复合函数求导
复合函数求导举例
复合函数求导举例复合函数的求导是微积分中的一个重要概念,它描述了两个或多个函数相互作用的过程。
在此,我们将举例说明如何求解复合函数的导数,并提供相关的参考内容。
首先,我们来看一个简单的例子:求解复合函数 f(g(x)) 的导数,其中 f(x) 和 g(x) 分别是两个可导函数。
假设 f(x) = 2x,g(x) = x^2,我们需要求解的导数为 f(g(x)) = 2(g(x))。
根据链式法则,导数可以通过求解 g(x) 的导数再将结果乘以f(g(x)) 的导数,即d(f(g(x)))/dx = f'(g(x)) * g'(x)。
首先求解 g(x) 的导数:g'(x) = d(x^2)/dx = 2x。
然后求解 f(g(x)) 的导数:f'(g(x)) = d(2(g(x)))/d(g(x)) = 2。
最后,将 f'(g(x)) 与 g'(x) 相乘得到 f(g(x)) 的导数:d(f(g(x)))/dx = f'(g(x)) * g'(x) = 2 * 2x = 4x。
所以,复合函数 f(g(x)) 的导数为 4x。
接下来,我们提供一些相关的参考内容,以加深对复合函数求导的理解。
1. 链式法则的证明:- 《微积分导论》(Thomas)第9.2节- 《微积分学导引》(Simmons)第3.6节2. 复合函数求导公式的应用:- 《解析几何与线性代数》(Hoffman/Kunze)第6章- 《数学分析基础》(Abbot)第8.3节3. 更复杂的复合函数求导:- 多元复合函数的求导公式- 高阶导数的计算方法4. 复合函数求导的应用:- 函数的极值及拐点分析- 函数图像的绘制和变换通过深入研究复合函数求导,我们可以进一步理解微积分的基本概念和应用,并应用于更复杂的数学问题中。
复 合 函 数 的 求 导 法 则
练习 求下列函数的导数
y = e3x (A)1.
3x 3x 3x 解:y ′ = ( e ) ′ = e ( 3 x ) ′ = 3 e
y = cos( x 3 ) (A)2.
2 3 3 3 3 解:y ′ = (cos x ) ′ = − sin x ( x ) ′ = − 3 x sin x
(B)3. y = e 解: y ′ = e
2x ′ 1 所以 yx = yu ⋅ ux = ⋅ (−2x) = 2 u x −1
′
′
(A) 例3 求函数 y = cos 2 x 的导 数 2 解:设 y = u 则 u = cos x
因为 所以
′ ′ yu = 2u, ux = −sinx
′ ′ ′ yx = yu ⋅ ux = 2u(−sin x) = −2cosx sin x = −sin2x
′ y u = 5u 4 , u ′ = 3, x
′ x y′ = yu ⋅ u′ = 5u4 ×3 = 5(3x + 2)4 ×3 =15(3x + 2)4 所以 x
2 (B) 例2 求函数 y = ln(1 − x ) 的导数
解:设 因为
y = ln u
则
u = 1− x2
′ 1 ′ yu = , u x = −2 x, u
x π (B) 例5 求 y = ln tan( + ) 的导数。 的导数。 2 4
x π 解: 设 y = ln u , u = tan v, v = + 2 4
由
y ′ = f ′ ( u ) ⋅ φ ′( v ) ⋅ ϕ ′( x ) 得
x π ′ = (lnu)′ ⋅ (tanv)′ ⋅ ( + )′ y 2 4
复合函数求导方法
复合函数求导方法在微积分中,复合函数是一种十分常见的函数形式,它由两个或多个函数组合而成。
对于复合函数的求导,我们需要掌握一定的方法和技巧。
本文将介绍复合函数求导的方法,希望能够帮助大家更好地理解和掌握这一知识点。
首先,我们来回顾一下基本的导数求法。
对于一个函数y=f(x),它的导数可以用极限的形式表示为:\[f'(x)=\lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}\]这是导数的定义式,也是我们求导的基本方法。
而对于复合函数,我们需要使用链式法则来进行求导。
链式法则的表述如下,若函数y=f(u)和u=g(x)都可导,则复合函数y=f(g(x))可导,并且有。
\[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \]这就是链式法则的数学表达形式。
简单来说,就是先对外层函数求导,再对内层函数求导,最后将两者相乘。
下面我们通过实例来具体说明复合函数求导的方法。
假设我们要求函数y=(x^2+1)^3的导数。
首先,我们可以将这个函数看作外层函数f(u)=u^3,内层函数u=g(x)=x^2+1。
按照链式法则,我们先对外层函数求导,再对内层函数求导,最后将两者相乘。
首先,对外层函数f(u)=u^3求导,得到f'(u)=3u^2。
然后,对内层函数u=g(x)=x^2+1求导,得到g'(x)=2x。
最后,将两者相乘,得到复合函数y=(x^2+1)^3的导数为:\[ \frac{dy}{dx} = 3(x^2+1)^2 \cdot 2x = 6x(x^2+1)^2 \]这就是复合函数求导的具体步骤和结果。
通过这个例子,我们可以看到,复合函数求导并不难,只需要按照链式法则的步骤进行,便可以得到结果。
除了链式法则,我们在求导复合函数时还可以使用其他方法,比如对数导数法则、指数导数法则等。
复合函数求导公式有哪些
复合函数求导公式有哪些复合函数的求导公式有哪些呢?想来绝大部分的人都不知道,为了满足大家的好奇心。
下面是由小编为大家整理的“复合函数求导公式有哪些”,仅供参考,欢迎大家阅读。
复合函数求导公式有哪些链式法则(英文chain rule)是微积分中的求导法则,用以求一个复合函数的导数。
所谓的复合函数,是指以一个函数作为另一个函数的自变量。
如设f(x)=3x,g(x)=3x+3,g(f(x))就是一个复合函数,并且g′(f(x))=9。
要注意f(x)的自变量x与g(x)的自变量x之间并不等同。
链式法则(chain rule)若h(a)=f[g(x)]则h'(a)=f'[g(x)]g'(x)链式法则用文字描述,就是"由两个函数凑起来的复合函数,其导数等于里函数代入外函数的值之导数,乘以里边函数的导数。
"拓展阅读:复合函数的奇偶性复合函数中只要有偶函数则复合函数为偶函数,如一奇一偶为偶;若只有奇函数则复合函数为奇函数,无论奇数个还是偶数个,如两奇仍为奇。
1、f(x)*g(x)*h(x)这种相乘的复合函数。
奇函数的个数是偶数,复合函数就是偶函数。
奇函数的个数是奇数,复合函数就是奇函数。
2、f(g(h(x)))这种多层的复合函数。
函数中的有偶数,复合函数就是偶函数。
函数中的没有偶数,奇函数的个数是偶数,复合函数就是偶函数。
函数中的没有偶数,奇函数的个数是奇数,复合函数就是奇函数。
复合函数的单调性的判断方法复合函数单调性就2句话:2个函数(或多个)都递增或者都递减那么复合函数就是单调递增函数2个函数一个递增一个递减那么复合函数就是单调递减函数简单记法:负负得正,正在得正,负正得负。
复合函数求导公式有哪些
复合函数求导公式有哪些
有很多的同学是非常的想知道,复合函数求导公式是什幺,小编整理了
相关信息,希望会对大家有所帮助!
