实验2_lingo求解线性规划问题z
运筹学实验报告lingo
二. 实验题目
1、求解线性规划:
max
z x 1 2x
2
2x 1 5x 2 12 s.t. x 1 2x 2 8 x , x 0 2 1
并对价值系数、右端常量进行灵敏度分析。
2、已知某工厂计划生产I,II,III三种产品,各 产品需要在A、B、C设备上加工,有关数据如下:
Allowable Decrease:允许减少量
Current RHS :当前右边常数项
结论1:
该线性规划问题的最优解为:X*=(35,10,0)T 最优值为:z*=215
结论2:
c1=5 c1在(4,8)内原最优解不变,但最优值是要变的 c2=4 c2在(2.7,5)内原最优解不变,但最优值是要变的 c3=3 c3在(-∞ ,7)内原最优解,最优值都是不变的 b1=45 b1在(40, 50)内原最优基不变,但最优解和最优值是要变的 b2=80 b2在(67.5, 90)内原最优基不变,但最优解和最优值是要变的 b3=90 b3在(65, ∞ )内原最优基不变,但最优解和最优值是要变的
Row 1 2 3 4 Slack or Surplus 215.0000 0.000000 0.000000 25.00000 Dual Price 1.000000 3.000000 1.000000 0.000000
激活灵敏度计算功能
法一:打开command window,输入range;
法二:LINGO——options —— General Solver —Dual Computations——Prices & Ranges
LINGO
Outline
一.熟悉LINDO软件的灵敏度分析功能
lingo解决线性规划问题的程序
lingo解决线性规划问题的程序Lingo12软件培训教案Lingo 主要⽤于求解线性规划,整数规划,⾮线性规划,V10以上版本可编程。
例1 ⼀个简单的线性规划问题0 ,600 2100350 st.3 2max >=<=+=<<=++=y x y x x y x y x z! 源程序max = 2*x+3*y;[st_1] x+y<350;[st_2] x<100;2*x+y<600; !决策变量黙认为⾮负; <相当于<=; ⼤⼩写不区分当规划问题的规模很⼤时,需要定义数组(或称为矩阵),以及下标集(set) 下⾯定义下标集和对应数组的三种⽅法,效果相同::r1 = r2 = r3, a = b = c.sets :r1/1..3/:a;r2 : b;r3 : c;link2(r1,r2): x;link3(r1,r2,r3): y;endsetsdata :ALPHA = ;a=11 12 13 ;r2 = 1..3;b = 11 12 13;c = 11 12 13;enddata例2 运输问题解:设决策变量ij x = 第i 个发点到第j 个售点的运货量,i =1,2,…m; j =1,2,…n; 记为ij c =第i 个发点到第j 个售点的运输单价,i =1,2,…m;j =1,2,…n记i s =第i 个发点的产量, i =1,2,…m; 记j d =第j 个售点的需求量, j =1,2,…n. 其中,m = 6; n = 8.设⽬标函数为总成本,约束条件为(1)产量约束;(2)需求约束。
于是形成如下规划问题:nj m i x n j d xm i s x x c ij j n i ij i mj ij m i nj ij ij ,...,2,1,,...,2,1,0 ,...,2,1,,...,2,1, st.z min 1111==>=<==<==∑∑∑∑====把上述程序翻译成LINGO 语⾔,编制程序如下:! 源程序model: !6发点8收点运输问题;sets:rows/1..6/: s; !发点的产量限制;cols/1..8/: d; !售点的需求限制;links(rows,cols): c, x; !运输单价,决策运输量; endsets!-------------------------------------;data:s = 60,55,51,43,41,52;d = 35 37 22 32 41 32 43 38;c = 6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddata!------------------------------------;min = @sum(links: c*x); !⽬标函数=运输总成本;@for(rows(i):@sum(cols(j): x(i,j))<=s(i) ); ! 产量约束;@for(cols(j):@sum(rows(i): x(i,j))=d(j) ); !需求约束;end例3把上述程序进⾏改进,引进运⾏⼦模块和打印运算结果的语句:! 源程序model: !6发点8收点运输问题;sets:rows/1..6/: s; !发点的产量限制;cols/1..8/: d; !售点的需求限制;links(rows,cols): c, x; !运输单价,决策运输量; endsets!==================================;data:s = 60,55,51,43,41,52;d = 35 37 22 32 41 32 43 38;c = 6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddata!==================================;submodel transfer:min = cost; ! ⽬标函数极⼩化;cost = @sum(links: c*x); !⽬标函数:运输总成本;@for(rows(i):@sum(cols(j): x(i,j)) < s(i) ); ! 产量约束;@for(cols(j):@sum(rows(i): x(i,j)) > d(j) ); !需求约束; endsubmodel!==================================;calc:@solve(transfer); !运⾏⼦模块(解线性规划);@divert('');!向.txt⽂件按⾃定格式输出数据;@write('最⼩运输成本=',cost,@newline(1),'最优运输⽅案x=');@for(rows(i):@write(@newline(1));@writefor(cols(j): ' ',@format(x(i,j),'') ) );@divert(); !关闭输出⽂件;打开⽂件,内容为:最⼩运输成本=664最优运输⽅案x=0 19 0 0 41 0 0 01 0 0 32 0 0 0 00 11 0 0 0 0 40 00 0 0 0 0 5 0 3834 7 0 0 0 0 0 00 0 22 0 0 27 3 0例4 data段的编写技巧(1):从txt⽂件中读取原始数据 ! 源程序中的data也可以写为:data:s = @file('');d = @file('');c = @file('');enddata其中,的内容为:!程序的数据;!