B .()()12E X E X >C .()()12D X D X >D .()()12D X D X <二.多选题9.(2024上·江西上饶·高二统考期末)若随机变量1~6,3X B ⎛⎫ ⎪⎝⎭,下列说法中正确的有()A .()2426122C 33P X ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭B .期望()43E X =C .期望()213E X -=D .方差()214D X -=10.(2023上·高二课时练习)在一个袋中装有质地、大小均一样的6个黑球,4个白球,现从中任取4个小球,设取出的4个小球中白球的个数为X ,则下列结论正确的是()A .3(2)7P X ==B .随机变量X 服从二项分布C .随机变量X 服从超几何分布D .8()5E X =11.(2024上·辽宁抚顺·高二校联考期末)已知()()()73,(01),4328X B p p P X P X ~<<=+==,且21Y X =+,则()A .14p =B .()32E X =C .()34D X =D .()()12E Y D Y -=11.(2024上·河南南阳·高二南阳市第五中学校校联考期末)在一个袋中装有除颜色外其余完全一样的3个黑球,3个白球,现从中任取4个球,设这4个球中黑球的个数为X ,则()A .X 服从二项分布B .X 的值最小为1C .()325P X ==D .()2E X =127.(2023上·重庆·高三重庆八中校考阶段练习)在数字通信中,信号是由数字“0”和“1”组成的序列.现连续发射信号n 次,每次发射信号“1”的概率均为p .记发射信号“1”的次数为X ,记X 为奇数的概率为1f ,X 为偶数的概率为2f ,则下列说法中正确的有()A .当3n =,12p ≥时,()122P X ≥≤B .12p =时,有12f f =C .当10n =,45p =时,当且仅当8X =时概率最大D .102p <<时,1f 随着n 的增大而增大三.填空题13.(2024上·江西南昌·高二江西师大附中校考期末)在一个布袋中装有除颜色外完全相同的3个白球和m 个黑球,从中随机摸取1个球,有放回地摸取3次,记摸取白球的个数为X .若9()4E X =,则(2)P X ==.14.(2023·陕西西安·西安市长安区第二中学校联考模拟预测)若随机变量()π25,sin 06X B θθ⎛⎫~<< ⎪⎝⎭,且()6D X =,则()E X =.15.(2024上·辽宁·高二校联考期末)某班要从3名男同学和5名女同学中随机选出4人去参加某项比赛,设抽取的4人中女同学的人数为X ,则(3)P X ≥=.16.(2023上·山东德州·高二校考阶段练习)如图是一块高尔顿板的示意图.在一块木板上钉着若干排相互平行但错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃.将小球从顶端放入,小球下落过程中,每次碰到小木钉后可能向左或向右落下,其中向左落下的概率为13,向右下落的概率为23,最后落入底部的格子中.格子从左到右分别编号为0,1,2,...,10,则小球落入号格子的概率最大.(图片仅供参考)四.解答题17.(2024下·北京海淀·高三101中学校考开学考试)“双减”政策执行以来,中学生有更多的时间参加志愿服务和体育锻炼等课后活动.某校为了解学生课后活动的情况,从全校学生中随机选取100人,统计了他们一周参加课后活动的时间(单位:小时),分别位于区间[7,9),[9,11),[11,13),[13,15),[15,17),[17,19],用频率分布直方图表示如下:假设用频率估计概率,且每个学生参加课后活动的时间相互独立.13,17的概率;(1)估计全校学生一周参加课后活动的时间位于区间[)(2)从全校学生中随机选取3人,记ξ表示这3人一周参加课后活动的时间在区间[)15,17的人数,求ξ的分布Eξ;列和数学期望()(3)设全校学生一周参加课后活动的时间的中位数估计值为a、平均数的估计值为b(计算平均数时,同组中的每个数据都用该组区间的中点值代替),请直接写出,a b的大小关系.18.(2024·全国·模拟预测)为增强体质,锤炼意志,让学生享受运动乐趣,享受校园生活,某学校举办全员运动会.该校高三某班的同学报名参加游泳比赛、田径比赛、球类比赛这三类比赛(每人必须报名参加比赛且只能报一类),其中报名参加游泳比赛、田径比赛、球类比赛的人数占本班人数的比例依次为11,,22a a -(其中102a <<).现从该班学生中任选3人,以频率估计概率.(1)若被选取的3人参加比赛的类别互不相同的概率为16,求a 的值;(2)记X 为选取的3人中报名参加田径比赛和报名参加球类比赛的总人数,求X 的分布列和数学期望.19.(2023·全国·模拟预测)为庆祝中国共产党成立102周年,某市开展了党史知识竞赛活动,竞赛结束后,为了解本次竞赛的成绩情况,从所有参赛学生中随机抽取了200名学生的竞赛成绩作为样本,数据整理后,统计结果如表所示.成绩区间[)40,50[)50,60[)60,70[)70,80[)80,90[]90,100频数10314380279假设用样本频率估计总体概率,且每个学生的竞赛成绩相互独立.(1)为了激励学生学习党史的热情,决定对竞赛成绩优异的学生进行表彰,如果获得表彰的学生占样本总人数的20%,试估计获奖分数线;(2)该市决定从全市成绩不低于80分的学生中随机抽取4人参加省级党史知识竞赛,成绩在[]90,100的人数为X ,求X 的分布列和数学期望.20.(2024上·江西赣州·高二统考期末)现有一种趣味答题比赛,其比赛规则如下:①每位参赛者最多参加5轮比赛;②每一轮比赛中,参赛选手从10道题中随机抽取4道回答,每答对一道题积2分,答错或放弃均积0分;③每一轮比赛中,获得积分至少6分的选手将获得“挑战达人”勋章一枚;④结束所有轮比赛后,参赛选手还可以凭总积分获得相对应的礼品.据主办方透露:这10道题中有7道题是大家都会做的,有3道题是大家都不会做的.(1)求某参赛选手在一轮比赛中所获得积分X 的分布列和期望;(2)若参赛选手每轮获得勋章的概率稳定且每轮是否获得勋章相互独立.问:某参赛选手在5轮参赛中,获得多少枚“挑战达人”勋章的概率最大?21(2024上·广东广州)某地区为贯彻习近平总书记关于“绿水青山就是金山银山”的精神,鼓励农户利用荒坡种植果树.某农户考察三种不同的果树苗A 、B 、C ,经引种试验后发现,引种树苗A 的自然成活率为0.8,引种树苗B 、C 的自然成活率均为()0.70.9p p ≤≤.(1)任取树苗A 、B 、C 各一棵,估计自然成活的棵数为X ,求X 的分布列及()E X ;(2)将(1)中的()E X 取得最大值时p 的值作为B 种树苗自然成活的概率.该农户决定引种n 棵B 种树苗,引种后没有自然成活的树苗中有75%的树苗可经过人工栽培技术处理,处理后成活的概率为0.8,其余的树苗不能成活.①求一棵B 种树苗最终成活的概率;②若每棵树苗引种最终成活后可获利300元,不成活的每棵亏损50元,该农户为了获利不低于20万元,问至少引种B 种树苗多少棵?。