1 复合函数如何求导规则:1、设u=g(x),对f(u)求导得:f’(x)=f’(u)*g’(x);
2、设u=g(x),a=p(u),对f(a)求导得:f’(x)=f’(a)*p’(u)*g’(x);
拓展:
1、设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那幺对于Mx∩Du内的任意一个x 经过u;有唯一确定的y 值与之对应,则变量x 与y 之间通过变量u 形成的一种函数关系,这种函数称为复合函数(composite function),记为:y=f[g(x)],其中x 称为自变量,u 为中间变量,y 为因变量(即函数)。
2、定义域:若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数
y=f[g(x)]的定义域是D= {x|x∈A,且g(x)∈B} 综合考虑各部分的x 的取值范围,取他们的交集。
3、周期性:设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则
y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k 属于R+).
4、单调(增减)性的决定因素:依y=f(u),μ=φ(x)的单调性来决定。
即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为“同增异减”。
1 复合函数求导法则Y=f(u),U=g(x),则y′=f(u)′*g(x)′
例1.y=Ln(x),Y=Ln(u),U=x,
y′=f(u)′*g(x)′=[1/Ln(x)]*(x)′=[1/Ln(x)]*(3x)。
复合函数求导法则公式
复合函数求导法则公式1.链式法则:链式法则是用于求解复合函数导数的基本法则。
设y=f(u),u=g(x)为两个可导函数,且y=f(u)和u=g(x)均是一对一函数,则复合函数y=f(g(x))的导数可以通过链式法则求得。
链式法则的公式为:dy/dx=dy/du * du/dx其中,dy/du表示函数y=f(u)对u的导数,du/dx表示函数u=g(x)对x的导数。
例如,设y=sin(x^2),我们需要求解dy/dx。
首先,令u=x^2,y=sin(u),则dy/du=cos(u)=cos(x^2)。
其次,求解du/dx=2x。
最后,根据链式法则,dy/dx=dy/du * du/dx = cos(x^2) * 2x = 2x*cos(x^2)。
2.乘积法则:乘积法则用于求解两个函数乘积的导数。
设y=u*v为两个可导函数的乘积,则乘积函数y=u*v的导数可以通过乘积法则求得。
乘积法则的公式为:dy/dx = u * dv/dx + v * du/dx例如,设y=x*sin(x),我们需要求解dy/dx。
根据乘积法则,将u=x,v=sin(x)代入上述公式,dy/dx = x * cos(x) + sin(x)。
3.商规则:商规则用于求解两个函数的商的导数。
设y=u/v为两个可导函数的商,则商函数y=u/v的导数可以通过商规则求得。
商规则的公式为:dy/dx = (v * du/dx - u * dv/dx) / v^2例如,设y=(x^2+1) / x,我们需要求解dy/dx。
根据商规则,将u=x^2+1,v=x代入上述公式,dy/dx = ((x) * (2x) - (x^2+1) * (1)) / (x^2)^2 = (x^2 - 1) / x^4小结:复合函数求导法则包括链式法则、乘积法则和商规则。
链式法则适用于求解复合函数的导数,乘积法则适用于求解两个函数乘积的导数,商规则适用于求解两个函数的商的导数。
复合函数求导公式16个
复合函数求导公式16个求导是微积分中的一个重要概念,是用来确定函数在其中一点的变化率的工具。
而复合函数则是由多个函数组合而成的新函数,其求导过程相对复杂一些。
下面将介绍16个常见的复合函数求导公式。
1.设有函数y=f(u),u=g(x),则y=f(g(x))。
对这个复合函数求导,可以使用链式法则。
链式法则给出了复合函数求导的一个基本公式:(dy/dx) = (dy/du) * (du/dx)这个公式表示,对于复合函数y=f(g(x)),其导数等于f'(g(x))*g'(x)。
2.平方函数的链式法则:设有函数y=f(u)=u^2,u=g(x),则y=f(g(x))=g(x)^2、求导的结果为:(dy/dx) = 2 * g(x) * g'(x)3.倒数函数的链式法则:设有函数y=f(u)=1/u,u=g(x),则y=f(g(x))=1/g(x)。
求导的结果为:(dy/dx) = -g'(x) / (g(x))^24.指数函数的链式法则:设有函数y=f(u)=e^u,u=g(x),则y=f(g(x))=e^(g(x))。
求导的结果为:(dy/dx) = g'(x) * e^(g(x))5. 对数函数的链式法则:设有函数y=f(u)=ln(u),u=g(x),则y=f(g(x))=ln(g(x))。
求导的结果为:(dy/dx) = g'(x) / g(x)6. 正弦函数的链式法则:设有函数y=f(u)=sin(u),u=g(x),则y=f(g(x))=sin(g(x))。
求导的结果为:(dy/dx) = g'(x) * cos(g(x))7. 余弦函数的链式法则:设有函数y=f(u)=cos(u),u=g(x),则y=f(g(x))=cos(g(x))。
求导的结果为:(dy/dx) = -g'(x) * sin(g(x))8. 正切函数的链式法则:设有函数y=f(u)=tan(u),u=g(x),则y=f(g(x))=tan(g(x))。
复合函数求导公式16个
复合函数求导公式16个1 复合函数的定义复合函数是指函数的函数,在数学上是由一般函数和另一个函数的组合而成的函数。
通常用于求解复杂的函数,也就是将一个函数作为另一个函数的输入,得到一个新的函数。
从定义上看,复合函数包含两个或多个函数,可以将一个函数作为另一个函数的参数,求出复合函数的结果。