产量约束s= ;60,55,51,43,41,52 ~!需求约束d= ;35 37 22 32 41 32 43 38 ~!运输单价c= ;6 2 67 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3 ~!注:字符~是数据分割符,若⽆此符,视所有数据为⼀个数据块,只赋给⼀个变量;例5lingo程序的的3种输⼊和3种输出⽅法;rows/1..3/: ;cols/1..4/: ;link(rows,cols): a, b, mat1, mat2;endsetsdata:b = 1,2,3,45,6,7,89,10,11,12; !程序内输⼊;a = @file(''); !外部txt⽂件输⼊;mat1 = @ole('d:\lingo12\',mat1); !EXcel⽂件输⼊;enddatacalc:@text('') = a; !列向量形式输出数据;@for(link: mat2 = 2*mat1);@ole('d:\lingo12\') = mat2 ;!把mat2输出到xls⽂件中的同名数据块; !向.txt⽂件按⾃定格式输出数据(参照前例);Endcalc例6程序段中的循环和选择结构举例!的源程序;sets:rows/1..5/:;cols/1..3/:;links(rows,cols):d;endsetsdata:d=0 2 34 3 21 3 24 7 22 1 6;enddatacalc:i=1;@while(i#le#5:a = d(i,1);b = d(i,2);c = d(i,3);@ifc(a#eq#0:@write('infeasible!',@newline(1));@elsedelta = b^2-4*a*c;sqrt = @sqrt(@if(delta#ge#0, delta,-delta));@ifc(delta#ge#0:@write('x1=',(-b+sqrt)/2/a,'x2=',(-b-sqrt)/2/a,@newline(1));@else@write('x1=',-b/2/a,'+',sqrt/2/a,'i', 'x2=',-b/2/a,'-',sqrt/2/a,'i',@newline(1));););i=i+1;);endcalc本程序中的循环结构也可以⽤@for(rows(i): 程序体);进⾏计算。
线性规划问题的Lingo求解
Lingo中参数设置与调整
01
参数设置
02
调整策略
Lingo允许用户设置求解器的参数, 如求解方法、迭代次数、收敛精度等 。这些参数可以通过`@option`进行 设置。
如果求解过程中遇到问题,如无解、 解不唯一等,可以通过调整参数或修 改模型来尝试解决。常见的调整策略 包括放松约束条件、改变目标函数权 重等。
02
比较不同方案
03
验证求解结果
如果存在多个可行解,需要对不 同方案进行比较,选择最优方案。
可以通过将求解结果代入原问题 进行验证,确保求解结果的正确 性和合理性。
感谢您的观看
THANKS
问题,后面跟随线性表达式。
02 03
约束条件表示
约束条件使用`subject to`或简写为`s.t.`来引入,后面列出所有约束条 件,每个约束条件以线性表达式和关系运算符(如`<=`, `>=`, `=`, `<`, `>`)表示。
非负约束
默认情况下,Lingo中的变量是非负的,如果变量可以为负,需要使用 `@free`进行声明。
问题的解通常出现在约束条件的边界上 。
变量通常是连续的。
特点 目标函数和约束条件都是线性的。
线性规划问题应用场景
生产计划
确定各种产品的最优生产量, 以最大化利润或最小化成本。
资源分配
在有限资源下,如何最优地分 配给不同的项目或任务。
运输问题
如何最低成本地将物品从一个 地点运输到另一个地点。
金融投资
03
求解结果
通过Lingo求解,得到使得总加工时间最短的生产计划安 排。
运输问题优化案例
问题描述
某物流公司需要将一批货物从A地运往B地,可以选择不同的运输方式和路径,每种方式和路径的运输时间和成本不 同。公司需要在满足货物送达时间要求的前提下,选择最优的运输方式和路径,使得总成本最低。
lingo解决线性规划问题的程序(经典)
lingo解决线性规划问题的程序(经典)•线性规划问题概述•Lingo软件介绍•使用Lingo解决线性规划问题步目录骤•经典线性规划问题案例解析•Lingo在解决线性规划问题中的优势•总结与展望01线性规划问题概述定义:线性规划(Linear Programming,简称LP)是数学规划的一个分支,它研究的是在一组线性约束条件下,一个线性目标函数的最大或最小值问题。
特点目标函数和约束条件都是线性的。
可行域是凸集,即对于任意两个可行解,它们的凸组合仍然是可行解。
最优解如果存在,则一定在可行域的某个顶点上达到。
定义与特点生产计划资源分配运输问题金融投资01020304企业如何安排生产,使得在满足市场需求和资源限制的前提下,成本最低或利润最大。
如何合理分配有限的资源(如资金、人力、时间等),以达到最佳的效果。
如何安排货物的运输路线和数量,使得在满足供需关系的前提下,总运费最低。
投资者如何在一定的风险水平下,使得投资收益最大。
决策变量表示问题的未知量,通常用$x_1, x_2, ldots, x_n$表示。
目标函数表示问题的优化目标,通常是决策变量的线性函数,形如$z = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
约束条件表示问题的限制条件,通常是决策变量的线性不等式或等式,形如$a_{11}x_1 + a_{12}x_2 + ldots + a_{1n}x_n leq (=, geq) b_1$。
01$begin{aligned}02& text{max} quad z = c_1x_1 + c_2x_2 + ldots +c_nx_n03& text{s.t.} quad a_{11}x_1 + a_{12}x_2 + ldots + a_{1n}x_n leq (=, geq) b_1& quadquadquad vdots& quadquadquad a_{m1}x_1 + a_{m2}x_2 + ldots + a_{mn}x_n leq (=, geq) b_m•& \quad\quad\quad x_i \geq 0, i = 1, 2, \ldots, n线性规划问题数学模型end{aligned}$其中,“s.t.”表示“subject to”,即“满足……的条件下”。
实验二利用Lingo求解整数规划及非线性规划问题
例 3 用Lingo软件求解非线性规划问题
min z x1 12 x2 22
x2 x1 1,
x1
x2
2,
x1
0,
x2
0.
Lingo 程序: min= x1-1 ^2+ x2-2 ^2;
x2-x1=1;
x1+x2<=2;
注意: Lingo 默认变量的取值从0到正无穷大, 变量定界函数可以改变默认状态. @free x : 取消对变量x的限制 即x可取任意实数值
例 4 求函数 zx22y22 的最小值.
例 4 求函数 zx22y22 的最小值.