专题37 超几何分布、二项分布及其应用(解析版)

专题37 超几何分布、二项分布及其应用(解析版)

1 / 14 专题37 超几何分布、二项分布及其应用一、选择题1.(二项分布概率)设随机变量,若,则的值为( )ξ~B (2,p ), η~B (4,p )P (ξ≥1)=59P (η≥2)A .B .C .D .1127328165811681【答案】A【解析】由于,则,,ξ~B (2,p )P (ξ≥1)=1―P (ξ=0)=1―(1―p )2=59∴p =13所以,,因此, η~B (4,13)P (η≥2)=1―P (η=0)―P (η=1)=1―(23)4―C 14⋅13⋅(23)3,故选:A.=1127二、解答题2.(古典概型与超几何分布)某市移动公司为了提高服务质量,决定对使用A ,B 两种套餐的集团用户进行调查,准备从本市个人数超过1000人的大集团和8个人数低于200人的小集团中随机抽取若干()n n N*∈个集团进行调查,若一次抽取2个集团,全是小集团的概率为. 415求n 的值;()1若取出的2个集团是同一类集团,求全为大集团的概率;()2若一次抽取4个集团,假设取出小集团的个数为X ,求X 的分布列和期望.()3【答案】(1);(2);(3)详见解析. n 7=37【解析】(1)由题意知共有个集团,取出2个集团的方法总数是,其中全是小集团的情况有,8n +28n C +28C 故全是小集团的概率是, ()()28285648715n C C n n +==++整理得到即,解得. ()()78210n n ++=2151540n n +-=7n =(2)若2个全是大集团,共有种情况; 2721C =若2个全是小集团,共有种情况;2828C =2 / 14故全为大集团的概率为.21321287=+(3)由题意知,随机变量的可能取值为,X 0,1,2,3,4计算,,, ()04874151039C C P X C ===()13874158139C C P X C ===,, ()228741528265C C P X C ===()3187415563195C C P X C ===; ()40874152439C C P X C ===故的分布列为:XX 0 1 2 3 4P 139 839 2865 56195 239数学期望为. ()182856232012343939651953915E X =⨯+⨯+⨯+⨯+⨯=3.(独立性检验与超几何分布)随着手机的发展,“微信”逐渐成为人们支付购物的一种形式.某机构对“使用微信支付”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信支付”赞成人数如下表. 年龄 (单位:岁) ,[1525),[2535),[3545),[4555),[5565),[6575]频数 5 10 15 10 5 5 赞成人数51012721(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面列联表,并判断是否有99%的把握认为“使22⨯用微信支付”的态度与人的年龄有关; 年龄不低于45岁的人数 年龄低于45岁的人数 合计 赞成 不赞成3 / 14合计(Ⅱ)若从年龄在的被调查人中按照赞成与不赞成分层抽样,抽取5人进行追踪调查,在5人中抽[45,65)取3人做专访,求3人中不赞成使用微信支付的人数的分布列和期望值. 参考数据:20()P K k …0.15 0.10 0.05 0.025 0.010 0.005 0.0010k 2.072 2.706 3.841 5.024 6.635 7.879 10.828,其中.22()()()()()n ad bc K a b c d a c b d -=++++n a b c d =+++【答案】(Ⅰ)详见解析;(Ⅱ)详见解析. 【解析】(Ⅰ)由频数分布表得列联表如下: 22⨯ 年龄不低于45岁的人数年龄低于45岁的人数合计赞成 10 2737不赞成 10 313合计2030502250(3102710)9.979 6.63537301320K ⨯⨯-⨯∴=≈>⨯⨯⨯有的把握认为“使用微信交流”的态度与人的年龄有关∴99%(Ⅱ)年龄在中支持微信支付人,不支持微信支付6人[)45,659由分层抽样方法可知:抽取的人中,支持微信支付人,不支持微信支付人 532设人中不支持微信支付的人数为,则所有可能的取值为:3ξξ0,1,2,, ()33351010C P C ξ===()213235631105C C P C ξ====()1232353210C C P C ξ===的分布列为:ξ∴4 / 14ξ 0 12P 110 35 310()00.110.620.3 1.2E ξ∴=⨯+⨯+⨯=4.(正态分布与超几何分布)有一片产量很大的水果种植园,在临近成熟时随机摘下某品种水果100个,其质量(均在1至)频数分布表如下(单位:): 11kg kg 分组[)1,3[)3,5[)5,7[)7,9[)9,11频数 103040155以各组数据的中间值代表这组数据的平均值,将频率视为概率.(1)由种植经验认为,种植园内的水果质量近似服从正态分布,其中近似为样本平均数X ()2,N μσμ,.请估计该种植园内水果质量在内的百分比;x 24σ≈()5.5,9.5(2)现在从质量为,,的三组水果中,用分层抽样方法抽取8个水果,再从这8个水果[)1,3[)3,5[)5,7中随机抽取2个.若水果质量在,,的水果每销售一个所获得的利润分别为2元,4元,6[)1,3[)3,5[)5,7元,记随机抽取的2个水果总利润为元,求的分布列和数学期望. Y Y 附:若服从正态分布,则,ξ()2,N μσ()0.6827P μσξμσ-≤<+=.()220.9545P μσξμσ-≤<+=【答案】(Ⅰ)(Ⅱ)见解析 47.725%【解析】解:(Ⅰ) , ()1210430640815105100x =⨯+⨯+⨯+⨯+⨯ 5.5=由正态分布知,(5.59.5)(2)P X P μξμσ<<=<<+()1222P μσξμσ=-≤<+. 10.95450.477252=⨯=该种植园内水果质量在内的百分比为.()5.5,9.547.725%5 / 14(Ⅱ)由题意知,从质量在,,的三组水果中抽取的个数分别为1,3,4,[)1,3[)3,5[)5,7的取值为6,8,10,12.Y 则; ()1113283628C C P Y C ===; ()21131428718284C C C P Y C +====;()11342812310287C C P Y C ====.()242863122814C P Y C ====所以,的分布列为YY 6 8 10 12P 328 14 37 314. ()3712668101228282828E Y =⨯+⨯+⨯+⨯199.52==5.(直方图与超几何分布)2018年,中国某省的一个地区社会民间组织为年龄在30岁-60岁的围棋爱好者举行了一次晋级赛,参赛者每人和一位种子选手进行一场比赛,赢了就可以晋级,否则,就不能晋级,结果将晋级的200人按年龄(单位:岁)分成六组:第一组,第二组,第三组,第[30,35)[35,40)[40,45)四组,第五组,第六组,下图是按照上述分组方法得到的频率分布直方图.[45,50)[50,55)[55,60](1)求实数的值;a (2)若先在第四组、第五组、第六组中按组分层抽样共抽取10人,然后从被抽取的这10人中随机抽取36 / 14人参加优胜比赛.①求这三组各有一人参加优胜比赛的概率;②设为参加优胜比赛的3人中第四组的人数,求的分布列和数学期望. ξξ()E ξ【答案】(1)(2)①②见解析 0.036a =310p =【解析】解:(1)直方图中的组距为5,可得, 0.024520.035520.0451a ⨯+⨯⨯+⨯+⨯⨯=得.0.036a =(2)从直方图中可得第四组的人数为(人),第五组的人数为(人),0.04520040⨯⨯=0.03520030⨯⨯=第六组的人数为(人),0.03520030⨯⨯=三组共100人,按组用分层抽样法抽取10人,则第四组应抽取4人,第五组应抽取3人,第六组应抽取3人.①三组各有一人参加优胜比赛的概率; 111433310310C C C p C ⋅⋅==②的可能取值为0,1,2,3,ξ,()0346310106C C P C ξ===,()2164310112C C P C ξ===,()21463103210C C P C ξ===,()30463101330C C P C ξ===的分布列为 ξξ0123P 16 12 310 130.()11310123 1.2621030E ξ=⨯+⨯+⨯+⨯=7 / 146.(概率最值与二项分布)一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端.某种植户对一块地的个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为,且每粒种子*()n n N ∈12是否发芽相互独立.对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种. (1)当取何值时,有3个坑要补播种的概率最大?最大概率为多少? n (2)当时,用表示要补播种的坑的个数,求的分布列与数学期望. 4n =X X 【答案】(1)当或时,有3个坑要补播种的概率最大,最大概率为; (2)见解析. 5n =6n =516【解析】(1)对一个坑而言,要补播种的概率, 330133111222P C C ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭有3个坑要补播种的概率为.312nnC ⎛⎫⎪⎝⎭欲使最大,只需, 312nn C ⎛⎫ ⎪⎝⎭1331133111221122nn n n n n n n C C C C --++⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩解得,因为,所以56n ≤≤*n N ∈5,6,n =当时,;5n =53515216C ⎛⎫= ⎪⎝⎭当时,; 6n =63615216C ⎛⎫= ⎪⎝⎭所以当或时,有3个坑要补播种的概率最大,最大概率为. 