线性规划的灵敏度分析实验报告

合集下载

线性规划问题及灵敏度分析

线性规划问题及灵敏度分析

实验一 线性规划问题及灵敏度分析实验目的:了解WinQSB 软件在Windows 环境下的文件管理操作,熟悉软件界面内容,掌握操作命令。

用WinQSB 软件求解线性规划,掌握winQSB 软件写对偶规划,灵敏度分析和参数分析的操作方法。

实验每组人数及学时:组人数1人,学时数:4学时 实验环境:装有WinQSB 软件的个人电脑 实验类型:验证性 实验内容:一、 用WinQSB 软件求解线性规划的方法:操作步骤:1.将WinQSB 文件复制到本地硬盘;在WinQSB 文件夹中双击setup.exe 。

2.指定安装WinQSB 软件的目标目录(默认为C:\ WinQSB )。

3. 安装过程需输入用户名和单位名称(任意输入),安装完毕之后,WinQSB 菜单自动生成在系统程序中。

4.熟悉WinQSB 软件子菜单内容及其功能,掌握操作命令。

5.求解线性规划。

启动程序 开始→程序→WinQSB→Linear and Integer Programming 。

6.学习例题 点击File→Load Problem→lp.lpp, 点击菜单栏Solve and Analyze 或点击工具栏中的图标用单纯形法求解,观赏一下软件用单纯形法迭代步骤。

用图解法求解,显示可行域,点击菜单栏Option →Change XY Ranges and Colors,改变X1、X2的取值区域(坐标轴的比例),单击颜色区域改变背景、可行域等8种颜色,满足你的个性选择。

下面结合例题介绍WinQSB 软件求解线性规划的操作步骤及应用。

用WinQSB 软件求解下列线性规划问题:1234max 657Z x x x x =+++s.t. 12341234123123431234269260852150730001020,,0,x x x x x x x x x x x x x x x x x x x x +++≤⎧⎪-+-≥⎪⎪++=⎪-≥⎨⎪-≥⎪≤≤⎪⎪≥⎩无约束解:应用WinQSB 软件求解线性规划问题不必化为标准型,如果是可以线性化的模型则先线性化,对于有界变量及无约束变量可以不用转化,只需要修改系统的变量类型即可,对于不等式约束可以在输入数据时直接输入不等式符号。

实验线性规划图解法灵敏性分析

实验线性规划图解法灵敏性分析

实验3 线性规划的灵敏性分析专业班级信息121 班学号201212030120 姓名刘帅报告日期实验类型:●验证性实验○综合性实验○设计性实验实验目的:熟练线性规划图解法的灵敏性分析。

实验内容:线性规划的灵敏性分析4个(题目自选b,c灵敏性分析)实验原理在线性规划图解法求出最优解的情况下,分析b,c分别变化对最优解的影响,确定最优解的变化范围,在变化的情况下能求出最优解。

实验步骤1 要求上机实验前先编写出程序代码2 编辑录入程序3 调试程序并记录调试过程中出现的问题及修改程序的过程4 经反复调试后,运行程序并验证程序运行是否正确。

5 记录运行时的输入和输出。

预习编写程序代码:实验报告:根据实验情况和结果撰写并递交实验报告。

(1) 唯一最优解:max z=x1+x2⎪⎩⎪⎨⎧≥≤+≤+02,182126221X X X X X X建立simplex.m 文件function [x,z,flg,sgma]=simplex(A,A1,b,c,m,n,n1,cb,xx)% A,b are the matric in A*x=b% c is the matrix in max z=c*x% A1 is the matric in simplex table% m is the numbers of row in A and n is the column number in A% n1 is the nubers of artificial variables,and artificial variables are default at the last % n1 variables in x.% cb is the worth coefficient matrix for basic variables% xx is the index matrix for basic variables% B1 is the invers matrix for the basic matrix in simplex table.The initial % matrix is default as the last m con in the matrix A.x=zeros(n,1)。

