高等数学课件--D讲义21导数概念

合集下载

高等数学-导数的概念-教案(完整资料).doc

高等数学-导数的概念-教案(完整资料).doc

t∆很小时,其平均速度就可以近似地看作时刻的瞬时速度.且
x
x x x x ∆-∆+=→∆sin )sin(lim
0x
x x x x ∆∆⎪
⎭⎫ ⎝⎛
∆+=→∆2sin 2cos 2lim 0 x x x x x x cos 2
2sin 2cos lim 0=∆∆⎪⎭⎫ ⎝
⎛∆+=→∆, 即: x.cos (sin x)'=
类似可得:sin x. - x)'(cos = 定义 如果x x f x x f x ∆∆∆)
()(lim 000-+-
→存在,则称此极限值为f (x ) 在点 x 0 处的左导数,记作 f’(x 0);同样,如果x x f x x f x ∆∆∆)()(lim 000-++
→存在,则称此极限值为 f (x ) 在点 x 0 处的右导数,记作 f’
+(x 0) .
显然,f (x ) 在 x 0 处可导的充要条件是 f’ -(x 0) 及 f ‘ +(x 0) 存在且相等 . 定义 如果函数 f (x ) 在区间 I 上每一点可导,则称 f (x ) 在区间 I 上可导. 如果 I 是闭区间[a , b ],则端点处可导是指 f’+(a )、 f’-(b ) 存在 .
六、可导与连续的关系
定理 如果函数 y = f (x ) 在点 x 0 处可导, 则 f (x ) 在点 x 0 处连续,其逆不真.。

D.课堂小结
一、导数的定义
二、导数的几何意义 三、可导与连续的关系。

高等数学导数的四则运算法则

高等数学导数的四则运算法则

(e x ) e x .
例5 求函数 y loga x(a 0, a 1)的导数.
解 y lim loga ( x h) loga x
由导数的几何意义, 得切线斜率h为0
h
交流电路:电量对时间的导数为电流强度.
h 作变速直线运动的质点在某一时刻t的瞬时速度问题
log (1 ) 导数的实质: 增量比的极限;
y x
f ( x0 )
0 (x 0) y f ( x0 )x x
lim
x 0
y
lim [
x 0
f
(
x0
)x
x]
0
函数
f
( x)在点
x
连续
0
.
注意: 该定理的逆定理不成立 (连续函数未必可导).
举例
x2, x 0
f (x)
,
x, x 0
y
y x2
yx
在 x 0处不可导,
C C
lim
h0 h
0.
即 (C ) 0.
例2 设函数 f ( x) sin x,求(sin x)及(sin x) x . 4
解 (sin x) lim sin( x h) sin x
h0
h
lim
h0
cos( x
h) 2
sin h 2
h
cos
x.
2
即 (sin x) cos x.
h
h
lim f (0 h) f (0) lim h 1,
h0
h
h h 0
y y x
o
x
lim f (0 h) f (0) lim h 1.
h0
h

高等数学讲义

高等数学讲义

第3讲导数与微分高等数学基础课程的主要研究对象是函数,函数是变量之间的对应关系,怎样研究函数的变化是这一讲的主要问题。

3.1导数的概念一、函数的变化率对于函数)(x f y =,我们要研究y 怎样随x 变化,进一步我们还要研究变化的速率,可以先看看下面这个图我们可以看出,对于相同的自变量的改变量x ∆,所对应的函数改变量y ∆是不同的。

xy∆∆可以表示变化的速率,但这是一个平均速率,怎样考虑函数)(x f y =在一点0x 的变化率呢?二、导数的概念根据前面的介绍,我们给出下面的定义。

定义3.1设函数)(x f y =在点0x 及其某个邻域U 内有定义,对应于自变量x 在0x 处的改变量x ∆,函数相应的改变量为)()(00x f x x f y -∆+=∆,如果当0→∆x 时极限 存在,则此极限值称为函数)(x f y =在点0x 处的导数,或在点0x 处函数)(x f 关于自变量x 的变化率,记作)(0x y ',或)(0x f '这时,称函数)(x f y =在点0x 处是可导的。

根据导数定义,我们来求一些基本初等函数的导数。

例1根据导数定义求c y =在点x 处的导数。

解根据定义求导数通常分三步: (Ⅰ)求)()(00x f x x f y -∆+=∆:(Ⅱ)求xy∆∆: (Ⅲ)求xyx ∆∆→∆0lim :因此得出0)(='x y 。