5n =6n =516(2)由已知,的可能取值为0,1,2,3,4., X 14,2X B ⎛⎫~ ⎪⎝⎭所以的分布列为XX 0 1 2 3 4P 116 14 38 14 1168 / 14的数学期望. X 1422EX =⨯=7.(独立性检验与超几何分布)某调查机构对某校学生做了一个是否同意生“二孩”抽样调查,该调查机构从该校随机抽查了100名不同性别的学生,调查统计他们是同意父母生“二孩”还是反对父母生“二孩”,现已得知100人中同意父母生“二孩”占60%,统计情况如下表: 同意 不同意 合计 男生 a 5 女生 40 d 合计100(1)求 a ,d 的值,根据以上数据,能否有97.5%的把握认为是否同意父母生“二孩”与性别有关?请说明理由;(2)将上述调查所得的频率视为概率,现在从所有学生中,采用随机抽样的方法抽取4 位学生进行长期跟踪调查,记被抽取的4位学生中持“同意”态度的人数为 X ,求 X 的分布列及数学期望.附: 22()()()()()n ad bc K a b c d a c b d -=++++ 20()P k k ≥0.150.100 0.050 0.025 0.0100k 2.072 2.706 3.841 5.024 6.635【答案】(1), 有97.5%的把握认为是否同意父母生“二孩”与“性别”有关;(2)详见解析. 20,35a d ==【解析】(1)因为100人中同意父母生“二孩”占60%, 所以, =6040=20a -40535d =-=文(2)由列联表可得而所以有97.5%的把握认为是否同意父母生“二孩”与“性别”有关 (2)①由题知持“同意”态度的学生的频率为,即从学生中任意抽取到一名持“同意”态度的学生的概率为.由于总体容量很大,故X服从二项分布,即从而X的分布列为X01234X的数学期望为8.(回归分析与二项分布)随着网上购物的普及,传统的实体店遭受到了强烈的冲击,某商场实体店近九年来的纯利润如下表所示:年份2010 2011 2012 2013 2014 2015 2016 2017 2018 时间代号x 1 2 3 4 5 6 7 8 9y 2 2.3 2.5 2.9 3 2.5 2.1 1.7 1.2 实体店纯利润(千万)x y根据这9年的数据,对和作线性相关性检验,求得样本相关系数的绝对值为0.254;根据后5年的数据,x y对和作线性相关性检验,求得样本相关系数的绝对值为0.985;(1)如果要用线性回归方程预测该商场2019年实体店纯利润,现有两个方案:方案一:选取这9年的数据,进行预测;方案二:选取后5年的数据进行预测.从生活实际背景以及相关性检验的角度分析,你觉得哪个方案更合适.附:相关性检验的临界值表:小概率n20.05 0.013 0.878 0.9597 0.666 0.7989 / 1410 / 14(2)某机构调研了大量已经开店的店主,据统计,只开网店的占调查总人数的,既开网店又开实体40%店的占调查总人数的,现以此调查统计结果作为概率,若从上述统计的店主中随机抽查了5位,求只20%开实体店的人数的分布列及期望.【答案】(1)选取方案二更合适(2),分布列见解析 2E ξ=【解析】(1)选取方案二更合适,理由如下:①中介绍了,随着网购的普及,实体店生意受到了强烈的冲击,从表格中的数据可以看出从2014年开始,纯利润呈现逐年下降的趋势,可以预见,2019年的实体店纯利润收入可能会接着下跌,前四年的增长趋势已经不能作为预测后续数据的依据.②相关系数越接近1,线性相关性越强,因为根据9年的数据得到的相关系数的绝对值,r 0.2450.666<我们没有理由认为与具有线性相关关系;而后5年的数据得到的相关系数的绝对值,所y x 0.9850.959>以有的把握认为与具有线性相关关系.99%y x (仅用①解释得3分,仅用②解释或者用①②解释得6分)(2)此调查统计结果作为概率,从上述统计的店主中随机抽查了1位,开网店的概率为,只开实体店的35概率为, 25设只开实体店的店主人数为,则,ξ0,1,2,3,4,5ξ=,, 050523243(0)553125P C ξ⎛⎫⎛⎫==⋅= ⎪ ⎪⎝⎭⎝⎭141523162(1)55625P C ξ⎛⎫⎛⎫==⋅= ⎪ ⎪⎝⎭⎝⎭,, 232523216(2)55625P C ξ⎛⎫⎛⎫==⋅= ⎪ ⎪⎝⎭⎝⎭323523144(3)55625P C ξ⎛⎫⎛⎫==⋅= ⎪ ⎪⎝⎭⎝⎭,, 41452348(4)55625P C ξ⎛⎫⎛⎫==⋅= ⎪ ⎪⎝⎭⎝⎭5552332(5)553125P C ξ⎛⎫⎛⎫==⋅= ⎪ ⎪⎝⎭⎝⎭所以,的分布列如下:ξξ0 1 2 3 4 5P 2433125 162625216625 14462543625 32312511 / 14∴,故.25,5B ξ⎛⎫ ⎪⎝⎭ 2525E ξ=⨯=9.(直方图、正态分布、二项分布)某学校高二年级举行了由全体学生参加的一分钟跳绳比赛,计分规则如下表: 每分钟跳绳个数 [145,155)[155,165) [165,175) [175,185)[185,)+∞得分1617181920年级组为了解学生的体质,随机抽取了100名学生的跳绳个数作为一个样本,绘制了如下样本频率分布直方图.(1)现从样本的100名学生跳绳个数中,任意抽取2人的跳绳个数,求两人得分之和小于35分的概率;(用最简分数表示)(2)若该校高二年级共有2000名学生,所有学生的一分钟跳绳个数近似服从正态分布,其X ()2,N μσ中,为样本平均数的估计值(同一组中数据以这组数据所在区间中点值作代表).利用所得的正2225σ≈μ态分布模型,解决以下问题:(i )估计每分钟跳绳164个以上的人数(结果四舍五入到整数);(ii )若在全年级所有学生中随机抽取3人,每分钟跳绳在179个以上的人数为,求随机变量的分布列ξξ和数学期望与方差.12 / 14附:若随机变量服从正态分布,则,X ()2,N μσ()0.6826P X μσμσ-<<+=,.(22)0.9554P X μσμσ-<<+=3309().974P X μσμσ-<<+=【答案】(1);(2)(i )1683;(ii ). 2955033,24【解析】(1)设“两人得分之和小于35分”为事件,则事件包括以下四种情况: A A ①两人得分均为16分;②两人中一人16分,一人17分; ③两人中一人16分,一人18分;④两人均17分.由频率分布直方图可得,得16分的有6人,得17分的有12人,得18分的有18人,则由古典概型的概率计算公式可得. 221111612612618210029()550C C C C C C P A C +++==所以两人得分之和小于35的概率为. 29550(2)由频率分布直方图可得样本数据的平均数的估计值为:X (0.0061500.0121600.018170X =⨯+⨯+⨯+0.0341800.0161900.008200⨯+⨯+⨯(个).0.006210)10179+⨯⨯=又由,得标准差,2225σ≈15σ≈所以高二年级全体学生的跳绳个数近似服从正态分布.X ()2179,15N (i )因为,所以, 17915164μσ-=-=10.6826(164)10.84132P X ->=-=故高二年级一分钟跳绳个数超过164个的人数估计为(人).20000.84131682.61683⨯=≈(ii )由正态分布可得,全年级任取一人,其每分钟跳绳个数在179以上的概率为, 12所以,的所有可能的取值为0,1,2,3.1~3,2B ξ⎛⎫ ⎪⎝⎭ξ所以,033111(0)1228P C ξ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,213113(1)1228P C ξ⎛⎫==⨯⨯-= ⎪⎝⎭13 / 14,2123113(2)C 1228P ξ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,3330111(3)1228P C ξ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭故的分布列为:ξξ0 123P 18 383818所以,.13()322E ξ=⨯=113()31224D ξ⎛⎫=⨯⨯-= ⎪⎝⎭10.(茎叶图与二项分布)每年3月20日是国际幸福日,某电视台随机调查某一社区人们的幸福度.现从该社区群中随机抽取18名,用“10分制”记录了他们的幸福度指数,结果见如图所示茎叶图,其中以小数点前的一位数字为茎,小数点后的一位数字为叶.若幸福度不低于8.5分,则称该人的幸福度为“很幸福”.(Ⅰ)求从这18人中随机选取3人,至少有1人是“很幸福”的概率;(Ⅱ)以这18人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“很幸福”X 的人数,求的分布列及. X ()E X 【答案】(Ⅰ). (Ⅱ)见解析. 199204【解析】(Ⅰ)设事件抽出的人至少有人是“很幸福”的,则表示人都认为不很幸福{A =31}A 3()()363185199111204204C P A P A C ∴=-=-=-=(Ⅱ)根据题意,随机变量,的可能的取值为 23,3X B ⎛⎫⎪⎝⎭X 0,1,2,314 / 14;;()303110327P X C ⎛⎫=== ⎪⎝⎭()2132121339P X C ⎛⎫==⨯⨯= ⎪⎝⎭; ()2232142339P X C ⎛⎫==⨯⨯= ⎪⎝⎭()333283327P X C ⎛⎫=== ⎪⎝⎭所以随机变量的分布列为:XX 01 23P 127 2949827所以的期望 X ()124801232279927E X =⨯+⨯+⨯+⨯=。