线性规划模型 实验报告

线性规划模型 实验报告
可设多个变量 x1~x16
M文件:
c=-[190,90,244,193,261,199,170,110,260,150,280,165,140,80,186,103]';
L=zeros(16,1);
H=[31,52,22,41,10,60,25,33,20,31,8,41,34,59,13,15];
烤制部有10座大烤炉,每座烤炉的容量是每天出140台,每台可容纳10个唐师面包或5个更大的宋赐面包。可以在一台上同时放两种面包,只需注意宋赐面包所占的空间是唐师面包的两倍。
调配部每天可以调配最多8000个唐师面包和5000个宋赐面包。有两个自动调配器分别用于两种面包的调配而不至于发生冲突。
田园公司决定找出这两种面包产品的最佳产量配比,即确定两种面包的日产量,使得在公司面包厂的现有生产条件下利润最高。
L=zeros(5,1);
[x,fmin]=linprog(c,[],[],Aeq,Beq,L,H);
Min=fmin+10400
X=[x(1) x(2) x(3) x(4) x(5)]
求解结果
Min =
7.5500e+003
X =
600.0000 270.0167 220.0167 350.0000 300.0000
所以
从Toronto和Detroit到Chicago运输的货物为 600 和 270
从从Toronto和Detroit到Buffalo运输的货物为 0 和 230
从Chicago运输到NewYork、Phila.和St.louis的货物为分别 220 、350 、300
剩余的将从Buffalo运往。
X =
Columns 1 through 12

3.6 线性规划灵敏度分析(二)

3.6 线性规划灵敏度分析(二)

解 把改进工艺结构的产品Ⅰ看作产品Ⅰ′, x1′为其产量。于是在原计
算的最终表中以x1′代替x1,计算对应x1′的列向量。
B −1P1'
=
0 −2
0.25 0.5
0 2 1.25 1 5 = 0.5
0.5
− 0.125
0
2
0.375
同时计算出x1′的检验数为
c1′-CBB-1P1′=4-(1.5,0.125,0)(2,5,2)T=0.375
7
例 分析原计划生产产品的工艺结构发生变化。仍以第1章例1为例 若原计划生产产品Ⅰ的工艺结构有了改进,这时有关它的技术系数 向量变为P1′=(2,5,2)T,每件利润为4元,试分析对原最优计划有什 么影响?
解 把改进工艺结构的产品Ⅰ看作产品Ⅰ′, x1′为其产量。于是在原计
算的最终表中以x1′代替x1,计算对应x1′的列向量。
(P '1 P2
Pm )x 'B + NxN + xs = b
B−1(P '1 P2
Pm )x 'B + B−1NxN + B−1xs = B−1b
6
例 分析原计划生产产品的工艺结构发生变化。仍以第1章例1为例 若原计划生产产品Ⅰ的工艺结构有了改进,这时有关它的技术系数 向量变为P1′=(2,5,2)T,每件利润为4元,试分析对原最优计划有什 么影响?
解 以x1′代替x1,并计算列向量
0
B −1P1'
=

2
0.5
0.25 0.5 − 0.125
0 4 1.25
1 5 = − 3.5
0
2
1.375
x1′的检验数为c1′-CBB-1P1′=4-(1.5,0.125,0)(4,5,2)T = -2.625。

线性规划实验报告

线性规划实验报告

线性规划实验报告线性规划实验报告1.路径规划问题第一步:在excel表格中建立如下表格,详细列名各节点路线及其权重。

起点终点权数0-1 节点进出和V1 V2 5 V1 1V1 V3 2 V2 0V2 V4 2 V3 0V2 V5 7 V4 0V3 V4 7 V5 0V3 V6 4 V6 0V4 V5 6 V7 -1V4 V6 2V5 V6 1V5 V7 3V6 V7 6 目标第二步:在进出和一列以公式表示各节点的进出流量和。

V1=V12+V13;V2=V24+V25-V12;V3=V34+V36-V13;V4=V45+V46-V24-V34;V5=V56+V57-V25-V45;V6=V67-V36-V46-V56V7=-V57-V67.第三步:设置目标函数为SUMPRODUCT(C2:C12,D2:D12)第四步:设置可变单元格和限制条件。