2 复合函数求导公式复合函数求导公式是指对于一个复合函数f(g(x)),当g(x)有关x的导数存在时,它的导数等于f(g(x))的导数与g(x)的导数的乘积,其求导公式为:f′(g(x))*g'(x)=f(g(x))•g'(x)根据复合函数求导公式,一元复合函数求导公式一共可以分为16种情况:(1)y=x^n,y'=nx^(n-1);(2)y=x^n*lny,y'=nx^(n-1)*(1+lny);(3)y=sinx,y'=cosx;(4)y=cosx,y'=-sinx;(5)y=tanx,y'=sec^2x;(6)y=lnx,y'=1/x;(7)y=ex,y'=ex;(8)y=x^2 get sinx,y'=2x•cosx;(9)y=x^2 get cosx,y'=2x•-sinx;(10)y=x^2 get tanx,y'=2x•sec^2x;(11)y=ex get sinx,y'=ex•cosx;(12)y=ex get cosx,y'=ex•-sinx;(13)y=ex get tanx,y'=ex•sec^2x;(14)y=sinx get cosx,y'=-sin^2x;(15)y=cosx get sinx,y'=-cos^2x;(16)y=tanx get secx,y'=sec^3x。
以上便是复合函数求导公式的16种情况。
从上面可以看出,复合函数求导公式中,常用的有加、减、乘、除法,幂运算等。
复合函数求导(链式法则)
复合函数求导(链式法则)(建议阅读原文)预备知识微分若有两个一元函数 f(x) 和 g(x),我们可以把 g 的函数值作为 f 的自变量,得到一个新的函数称为f(x) 和 g(x) 的复合函数,记为 f[g(x)].如果我们已知两个函数 f(x) 和 g(x) 的导函数 f'(x) 和 g'(x),那么我们可以通过以下公式求复合函数 f[g(x)] 的导数.\begin{align}&f[g(x)]' = f'[g(x)]g'(x)&(1)\\\end{align}对于多个函数的复合函数,我们也有类似的公式,例如\begin{align}&f[g(h(x))]' =f'[g(h(x))]g'[h(x)]h'(x)&(2)\\\end{align}例1 基本初等函数的复合函数求导我们已经知道基本初等函数的导数的导函数,下面对它们的一些常见的复合函数进行求导. \sin^2 x 可以看作幂函数 f(x) = x^2 和 g(x) =\sin x 的复合函数,已知 f'(x) = 2x, g'(x) = \cos x,代入式 1 得\begin{align}&(\sin^2 x)' = 2\sin x \cosx&(3)\\\end{align}几何理解为了方便表示,我们把 g 的函数值和 f 的自变量记为 u,把 f 的函数值记为 y.图 1:可以将 \sin^2 x 看做 f(u) = u^2 和 g(x) = \sin x 的复合函数我们可以用类似图 1 的图像来直观地理解复合函数.先画出y = f(u) 和 u = g(x) 的图像,并将 g(u) 的图像逆时针旋转90° 使得两图的 u 轴对齐.这样对于任何定义域中的自变量 x,我们只需要先在 g(x) 的图中画出 u 的位置,再对应到 f(u) 的图像中求出 y 的位置即可.现在我们要讨论的问题是,若已知两函数的导函数 f'(x) 和 g'(u)(假设它们在定义域内处处可导)如何求复合函数 f[g(x)] 的导数.对于给定的 x,我们先来看当 x 增加 \Delta x 时 y 的增量 \Delta y 的大小.我们可以使用与图 1 类似的方法画出图 2 ,然后只需要令 \Delta x \to 0,就可以根据定义求出复合函数的导数\begin{align}&f[g(x)]' =\frac{\mathrm{d}}{\mathrm{d}{x}} f[g(x)] =\lim_{\Delta x\to 0} \frac{\Delta y}{\Deltax}&(4)\\\end{align}图 2:用图 1 中的方法求出任意 \Delta x 对应的 \Delta y在这个过程中,我们在得到 \Delta y 之前先得到了 u 的增量 \Delta u.当 \Delta x 较小时有微分近似(式2 )\begin{align}&\Delta {u} \approx g'(x) \Delta{x}\qquad \Delta{y} \approx f'(u)\Delta{u}&(5)\\\end{align}当 \Delta x \to 0 时对应的微分关系(式 1 )为\begin{align}&\,\mathrm{d}{u} = g'(x) \,\mathrm{d}{x} \qquad \,\mathrm{d}{y} = f'(u)\,\mathrm{d}{u}&(6)\\\end{align}将上式中的左边代入右边得 \begin{align}&\,\mathrm{d}{y} = f'(u) g'(x) \,\mathrm{d}{x} = f'[g(x)]g'(x)\,\mathrm{d}{x}&(7)\\\end{align}而复合函数的微分是 \begin{align}&\,\mathrm{d}{y} =f[g(x)]' \,\mathrm{d}{x}&(8)\\\end{align}对比以上两式(微分和导数的关系)得\begin{align}&f[g(x)]' = f'[g(x)]g'(x)&(9)\\\end{align}这就是复合函数的求导公式.在上面的例子中\begin{align}&g(x) = \sin x \qquad g'(x) = \cos x\qquad f(u) = u^2 \qquad f'(u) = 2u\qquad&(10)\\\end{align}代入上式得\begin{align}&\frac{\mathrm{d}}{\mathrm{d}{x}} \sin^2 x = 2\sin x \cos x&(11)\\\end{align}复合函数的求导公式也叫链式法则,原因是我们可以把以上推导过程用导数的另外一种符号表示如下.\begin{align}&\,\mathrm{d}{y} =\frac{\mathrm{d}{y}}{\mathrm{d}{u}} \,\mathrm{d}{u} = \frac{\mathrm{d}{y}}{\mathrm{d}{u}}\frac{\mathrm{d}{u}}{\mathrm{d}{x}}\,\mathrm{d}{x}&(12)\\\end{align}得 \begin{align}&\frac{\mathrm{d}{y}}{\mathrm{d}{x}} = \frac{\mathrm{d}{y}}{\mathrm{d}{u}}\frac{\mathrm{d}{u}}{\mathrm{d}{x}}&(13)\\\end{align}这种书写方式让人不禁想把 \mathrm{d}{y}/\mathrm{d}{x} 看做是 \,\mathrm{d}{y} 和 \,\mathrm{d}{x} 相除,这样的符号分割是错误的,尤其是在以后学习高阶导数和偏导数时.