高二数学小练习(4):二项分布与超几何分布

高二数学小练习(4):二项分布与超几何分布

小练习(4):二项分布与超几何分布1.某校组织计算机知识竞赛,已知竞赛题目共有10道,随机抽取3道让参赛者回答,规定至少要答对其中2道才能通过初试,若某一参赛者只能答对其中6道,则他能通过初试的概率为_________2.有10件产品,其中3件是次品,从中任取两件,若X表示取得次品的个数,则P(X< 2)等于_______),则P(ξ≤3)等于___________3.设随机变量ξ服从二项分布ξ~B(6,124.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少有3人被治愈的概率为(用数字作答).5.袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求:(1)有放回抽样时,取到黑球的次数X的分布列;(2)不放回抽样时,取到黑球的个数Y的分布列.二项分布与超几何分布一、选择题(本大题共3小题,共15.0分)1. 某校组织计算机知识竞赛,已知竞赛题目共有10道,随机抽取3道让参赛者回答,规定至少要答对其中2道才能通过初试,若某一参赛者只能答对其中6道,则他能通过初试的概率为( )A. 23B. 34C. 14D. 13 【答案】A【解析】【分析】本题考查超几何分布,属于基础题.分两种情况:只答对两道和三道都答对,再结合组合数的计算列式可求.【解答】解:通过初试包括两种情况,即答对其中2道或3道题目,所以所求概率为C 62C 41C 103+C 63C 103=23. 故选A .2. 有10件产品,其中3件是次品,从中任取两件,若X 表示取得次品的个数,则P(X <2)等于( )A. 715B. 815C. 1415D. 1 【答案】C【解析】【分析】本题考查超几何分布,与互斥事件的概率,解题的关键是找到与每个X 的值相对应的概率P 的值.【解答】解:由题意,知X 取0,1,2,则P(X =0)=C 72C 102=715, P(X =1)=C 71⋅C 31C 102=715,P(X =2)=C 32C 102=115.所以P(X<2)=P(X=0)+P(X=1)=715+715=1415.故选C.3.设随机变量ξ服从二项分布ξ~B(6,12),则P(ξ≤3)等于()A. 1132B. 732C. 2132D. 764【答案】C【解析】【分析】本题考查二项分布与n次独立重复试验的模型,是一个基础题根据条件中所给的变量符合二项分布,写出变量取值不同时对应的概率公式P(ξ≤3)=P(ξ=0)+P(ξ=1)+P(ξ=2)+P(ξ=3)可以得出答案.【解答】解:P(ξ≤3)=P(ξ=0)+P(ξ=1)+P(ξ=2)+P(ξ=3)=C 60×(12)6+C 61·(12)6+C 62·(12)6+C 63·(12)6=2132.故选C.二、填空题(本大题共1小题,共5.0分)4.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少有3人被治愈的概率为(用数字作答).【答案】0.9477【解析】【分析】本题考查了n次独立重复试验概率计算,考差了分析问题的能力,属于中档题.病人被治愈的人数X~B(4,0.9).分情况求解,若有3人被治愈,则P1=C430.93×(1-0.9)=0.2916;若有4人被治愈,则P2=C440.94=0.6561,从而可得结果.【解答】解:病人被治愈的人数X ~B (4,0.9).分情况求解,若有3人被治愈,则P 1=C 430.93×(1-0.9)=0.2916;若有4人被治愈,则P 2=C 440.94=0.6561,故至少有3人被治愈的概率P =P 1+P 2=0.9477.三、解答题(本大题共1小题,共12.0分)5. 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求:(1)有放回抽样时,取到黑球的次数X 的分布列;(2)不放回抽样时,取到黑球的个数Y 的分布列.【答案】解:(1)有放回抽样时,取到的黑球的次数X 可能的取值为0,1,2,3.由于每次取到黑球的概率均为15,3次取球可以看成3次独立重复试验,则X ~B (3,15),则P(X =0)=C 30×(15)0×(45)3=64125, P(X =1)=C 31×(15)1×(45)2=48125, P(X =2)=C 32×(15)2×(45)1=12125,P(X =3)=C 33×(15)3×(45)0=1125.所以X 的分布列为(2)不放回抽样时,取到的黑球数Y 可能的取值为0,1,2,则P(Y =0)=C 20C 83C 103=715, P(Y =1)=C 21C 82C 103=715, P(Y =2)=C 22C 81C 103=115. 所以Y 的分布列为【解析】本题考查离散型随机变量及其分布列,属于中档题.(1)有放回时,可看做二项分布,由二项分布的知识易得答案;(1)不放回时,可看做超几何分布,由超几何分布的知识易得答案.。

9道题分清超几何分布和二项分布(含答案)

9道题分清超几何分布和二项分布(含答案)