解: 编写Lingo 程序如下:
min= x+2 ^2+ y-2 ^2; @free x ; 求得结果: x=-2, y=2
二、Lingo 循环编程语句
1 集合的定义 包括如下参数: 1 集合的名称.
sets: endsets
44
minZ
aijxij
i1 j1
4
xij
1
j 1,2,3,4
s.t.
i 1 4
xij
1
i 1,2,3,4
j1
xij 0或1 i, j 1,2,3,4
LINGO程序如下:
MODEL: SETS: person/A,B,C,D/; task/1..4/; assign person,task :a,x; ENDSETS DATA: a=1100,800,1000,700,
77
63
67
丁
55
76
62
62
甲, 乙, 丙, 丁 四名队员各自游什么姿势 , 才最有可能取得好成绩
LINGO软件解整数线形规划实验报告
2011——2012学年第二学期合肥学院数理系实验报告课程名称:运筹学实验项目:求解线性规划问题实验类别:综合性□设计性□验证性□√专业班级: 09级数学与应用数学(1)班姓名:王秀秀学号: 0907021006 实验地点: 9#503实验时间: 2012-4-18 指导教师:管梅成绩:一.实验目的1、熟悉LINGO 软件的使用方法、功能;2、掌握LINGO 软件以下内部函数的应用:@free(variable)取消默认域,使变量可以取任意实数@gin(variable) 限制变量取整数值 @bin(variable) 限制变量取值为0,1@bnd(low,variable,up) 限制变量于一个有限的范围 二.实验内容1、某班有男同学30人,女同学20人,星期天准备去植树。
根据经验,一天中,男同学平均每人挖坑20个,或栽树30棵,或给25棵树浇水,女同学平均每人挖坑10个,或栽树20棵,或给15棵树浇水。
问应怎样安排,才能使植树(包括挖坑、栽树、浇水)最多。
建立该问题的数学模型,并求其解。
2、求解线性规划:121212212max z x 2x 2x 5x 12x 2x 8s.t.0x 10x ,x =++≥⎧⎪+≤⎪⎨≤≤⎪⎪⎩为整数3、在高校篮球联赛中,我校男子篮球队要从8名队员中选择平均身高最高的出场阵容,队员的号码、身高及擅长的位置如下表:同时,要求出场阵容满足以下条件: ⑴ 中锋最多只能上场一个。
⑵ 至少有一名后卫 。
⑶ 如果1号队员和4号队员都上场,则6号队员不能出场 ⑷ 2号队员和6号队员必须保留一个不出场。
问应当选择哪5名队员上场,才能使出场队员平均身高最高? 试写出上述问题的数学模型,并求解。
三. 模型建立1、设1x ,2x ,3x 分别表示男生挖坑、栽树、浇水人数1y ,2y ,3y 分别表示女生挖坑、栽树、浇水人数则数学模型为1231231231231122i i max z 20x +30x +25x +10y +20y +15y x +x +x 30y +y +y =20s.t.20x 10y 30x 20y 0x 30;0y 20;i 1,2,3==⎧⎪⎪⎨+≥+⎪⎪≤≤≤≤=⎩2、数学模型为:121212212max z x 2x 2x 5x 12x 2x 8s.t.0x 10x ,x =++≥⎧⎪+≤⎪⎨≤≤⎪⎪⎩为整数3、设1,i x 0i i ⎧=⎨⎩表示第个球员上场,表示第个球员不上场则数学模型为12345678126781462681max z 1.92x 1.90x 1.88x 1.86x 1.85x 1.83x 1.80x 1.78x x +x 1x +x +x 1x +x +x 2x +x 1x 5x 0i i i ==+++++++≤⎧⎪≥⎪⎪≤⎪≤⎨⎪⎪=⎪⎪⎩∑取或1,i=1,2 (8)四. 模型求解(含经调试后正确的源程序) 1、求解:model:max=20*x1+30*x2+25*x3+10*y1+20*y2+15*y3; x1+x2+x3=30; y1+y2+y3=20;20*x1+10*y1>=30*x2+20*y2; @gin(x1);@gin(x2);@gin(x3); @gin(y1);@gin(y1);@gin(y1); @bnd(0,x1,30); @bnd(0,x2,30); @bnd(0,x3,30); @bnd(0,y1,20); @bnd(0,y2,20); @bnd(0,y3,20);结果显示:2、求解:model:max=x1+2*x2; 2*x1+5*x2>12; x1+2*x2<8;@gin(x1);@gin(x2);@bnd(0,x2,10); end结果显示:3、求解:model:max=(1.92*x1+1.90*x2+1.88*x3+1.86*x4+1.85*x5+1.83*x6+1.80*x7+1.78*x8) /5;x1+x2<=1;x6+x7+x8>=1;x1+x4+x6<=2;x2+x6<=1;x1+x2+x3+x4+x5+x6+x7+x8=5;@bin(x1);@bin(x2);@bin(x3);@bin(x4);@bin(x5);@bin(x6);@bin(x7);@bin(x8);end结果显示:五.结果分析第一题最优解:x1=20;x2=0; x3=10;y1=0;y2=20; y3=0;最优值:max=1050;第二题最优解:x1=0;x2=4; 最优值max=8;第三题最优解:X=(1,0,1,1,1,0,1,0) 最优值max=1.862;六.实验总结通过此次实验,我掌握LINGO软件一些内部函数的应用,这些函数的应用使实际生活中的许多问题得到了解决。
用lingo解线性规划问题
2. 所用原料钢管总根数最少
决策变量 xi ~按第i 种模式切割的原料钢管根数(i=1,2,…7)
目标1(总余量) Min Z1 3x1 x2 3x3 3x4 x5 x6 3x7
模 式 1 2 3 4 5 6 7 需 求 4米 根数 4 3 2 1 1 0 0 50 6米 根数 0 1 0 2 1 3 0 20 8米 根数 0 0 1 0 1 0 2 15 余 料 3 1 3 3 1 1 3
x1 x2 50
12x1 8x2 480
约束条件
劳动时间 加工能力 非负约束
3x1 100 x1 , x2 0
线性 规划 模型 (LP)
模型求解
20桶牛奶生产A1, 30桶生产A2,利润3360元。
结果解释
Max= 72x1+64x2
2)x1+x2<50 3)12x1+8x2<480
解:直接在LINGO的模型窗口中输 入程序
LINDO/LINGO软件的求解过程
1. 确定常数
2. 识别类型
LINDO/LINGO预处理程序
LP QP NLP IP 全局优化(选) 分枝定界管理程序
ILP
线性优化求解程序 1. 单纯形算法 2. 内点算法(选)
IQP
INLP
非线性优化求解程序
LINDO和LINGO软件能求解的优化模型
钢管下料问题1
模式 1 2 3 4 5 6 7 4米钢管根数 4 3 2 1 1 0 0
合理切割模式
8米钢管根数 0 0 1 0 1 0 2 余料(米) 3 1 3 3 1 1 3
6米钢管根数 0 1 0 2 1 3 0
为满足客户需要,按照哪些种合理模式,每种模式 切割多少根原料钢管,最为节省? 两种 标准 1. 原料钢管剩余总余量最小
用Lingo软件编程求解规划问题
x2桶牛奶生产A2 获利 16×4 x2
Max z 72 x1 64 x2
x1 x2 50
12 x1 8x2 480 3x1 100
x1, x2 0
线性规 划模型 (LP)
例1——加工奶制品的生产计划
x1 x2 50
12
x1 8x2 480 3x1 100
Lingo软件——基本集合元素的列举
一个原始集是由一些最基本的对象组成的。 setname [/member_list/] [: attribute_list];
sets: students/John Jill, Rose Mike/: sex, age;
endsets
集、集成员和集属性
• 集成员无论用何种字符标记,它的索引都是 从1开始连续计数。
ij
8
j 1
N Nij
V
i
i 1, ,6,j 1, ,8, i 1, ,6,
N 6
i1 ij
d
j
j 1, ,8.