如果函数)(x f 在其定义域内每一点都可导,那么我们就得到了一个新的函数)(x f ',称)(x f '为)(x f 的导函数。

)(x f '在点0x x =的函数值)(0x f '就是)(x f 在点0x x =的导数。

例2根据导数定义求2)(x x f =在点x 处的导数。

解按照由定义求导数的步骤: 因此得出x x f 2)(='。

例3根据导数定义求n x x f =)((n 为自然数)在点x 处的导数。

《高数数学(上)》-导数与微分

《高数数学(上)》-导数与微分
(2)设函数 u1(x),u2 (x),u3(x) un (x) 可导, f (x) u1(x)u2 (x) un (x),写出 f (x) 的求导公式.
解 (1)根据导数定义并运用极限的运算法则
u(x)v(x) lim u(x x)v(x x) u(x)v(x)
x0
x
u(x x)v(x x) u(x)v(x x) u(x)v(x x) u(x)v(x)
定理2.1
函数f (x)在x0 处可导的充要条件是左、右导数都存在
且相等.
7
一、 导数的定义
例 1 若函数f (x)在x=0 处连续,且 lim f (x) 存在, x0 x
证明f (x)在x=0 处可导.
证法一
设 lim f (x) A(A为常数),则 x0 x
lim f (x) lim x f (x) 0 A 0,
证 若函数y f (x)在x0 处可导,由导数的定义可得
lim
x x0
f (x) f (x0 ) x x0
f (x0 ),所以利用函数极限与无穷小之间的
关系可得
f (x) f (x0 ) x x0
f
( x0
)
,lim x x0
0,即
f (x) f (x0 ) f (x0 )(x x0 ) (x x0 )
x
所以k 1 时,f (x) 在 x 0 处可导. 2
12
本讲内容
01 导数的定义 02 导数的几何意义 03 可导与连续的关系
二、 导数的几何意义
几何意义
若函数 f (x)在x x0 处可导,f (x0 ) 是曲线 y f (x) 在点 (x0 , f (x0 )) 处切线的斜率.
x0

高等数学-导数的概念

高等数学-导数的概念
内有定义,如果当 →
0− 时,极限
(0 +)−(0 )



→0
在,则称此极限值为函数 = ()在0 处的左导数,记为
−′ (0 )
=
(0 +)−(0 )


→0
=
()−(0 )

.

→0
0
16
01 导数的定义
4.左导数和右导数
′ 在点0 处的函数值,即 ′ (0 ) = ′ ()|=0 .
12
01 导数的定义
例2 求函数() = ( > 0)的导数.
根据导数定义,使用分子有理化得
( + ) − ()
+ −

() =
=
→0

→0

如果 ′ (0 ) = ∞,曲线 = ()在点(0 , (0 ))处的
切线为垂直于轴的直线 = 0 .
19
02 导数的意义
结论 1 曲线 = ()上点(0 , 0 )处的切线方程为
− 0 = ′ (0 )( − 0 ) .
2 如果 ′ (0 ) ≠ 0,曲线 = ()在点 0 , 0
(0 + ) − (0)

=
→0
→0

=
1
()3
−0

1
2
→0 ()3
O
x
= +∞,
即导数为无穷大(导数不存在).
26
→0
= ()在
点0 处可导,并称这个极限值为函数 = ()在点0 处的导数,
记作
′ (0 ), ′ |=0 ,

高等数学导数的计算教学ppt

高等数学导数的计算教学ppt

第二节 导数的计算
例5 求y=arcsinx的导数.
解:由于y=arcsinx,x(-1,1) 为x=siny,y (-/2, /2) 的反函数,且当y (-/2, /2)时,
(siny)=cosy>0. 所以
1 1 1 1 (arcsin x )' 2 2 (sin y )' cos y 1 sin y 1 x

dy dx
x x0
f ( u0 ) ( x0 )
即:因变量对自变量求导,等于因变量对中间变量求导 ,乘以中间变量对自变量求导.
16
第二章 导数与微分
第二节 导数的计算
设函数 y = f (u), u = (x) 均可导,则复合函数 y = f ( (x)) 也可导.且
dy dy du . dx du dx
sin x x 1 cos x
15
第二章 导数与微分
第二节 导数的计算
二.复合函数的导数
定理2. 2. 3 设函数 y = f (u) 与u = (x)可以复合 成函数y=f [(x)] ,如果u = (x)在x0可导,而 y = f (u) 在对应的u0= (x0)可导,则函数y=f [(x)]在 可导,且
( C ) 0
1 ( x ) x
( sin x ) cos x
(cos x ) sin x
( arcsin x )
( a x ) a x ln a
( arccos x )
( e ) e
x
x
( arctan x ) ( arc cot x )
9
第二章 导数与微分
第二节 导数的计算