9道题分清超几何分布和二项分布(含答案)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March9道题分清超几何分布和二项分布(含答案)一.解答题(共9小题)1.某公司的一次招聘中,应聘者都要经过三个独立项目A,B,C的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过A,B,C每个项目测试的概率都是.(1)求甲恰好通过两个项目测试的概率;(2)设甲、乙、丙三人中被录用的人数为X,求X的概率分布和数学期望.2.随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(Ⅰ)若从这10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;(Ⅱ)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求随机变量X的分布列及数学期望.3.随着全民健康运动的普及,每天一万步已经成为一种健康时尚,某学校为了教职工能够健康工作,在全校范围内倡导“每天一万步”健康走活动,学校界定一人一天走路不足4千步为“健步常人”,不少于16千步为“健步超人”,其他人为“健步达人”,学校随机抽取抽查人36名教职工,其每天的走步情况统计如下:步数[0,4000)[4000,16000)[16000,+∞]人数61812现对抽查的36人采用分层抽样的方式选出6人,从选出的6人中随机抽取2人进行调查.(1)求这两人健步走状况一致的概率;(2)求“健步超人”人数X的分布列与数学期望.4.中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,作为国家战略性空间基础设施,我国北斗卫星导航系统不仅对国防安全意义重大,而且在民用领域的精准化应用也越来越广泛.据统计,2016年卫星导航与位置服务产业总产值达到2118亿元,较2015年约增长%.下面是40个城市北斗卫星导航系统与位置服务产业的产值(单位:万元)的频率分布直方图:(1)根据频率分布直方图,求产值小于500万元的城市个数;(2)在上述抽取的40个城市中任取2个,设Y为产值不超过500万元的城市个数,求Y的分布列及期望和方差.5.生蚝即牡蛎(oyster)是所有食物中含锌最丰富的,在亚热带、热带沿海都适宜生蚝的养殖,我国分布很广,北起鸭绿江,南至海南岛,沿海皆可产生蚝,生蚝乃软体有壳,衣服寄生的动物,咸淡水交界所产尤为肥美,因此生蚝称为了一年四季不可或缺的一类美食,某饭店从某水产养殖厂购进一批生蚝,并随机抽取了40只统计质量,得到结果如表所示:质量(g)[5,15)[15,25)[25,35)[35,45)[45,55]数量 6 10 12 8 4(1)若购进这批生蚝500kg,且同一组数据用该组区间的中点值代表,试估计这批生蚝的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的生蚝中随机挑选4个,记质量在[5,25)间的生蚝的个数为X,求X的分布列及数学期望.6.随着我国互联网信息技术的发展,网络购物已经成为许多人消费的一种重要方式,某市为了了解本市市民的网络购物情况,特委托一家网络公示进行了网络问卷调查,并从参与调查的10000名网民中随机抽取了200人进行抽样分析,得到了下表所示数据:经常进行网络购物偶尔或从不进行网络购物合计男性5050100女性6040100合计11090200(1)依据上述数据,能否在犯错误的概率不超过的前提下认为该市市民进行网络购物的情况与性别有关(2)现从所抽取的女性网民中利用分层抽样的方法再抽取5人,从这5人中随机选出3人赠送网络优惠券,求出选出的3人中至少有两人是经常进行网络购物的概率;(3)将频率视为概率,从该市所有的参与调查的网民中随机抽取10人赠送礼物,记经常进行网络购物的人数为X,求X的期望和方差.附:,其中n=a+b+c+dP(K2≥k0)k07.手机QQ中的“QQ运动”具有这样的功能,不仅可以看自己每天的运动步数,还可以看到朋友圈里好友的步数.小明的QQ朋友圈里有大量好友参与了“QQ运动”,他随机选取了其中30名,其中男女各15名,记录了他们某一天的走路步数,统计数据如表所示:步数(0,2500)[2500,5000)[5000,7500)[7500,10000)[10000,+∞)性别男02472女13731(Ⅰ)以样本估计总体,视样本频率为概率,在小明QQ朋友圈里的男性好友中任意选取3名,其中走路步数低于7500步的有X 名,求X的分布列和数学期望;(Ⅱ)如果某人一天的走路步数超过7500步,此人将被“QQ运动”评定为“积极型”,否则为“消极型”.根据题意完成下面的2×2列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关积极型消极型总计男女总计附:.P(K2≥k0)k08.某企业2017年招聘员工,其中A、B、C、D、E五种岗位的应聘人数、录用人数和录用比例(精确到1%)如下:岗位男性应聘人男性录用人男性录用比女性应聘人女性录用人女性录用比数数例数数例A26916762%402460% B401230%2026231%C1775732%1845932%D442659%382258%E3267%3267%总计53326450%46716936%(Ⅰ)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;(Ⅱ)从应聘E岗位的6人中随机选择2人.记X为这2人中被录用的人数,求X的分布列和数学期望;(Ⅲ)表中A、B、C、D、E各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于5%),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)9.在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,且成绩分布在[40,100],分数在80以上(含80)的同学获奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图(见图).(1)填写下面的2×2列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”(2)将上述调査所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为X,求X的分布列及数学期望.文科生理科生合计获奖5不获奖合计200附表及公式:K2=,其中n=a+b+c+dP(K2≥k)k9道题分清超几何分布和二项分布参考答案与试题解析一.解答题(共9小题)1.某公司的一次招聘中,应聘者都要经过三个独立项目A,B,C的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过A,B,C每个项目测试的概率都是.(1)求甲恰好通过两个项目测试的概率;(2)设甲、乙、丙三人中被录用的人数为X,求X的概率分布和数学期望.【分析】(1)利用二项分布计算甲恰好有2次发生的概率;(2)由每人被录用的概率值,求出随机变量X的概率分布,计算数学期望值.【解答】解:(1)甲恰好通过两个项目测试的概率为;……(4分)(2)因为每人可被录用的概率为,所以,,,;故随机变量X的概率分布表为:X0123P…………(8分)所以,X的数学期望为.……(10分)【点评】本题考查了离散型随机变量的分布列与数学期望问题,是基础题.2.随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(Ⅰ)若从这10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;(Ⅱ)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求随机变量X的分布列及数学期望.【分析】(Ⅰ)设“至少1名倾向于选择实体店”为事件A,则表示事件“随机抽取2名,(其中男、女各一名)都选择网购”,则P(A)=1﹣P.(Ⅱ)X的取值为0,1,2,3.P(X=k)=,即可得出.【解答】解:(Ⅰ)设“至少1名倾向于选择实体店”为事件A,则表示事件“随机抽取2名,(其中男、女各一名)都选择网购”,则P(A)=1﹣P=1﹣=.(Ⅱ)X的取值为0,1,2,3.P(X=k)=,P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=.X的分布列为:X0123PE(X)=0×+1×+2×+3×=.【点评】本题考查了对立与互相独立事件概率计算公式、超几何分布列与数学期望、组合计算公式,考查了推理能力与计算能力,属于中档题.3.随着全民健康运动的普及,每天一万步已经成为一种健康时尚,某学校为了教职工能够健康工作,在全校范围内倡导“每天一万步”健康走活动,学校界定一人一天走路不足4千步为“健步常人”,不少于16千步为“健步超人”,其他人为“健步达人”,学校随机抽取抽查人36名教职工,其每天的走步情况统计如下:步数[0,4000)[4000,16000)[16000,+∞]人数61812现对抽查的36人采用分层抽样的方式选出6人,从选出的6人中随机抽取2人进行调查.(1)求这两人健步走状况一致的概率;(2)求“健步超人”人数X的分布列与数学期望.【分析】(1)记事件A,这2人健步走状况一致,利用互斥事件概率计算公式能求出这两人健步走状况一致的概率.(2)X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】解:(1)记事件A,这2人健步走状况一致,则.(2)X的可能取值为0,1,2,所以,所以X的分布列为X 0 1 2P所以.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,考查互斥事件概率计算公式、古典概型等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.4.