多重复合函数要对多重复合函数如 f[g(h(x))] 求导,可以先对 g[h(x)] 求导得 g'[h(x)]h'(x) 再得到\begin{align}&f[g(h(x))]' =f'[g(h(x))]g'[h(x)]h'(x)&(14)\\\end{align}令 v = h(x),用微分符号可以表示为\begin{align}&\frac{\mathrm{d}{y}}{\mathrm{d}{x}} =\frac{\mathrm{d}{y}}{\mathrm{d}{u}}\frac{\mathrm{d}{u}}{\mathrm{d}{v}}\frac{\mathrm{d}{v}}{\mathrm{d}{x}}&(15)\\\end{align}任意多重的复合函数求导同理可得.例2 对函数求导\begin{align}&\frac{1}{\sqrt{x^2+a^2}}&(16)\\\end{alig n}首先令 f(x) = 1/\sqrt{x} 再令 g(x) = x^2+a^2,上式等于 f[g(x)].由基本初等函数的导数, \begin{align}&f'(x) = -\frac{1}{2\sqrt{x^3}} \qquad g'(x) =2x&(17)\\\end{align}代入式 9 ,得\begin{align}&\frac{\mathrm{d}}{\mathrm{d}{x}}\frac{1}{\sqrt{x^2+a^2}} = f'[g(x)] g'(x) = -\frac{x}{\sqrt{(x^2+a^2)^3}}&(18)\\\end{align}一种较灵活的情况是,当三个变量只有一个自由度1时,任何一个变量都可以看做任何另外两个变量的函数2,这时可以根据需要灵活运用链式法则,如例 3 .例3 加速运动公式假设质点做一维运动,位移,速度和加速度分别记为 x(t), v(t) = \mathrm{d}{x}/\mathrm{d}{t},a(t) = \mathrm{d}{v}/\mathrm{d}{t},但若把速度 v 看做复合函数 v[x(t)],根据链式法则有\begin{align}&a = \frac{\mathrm{d}{v}}{\mathrm{d}{t}} = \frac{\mathrm{d}{v}}{\mathrm{d}{x}}\frac{\mathrm{d}{x}}{\mathrm{d}{t}} =\frac{\mathrm{d}{v}}{\mathrm{d}{x}} v&(19)\\\end{align}写成微分表达式,有 a \,\mathrm{d}{x} = v\,\mathrm{d}{v}.注意到 \,\mathrm{d}\left(v^2 \right) = 2v \,\mathrm{d}{v},代入得\begin{align}&\,\mathrm{d}\left(v^2 \right) = 2a\,\mathrm{d}{x}&(20)\\\end{align}若质点做匀加速运动,该式的物理意义是在任何一段微小时间内,速度平方的增量正比于这段时间内的位移增量.在一段时间 [t_1,t_2] 内把这些增量累加起来,就得到高中熟悉的运动学公式 \begin{align}&v_2^2-v_1^2 = 2a(x_2-x_1)&(21)\\\end{align}其中 x_1,v_1 和 x_1,v_1 分别是 t_1,t_2 时刻的位置和速度.1. 即任何一个变量值确定后,另外两个变量也随之确定2.姑且假设不会出现一个自变量对应两个函数值的情况。
复合函数怎么求导
复合函数求导公式什么?怎么求导?
总的公式f'[g(x)]=f'(g)×g'(x)。
主要方法:先对该函数进行分解,分解成简单函数,然后对各个简单函数求导,最后将求导后的结果相乘,并将中间变量还原为对应的自变量。
设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数。
复合函数求导公式:①设u=g(x),对f(u)求导得:f'(x)=f'(u)*g'(x);②设
u=g(x),a=p(u),对f(a)求导得:f'(x)=f'(a)*p'(u)*g'(x);总的公式f'[g(x)]=f'(g)×g'(x)。
先对该函数进行分解,分解成简单函数,然后对各个简单函数求导,最后将求导后的结果相乘,并将中间变量还原为对应的自变量。
两个函数商的复合函数可导的前提条件是作分母的函数即g(x)≠0,否则无意义。
复合函数求导,就是找出构成复合函数的子函数,一个复合函数可以拆分成无数种子函数。
对于复合函数自身带有幂指对这类较为难求导的函数,一般来说会以它为中心进行化简,即最终子函数能够很容易求出复合函数中的幂指对。
将复合函数的本框架作为原函数,化好子函数后,就是求导过程,划出来的函数全部求导,代入即可。
复合函数求导方法
复合函数求导方法复合函数是指由一个函数的输出作为另一个函数的输入所构成的函数。
在数学中,我们经常需要对复合函数进行求导,以便求得函数的导数。
本文将介绍复合函数求导的方法,帮助读者更好地理解和掌握这一重要的数学技巧。
首先,我们来看一下复合函数的定义。
设有两个函数f(x)和g(x),则复合函数可以表示为h(x) = f(g(x))。
在这个表达式中,g(x)作为f(x)的输入,h(x)即为复合函数。
要对复合函数进行求导,我们需要使用链式法则。
链式法则是求导复合函数的基本方法。
它的表达式为,若y=f(u)和u=g(x)都可导,则复合函数y=f(g(x))的导数为f'(g(x)) g'(x)。
这个公式可以帮助我们快速求得复合函数的导数。
接下来,我们通过一个具体的例子来演示复合函数求导的过程。
假设有函数f(u)=u^2,g(x)=3x+1,我们需要求复合函数h(x)=f(g(x))的导数。
首先,根据链式法则,我们可以得到h'(x)= f'(g(x)) g'(x)。
然后,分别对f(u)和g(x)求导,得到f'(u)=2u和g'(x)=3。
将这两个导数代入链式法则的公式中,我们可以得到h'(x) = 2g(x) 3 = 6(3x+1) = 18x + 6。
因此,复合函数h(x)的导数为18x+6。
除了链式法则外,还有其他一些方法可以用来求导复合函数。
例如,我们可以将复合函数展开成分段函数,然后分别对每一段函数进行求导,最后将结果合并。