高等数学课件完整

高等数学课件完整

要点二
二重积分的性质
二重积分具有一些基本性质,如线性性、可加性、保号性 等。这些性质在求解二重积分时非常有用。
07 无穷级数
常数项级数的概念与性质
常数项级数的定义
由一系列常数按照一定顺序排列并加上正负号组 成的无穷序列。
收敛与发散
常数项级数可能收敛于一个有限值,也可能发散 至无穷大或不存在。
级数的基本性质
特点
高等数学具有抽象性、严谨性和 应用广泛性等特点,需要学生具 备较强的逻辑思维能力和数学基 础。
高等数学的重要性
培养逻辑思维能力
高等数学的学习有助于培养学生的逻辑思维能力,提高学生的数学 素养和解决问题的能力。
为后续课程打下基础
高等数学是许多后续课程的基础,如物理学、工程学、经济学等, 掌握高等数学有助于学生更好地理解和应用这些学科的知识。
不定积分的性质
不定积分具有线性性、 可加性、常数倍性等基 本性质,这些性质在求 解积分时非常有用。
基本积分公式
掌握基本积分公式是求 解不定积分的基础,如 幂函数、指数函数、三 角函数等的基本积分公 式。
定积分的概念与性质
定积分的定义
定积分是积分学中的另一个重 要概念,它表示函数在某个区
间上的积分值。定积分记为 ∫[a,b]f(x)dx,其中a和b是积
函数的性质
函数具有有界性、单调性、奇偶性、周 期性等重要性质,这些性质对于研究函 数的图像和变化规律具有重要意义。
极限的概念与性质
1 2 3
极限的定义
极限是描述函数在某一点或无穷远处的变化趋势 的重要工具,它可以通过不同的方式定义,如数 列极限、函数极限等。
极限的性质
极限具有唯一性、有界性、保号性、四则运算法 则等重要性质,这些性质对于求解极限问题和证 明极限定理具有重要作用。

高等数学第二章导数与微分

高等数学第二章导数与微分

x0
x
瞬时变化率
点导数是因变x0量 处在 的点 变化 ,它率 反映因 了变量随自变量 而的 变变 化化 的快 慢程.度
根据导数定义求导,可分为如下三个步骤:
( 1 ) 求y 增 f( x 量 x ) f( x );
曲线 y = f (x)在点x0处的切线斜率
tan lim y
x0 x
lim
x0
f (x0
x) x
f (x0)
f x0
左右导数
设函数 y = f (x)在点x0的某一个邻域内有定义.
假设极限l i m x 0

y x
存在,那么称 y = f (x)在点 x0 左可 导,
且称此极限值为函数 y = f (x) 在点 x0 的左导数,
解:由导数的几何意义, 得切线斜率为
k
y
x1 2
1 x
x 1 2
1 x2
x1 2
4.
切线方程为 y24x12, 即 4 xy 4 0 .
法线方程为
y
2
1 4
x
12,
即 2 x 8 y 1 5 0 .
2.1.4 函数的可导性与连续性的关系
〔1〕假设 f (x)在 x0点可导,那么它在 x0点必连续.
记作 f(x0 ). 同样可定义右导数: f(x0 ).
f (x)在x0可导的充要条件是: f (x)在 x0 既左可导
又右可导,且 f (x0)f (x0). 即 f(x0)存在 f (x 0 )f (x 0 )存 在 .
导函数的概念
假设函数 y = f (x)在开区间I内每一点都可导,那么称
f (x)在I 内可导. 此时对xI, 有导数 f ( x ) 与之