结果
Lingo软件
Lingo 是一个可以简洁地阐述、解决和分析复杂问题的简便工具。
其特点是程序执行速度很快,易于输入、修改、求解和分析一个数 学规划问题。
N 6
i1 ij
d
j
j 1, ,8.
corps
需求量 35 37 22 32 41 32 43 38
拥有量
60 55 51 depot 43 41 52
B1 B2 B3 B4 B5 B6 B7 B8
A1
62674259
A2
49538582
LINGO 线性规划问题的求解
实验报告课程名称:运筹学项目名称:线性规划问题的求解姓名:专业:班级:1班学号:同组成员:一、实验准备:1.线性规划(Linear programming,简称LP)是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
研究线性约束条件下线性目标函数的极值问题的数学理论和方法。
英文缩写LP。
它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。
为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。
从实际问题中建立数学模型一般有以下三个步骤;(1)根据影响所要达到目的的因素找到决策变量;(2)由决策变量和所在达到目的之间的函数关系确定目标函数;(3)由决策变量所受的限制条件确定决策变量所要满足的约束条件。
2.所建立的数学模型具有以下特点:(1)每个模型都有若干个决策变量(x1,x2,x3……,xn),其中n为决策变量个数。
决策变量的一组值表示一种方案,同时决策变量一般是非负的。
(2)目标函数是决策变量的线性函数,根据具体问题可以是最大化(max)或实际中,为保证完成100套工架,所使用原材料最省,可以混合使用各种下料方案。
设按方案A,B,C,D,E下料的原材料数分别为x1,x2,x3,x4,x5根据表可以得到下面的线性规划模型:解:虽然连续投资问题属于动态优化问题,但可以用静态优化的方法解决,用决策变量xi1,xi2,xi3,xi4(i=12…,5)分别表示第i年年初为项目A,B,C,D,的投资额,根据问题的要求各变量的对应关系如表,表中空白处表示当年不能为该项目投资,也可认为投资额为0.实验报告成绩(百分制)__________ 实验指导教师签字:__________。
使用LINGO求解线性规划问题
Variable X1 X2
2
0
0
4
0
7
0
800.0000 0.000000
2
Value 250.0000 100.0000
Row Slack or Surplus
1
2
3
4
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
lingo求解线性规划实验报告
lingo求解线性规划实验报告一、实验目的线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
本次实验的目的在于通过使用 Lingo 软件求解线性规划问题,深入理解线性规划的基本概念、原理和方法,掌握 Lingo 软件的操作技巧,提高解决实际问题的能力。
二、实验原理线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值。
其数学模型一般形式为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$a_{11}x_1 + a_{12}x_2 +\cdots + a_{1n}x_n \leq b_1$$a_{21}x_1 + a_{22}x_2 +\cdots + a_{2n}x_n \leq b_2$$\cdots$$a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m$$x_1, x_2, \cdots, x_n \geq 0$其中,$c_i$为目标函数系数,$a_{ij}$为约束条件系数,$b_i$为约束条件右端项,$x_i$为决策变量。
Lingo 软件是一款专门用于求解线性规划、非线性规划等优化问题的工具。
它通过输入问题的数学模型,利用内部的优化算法求解,并输出最优解和最优值。
三、实验内容(一)问题描述考虑一个生产计划问题。
某工厂生产两种产品 A 和 B,生产单位产品 A 需要消耗 2 个单位的原材料和 3 个单位的工时,生产单位产品 B需要消耗 3 个单位的原材料和 2 个单位的工时。
工厂共有 100 个单位的原材料和 80 个单位的工时可用。
产品 A 的单位利润为 4 元,产品 B 的单位利润为5 元。
问如何安排生产计划,才能使工厂的总利润最大?(二)数学模型建立设生产产品 A 的数量为$x_1$,生产产品 B 的数量为$x_2$,则目标函数为:$Z = 4x_1 + 5x_2$约束条件为:$2x_1 + 3x_2 \leq 100$$3x_1 + 2x_2 \leq 80$$x_1, x_2 \geq 0$(三)Lingo 程序编写```lingomodel:max = 4x1 + 5x2;2x1 + 3x2 <= 100;3x1 + 2x2 <= 80;end```(四)求解结果分析运行 Lingo 程序,得到最优解为$x_1 = 20$,$x_2 = 20$,最大利润为$180$元。
用lingo求解线性规划问题
用lingo求解线性规划问题中国石油大学胜利学院程兵兵摘要食物营养搭配问题是现代社会中常见的问题,其最终的目的是节省总费用.本文通过对营养问题的具体剖析.构建了一般的线性规划模型。
并通过实例应用Lingo数学软件求解该问题.并给出了价值系数灵敏度分析,得出蔬菜价格的变动对模型的影响.关键词线性规划,lingo,灵敏度分析。
一、问题重述与分析营养师要为某些特殊病人拟订一周的菜单,可供选择的蔬菜及其费用和所含营养成分的数量以及这类病人每周所需各种营养成分的最低数量如下表1所示。
有以下规定:一周内所用卷心菜不多于2份,其他蔬菜不多于4份。
问题一:若病人每周需要14份蔬菜,问选用每种蔬菜各多少份,可使生活费用最小.问题二:当市场蔬菜价格发生怎样波动时,所建模型的适用性。
表 1 所需营养和费用营养搭配是一个线性规划问题,在给定蔬菜的情况下,要求菜单所需的营养成分必须达到要求,并在此条件下求出什么样的搭配所花费的费用最少.第一个要求是满足各类营养的充足,根据表中数据列出不等式。
第二要求为问题一中,蔬菜的份数必须为14,第三要求为在一周内,卷心菜不多于2份,其他不多于4份,根据以上条件列出各类蔬菜份数的限定条件,并可表示出费用的表达式.对于第二问,就是价值系数的变化对总费用的影响,模型的适用范围。