选定0-1一列,D2:D12为可变单元格。

可变单元格数值介于0-1之间,且为整数。

进出和数值与设定值相等。

第五步:规划求解,结果如下。

由表可知,从V1至V7的最短路径为V1——V3——V6——V7,最小目标值为12。

起点终点权重0-1 节点进出和V1 V2 5 0 V1 1 = 1 V1 V3 2 1 V2 0 = 0 V2 V4 2 0 V3 0 = 0 V2 V5 7 0 V4 0 = 0 V3 V4 7 0 V5 0 = 0 V3 V6 4 1 V6 0 = 0 V4 V5 6 0 V7 -1 = -1 V4 V6 2 0V5 V6 1 0V5 V7 3 0V6 V7 6 1 目标函数12Microsoft Excel 11.0 运算结果报告工作表 [复件 11.xls]Sheet2报告的建立: 2013-12-12 14:07:00目标单元格 (最小值)单元格名字初值终值$F$12 目标函数进出和12 12可变单元格单元格名字初值终值$D$2 V2 0-1 2.22E-16 0$D$3 V3 0-1 1 1$D$4 V4 0-1 0 0$D$5 V5 0-1 2.22045E-16 0$D$6 V4 0-1 0 0$D$7 V6 0-1 1 1$D$8 V5 0-1 0 0$D$9 V6 0-1 0 0$D$10 V6 0-1 0 0$D$11 V7 0-1 2.22045E-16 0$D$12 V7 0-1 1 1约束单元格名字单元格值公式状态型数值$F$2 V1 进出和 1 $F$2=$I$2 未到限制值$F$3 V2 进出和0 $F$3=$I$3 未到限制值$F$4 V3 进出和0 $F$4=$I$4 未到限制值$F$5 V4 进出和0 $F$5=$I$5 未到限制值$F$6 V5 进出和0 $F$6=$I$6 未到限制值$F$7 V6 进出和0 $F$7=$I$7 未到限制值$F$8 V7 进出和-1 $F$8=$I$8 未到限制值$D$2 V2 0-1 0 $D$2<=1 未到限制值1$D$3 V3 0-1 1 $D$3<=1 到达限制值$D$4 V4 0-1 0 $D$4<=1 未到限制值1$D$5 V5 0-1 0 $D$5<=1 未到限制值1$D$6 V4 0-1 0 $D$6<=1 未到限制值1$D$7 V6 0-1 1 $D$7<=1 到达限制值$D$8 V5 0-1 0 $D$8<=1 未到限制值1$D$9 V6 0-1 0 $D$9<=1 未到限制值1$D$10 V6 0-1 0 $D$10<=1 未到限制值1$D$11 V7 0-1 0 $D$11<=1 未到限制值1$D$12 V7 0-1 1 $D$12<=1 到达限制值$D$2 V2 0-1 0 $D$2>=0 到达限制值$D$3 V3 0-1 1 $D$3>=0 未到限制值1$D$4 V4 0-1 0 $D$4>=0 到达限制值$D$5 V5 0-1 0 $D$5>=0 到达限制$D$6 V4 0-1 0 $D$6>=0 到达限制值$D$7 V6 0-1 1 $D$7>=0 未到限制值1$D$8 V5 0-1 0 $D$8>=0 到达限制值$D$9 V6 0-1 0 $D$9>=0 到达限制值$D$10 V6 0-1 0 $D$10>=0 到达限制值$D$11 V7 0-1 0 $D$11>=0 到达限制值$D$12 V7 0-1 1 $D$12>=0 未到限制值1$D$2 V2 0-1 0 $D$2=整数到达限制值$D$3 V3 0-1 1 $D$3=整数到达限制值$D$4 V4 0-1 0 $D$4=整数到达限制值$D$5 V5 0-1 0 $D$5=整数到达限制值$D$6 V4 0-1 0 $D$6=整数到达限制值$D$7 V6 0-1 1 $D$7=整数到达限制值$D$8 V5 0-1 0 $D$8=整数到达限制$D$9 V6 0-1 0 $D$9=整数到达限制值$D$10 V6 0-1 0 $D$10=整数到达限制值$D$11 V7 0-1 0 $D$11=整数到达限制值$D$12 V7 0-1 1 $D$12=整数到达限制值2.运用Excel构建线性规划模型与求解实验报告一、实验目的1.掌握线性规划问题建模基本方法。

线性规划的灵敏度分析

线性规划的灵敏度分析
23
,
b3
33
5
1
,
5 1
,
15
1
5,5,15
故有 15 b3 5,b3 在[0,20]上变化时最优基不变。
若线性规划模型是一个生产计划模型,当求出cj或bi 的最大允许变化范围时,就可随时根据市场的变化来掌握 生产计划的调整。
灵敏度分析方法还可以分析工艺系数aij的变化对最优解 的影响,对增加约束、变量或减少约束、变量等情形的分 析,下面以一个例子来说明这些分析方法。
(8)增加新约束 5x1 x2 2x3 10
§2.4 灵敏度分析
Ch2 Dual Problem
Sensitivity Analysis
2023年2月1日星期三 Page 19 of 34
【解】加入松弛变量x4、x5、x6,用单纯形法计算,最优表如2-7所 示。
表2-7
Cj
2 -1
4
0
0
0
b
CB XB x1
x2
x3
x4
x5
x6
4 x3 0 5/7
1
1/7 3/7
0
2
2 x1 1 2/7
0 -1/7 4/7
0
1
0 x6 0 -2
0
0
-1
1
1
λj
0 -31/7 0 -2/7 -20/7 0
§2.4 灵敏度分析 Sensitivity Analysis
Ch2 Dual Problem
2023年2月1日星期三 Page 20 of 34
§2.4 灵敏度分析 Sensitivity Analysis
cj
-2 1
-4
0