《高等数学导数》课件

《高等数学导数》课件

答案
2. 求下列函数的极值:
$f'(x) = 3x^2 - 6x + 2$,极值点为 $x=1 pm sqrt{2}$,极大值为 $f(1+sqrt{2}) = 1 + 2sqrt{2}$,极小值为 $f(1-sqrt{2}) = 1 - 2sqrt{2}$。
$f'(x) = ln x + 1$,极值点为 $x=1$,极大值为 $f(1) = 0$。
《高等数学导数》ppt 课件
contents
目录
• 导数的基本概念 • 导数的计算 • 导数的应用 • 导数的扩展 • 习题与答案
CHAPTER 01
导数的基本概念
导数的定义
总结词
导数是函数在某一点的变化率,表示 函数在该点的切线斜率。
详细描述
导数定义为函数在某一点附近取得的 最小变化率,即函数在这一点处的切 线斜率。导数的计算公式为lim(x→0) [f(x+h) - f(x)] / h,其中h趋于0。
2. 求下列函数的极值:
01
03 02
习题
$f(x) = frac{1}{x}$
$f(x) = e^x$
答案
01
1. 求下列函数的导数:
02
$y' = 2x + 2$
03
$y' = -frac{1}{x^2}$
答案
• $y' = \sin x + x \cdot \cos x$
答案
• $y' = e^x$
总结词
导数的四则运算在解决实际问题中具 有广泛的应用,例如在经济学、物理
学和工程学等领域。
详细描述
导数的四则运算法则是基于极限理论 推导出来的,通过这些法则,可以方 便地求出复杂函数的导数。

高等数学导数的概念ppt课件.ppt

高等数学导数的概念ppt课件.ppt

x0 处的右 (左) 导数, 记作
y
y x
o
x
机动 目录 上页 下页 返回 结束
定理2. 函数 是
在点 可导的充分必要条件 且
简写为 f (x0) 存在
f(x0 )
定理3. 函数 在点 处右 (左) 导数存在
在点 必 右 (左) 连续.
若函数
在开区间
内可导, 且
都存在 , 则称
在闭区间
上可导.
显然:
f
(0)
lim
x 0
sin x
x
0
0
1
ax 0
f
(0)
lim
x 0
x0
a
故 a 1 时
此时

都存在,
机动 目录 上页 下页 返回 结束
作业
P49 5 , 7, 9
第二节 目录 上页 下页 返回 结束
备用题
1. 设
存在, 且

解: 因为
1 f (1 (x)) f (1)
lim
2 x0
(x)
在闭区间 [a , b] 上可导
与 f(b)
机动 目录 上页 下页 返回 结束
练习:讨论下列函数在x=0时候的连 续性与可导性.
练习:习题2.1题8
f
x
xk
sin
1 x
,
x0
0, x 0.
若函数在x 0连续,则
lim f x lim xk sin 1 f 0 0,
x0
x0
x
必须满足 lim xk 0, k 0即可. x0
反例:
在 x = 0 处连续 , 但不可导. o
x
机动 目录 上页 下页 返回 结束

山东大学《高等数学》课件-第2章导数与微分

山东大学《高等数学》课件-第2章导数与微分
其极限值即为函数f x在点x0处的导数
12
利用导数的定义求导数的步骤:
1. 求增量 2. 算比值 3. 取极限
y f x x f x
y x f (x) lim y
t0 x
13
利用导数的定义求几个基本初等函数的导数:
⑴常数函数: y C
解 ①求增量 y
y y f x
y y0 y
即反函数的导数等于直接函数的导数的倒数.
10
例2.2.6 已知 y arcsin x 求 y
解:设 x
且 sin
sin
y
y 为直接函数, cos y 0
在区间
I
y
2
,
2
内单调可导, y
所以在对应区间 Ix 1,1 内有
y
arcsin
x
1
sin y
1 cos
x3 4cos x ln5
x3 4cos x ln5
3x2 4sin x
f
2
f (x)
x 2
3
2
2
4sin
2
3 2
4
4.
6
例2.2.3 设 y tan x 求 y
解:
y tan x
sin
x
cos
sin x cos x sin xcos x
cos2 x
若 lim y x0 x
, 称y
f x
在点
x0 处导数为无穷大.
8

y
lim lim
x x00
x00
f x0 x f x0
x
f x0 0
lim y lim
x x00
x00

3.1 导数的概念 课件 (共21张PPT)《高等数学》(高教版).ppt

3.1 导数的概念 课件 (共21张PPT)《高等数学》(高教版).ppt

(2)若极限 点 处的右导数,记作
,即:
存在,则称其为函数 在
定理1 函数
在点 处可导的充分必要条件是
在点 处的左导数和右导数都存在且相等,即

例1 讨论函数
在 处的连续性和可导性.
解:因为

,所以函数
在 处的连续.
由于
,所以函数
在 处不可导.
例2 讨论函数
解:因为 连续.
又因为 处不可导.
在 处的连续性和可导性.
在点
分析:设函数
在点 处可导,则
故函数
在点 处一定连续.
随堂练习
1、设 解:
,判断 在点 函数
处的连续性与可导性. 在 处连续.
函数 在 处不可导.
2、若函数
处处可导,求 的值.
解: 函数 在 处可导,则在
处处可导.由于函数
可导必连续.得
再根据函数在 处可导,
则左右导数存在且相等.