三、模型假设第一,假设各蔬菜营养成分保持稳定,满足题干要求。
第二,假设各蔬菜价格在一定时间内保持相对稳定。
第三,假设各类蔬菜供应全部到位,满足所需要求量. 第四,假设所求出最优解时不要求一定为整数。
四、符号约定(1)Z 代表目标函数,此题即为费用。
(2)i c 为价值系数,此题即为每份蔬菜的价格。
下标i 代表蔬菜的种类。
(3)i x 为决策变量,表示各种蔬菜的数量。
(4)i b 为最低限定条件,表示蔬菜最低营养需要。
五、模型建立根据以上各种假设和符号约定,建立模型如下。
所求的值就是min,也就是最优化结果.s 。
数学建模:运用Lindolingo软件求解线性规划
数学建模:运用L i n d o l i n g o软件求解线性规划-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1、实验内容:对下面是实际问题建立相应的数学模型,并用数学软件包Lindo/lingo 对模型进行求解。
某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千克,工人20名,可获利9万元.今工厂共有原料60千克,工人150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何安排生产计划,即两种饮料各生产多少使获利最大.进一步讨论:1)若投资0.8万元可增加原料1千克,问应否作这项投资.2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划.数学建模论文运用lindo/lingo软件求解线性规划运用lindo/lingo软件求解线性规划一、摘要本文要解决的问题是如何安排生产计划,即两种饮料各生产多少使获利最大。
首先,对问题进行重述明确题目的中心思想,做出合理的假设,对符号做简要的说明。
然后,对问题进行分析,根据题目的要求,建立合适的数学模型。
最后,运用lindo/lingo软件求出题目的解。
【关键词】最优解 lindo/lingo软件第二、问题的重述某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千克,工人20名,可获利9万元.今工厂共有原料60千克,工人150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何安排生产计划,即两种饮料各生产多少使获利最大.进一步讨论:1)若投资0.8万元可增加原料1千克,问应否作这项投资。
2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划。
第三、模型的基本假设1、每一箱饮料消耗的人力、物力相同。
2、每个人的能力相等。
3、生产设备对生产没有影响。
第四、符号说明1、x.....甲饮料2、y.....乙饮料3、z.....增加的原材料第五、问题分析根据题目要求:如何安排生产计划,即两种饮料各生产多少使获利最大,可知本题所求的是利润的最大值。
用LINGO求解线性规划问题
用LINGO求解线性规划问题实验1 用LINGO求解线性规划问题LINGO使用简介LINGO软件是美国的LINDO系统公司(Lindo System Inc)开发的一套用于求解最优化问题的软件包.LINGO除了能用于求解线性规划和二次规划外,还可以用于非线性规划求解以及一些线性和非线性方程(组)的求解.LINGO软件的最大特色在于它允许优化模型中的决策变量为整数,而且执行速度快.LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果,这里简单介绍LINGO的使用方法.LINGO可以求解线性规划、二次规划、非线性规划、整数规划、图论及网络优化和排队论模型中的最优化问题等.一个LINGO程序一般会包含集合段、数据输入段、优化目标和约束段、初始段和数据预处理段等部分,每一部分有其独特的作用和语法规则,读者可以通过查阅相关的参考书或者LINGO的HELP文件详细了解,这里就不展开介绍了.LINGO的主要功能特色为:既能求解线性规划问题,也有较强的求解非线性规划问题的能力;输入模型简练直观;运算速度快、计算能力强;内置建模语言,提供几十个内部函数,从而能以较少语句,较直观的方式描述大规模的优化模型;将集合的概念引入编程语言,很容易将实际问题转换为LINGO模型;并且能方便地与Excel、数据库等其他软件交换数据.LINGO的语法规定:(1)求目标函数的最大值或最小值分别用MAX=…或MIN=…来表示;(2)每个语句必须以分号“;”结束,每行可以有许多语句,语句可以跨行;(3)变量名称必须以字母(A~Z)开头,由字母、数字(0~9)和下划线所组成,长度不超过32个字符,不区分大小写;(4)可以给语句加上标号,例如[OBJ] MAX=200*X1+300*X2;(5)以惊叹号“!”开头,以分号“;”结束的语句是注释语句;(6)如果对变量的取值范围没有作特殊说明,则默认所有决策变量都非负;(7)LINGO模型以语句“MODEL:”开头,以“END”结束,对于比较简单的模型,这两个语句可以省略.实验目的1.对于给定的实际应用问题,正确的建立线性规划问题数学模型,并用LINGO求解;2.掌握灵敏度分析以及资源的影子价格的相关分析方法.实验数据与内容问题1.1 某工厂在计划期内要安排生产A、B两种产品,已知生产单位产品所需设备台时及对甲、乙两种原材料的消耗,有关数据如表1.1.问:应如何安排生产计划,使工厂获利最大?表1.1 资源配置问题的数据产品资源AB可利用资源设备128台时甲416公斤乙412公斤单位利润2元3元建立线性规划问题的数学模型,用LINGO求出最优解并做相应的分析.问题1.2 某公司饲养实验用的动物以供出售,已知这些动物的生长对饲料中3种营养成分(蛋白质、矿物质和维生素)特别敏感,每个动物每周至少需要蛋白质60g,矿物质3g,维生素8mg,该公司能买到5种不同的饲料,每种饲料1kg所含各种营养成分和成本如表1.2所示,如果每个小动物每周食用饲料不超过52kg,求既能满足动物生长需要,又使总成本最低的饲料配方.表1.2 配料(食谱)问题的数据饲料营养1A2A4A5A营养最低要求蛋白质(g) 0.3210.61.860矿物质(g) 0.10.050.20.053维生素(mg) 0.050.10.020.20.088成本(元/ kg)0.20.70.40.5实验指导问题1.1设计划生产两种产品分别为,则建立线性规划问题数学模型 BA,21,xx.......