这种方法在某些情况下会更加方便和高效。
另外,对于一些特殊的复合函数,我们也可以利用其他的数学技巧来求导。
比如,当复合函数的形式比较复杂时,我们可以尝试使用换元法或者其他的代数运算来简化函数,然后再进行求导。
这样可以使求导的过程更加简单和清晰。
总之,复合函数求导是微积分中的重要内容,掌握好这一技巧对于理解和应用数学知识都非常重要。
高数复合函数求导公式
高数复合函数求导公式高数复合函数求导公式:一、概念1. 什么是复合函数?复合函数是指有两个或多个函数构成的函数,它的定义域为第一个函数的定义域,把第一个函数的输出作为第二个函数的输入,这样就定义出了新的函数,即复合函数。
2. 什么是求导公式?求导公式是指用来求一个函数的导数的公式,在数学上是表示求微分的方法。
通常使用微积分的基本公式和一些技巧来计算一个函数的一阶、二阶、三阶及以上导数,得出特定函数的导数。
二、求导公式1. 当复合函数中只有两个函数的时候:复合函数的求导公式使用链式法则,为:f’(x)= f(g(x))’=f’(g(x))*g’(x),其中f’(g(x))表示第一个函数的导数,g’(x)表示第二个函数的导数。
2. 当复合函数中有三个或者更多函数时:复合函数的求导公式为f’(x)=f(g(h(x))’=f’(g(h(x))*g’(h(x))*h’(x),其中f’(g(h(x)))表示复合函数第一个函数的导数,g’(h(x))表示复合函数的第二个函数的导数,h’(x)表示复合函数的第三个函数的导数。
三、注意事项1. 求导公式是求复合函数的导数的一种数学方法,它分别通过计算复合函数的各个部分,得出复合函数的导数。
2. 在计算复合函数的求导公式时,必须要清楚不同的函数的定义域,以及函数的各项参数。
3. 要将复合函数分解为不同函数,再分别求每一部分函数的导数,然后将所有的导数求乘积,就能得到复合函数的导数。
4. 如果复合函数的函数部分比较多,那么就要有相应的复杂的求导公式,计算的时候也会很复杂,所以可以使用乘法和傅里叶变换的方法来计算复合函数的导数。
四、总结综上所述,复合函数求导公式一般有两种,对于复合函数中只有两个函数的时候是f’(x)= f(g(x))’=f’(g(x))*g’(x),而如果有三个或者更多函数,则理论上采用f’(x)=f(g(h(x))’=f’(g(h(x))*g’(h(x))*h’(x)。
复合函数求导法则有哪些呢
复合函数求导法则有哪些呢复合函数的求导法则同学们清楚吗,如果不清楚,快来小编这里瞧瞧。
下面是由小编小编为大家整理的“复合函数求导法则有哪些呢”,仅供参考,欢迎大家阅读。
Y=f(u),U=g(x),则y′=f(u)′*g(x)′例1.y=Ln(x^3),Y=Ln(u),U=x^3,y′=f(u)′*g(x)′=[1/Ln(x^3)]*(x^3)′=[1/Ln(x^3)]*(3x^2)=(3x^2)/Ln(x^3)]例2.y=cos(x/3),Y=cosu,u=x/3由复合函数求导法则得y=-sin(x/3)*(1/3 )=-sin(x/3)/3运算法则是:加(减)法则,[f(x)+g(x)]'=f(x)'+g(x)';乘法法则,[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x);除法法则,[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2。
若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。
导数也叫导函数值,又名微商,是微积分中的重要基础概念。
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。
求导运算法则是:加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)';乘法法则:[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x);除法法则:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
导数的本质是通过极限的概念对函数进行局部的线性逼近。
例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
复合函数如何求导公式
复合函数如何求导公式求复合函数的导数是很重要的数学技能,它可以帮助研究者深入了解函数的行为,并有助于识别数字模型的结构特性和关系。
复合函数的求导公式是对满足极限定义的复合函数求导的公式,它可以用来帮助我们快速准确地求出复合函数的导数。
当我们遇到超出基本步骤求导知识的复杂函数时,这里可以用到复合函数的求导公式。
基本复合函数求导公式基本复合函数求导公式可以用来快速地求出复合函数的导数,例如,对于复合函数 f(x)=g(h(x)),其具体求导形式如下,`df(x)/dx=df(h(x))/dh(x)*dh(x)/dx`这里,f(x)=g(h(x))是基本复合函数的形式,df(x)表示函数f(x)的导数,dh(x)表示函数h(x)的导数。
在实际运用时,我们需要将f(x)和h(x)分别替换掉,便可以简化此形式的求导。
注意:这里求导不需要考虑函数f(x)和h(x)的解析解,只需要考虑它们的表达式即可,所以用此求导公式时只需要找到它们的对应关系即可,即:f(x)=g(h(x))就可以简化成df(x)/dx=df(h(x))/dh(x)*dh(x)/dx。
推广复合函数求导公式除了基本复合函数的求导公式,还有更复杂的推广复合函数求导公式。
例如对于复合函数f(x)=g(h(k(x))),其具体求导形式如下,`df(x)/dx=df(h(k(x)))/dh(k(x))*dh(k(x))/dk(x)*dk(x)/dx`其中,f(x)=g(h(k(x)))也是复合函数的形式,df(x)与上例相同,dh(x)与dk(x)分别表示函数h(x)和k(x)的导数,这里也可以把f(x)和h(x)、k(x)分别按照要求替换掉,并简化此形式的求导。
嵌套复合函数求导公式当遇到嵌套的复合函数时,例如f(x)=g(h(f(x))),其具体求导形式如下,`df(x)/dx=df(g(h(f(x))))/dg(h(f(x)))*dg(h(f(x))/dh(f(x))*dh(f(x))/df(x)+df(h(f(x)))/dh(f(x))*dh(f(x))/df(x)`意义同上。
复合函数求导
y x sin x .