时,
函数 在点
或 ,即
函数
在点 处的导数就是导函数 在点 处的函数值
,即
注:若函数
在区间
在区间 上不可导.
内有一点处不可导,则称函数
由导数的定义可知,求函数
个步骤:
(1)求增量

(2)算比值

(3)取极限
例1 求函数
的导数.
解:
常量函数的导数为
的导数可分为以下三 .
例6 求函数 解:
的导数.
例7 求函数 解:
,所以函数
在 处的
,所以函数

从图形上看,曲线 线.这也说明函数 原点外,处处可导.因 连续.
在原点O处具有垂直于 轴的切

高等数学课件-导数与微分(建筑类)

高等数学课件-导数与微分(建筑类)

重点掌握函数的导数和极值的计算,理解微分和极限的应用
常见函数的导数计算
sin(x) cos(x) e^x ln(x)
cos(x) -sin(x) e^x 1/x
研究函数变化的方法
1 拐点
函数在拐点处的二阶导数发 生变化,用于确定函数曲线 的凹凸性。
2 极值
函数在极值点处的一阶导数 为零,用于确定函数曲线的 斜率变化。
3 区间
通过导数的正负性和零点分析函数的递增和递减区间。
高等数学课件——导数与 微分(建筑类)
本课程将为建筑学生介绍导数与微分的概念和应用,帮助他们理解数学在建 筑设计中的重要性,并为他们提供解决实际问题所需的工具和技巧。
导数的定义
公式
f'(x) = lim [(f(x + h) - f(x)) / h],h- > 0
几何意义
导数是函数曲线在某一点切 线的斜率
一阶导数与二阶导数
一阶导数
表示函数变化率,描述函数曲线斜率的变化
二阶导数
表示函数曲线的曲率,描述一阶导数的变化
函数的局部极值及其判定
局部最大值
当函数在某点处的一阶导数为零,且二阶导数小 于零时,该点为局部最大值点。
局部最小值
当函数在某点处的一阶导数为零,且二阶导数大 于零时,该点为局部最小值点。
微分的定义
公式
df = f'(x)dx
意义
微分是函数值的增量与自变 量值变化量的乘积
基本形式
dy = f'(x)dx
微分的应用举例

1
优化问题
2
微分和导数可以帮助我们解决最值问
题,如最大面积、最小花费等
3

高教社2024高等数学第五版教学课件-2.1 导数的概念

高教社2024高等数学第五版教学课件-2.1 导数的概念
第二章 导数与微分
第一节 导数的概念
一、变化率问题的两个实例
1.变速直线运动的瞬时速度问题
对于匀速直线运动,物体在任何时刻的速度都相同,且速度 =
路程

,即 = . 对于变速直

时间
线运动,物体在不同时刻的速度不全相同. 设物体从某一时刻开始到时刻,所走过的路程为,
则是的函数,即 = ().从时刻0 到时刻0 + ,物体运动的路程为 = (0 + ) − (0 ),
例1

用定义求函数 = 2 在 = 1, = 2处的导数.
当由1变化到1 + 时,函数相应的改变量
= (1 + )2 − 12 = 2 ⋅ + ()2 ,



→0
从而 ′ (1) =
= 2 +
= (2 + ) = 2

设函数() = ( > 0, ≠ 1),求 ′ ().
① 计算函数的改变量
= ( + ) − () = ( + ) − =
y
② 计算比值

x
log

1+
1

= 1 +



y
1

1

1 +
→0




y f (x)
由 第 二 个 实 例 可 知 , 函 数 = () 在
= 0 处的导数就是它所表示的曲线在
y

点 (0 , 0 ) 处 的 切 线 的 斜 率 , 即

(0 , 0 )