≥≤≤≤++=0,12416482.32max21212121xxxxxxtsxxS在LINGO的MODEL窗口内输入如下模型:model:max=2*x1+3*x2;x1+2*x2<=8;4*x1<=16;4*x2<=12;end选菜单Lingo|Solve(或按Ctrl+S),或用鼠标点击“求解”按纽,如果模型有语法错误,则弹出一个标题为“LINGO Error Message”(错误信息)的窗口,指出在哪一行有怎样的错误,每一种错误都有一个编号(具体含义可查阅相关文献或LINGO的Help).改正错误以后再求解,如果语法通过,LINGO用内部所带的求解程序求出模型的解,然后弹出一个标题为“LINGO Solver Status”(求解状态)的窗口,其内容为变量个数、约束条件个数、优化状态、耗费内存、所花时间等信息,点击Close关闭窗口,屏幕上出现标题为“Solution Report”(解的报告)的信息窗口,显示优化计算(线性规划中换基迭代)的步数、优化后的目标函数值、列出各变量的计算结果.求解结果:Global optimal solution found at iteration: 5Objective value: 14.00000Variable Value Reduced CostX1 4.000000 0.000000X2 2.000000 0.000000Row Slack or Surplus Dual Price1 14.00000 1.0000002 0.000000 1.5000003 0.000000 0.12500004 4.000000 0.000000该报告说明:运行5步找到全局最优解,目标函数值为14,变量值分别为.“Reduced Cost”的含义是需缩减成本系数或需增加利润系数(最优解中取值非零的决策变量的Reduced Cost值等于零).“Row”是输入模型中的行号,目标函数是第一行;“Slack orSurplus”的意思是松弛或剩余,即约束条件左边与右边的差值,对于“124,2==xx≤”的不等式,右边减左边的差值为Slack(松弛),对于“”的不等式,左边减右边的差值为Surplus(剩余),当约束条件两边相等时,松弛或剩余的值等于零.“Dual Price”的意思是对偶价格(或称为影子价格),上述报告中Row2的松弛值为0,表明生产甲产品4单位、乙产品2单位,所需设备8台时已经饱和,对偶价格1.5的含义是:如果设备增加1台时,能使目标函数值增加1.5.报告中Row4的松弛值为4,表明生产甲产品4单位、乙产品2单位,所需原材料乙8公斤还剩余4公斤,因此增加原材料乙不会使目标函数值增加,所以对偶价格为0.≥问题1.2设需要饲料分别为 kg,则建立线性规划数学模型:54321,,,,AAAAA54321,,,,xxxxx123451234512345123451234512345min0.20.70.40.30.50.32 0.61.8600.10.050.020.20.0530.050.10.020.20.088.52,,,,0Sxxxxxxxx xxxxxxxxxxxxstxxxxxxxxxx=++++++++≥..++++..++++..++++≤.≥..在LINGO的MODEL窗口内输入如下模型:Min=0.2*x1+0.7*x2+0.4*x3+0.3*x4+0.5*x5;0.3*x1+2*x2+x3+0.6*x4+1.8*x5>60;0.1*x1+0.05*x2+0.02*x3+0.2*x4+0.05*x5>3;0.05*x1+0.1*x2+0.02*x3+0.2*x4+0.08*x5>8; x1+x2+x3+x4+x5<52;求解输出结果如下:Global optimal solution found at iteration: 4 Objective value: 22.40000Variable Value Reduced CostX1 0.000000 0.7000000X2 12.00000 0.000000X3 0.000000 0.6166667X4 30.00000 0.000000X5 10.00000 0.000000Row Slack or Surplus Dual Price1 22.40000 -1.0000002 0.000000 -0.58333333 4.100000 0.0000004 0.000000 -4.1666675 0.000000 0.8833333因此,每周每个动物的配料为饲料、、分别为12、30和10kg,合计为52,可使得饲养成本达到最小,最小成本为22.4元;不选用饲料和的原因是因为这两种饲料的价格太高了,没有竞争力.“Reduced Cost”分别等于0.7和0.617,说明当这两种饲料的价格分别降低0.7元和0.62元以上时,不仅选用这两种饲料而且使得饲养成本降低.从“Slack or Surplus”可以看出,蛋白质和维生素刚达到最低标准,矿物质超过最低标准4.12A4A5Akgkgkg1A3Ag;从“Dual Price”可以得到降低标准蛋白质1单位可使饲养成本降低0.583元,降低标准维生素1单位可使饲养成本降低4.167元,但降低矿物质的标准不会降低饲养成本,如果动物的进食量减少,就必须选取精一些的饲料但要增加成本,大约进食量降低1可使得饲养成本增加0.88元.kg对于目标函数系数和约束条件右端常数项的灵敏度分析,可以通过LINGO软件求解的灵敏度分析给出.如果要看灵敏度分析结果,必须激活灵敏度计算功能才会在求解时给出灵敏度分析结果,默认情况下这项功能是关闭的.想要激活它,必须运行LINGO|Options…命令,选择Gengral Solver,在Dual Computation列表框中,选择Prices and Ranges选项并确定.