中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,作为国家战略性空间基础设施,我国北斗卫星导航系统不仅对国防安全意义重大,而且在民用领域的精准化应用也越来越广泛.据统计,2016年卫星导航与位置服务产业总产值达到2118亿元,较2015年约增长%.下面是40个城市北斗卫星导航系统与位置服务产业的产值(单位:万元)的频率分布直方图:(1)根据频率分布直方图,求产值小于500万元的城市个数;(2)在上述抽取的40个城市中任取2个,设Y为产值不超过500万元的城市个数,求Y的分布列及期望和方差.【分析】(1)根据频率分布直方图,能求出产值小于500万元的城市个数.(2)由Y的所有可能取值为0,1,2.分别滶出相应的概率,由此能求出Y的分布列及期望和方差.【解答】解:(1)根据频率分布直方图可知,产值小于500万元的城市个数为:[(+)×5]×40=14.(2)Y的所有可能取值为0,1,2.,,.∴Y的分布列为:Y012P期望为:,方差为:.【点评】本题考查概率的求法,考查离散型随机变量的分布、期望、方差等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.5.生蚝即牡蛎(oyster)是所有食物中含锌最丰富的,在亚热带、热带沿海都适宜生蚝的养殖,我国分布很广,北起鸭绿江,南至海南岛,沿海皆可产生蚝,生蚝乃软体有壳,衣服寄生的动物,咸淡水交界所产尤为肥美,因此生蚝称为了一年四季不可或缺的一类美食,某饭店从某水产养殖厂购进一批生蚝,并随机抽取了40只统计质量,得到结果如表所示:质量(g)[5,15)[15,25)[25,35)[35,45)[45,55]数量 6 10 12 8 4(1)若购进这批生蚝500kg,且同一组数据用该组区间的中点值代表,试估计这批生蚝的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的生蚝中随机挑选4个,记质量在[5,25)间的生蚝的个数为X,求X的分布列及数学期望.【分析】(1)估算妹纸生蚝的质量为,由此能估计这批生蚝的数量.(2)任意挑选一只,质量在[5,25)间的概率为,X的可能取值为0,1,2,3,4,分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】解:(1)由表中的数据可以估算妹纸生蚝的质量为:,所以购进500kg,生蚝的数量为500000÷≈17554(只).(2)由表中数据知,任意挑选一只,质量在[5,25)间的概率为,X的可能取值为0,1,2,3,4,则,,∴X的分布列为:X 0 1 2 3 4P∴.【点评】本题考查概率的求法及应用,考查离散型随机变量的分布列及数学期望的求法,考查排列组合、古典概型等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.6.随着我国互联网信息技术的发展,网络购物已经成为许多人消费的一种重要方式,某市为了了解本市市民的网络购物情况,特委托一家网络公示进行了网络问卷调查,并从参与调查的10000名网民中随机抽取了200人进行抽样分析,得到了下表所示数据:经常进行网络购物偶尔或从不进行网络购物合计男性5050100女性6040100合计11090200(1)依据上述数据,能否在犯错误的概率不超过的前提下认为该市市民进行网络购物的情况与性别有关(2)现从所抽取的女性网民中利用分层抽样的方法再抽取5人,从这5人中随机选出3人赠送网络优惠券,求出选出的3人中至少有两人是经常进行网络购物的概率;(3)将频率视为概率,从该市所有的参与调查的网民中随机抽取10人赠送礼物,记经常进行网络购物的人数为X,求X的期望和方差.附:,其中n=a+b+c+dP(K2≥k0)k0【分析】(1)由列联表数据求出K2≈<,从而不能在犯错误的概率不超过的前提下认为该市市民网购情况与性别有关.(2)由题意,抽取的5名女性网民中,经常进行网购的有3人,偶尔或从不进行网购的有2人,由此能求出从这5人中选出3人至少有2人经常进行网购的概率.(3)由列联表可知,经常进行网购的频率为,由题意,从该市市民中任意抽取1人恰好是经常进行网购的概率是,由于该市市民数量很大,故可以认为X~B(10,),由此能求出X的期望和方差.【解答】解:(1)由列联表数据计算K2=≈<,∴不能在犯错误的概率不超过的前提下认为该市市民网购情况与性别有关.(2)由题意,抽取的5名女性网民中,经常进行网购的有5×=3人,偶尔或从不进行网购的有5×=2人,故从这5人中选出3人至少有2人经常进行网购的概率是p=+=.(3)由列联表可知,经常进行网购的频率为,由题意,从该市市民中任意抽取1人恰好是经常进行网购的概率是,由于该市市民数量很大,故可以认为X~B(10,),∴E(X)=,D(X)==.【点评】本题考查独立性检验及应用,考查概率的求法,考查离散型随机变量的分布列、数学期望、方差的求法,考查二项分布等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.7.手机QQ中的“QQ运动”具有这样的功能,不仅可以看自己每天的运动步数,还可以看到朋友圈里好友的步数.小明的QQ朋友圈里有大量好友参与了“QQ运动”,他随机选取了其中30名,其中男女各15名,记录了他们某一天的走路步数,统计数据如表所示:(0,2500)[2500,5000)[5000,7500)[7500,10000)[10000,+∞)步数性别男02472女13731(Ⅰ)以样本估计总体,视样本频率为概率,在小明QQ朋友圈里的男性好友中任意选取3名,其中走路步数低于7500步的有X 名,求X的分布列和数学期望;(Ⅱ)如果某人一天的走路步数超过7500步,此人将被“QQ运动”评定为“积极型”,否则为“消极型”.根据题意完成下面的2×2列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关积极型消极型总计男女总计附:.P(K2≥k0)k0【分析】(Ⅰ)在小明的男性好友中任意选取1名,其中走路步数低于7500的概率为.X可能取值分别为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和数学期望.(Ⅱ)完成2×2列联表求出k2的观测值k0≈<.据此判断没有95%以上的把握认为“评定类型”与“性别”有关.【解答】解:(Ⅰ)在小明的男性好友中任意选取1名,其中走路步数低于7500的概率为.X可能取值分别为0,1,2,3,∴,,,,∴X的分布列为X0123P则.(Ⅱ)完成2×2列联表如下:积极型消极型总计男9615女41115总计131730k2的观测值=.据此判断没有95%以上的把握认为“评定类型”与“性别”有关.【点评】本题考查离散型随机变量的分布列、数学期望的求法,考查独立检验的应用,考查古典概型、二项分布等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.8.某企业2017年招聘员工,其中A、B、C、D、E五种岗位的应聘人数、录用人数和录用比例(精确到1%)如下:岗位男性应聘人数男性录用人数男性录用比例女性应聘人数女性录用人数女性录用比例A26916762%402460%B401230%2026231%C1775732%1845932%D442659%382258%E3267%3267%总计53326450%46716936%(Ⅰ)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;(Ⅱ)从应聘E岗位的6人中随机选择2人.记X为这2人中被录用的人数,求X的分布列和数学期望;(Ⅲ)表中A、B、C、D、E各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于5%),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)【分析】(I)根据录用总人数与应聘总人数的比值得出概率;(II)根据超几何分布列的概率公式得出分布列和数学期望;(III)去掉一个岗位后计算剩余4个岗位的男女总录用比例得出结论.【解答】解:(Ⅰ)因为表中所有应聘人员总数为533+467=1000,被该企业录用的人数为264+169=433,所以从表中所有应聘人员中随机选择1人,此人被录用的概率约为.(Ⅱ)X可能的取值为0,1,2.因为应聘E岗位的6人中,被录用的有4人,未被录用的有2人,所以;;.所以X 的分布列为:X012P.(Ⅲ)取掉A岗位后,男性的总录用比例为≈%,女性的总录用比例为≈%,故去掉A岗位后,男、女总录用比例接近.∴这四种岗位是:B、C、D、E.【点评】本题考查了古典概型的概率计算,离散型随机变量的分布列,属于中档题.9.在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,且成绩分布在[40,100],分数在80以上(含80)的同学获奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图(见图).(1)填写下面的2×2列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”(2)将上述调査所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为X,求X的分布列及数学期望.文科生理科生合计获奖5不获奖合计200附表及公式:K2=,其中n=a+b+c+dP(K2≥k)k【分析】(1)列出表格根据公式计算出K2,参考表格即可得出结论.(2)由表中数据可知,抽到获奖同学的概率为,将频率视为概率,所以X可取0,1,2,3,且X~B(3,).即可得出.【解答】解:(1)文科生理科生合计获奖53540不获奖45115160合计50150200k==≈>,所以有超过95%的把握认为“获奖与学生的文理科有关”.(2)由表中数据可知,抽到获奖同学的概率为,将频率视为概率,所以X可取0,1,2,3,且X~B(3,).P(X=k)=×()k(1﹣)3﹣k(k=0,1,2,3),X0123PE(X)=3×=.【点评】本题考查了独立性检验原理、二项分布列的概率计算公式与数学期望,考查了推理能力与计算能力,属于中档题.。