高数-导数概念及应用

高数-导数概念及应用
(2)可导函数的极值点 x0 一定满足 f (x0 )=0,但当 f (x1)=0 时,x1 不一定是极值点.如 f(x)=x3, f (0)=0, 但 x=0 不是极值点.
核心导语
3 个必知条件——导数应用中的三个重要结论
(1) f (x)>0 在(a,b)上成立是 f(x)在(a,b)上单调递增的充
导数
知识网络
导数概念 导数运算
导数应用
函数的瞬时变化率
运动的瞬时速度 曲线的切线斜率 基本初等函数求导 导数的四则运算法则 简单复合函数的导数
函数单调性研究 函数的极值、最值
曲线的切线 变速运动的速度
最优化问题
核心导语
一、导数概念及运算
1个重要区别——“过某点”与“在某点”的区别
求曲线的切线要注意“过点P的切线”与“在点P处的切线” 的差异:过点P的切线中,点P不一定是切点,点P也不一定 在已知曲线上,而在点P处的切线,必以点P为切点.
2项必须防范——导数运算中应注意的问题 (1)利用公式求导时要特别注意,除法公式中分子符号,防 止与乘法公式混淆. (2)含有字母参数的函数求导时,要分清哪是变量哪是参 数,参数是常量,其导数为零.
核心导语
3种必会方法——求导数的基本方法 (1)连乘积的形式:先展开化为多项式形式,再求导. (2)根式形式:先化为分数指数幂、再求导. (3)复杂分式:通过分子上凑分母,化为简单分式的和、差, 再求导.
内的图象如图所示,则函数 f(x)在开区间(a,b)内有极小值点的
个数为 1 .
第1讲 导数及其应用
考向一 导数的基本运算
例1 求下列函数的导数.
热 点
(1)y=exlnx;
考 向
(2)y=(x+1)(x+2)(x+3);

《高等数学》上册(课件全集)第2章 导数及微分

《高等数学》上册(课件全集)第2章 导数及微分

根据导数的几何意义,过曲线y=f(x)上点M0(x0,y0)的切线方程为
对应的法线方程为
当f′(x0)=0时,切线方程为y=y0,法线方程为x=x0.
2.2 初等函数的求导法则
1.导数的基本公式 前一节由导数的定义,求出了几个简单函数的导数,但对于较复杂的函数,用定 义求导往往比较困难.为此,本节介绍导数的基本公式、求导法则和求导方法,借助 这些基本公式、法则和方法就可以方便地求出初等函数的导数.所有基本初等函数的 导数基本公式如下:
为Δ y=f(x0+Δ x)-f(x0).当Δ x→0时,若比值Δ yΔ x 的极限存在,则称函数y=f (x)在点
x0处可导,并称此极限值为函数y=f(x)在点x0处的导数值,记作f′(x0),

也记作
如果极限
不存在,则称函数y=f(x)在点x0处不可导.
如果函数y=f(x)在区间(a,b)内任意点x处都可导,则称函数y=f(x) 在区间(a,b)内可导.
内所经过的路程为Δ s,

则在时间段Δ t内的平均速度
显然,时间段Δ t越小,质点运动速度变化越小,可近似看做匀速直线运动,平 均速度v就越接近于质点在t0时刻的瞬时速度v(t0),即当Δ t→0,平均速度v的极
限,便是质点在t0时刻的瞬时速度,即
2.导数的定义
定义 设函数y=f(x)在点x0的左右近旁有定义,自变量x在点x0处有改变量Δ x(Δ x≠0)(也叫自变量的增量)时,相应函数的改变量(也叫函数的增量)
如果函数z=f(x,y)在某个平面区域D内的每一点(x,y)处,对x的偏导数都存在, 那么,这个偏导数就是x,y的函数,称它为z=f(x,y)对自变量x的偏导函数,简称偏 导数,记作