对于例1.1问题进行灵敏度分析,结果如下:以下是灵敏度分析的结果Ranges in which the basis is unchanged:Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase DecreaseX1 2.000000 INFINITY 0.5000000X2 3.000000 1.000000 3.000000Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 8.000000 2.000000 4.0000003 16.00000 16.00000 8.0000004 12.00000 INFINITY 4.000000对于例1.2问题进行灵敏度分析,结果如下:Ranges in which the basis is unchanged: Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase Decrease X1 0.2000000 INFINITY 0.7000000X2 0.7000000 INFINITY 0.1358974X3 0.4000000 INFINITY 0.6166667X4 0.3000000 1.400000 1.000000X5 0.5000000 0.1247059 INFINITY Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 60.00000 4.800000 4.8000003 3.000000 4.100000 INFINITY4 8.000000 0.3428571 0.48000005 52.00000 1.846154 1.411765思考题某投资公司拟制定今后5年的投资计划,初步考虑下面四个投资项目:项目A:从第1年到第4年每年年初可以投资,于次年年末收回成本,并可获利润15%;项目B:第3年年初可以投资,到第5年年末可以收回成本,并获得利润25%,但为了保证足够的资金流动,规定该项目的投资金额上限为不超过总金额的40%;项目C:第2年年初可以投资,到第5年年末可以收回成本,并获得利润40%,但公司规定该项目的最大投资金额不超过总金额的30%;项目D:5年内每年年初可以购买公债,于当年年末可以归还本金,并获利息6%.该公司现有投资金额100万元,请帮助该公司制定这些项目每年的投资计划,使公司到第5年年末核算这5年投资的收益率达到最大.建立线性规划问题的数学模型,并用LINGO求解.。
lingo解决线性规划问题(附程序)
封面作者:Pan Hongliang仅供个人学习北方民族大学第六届数学建模竞赛竞赛论文竞赛分组:竞赛题目:组员:所在学院:信息与计算科学学院制版北方民族大学第六届数学建模竞赛承诺书为保证竞赛的公平、公正,维护竞赛的严肃性,在竞赛期间,我们承诺遵守以下竞赛规定:只在本参赛队的三人之间进行问题的讨论,绝不与本参赛队外的其他人讨论与竞赛题目相关的任何问题,不抄袭、剽窃他人的成果,引用的参考文献在答卷中进行标注。
承诺人签名:承诺人所在分组:承诺人所在学院:年月日摘要在工程技术、经济管理等诸多领域中,人们经常遇到的一类决策问题是:在一系列客观或主观限制条件下,寻求所要关注的某个或多个指标达到最大(或最小)的决策。
例如,酒店客房分配,我们常常不能使得客房刚好满足顾客的要求,此时,客房是有限的,但是顾客需要的客房数已经超出酒店可提供的客房数目,我们就会选择一种客房分配方案,来使得酒店的收益获得最大的。
7天连锁酒店利用网络系统为常客户开设标准间和商务间两类客房的预定服务,酒店以一周(从星期一到星期日)为一个时段处理这项业务。
现在收到一个会务组提出的一个一周的预定需求单,现要求我们依据题目所提供的信息,以酒店收入最大为目标,针对3种不同情况,制定相应的分配方案。
我们把这类决策问题通常归为最优化问题,解决问题的方案是,找到问题的决策变量,目标函数及约束条件。
如果需要作出决策的变量较多时,我们就会首选LINGO软件来解决线性规划的问题。
关键词:最优分配、数学建模、线性规划、LINGO目录1.问题的重述 (4)2.问题的分析 (4)3.模型的假设 (5)4.符号的约定 (6)5.模型的建立与求解 (7)5.1问题(1)的求解 (8)5.2问题(2)的求解 (9)5.3问题(3)的求解 (12)5.4问题(4)的求解 (15)6.模型的评价与改进 (15)7.参考文献 (15)8.附录 (16)酒店客房的最优分配方案1、问题的重述7天连锁酒店利用网络系统为常客户开设标准间和商务间两类客房的预定服务,酒店以一周(从星期一到星期日)为一个时段处理这项业务。
线性规划问题的Lingo求解ppt课件
的顶点,如此迭代下去直到最优,或者判断不可行或者判断无界为止。
5.1.2 应用举例
例5-1(运输问题) 两个粮库A1,A2,向三个粮站B1,B2,B3调运大米,两个粮库现存大 米分别为4t,8t,三个两站至少需要大米分别为2t,4t,5t,两个粮库到三个粮站的距 离(km)如下表,求使运费最低。 B1 A1 12 B2 24 B3 8 库存 4
和最低) 问题分析:这是一个多阶段生产计划问题,设计多阶段存储,只需要制定1~4月份的 生产计划,不妨假定1月初无库存,4月底卖完,当月生产的不作为当月的库存,库 存量无限制。 模型建立(1): 设xi为第i月产量,di为销售量,ei为存储费,ci为单位成本,则目 标生产成本为:
1月到j月的总销售量,即:
线性规划问题 的Lingo求解
5.1 一般线性规划模型的建立与求解
5.1.1 基本理论
线性规划问题的标准形式是等约束的,用矩阵表示如下:
m in f ( x ) cx Ax b s .t . x 0
一般线性规划问题都可以通过引入松弛变量与剩余变量的方法化成标准形式。 线性规划模型的一般性质:
4
j1
c jx
j
第j月到j+1月的库存量(记作第j+1月的库存量)应该是1月到j月的总产量减去
x d
i 1 i i 1
j
j
i
总的库存费用为:
4
j j d ej i i 1 x j 1 i 1 i 1 3
3
总成本为:
j j c x de jx j i i j 1 j 1 j 1 i 1 i 1
相应的Lingo程序如下:
实验2_lingo求解线性规划问题z
12
8
6
3
9
12
18
16
30
13
4
12
8
11
27
19
14
5
-
7
10
21
10
32
6
-
-
-
6
11
13
思考题,有限制的运输问题:6个发点6个收点,其供应量、接收量和运费如下表1(”-”表示某个发电无法向某个收点运输货物),如果某个发点向某个收点运输货物,则运输量不得低于15个单位。求运输方案,使得总费用最小。所建模型最好具有推广性。
收点1
收点2
收点3
收点4
收点5
收点6
供应量
发点1
20
15
16
5
4
7
20
发点2
17
15
33
12
8
6
30
发点3
9
12
18
16
30
13
50
发点4
12
8
11
27
19
14
40
发点5
-
7
10
21
10
32
30
发点6
-
-
-
6
11
13
30
接受量
30
50
40
30
30
20
三、实验过程
实验一
1
2
3
当A证券税前利益率增加到4.5%
嘉应学院数学系
实验报告
课程名称:数学建模实验名称:Lingo求解线性规划问题实验地点:田师420
指导老师:李婷实验时间:提交时间:
lingo求解多目标规划--例题