(完整word版)二项分布、超几何分布、正态分布总结归纳及练习

(完整word版)二项分布、超几何分布、正态分布总结归纳及练习

专题:超几何分布与二项分布100510例1: 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列.解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫ ⎪⎝⎭,.3031464(0)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭∴; 12131448(1)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭; 21231412(2)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭;3033141(3)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭. 因此,X 的分布列为22,且有:03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C PY C ===.因此,Y 的分布列为某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.超几何分布和二项分布都是离散型分布 超几何分布和二项分布的区别:超几何分布需要知道总体的容量,而二项分布不需要; 超几何分布是不放回抽取,而二项分布是放回抽取(独立重复) 当总体的容量非常大时,超几何分布近似于二项分布超几何分布与二项分布练习:1.一条生产线上生产的产品按质量情况分为三类:A 类、B 类、C 类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C 类产品或2件都是B 类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为A 类品,B 类品和C 类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.(1)求在一次抽检后,设备不需要调整的概率;(2)若检验员一天抽检3次,以ξ表示一天中需要调整设备的次数,求ξ的分布列. 2、.甲、乙两人参加2010年广州亚运会青年志愿者的选拔.打算采用现场答题的方式来进行,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.(1)求甲答对试题数ξ的概率分布;(2)求甲、乙两人至少有一人入选的概率.3、已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出3球所得分数之和.(Ⅰ)求X 的分布列; (Ⅱ)求X 的数学期望E (X ).4、某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和B 在任意时刻发生故障的概率分别为110和p .(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(Ⅱ)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望E ξ.5、有一个3×4×5的长方体, 它的六个面上均涂上颜色. 现将这个长方体锯成60个1×1×1的小正方体,从这些小正方体中随机地任取1个,设小正方体涂上颜色的面数为ξ. (1)求0ξ=的概率; (2)求ξ的分布列和数学期望.6、一个口袋中装有大小相同的2个白球和3个黑球.(1)采取放回抽样方式,从中摸出两个球,求两球恰好颜色不同的概率; (2)采取不放回抽样方式,从中摸出两个球,求摸得白球的个数的分布列与期望。