第3章线性规划的灵敏度分析

第3章线性规划的灵敏度分析

又获得了10个小时的切割与印染时间,我 们可以扩展问题的可行域,如图3-3所示。可 行域变大了,现在我们考虑是否有新的解会使
目标函数值更大。运用图解法可以看出,极点 S=527.5,D=270.5是最优解点。新的目标函数 值为10×527.5 + 9×270.5=7711.75美元,比原 来利润增加了7711.75 – 7688.00=43.75美元。 因此,利润的增加率为43.75/10=4.375美元/小 时。
在式(3-2)中,我们计算出只要满足 下列条件,极点③仍然是最优点
如果CS升高到13美元,同时使CD降低到8美 元,新的目标函数斜率将变成
由于这个值要小于下限,因此当前的解 S=540,D=252不再是最优的。把CS=13,CD =8代入,可得出极点②是新的最优解。
观察最优范围,我们得出结论,无论是
(3-2) 为了计算标准袋利润最优的范围,我们 假设高级袋的利润CD=9,代入式(3-2), 我们得到: 从左边的不等式,我们得到
因此
从右边的不等式,我们得到
因此, 综合标准袋利润CS的极限,标准袋利润最优 范围为:
6.3≤CS≤13.5
在最初Par公司的问题中,标准袋的利润 是10美元。最优解是540个标准袋和252个高级 袋。标准袋利润CS的最优范围告诉Par公司的 管理者:在其他系数不变的情况下,只要标准 袋的利润在6.3美元与13.5美元之间,540个标 准袋和252个高级袋总是最优产量。然而值得 注意的是,即使产量不变,总的利润也可能由 于每一个标准袋利润的变化而变化。
灵敏度分析还可以用来分析模型中的系
数哪个更能左右最优解。比如,管理层认为 高级袋的利润9美元只是一个估计量。如果 通过灵敏度分析得到,当高级袋的利润在 6.67美元与14.29美元之间变化时,模型的最 优解都是540个标准袋和252个高级袋,那么 管理层就必须思考每个高级袋获利9美元这 个估计量的可信程度有多大了。管理层希望 知道如果高级袋的利润下降,最优产量会怎 样变化。

线性规划的灵敏度分析

线性规划的灵敏度分析

结果显示:
最优解:x1=24;x2=24;x3=5 最优值max=134.5;
模型(2)的建立与求解
(2)数学模型为:

建立LP模型 max z 3x1 2x 2 2.9x 3 18 model: max=3*x1+2*x2+2.9*x3-18; 8x1 2x 2 10x 2 300 8*x1+2*x2+10*x3<=300; 10x1 5x 2 8x 3 460 10*x1+5*x2+8*x3<=460; s.t. 2x1 13x 2 10x 3 420 2*x1+13*x2+10*x3<=420; x ,x ,x 0 @gin(x1); 1 2 3 x1 ,,x 2,x 3为整数 @gin(x2); @gin(x3); end
8x1 2x 2 10x 2 12x 4 4x 5 300 10x1 5x 2 8x 3 5x 4 4x 5 400 s.t. 2x1 13x 2 10x 3 10x 4 12x 5 420 x ,x ,x ,x ,x 0 1 2 3 4 5 x1 ,,x 2,x 3,x 4,x 5为整数
max=3*x1+2*x2+2.9*x3+2.1*x4+1.87*x5; 8*x1+2*x2+10*x3+12*x4+4*x5<=300; 10*x1+5*x2+8*x3+5*x4+4*x5<=400; 2*x1+13*x2+10*x3+10*x4+12*x5<=420; @gin(x1); @gin(x2); @gin(x3); @gin(x4); @gin(x5); End
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. . . . .. . c. .. .. . 《运筹学/线性规划》实验报告

实验室: 实验日期: 实验项目 线性规划的灵敏度分析 系 别 数学系

姓 名 学 号 班 级 指导教师 成 绩 . . . . .. .