方法:
先在方程两边取对数, 然后利用隐函数的求导 方法求出导数.
--------对数求导法
例5: 设 y ( x 1)3 x 1 , 求y. ( x 4)2 e x
解: 等式两边取对数得
ln y ln( x 1) 1 ln( x 1) 2 ln( x 4) x 3
y
x
y y(cos x ln x sin x 1 ) x
x sin x (cos x ln x sin x ) x
四、由参数方程所确定的函数的导数
若参数方程
x y
(t )确定 (t)
y与x间的函数关系
,
称此为由参数方程所确定的函数.
例如
x 2t,
y
t
2
,
t x 2
消去参数 t
2
1 cos
1.
2
当 t 时, x a( 1), y a.
2
2
所求切线方程为
y a x a( 1) 2
即 y x a(2 )
2
谢谢
上式两边对 x求导得
y 1 1 2 1 y x 1 3( x 1) x 4
y
( x 1)3 x ( x 4)2 e x
1[
x
1
1
1 3( x
1)
x
2
4
1]
例6:设 y xsinx ( x 0), 求y.
解: 等式两边取对数得
上式两边对x求导得
1 y cos x ln x sin x 1
dy
dy dx
dy dt
dt dx
dy dt
1 dx
(t) (t)
即
复合函数的求导法则公式
复合函数的求导法则公式复合函数是由两个或多个函数组合成的一个函数,求导时需要运用复合函数的求导法则公式。
下面将详细介绍复合函数的求导法则公式。
1. 基本公式设函数y=f(u),u=g(x),则复合函数 y=f[g(x)] 的导数为:$$ \\frac {\\mathrm{d} y}{\\mathrm{d} x}=\\frac {\\mathrm{d}y}{\\mathrm{d} u} \\cdot \\frac {\\mathrm{d} u}{\\mathrm{d} x}=f'(u)g'(x) $$其中,$f'(u)$表示函数f(u)对u的导数,$g'(x)$表示函数g(x)对x的导数。
例如,设 $f(u) = u^2$,$g(x) = 3x +1$,则$$ y=f[g(x)]=f(3x+1)=(3x+1)^2 $$根据复合函数的求导法则公式,可得:$$ \\frac{\\mathrm{d} y}{\\mathrm{d}x}=\\frac{\\mathrm{d}y}{\\mathrm{d}u}\\cdot \\frac{\\mathrm{d} u}{\\mathrm{d}x}=2u\\cdot3=6(3x+1) $$所以,$y' = \\frac{\\mathrm{d} y}{\\mathrm{d}x} = 6(3x+1)$。
2. 链式法则复合函数的求导法则也可以用链式法则表示为:$$ \\frac {\\mathrm{d} y}{\\mathrm{d} x}=\\frac {\\mathrm{d}y}{\\mathrm{d} u} \\cdot \\frac {\\mathrm{d} u}{\\mathrm{d} x}=\\frac {\\mathrm{d} y}{\\mathrm{d} u_1} \\cdot \\frac {\\mathrm{d}u_1}{\\mathrm{d} u_2} \\cdot \\frac {\\mathrm{d} u_2}{\\mathrm{d}x}=\\frac {\\mathrm{d} y}{\\mathrm{d} u_1} \\cdot \\frac {\\mathrm{d}u_1}{\\mathrm{d} u_2} \\cdot \\frac {\\mathrm{d} u_2}{\\mathrm{d}u_3}\\cdot \\frac {\\mathrm{d} u_3}{\\mathrm{d} x}=\\cdots $$其中,$u_1,g^{(1)}(x)$表示通过一次代换得到的新函数,$u_2,g^{(2)}(x)$表示通过第二次代换得到的新函数,$u_3,g^{(3)}(x)$表示通过第三次代换得到的新函数,$\\cdots$表示通过n次代换得到的新函数,$y=f(u)$。
复合函数求导公式16个
复合函数求导公式16个在微积分中,复合函数是指由两个或多个函数构成的函数。
求复合函数的导数是微积分中的一个重要概念。
下面将介绍复合函数求导的16种常见公式。
1.线性函数复合如果y是x的线性函数,z是y的线性函数,即 $y=ax+b$ ,$z=cy+d$, 那么z是x的线性函数,即 $z=acx+(ad+bc)$。
2.指数函数复合如果y是x的指数函数,即$y=a^x$,z是y的指数函数,即$z=a^y$,那么z是x的指数函数,即$z=a^{a^x}$。
3.对数函数复合如果y是x的对数函数,即 $y=\log_a(x)$ ,z是y的对数函数,即 $z=\log_a(y)$ ,那么z是x的对数函数,即$z=\log_a(\log_a(x))$。
4.幂函数复合5.反三角函数复合如果y是x的反三角函数,即 $y=\sin^{-1}(x)$ ,z是y的反三角函数,即 $z=\sin^{-1}(y)$ ,那么z是x的反三角函数,即$z=\sin^{-1}(\sin^{-1}(x))$。
6.反双曲函数复合如果y是x的反双曲函数,即 $y=\sinh^{-1}(x)$ ,z是y的反双曲函数,即 $z=\sinh^{-1}(y)$ ,那么z是x的反双曲函数,即$z=\sinh^{-1}(\sinh^{-1}(x))$。
7.三角函数复合如果y是x的三角函数,即 $y=\sin(x)$ ,z是y的三角函数,即$z=\sin(y)$ ,那么z是x的三角函数,即 $z=\sin(\sin(x))$。
8.双曲函数复合如果y是x的双曲函数,即 $y=\sinh(x)$ ,z是y的双曲函数,即$z=\sinh(y)$ ,那么z是x的双曲函数,即 $z=\sinh(\sinh(x))$。
9.反函数复合如果y是x的反函数,即$y=f^{-1}(x)$,z是y的反函数,即$z=f^{-1}(y)$,那么z是x的反函数,即$z=f^{-1}(f^{-1}(x))$。
复合函数求导公式