高等数学 第2章 第一节 导数的概念

高等数学 第2章 第一节 导数的概念

曲线y f ( x)在点x0 , f ( x0 )处的切线方程为:
y f ( x0 ) f '( x0 )( x x0 )
当f ' ( x0 ) 0时,在该点处的法线方 程为:
y
f (x0 )
f
'(
1 x0
)
(
x
x0
)
8
四.可导与连续的关系
f ( x)在x0点可导 f ( x)在x0点连续。 f ( x)在x0点可导 f ( x)在x0点连续。
解 当 x 1 时, 1 n 1 x 3n n 2 , f ( x) lim n 1 x 3n 1, n
当 x 1 时, f ( x) limn 1 x 3n limn 2 1,
n
n
当 x 1 时, x 3 n x 3n n 1 x 3n n 2 x 3n n 2 x 3 ,
ex ex.
12
例5 求函数 y ln x 的导数
解: x (0,)
当x 0时, Ln(1+x)~x
(ln x)' lim ln(x x) ln x
x 0
x
ln(1 lim
x ) x
lim
x x
1
x0
x
x0 x x
即 : 对x 0, (ln x)' 1 x
例6 设 f x x sin x, 求 f 0.
f (x0 x)
y f ( x0 x) f ( x0 );
(2)比值
y f ( x0 x) f ( x0 )
x
x
f (x0)
P0

O
x0
•P
P1

P2•

导数的概念

导数的概念
第二章 导数与微分
内容简介及重点
本章内容属于高等数学中的最基础的知识,后面绝 大多数章节都会涉及它,因此,本章内容学得好与坏直 接影响后面章节的学习,同学们应重视本章内容的学习。 本章内容主要介绍导数与微分的概念、可导与连续 的关系、基本初等函数的导数公式、导数的四则运算法 则、复合函数求导公式,以及反函数、隐函数和参数方 程确定的函数的求导公式等。
y f ( x0 ) x x
0 ( x 0)
x 0 x 0
lim y lim [ f ( x0 )x x ] 0
函数 f ( x )在点 x0 连续 .
注意: 该定理的逆定理不成立. ★ 连续函数不存在导数举例
1. 函数 f ( x )连续 , 若 f ( x0 ) f ( x0 )则称点 x0 为函数 f ( x ) 的角点 , 函数在角点不可导 .
3
x 2
3x
2
x2
12
所求切线方程为 y 8 12( x 2), 即 12 x y 16 0.
1 法线方程为 y 8 ( x 2), 12
即 x 12 y 98 0.
2.物理意义 非均匀变化量的瞬时变化率.
变速直线运动:路程对时间的导数为物体的 瞬时速度. s ds v ( t ) lim . t 0 t dt 交流电路:电量对时间的导数为电流强度.

(C ) 0.
例2 求函数 y x n ( n为正整数) 的导数. 解
( x h) n x n ( x n ) lim h 0 h n( n 1) n 2 n 1 lim[nx x h h n1 ] nx n 1 h 0 2!
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、导数的定义
定义1 . 设函数
在点 的某邻域内有定义 ,

lim f (x) f (x0) lim y
x x 0 xx0
x0 x
yf(x)f(x0) xxx0
存在, 则称函数
在点 处可导, 并称此极限为
在点 的导数. 记作:
y xx0 ;
f(x0);
dy
;
dx x x0
d f (x) dx x x0
y
y x
注意: 函数在点 x 连续,但在该点未
必可导.
反例:
23.02.2021
在 x = 0 处连续 , 但不可导. O
x
同济高等数学课件
目录 上页 下页 返回 结束
五、 单侧导数
定义2 . 设函数 有定义, 若极限
而在 时刻的瞬时速度为
vtl im t0 f(t)t tf0(t0)
自由落体运动
s
1 2
gt2
f (t0) O t0
f (t) s
t
23.02.2021
同济高等数学课件
目录 上页 下页 返回 结束
2. 曲线的切线斜率
曲线
在 M 点处的切线 y yf(x) N
割线 M N 的极限位置 M T
(当
时)
CM
T
切线 MT 的斜率
O x 0 x x
limtan
割线 M N 的斜率
tan
f(x)f(x0) xx0
kxl im x0 f(xx)xf0(x0)
23.02.2021
同济高等数学课件
目录 上页 下页 返回 结束
瞬时速度 切线斜率
f (t0) O t0
f (t) s
t
y
yf(x) N
CM
T
两个问题的共性:
注意:
23.02.2021
f (x0)
f (x) xx0
d
f (x0) dx
同济高等数学课件
目录 上页 下页 返回 结束
例1. 求函数
(C 为常数) 的导数.
解: y lim f(xx)f(x)
x0
x