实验二:目标规划一、实验目的目标规划是由线性规划发展演变而来的,线性规划考虑的是只有一个目标函数的问题,而实际问题中往往需要考虑多个目标函数,这些目标不仅有主次关系,而且有的还相互矛盾。
这些问题用线性规划求解就比较困难,因而提出了目标规划。
熟悉目标规划模型的建立,求解过程及结果分析。
二、目标规划的一般模型设)...2,1(n j x j =是目标规划的决策变量,共有m 个约束是国内刚性约束,可能是等式约束,也可能是不等式约束。
设有l 个柔性目标约束,其目标规划约束的偏差是),...,2,1(,l i d d i i =-+。
设有q 个优先级别,分别为q p p p ,...,21。
在同一个优先级k p 中,有不同的权重,分别记为),...,2,1(,l j w w kj kj =-+。
因此目标规划模型的一般数学表达式为:min ∑∑=++--=+=lj j kj j kj q k kd w d wp z 11);(.,,...2,1,),(1m i b x anj i j ij=≥=≤∑= .,...2,1,0,,,...,2,1,,,...2,1,1l i d d n x o x l i g d d x ci i j i nj i i j ij=≥=≥==-++-=+-∑三、实验设备及分组实验在计算机中心机房进行,使用微型电子计算机,每人一机(一组)。
四、实验内容及步骤1、打开LINGO ,并利用系统菜单和向导在E 盘创建一个项目。
目录和项目名推荐使用学生自己的学号。
2、以此题为例,建立数学模型,并用说明语句进行说明,增强程序的可读性。
例:某工厂生产Ⅰ、Ⅱ两种产品,需要用到A ,B ,C 三种设备,已知有关数据见下表。
企业的经营目标不仅仅是利润,还需要考虑多个方面:(1) 力求使利润不低于1500元;(2) 考虑到市场需求,Ⅰ、Ⅱ两种产品的产量比应尽量保持1:2; (3) 设备A 为贵重设备,严格禁止超时使用;(4) 设备C 可以适当加班,但要控制;设备B 即要求充分利用,又尽可能不加班。
(2024年)用Lingo软件编程求解规划问题解决方案
2024/3/26
1
目录
2024/3/26
• 引言 • 规划问题建模 • Lingo软件编程实现 • 规划问题求解与分析 • 案例研究:用Lingo解决实际规划问题 • 总结与展望
2
01
引言
2024/3/26
3
规划问题概述
规划问题定义
规划问题是一类优化问题,旨在 寻找满足一系列约束条件的决策 变量最优解,使得目标函数达到 最优(最大或最小)。
要点三
推动软件升级和普及
Lingo软件作为一款优秀的数学规划 求解工具,未来可以进一步推动其升 级和普及工作。例如,可以增加更多 实用的功能、提高软件的易用性和稳 定性等,以吸引更多的用户使用该软 件解决规划问题。
2024/3/26
29
THANKS
感谢观看
2024/3/26
30
。同时,需要注意Lingo语言的语法和规则,确保模型的正确性和可解
性。
10
03
Lingo软件编程实现
2024/3/26
11
Lingo编程环境介绍
Lingo是一款专门用于求解线性、非线性和整数规划问题的软件,它提供了一个直观易用的编程环境。
Lingo支持多种类型的数学模型,如线性规划、目标规划、整数规划等,并内置了大量的函数和算法, 方便用户快速构建和求解模型。
束条件。
8
数学模型建立
1 2
选择合适的数学模型
根据问题的特点和目标,选择合适的数学模型, 如线性规划、整数规划、非线性规划等。
构建目标函数
根据优化目标,构建目标函数,即问题的优化标 准。
3
构建约束条件方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
课程名称:数学建模实验名称:Lingo求解线性规划问题实验地点:田师420
指导老师:李婷实验时间:提交时间:
班级:姓名:座号:
一、实验目的和要求
掌握用Lingo求解线性规划问题的方法,能够阅读Lingo结果报告。
二、实验内容描述
1:某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如下表1所示,按照规定,市政证券的收益可以免税,其他证券的收益需按50%的税率纳税,此外还有以下限制:
1)政府及代办机构的证券总共至少要购进400万元;
2)所购证券的平均信用等级不超过1.4(信用等级数字越小,信用程序越高);
3)所购证券的平均到期年限不超过5年。
其中信用等级和到期年限可理解为每万元的信用等级和到期年限
表1
证券名称
证券种类
信用等级(每万元)
到期年限(每万元)
到期税前收益(%)
A
市政
2
列出线性规划模型,然后用Lingo求解,根据结果报告得出解决方案。
2、指派问题:6个人计划做6项工作,其效益如下表(”-”表示某人无法完成某项工作),求一种指派方式,使得每个人完成一项工作,并使得总收益最大。所建模型最好具有推广性。
人
工作1
工作2
工作3
工作4
工作5
工作6
1
20
15
16
5
4
7
2
17
15
与1相比收益增加,投资方案不改变;
当证券C的税前收益率减少到4.8%
与1相比,收益减少,应改变投资方案
四、实验总结(给出完成了哪些题,是否实现了实验目的要求?)
33
12
8
6
3
9
12
18
16
30
13
4
12
8
11
27
19
14
5
-
7
10
21
10
32
6
-
-
-
6
11
13
思考题,有限制的运输问题:6个发点6个收点,其供应量、接收量和运费如下表1(”-”表示某个发电无法向某个收点运输货物),如果某个发点向某个收点运输货物,则运输量不得低于15个单位。求运输方案,使得总费用最小。所建模型最好具有推广性。
收点1
收点2
收点3
收点4
收点5
收点6
供应量
发点1
20
15
16
5
4
7
20
发点2
17
15
33
12
8
6
30
发点3
9
12
18
ห้องสมุดไป่ตู้16
30
13
50
发点4
12
8
11
27
19
14
40
发点5
-
7
10
21
10
32
30
发点6
-
-
-
6
11
13
30
接受量
30
50
40
30
30
20
三、实验过程
实验一
1
2
3
当A证券税前利益率增加到4.5%
9
4.3
B
代办机构
2
15
5.4
C
政府
1
4
5.0
D
政府
1
3
4.4
E
市政
5
2
4.5
(1)若该经理有1000万元资金,应如何投资?
(2)若该经理有1000万元资金,如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作?
(3)在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变?