复合函数求导公式一、复合函数的导数定义假设y=f(u),u=g(x)都是可导函数,则复合函数y=f(g(x))也是可导函数。
复合函数的导数定义如下:dy/dx = dy/du * du/dx其中dy/du表示y关于u的导数,du/dx表示u关于x的导数。
二、链式法则链式法则是复合函数求导的重要工具,它表明复合函数的导数等于内外导数的积。
链式法则的数学表示如下:d(f(g(x)))/dx = f'(g(x)) * g'(x)其中f'(g(x))是f对于g(x)的导数,g'(x)是g对于x的导数。
三、基本公式1.复合函数的求导公式【公式1】(f(g(x))'=f'(g(x))*g'(x)【例题1】计算函数y=sin(x^2)的导数。
解:我们将y=sin(u)和u=x^2,那么y=sin(g(x))。
根据链式法则:dy/dx = dy/du * du/dx= cos(u) * 2x所以,函数y=sin(x^2)的导数为2x * cos(x^2)。
【例题2】计算函数y=(3x^2+2x+1)^3的导数。
解:我们将y=u^3和u=3x^2+2x+1,那么y=(g(x))^3、根据链式法则:dy/dx = dy/du * du/dx=3u^2*(6x+2)=3(3x^2+2x+1)^2*(6x+2)所以,函数y=(3x^2+2x+1)^3的导数为3(3x^2+2x+1)^2*(6x+2)。
2.反函数的导数公式如果y=f(g(x)),且g(x)与f(x)互为反函数,则有:dy/dx = 1 / (dx/dy)其中dx/dy表示g(x)对于x的导数。
【例题3】计算函数y=ln(sin(x))的导数。
解:将y=ln(u)和u=sin(x),那么y=ln(g(x))。
根据反函数的导数公式:dy/dx = 1 / (dx/dy)= 1 / (d(sin(x))/dx)所以,函数y=ln(sin(x))的导数为1 / (cos(x))。
知识点18复合函数的求导
知识点18复合函数的求导复合函数是由两个或多个函数组成的函数,求导的过程就是将函数的导数与链式法则相结合。
求解复合函数的导数,一般有两种方法:显式求导和隐式求导。
一、显式求导法复合函数的显式求导法是指先将复合函数展开成一个表达式,再根据基本的导数规则和链式法则对每一项进行求导,最后将每项合并简化。
例如,设函数y=f(g(x)),其中f(x)和g(x)分别为两个已知的函数,求函数y的导数dy/dx。
首先,我们将函数y展开为:y=f(g(x))然后,对上式两边同时对x求导:dy/dx = f'(g(x)) * g'(x)其中,f'(x)和g'(x)分别为f(x)和g(x)的导数。
这样,我们就得到了复合函数y=f(g(x))的导数。
例如,设f(x)=sin(x),g(x)=x^2,则复合函数y=sin(x^2)的导数为:dy/dx = cos(x^2) * 2x = 2xcos(x^2)二、隐式求导法复合函数的隐式求导法是指将复合函数表示成隐含形式,即将y=f(u(x))表示为F(x,y)=0的形式,然后对这个方程两边对x求导。
对于复合函数y=f(g(x)),我们首先将它表示为F(x,y)=0的形式。
设u=g(x),则y=f(u),可得F(x,y)=y-f(u)=0。
然后,我们对此方程两边对x求导:dF(x,y)/dx = d(y-f(u))/dx = (dy/du * du/dx) - f'(u) * du/dx= 0由于du/dx=dg(x)/dx=g'(x)(dy/du * g'(x)) - f'(u) * g'(x) = 0将dy/du替换为dy/dx/g'(x),可以得到:dy/dx = (f'(u) * g'(x)) / g'(x) = f'(u)由此,我们可以得到复合函数y=f(g(x))的导数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合函数的求导法则可以写成: 复合函数的求导法则可以写成
dy dy du = dx du dx
即因变量对自变量求导,等于因变量对中间变量求 即因变量对自变量求导, 导乘以中间变量对自变量求导,我们称它为链式法则 导乘以中间变量对自变量求导,我们称它为链式法则. 复合函数的微分公式为: 复合函数的微分公式为
n n1 (sin x n ) ′(sin x n ) cos x n nx n1
= n 3 x n1 cos x n f n1[ n (sin x n )]
n1 (sin x n ) f ′[ n (sin x n )] ′(sin x n ).
三、一阶微分的形式不变性
设函数 y = f ( x )有导数 f ′( x )
第四节
复合函数求导 法则及其应用
一、复合函数求导法则 二、初等函数的求导问题 三、一阶微分的形式不变性 四、隐函数的导数 五、对数求导法 六、参数形式的函数的求导公式
一、复合函数求导法则
定理4.4.1 (复合函数求导法则 ) 设函数 u = g( x ) 在 x0可导, 可导, 定理 复合函数求导法则 处可导, 而函数 y = f (u) 在 u0 = g( x0 ) 处可导,则复合函数 y = f [ g( x )] 在 x0 可导,且有 可导,且有:
d[ f ( g( x))] = f ′(u) g′( x)dx
推广
设 y = f ( u), u = (v ), v = ψ ( x ),
则复合函数
y = f { [ψ ( x )]}的导数为 :
dy dy du dv = dx du dv dx
例4.4.1 解: 求函数 y = ln sin x 的导数 .
u u′v uv ′ (4) ( )′ = . 2 v v
( 3) ( uv )′ = u′v + uv ′,
3.复合函数的求导法则 复合函数的求导法则
设y = f ( u), 而u = ( x )则复合函数 y = f [ ( x )]的
dy dy du 导数为 = 或 dx du dx
y′( x ) = f ′( u) ′( x ).
=
1 x
2
sin
e
1 cos . x
例4.4.3
求函数 y = ln
x2 + 1
3
x2
( x > 2) 的导数 .