例2. 求函数
解:
lim f (x) f (a) lim xn an
x a xa
xa x a
同济高等数学课件
目录 上页 下页 返回 结束
若极限
yf(x)f(x0) xxx0
不存在, 就说函数在点 x 0 不可导.
若 lim Δy , 也称
Δ x0 Δ x
在 的导数为无穷大 .
若函数在开区间 I 内每点都可导, 就称函数在 I 内可导.
此时导数值构成的新函数称为导函数.
记作: y ; f (x) ; d y ; d f ( x ) . d x dx7 4xx源自423.02.2021
同济高等数学课件
目录 上页 下页 返回 结束
例3. 求函数
解:

的导数.
lim f(xh)f(x) lim sin x(h)sixn
h0
h
h 0
h
2cos(x h)
lim
2
h0
limcosx(h)
h0
2
co x s

(sx i)n coxs
类似可证得
23.02.2021
O x 0 x
y
曲线在点
处的
切线方程:
O x0
x
法线方程:
23.02.2021
同济高等数学课件
(f(x0)0)
目录 上页 下页 返回 结束
例7. 问曲线
哪一点有铅直切线 ? 哪一点处
的切线与直线
平行 ? 写出其切线方程.
解:
1x32 3
yx0,
故在原点 (0 , 0) 有铅直切线

11 33 x2
(cxo ) ssixn
同济高等数学课件
目录 上页 下页 返回 结束
例4. 求函数
的导数.
解:
lim f(xh)f(x) lim lnx(h)lnx
h0
h
h 0
h
lim 1 h0 h
x1 1
lim
hx
h0

23.02.2021
lim
h 0
(ln x) 1 x
ln e
同济高等数学课件
目录 上页 下页 返回 结束
高等数学课件--D21导 数概念
精品
第一节
第二章
导数的概念
一、引例 二、导数的定义 三、导数的几何意义 四、函数的可导性与连续性的关系 五、单侧导数
23.02.2021
同济高等数学课件
目录 上页 下页 返回 结束
一、 引例
1. 变速直线运动的速度 设描述质点运动位置的函数为
则 到 的平均速度为
v f(t)f(t0) t t0
例5. 证明函数
在 x = 0 不可导.
证: f(0h)f(0) h
h h
1, 1,
lim f(0h)f(0)不存在 ,
h 0
h
h0 h0
例6. 设
存在, 求极限 lim f(x0h)f(x0h).
h 0
2h
解: 是令 原否式t 可 x按0 h l 下0 h 述,则 i 方法m 作: f ( x0 ) ff((xx00)2(h2f)h(hx)0f ( xh0))
1, 3

x1, 对应 y1,
y
则在点(1,1) , (–1,–1) 处与直线
1
平行的切线方程分别为
1 O
1x

23.02.2021
同济高等数学课件
1
目录 上页 下页 返回 结束
四、 函数的可导性与连续性的关系
定理1.
证: 设
在点 x 处可导, 即
存在 , 因此必有
其中

x0
所以函数
在点 x 连续 .

y
xx0
f(x0)
lim
x0
y x
23.02.2021
同济高等数学课件
目录 上页 下页 返回 结束
运动质点的位置函数 sf(t)
f (t0)
在 t 0 时刻的瞬时速度
O t0
f(t0)
f (t)
t
s
曲线 C:yf(x)在 M 点处的切线斜率
f(x0)
y yf(x) N
CM
T
O x0 x x
23.02.2021
O x 0 x x
所求量为函数增量与自变量增量之比的极限 .
类似问题还有:
加速度 是速度增量与时间增量之比的极限 变
角速度 是转角增量与时间增量之比的极限 化
线密度 是质量增量与长度增量之比的极限
率 问
电流强度 是电量增量与时间增量之比的极限 题
23.02.2021
同济高等数学课件
目录 上页 下页 返回 结束
原式
1 2
f
(x0 )
1 2
f
(x0 )
f(x0)
23.02.2021
同济高等数学课件
目录 上页 下页 返回 结束
三、 导数的几何意义
y yf(x)
曲线
在点
的切线斜率为
tan f(x0)
CM
T

曲线过
上升;
O x0
x
y

曲线过
下降;

切线与 x 轴平行, 称为驻点;
(x0, y0)

切线与 x 轴垂直 .
lim ( xn1axn2 a2xn3 an1)
x a
23.02.2021
同济高等数学课件
目录 上页 下页 返回 结束
说明:
对一般幂函数 y x ( 为常数)
(x)x1
(以后将证明)
例如, (
x )
1
( x 2 )
1 2
x
1 2
2
1
x
1 x
(x1) x11
1 x2
(
1
)
(x
3 4
)
3
x
相关文档
最新文档