高中数学 7.4 二项分布与超几何分布 课后练习、课时练习

高中数学  7.4 二项分布与超几何分布 课后练习、课时练习

一、单选题1. 某校在校庆期间举办羽毛球比赛,某班派出甲、乙两名单打主力,为了提高两位主力的能力,体育老师安排了为期一周的对抗训练,比赛规则如下:甲、乙两人每轮分别与体育老师打2局,当两人获胜局数不少于3局时,则认为这轮训练过关;否则不过关.若甲、乙两人每局获胜的概率分别为,,且满足,每局之间相互独立.记甲、乙在轮训练中训练过关的轮数为,若,则从期望的角度来看,甲、乙两人训练的轮数至少为()A.27 B.24 C.32 D.282. 从装有除颜色外完全相同的个白球和个黑球的布袋中随机摸取一球,有放回地摸取次,设摸得黑球的个数为,已知,则等于A.B.C.D.3. 1654年,法国贵族德•梅雷骑士偶遇数学家布莱兹•帕斯卡,在闲聊时梅雷谈了最近遇到的一件事:某天在一酒吧中,肖恩和尤瑟纳尔两人进行角力比赛,约定胜者可以喝杯酒,当肖恩赢20局且尤瑟纳尔赢得40局时他们发现桌子上还剩最后一杯酒.此时酒吧老板和伙计提议两人中先胜四局的可以喝最后那杯酒,如果四局、五局、六局、七局后可以决出胜负那么分别由肖恩、尤瑟纳尔、酒吧伙计和酒吧老板付费,梅雷由于接到命令需要觐见国王,没有等到比赛结束就匆匆离开了酒馆.请利用数学知识做出合理假设,猜测最后付酒资的最有可能是()A.肖恩B.尤瑟纳尔C.酒吧伙计D.酒吧老板4. 甲从学校乘车回家,途中有3个交通岗,假设在各交通岗遇红灯的事件是相互独立的,并且概率都是,则甲回家途中遇红灯次数的数学期望是()A.1.2 B.1.6 C.1.5 D.25. 将一枚硬币连掷5次,如果出现k次正面向上的概率等于出现k+1次正面向上的概率,那么k的值为()A.0 B.1 C.2 D.36. 如果,那么当X,Y变化时,使P(X=k)=P(Y=r)成立的(k,r)的个数为()A.21 B.20 C.10 D.0二、多选题7. 下列结论正确的有()A.若随机变量满足,则B.用相关指数来刻画回归效果,模型1的相关指数,模型2的相关指数,则模型1的拟合效果更好.C.若线性相关系数越接近1,则两个变量的线性相关性越强D.设随机变量服从二项分布,则8. 为了增强学生的冬奥会知识,弘扬奥林匹克精神,北京市多所中小学开展了冬奥会项目科普活动.为了了解学生对冰壶这个项目的了解情况,在北京市中小学中随机抽取了10 所学校,10所学校中了解这个项目的人数如图所示:若从这10所学校中随机选取2所学校进行这个项目的科普活动,记为被选中的学校中了解冰壶的人数在30以上的学校个数,则()A.的取值范围为B.C.D.三、填空题9. 已知随机变量,则______.10. 随机变量,若,则___________.11. 一批产品的一等品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的一等品件数,则__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

条件概率及乘法公式练习题
1.一个袋中有9张标有1,2,3,…,9的票,从中依次取两张,则在第一张是奇数的 条件下第二张也是奇数的概率()
2.有一批种子的发芽率为,出芽后的幼苗成活率为,在这批种子中,随机抽
取一粒,求这粒种子能成长为幼苗的概率。

3.某种电路开关闭合后,会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的 概率是21,在第一次闭合出现红灯的条件下第二次闭合还出现红灯的概率是31,求两次闭合都出现红灯的概率。

4.市场供应的灯泡中,甲厂产品占有70%,乙厂产品占有30%,甲厂产品的合格率为95%,乙厂产品的合格率为80%。

现从市场中任取一灯泡,假设A=“甲厂生产的产品”,A =“乙厂生产的产品”,B=“合格灯泡”,B =“不合格灯泡”,求:
(1)P(B|A);(2)P(B |A);(3)P(B|A );(4)P(B |A ).
超几何分布及二项分布练习题
1.一个袋子中装有大小形状完全相同的编号分别为1,2,3,4,5的5个红球与编号为1,2,3,4的4个白球,从中任意取出3个球.
(Ⅰ)求取出的3个球颜色相同且编号是三个连续整数的概率;
(Ⅱ)求取出的3个球中恰有2个球编号相同的概率;
2.今年雷锋日,某中学从高中三个年级选派4名教师和20名学生去当雷锋志愿者,学生的名额分配如下:
(I )若从20名学生中选出3人参加文明交通宣传,求他们中恰好有1人是高一年级学生的概率;
(II )若将4名教师安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X ,求随机变量X 的分布列和数学期望.
3.某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),
[20,40),[40,60),[60,80),[80,100].
(Ⅰ)求直方图中x 的值;
(Ⅱ)如果上学所需时间不少于1小时的学生可申请在学
校住宿,请估计学校600名新生中有多少名学生可以申请住
宿;
(Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为X ,求X 的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率)
4.甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是53,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对
一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.
(Ⅰ)求乙得分的分布列和数学期望
(Ⅱ)求甲、乙两人中至少有一人入选的概率. 5.甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为3
1,乙每次投中的概率为2
1,每人分别进行三次投篮. (Ⅰ)记甲投中的次数为ξ,求ξ的分布列及数学期望E ξ;
(Ⅱ)求乙至多投中2次的概率;
(Ⅲ)求乙恰好比甲多投进2次的概率.
6.某游乐场将要举行狙击移动靶比赛.比赛规则是:每位选手可以选择在A 区射击3
次或选择在B 区射击2次,在A 区每射中一次得3分,射不中得0分;在B 区每射中一次
得2分,射不中得0分.已知参赛选手甲在A 区和B 区每次射中移动靶的概率分别是4
1和)10(<<p p .
(Ⅰ)若选手甲在A 区射击,求选手甲至少得3分的概率;
(Ⅱ)我们把在A 、B 两区射击得分的数学期望高者作为选择射击区的标准,如果选手甲最终选择了在B 区射击,求p 的取值范围.
.。

相关文档
最新文档