1 1 2 Q y = ln( x + 1) ln( x 2), 解: 2 3 x 1 1 1 1 ′= 2 ∴y 2x = 2 2 x +1 3( x 2) x + 1 3( x 2)
利用上述公式及法则初等函数求导问题可完全解决. 利用上述公式及法则初等函数求导问题可完全解决 注意:初等函数的导数仍为初等函数 注意:初等函数的导数仍为初等函数. 例4.4.4 解:
求函数 y = f n [ n (sin x n )] 的导数 . y′ = nf n1[ n (sin x n )] f ′[ n (sin x n )]
e xy ( xdy + ydx ) + y 2 xd ( x ) + x 2dy = 0
(e xy + x ) xdy + ( e xy + 2 x ) ydx = 0
dy (e xy + 2 x ) y ∴ = xy dx (e + x ) x
例4.4.8 设曲线 C 的方程为 x 3 + y 3 = 3 xy ,
2
(arccos x )′ = (arc cot x )′ =
1 1 x2 1 1 + x2
2.函数的和、差、积、商的求导法则 函数的和、 函数的和
= 可导, 设 u= u(x),v=v(x)可导,则
(1) ( u ± v )′ = u′ ± v ′,
( 2) (cu)′ = cu′ (c是常数 , )
Q y = ln u, u = sin x .
dy dy du 1 cos x = cot x ∴ = = cos x = dx du dx u sin x
例4.4.2 解:
求函数 y =
y′ = e
sin
1 sin e x
的导数 .
1 x
1 1 x (sin )′
x
1 x
=e
sin
1 1 cos ( )′ x x
e xy ( xy )′ + ( x 2 y )′ = 0
′ e xy ( y + xy′ ) + 2 xy + x 2 y′ = 0 ∴ y = (e xy + x ) x
(e xy + 2 x ) y
法二、 法二、方程两边同时求微分
d (e xy ) + d ( x 2 y ) = 0
e xy d ( xy ) + yd ( x 2 ) + x 2dy = 0
x 2 x2 y = t2 = ( ) = 2 4 x ∴ y′ = 2
问题: 问题
消参困难或无法消参的如何求导? 消参困难或无法消参的如何求导? 设 中, (t )和 Ψ (t ) 在(α , β )
x = (t ) α ≤ t ≤ β 在方程 y = Ψ (t )
上可导, 上可导 (t )在 (α , β ) 上严格单调且 ′( t ) ≠ 0 , x 由反函数求导法则, 由反函数求导法则, = (t ) 在 (α , β )上存在反函数 ′ 1 1 -1 t = ( x ),且成立 ( x ) = , 从而 y = Ψ [ 1 ( x )]. ′( t ) 由复合函数求导法则: 由复合函数求导法则 dy dy dy dt 1 dy dt ′( t ) = =Ψ = 即 dx dt dx ′( t ) dx dx dt
3 3 的切线方程, 求过 C 上点 ( , ) 的切线方程,并证明曲线 C 在该点 2 2
的法线通过原点. 的法线通过原点 解:
2 2 方程两边对x 方程两边对 求导, 3 x + 3 y y′ = 3 y + 3 xy′
∴ y′
33 ( , ) 22
=
y x2 y x
2
33 ( , ) 22
= 1.
3 3 所求切线方程为 y = ( x ) 即 x + y 3 = 0. 2 2 3 3 法线方程为 y = x 即 y = x, 2 2
显然通过原点. 显然通过原点
五、对数求导法
先在方程两边取对数, 先在方程两边取对数 然后利用隐函数的求导方法 求出导数. 求出导数
v( x ) 适用范围: 多个函数相乘和幂指函 数 u( x ) 的情形 . 适用范围:
(
)
也可以直接求微分 dy = Ψ ′( t )dt
dx = ′( t )dt
两边相除, 两边相除,得
π x = a( t sin t ) 处的切线方程. 例4.4.11 求摆线 在 t = 处的切线方程 2 y = a (1 cos t ) dy a sin t sin t dy dt 解: = = = a a cos t 1 cos t dx dx dt π sin dy 2 = 1. ∴ π = π dx t = 2 1 cos 2
令 u = g ( x0 + x ) g ( x 0 ) 则
u0 + u = g( x0 + x )
f ( g ( x0 + x )) f ( g ( x0 )) u o( u ) ′( u0 ) = f + x x x u 可导, 又由u = g ( x ) 在 x0 可导,因此 lim = g ′( x 0 ) x → 0 x o( u) o( u) u lim = lim =0 而 x → 0 x x → 0 u x f ( g( x0 + x= x 0 = lim x → 0 x
( x + 1)3 x 1 1 1 2 ∴ y′ = + 1 2 x x + 1 3( x 1) x + 4 ( x + 4) e
六、参数形式的函数的求导公式
x = (t ) 定义4.4.2 若参数方程 间的函数关系, 定义 确定 x 与 y 间的函数关系, (t y = Ψ (t ) 称此为 参数形式的函数 参数形式的函数. x = 2t t = x 例如 消去参数 t 2 2 y = t
[ f ( g ( x ))]′x = x 0 = f ′( u0 ) g ′( x0 ) = f ′( g ( x0 )) g ′( x0 )
证明: 证明:由 y = f (u) 在 u0 = g ( x0 )可导也即可微
y = f ' ( u0 )u + o( u)
即
f ( u0 + u) f ( u0 ) = f ' ( u0 )u + o( u)
例4.4.9 解:
设 y = x sin x ( x > 0), 求y′.
ln y = sin x ln x
等式两边取对数得
上式两边对x 上式两边对 求导得 1 1 y′ = cos x ln x + sin x y x
1 ∴ y′ = y(cos x ln x + sin x ) x sin x sin x (cos x ln x + ) =x x ( x + 1)3 x 1 例4.4.10 设 y = , 求y ′ . 2 x ( x + 4) e 解: 等式两边取对数得 1 ln y = ln( x + 1) + ln( x 1) 2 ln( x + 4) x 3 上式两边对 x求导得 y′ 1 1 2 = + 1 y x + 1 3( x 1) x + 4