c. .. .. . 一 实验目的 掌握用Lingo/Lindo对线性规划问题进行灵敏度分析的方法,理解解报告的内容。初

步掌握对实际的线性规划问题建立数学模型,并利用计算机求解分析的一般方法。

二 实验环境 Lingo软件

三 实验内容(包括数学模型、上机程序、实验结果、结果分析与问题解答等) 例题2-10 MODEL: [_1] MAX= 2 * X_1 + 3 * X_2 ; [_2] X_1 + 2 * X_2 + X_3 = 8 ; [_3] 4 * X_1 + X_4 = 16 ; [_4] 4 * X_2 + X_5 = 12 ; END 编程 sets: is/1..3/:b; js/1..5/:c,x; links(is,js):a; endsets max=sum(js(J):c(J)*x(J)); for(is(I):sum(js(J):a(I,J)*x(J))=b(I)); data: c=2 3 0 0 0; b=8 16 12; a=1 2 1 0 0 4 0 0 1 0 0 4 0 0 1; end data end

灵敏度分析 Ranges in which the basis is unchanged: . . . . .. . c. .. .. . Objective Coefficient Ranges Current Allowable Allowable Variable Coefficient Increase Decrease X( 1) 2.000000 INFINITY 0.5000000 X( 2) 3.000000 1.000000 3.000000 X( 3) 0.0 1.500000 INFINITY X( 4) 0.0 0.1250000 INFINITY X( 5) 0.0 0.7500000 0.2500000

Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease 2 8.000000 2.000000 4.000000 3 16.00000 16.00000 8.000000 4 12.00000 INFINITY 4.000000 当b2在 [8,32]之间变化时 最优基不变

最优解 Global optimal solution found at iteration: 0 Objective value: 14.00000 Variable Value Reduced Cost B( 1) 8.000000 0.000000 B( 2) 16.00000 0.000000 B( 3) 12.00000 0.000000 C( 1) 2.000000 0.000000 C( 2) 3.000000 0.000000 C( 3) 0.000000 0.000000 C( 4) 0.000000 0.000000 C( 5) 0.000000 0.000000 X( 1) 4.000000 0.000000 X( 2) 2.000000 0.000000 X( 3) 0.000000 1.500000 X( 4) 0.000000 0.1250000 X( 5) 4.000000 0.000000 A( 1, 1) 1.000000 0.000000 . . . . .. . c. .. .. . A( 1, 2) 2.000000 0.000000 A( 1, 3) 1.000000 0.000000 A( 1, 4) 0.000000 0.000000 A( 1, 5) 0.000000 0.000000 A( 2, 1) 4.000000 0.000000 A( 2, 2) 0.000000 0.000000 A( 2, 3) 0.000000 0.000000 A( 2, 4) 1.000000 0.000000 A( 2, 5) 0.000000 0.000000 A( 3, 1) 0.000000 0.000000 A( 3, 2) 4.000000 0.000000 A( 3, 3) 0.000000 0.000000 A( 3, 4) 0.000000 0.000000 A( 3, 5) 1.000000 0.000000

Row Slack or Surplus Dual Price 1 14.00000 1.000000 2 0.000000 1.500000 3 0.000000 0.1250000 4 0.000000 0.000000

例题2-11 模型 MAX 2 X( 1) + 3 X( 2) SUBJECT TO 2] X( 1) + 2 X( 2) + X( 3) = 12 3] 4 X( 1) + X( 4) = 16 4] 4 X( 2) + X( 5) = 12 END

编程 sets: is/1..3/:b; js/1..5/:c,x; links(is,js):a; . . . . .. . c. .. .. . endsets max=sum(js(J):c(J)*x(J)); for(is(I):sum(js(J):a(I,J)*x(J))=b(I)); data: c=2 3 0 0 0; b=12 16 12; a=1 2 1 0 0 4 0 0 1 0 0 4 0 0 1; end data end

最优解 Global optimal solution found at iteration: 2 Objective value: 17.00000 Variable Value Reduced Cost B( 1) 12.00000 0.000000 B( 2) 16.00000 0.000000 B( 3) 12.00000 0.000000 C( 1) 2.000000 0.000000 C( 2) 3.000000 0.000000 C( 3) 0.000000 0.000000 C( 4) 0.000000 0.000000 C( 5) 0.000000 0.000000 X( 1) 4.000000 0.000000 X( 2) 3.000000 0.000000 X( 3) 2.000000 0.000000 X( 4) 0.000000 0.5000000 X( 5) 0.000000 0.7500000 A( 1, 1) 1.000000 0.000000 A( 1, 2) 2.000000 0.000000 A( 1, 3) 1.000000 0.000000 A( 1, 4) 0.000000 0.000000 A( 1, 5) 0.000000 0.000000 A( 2, 1) 4.000000 0.000000 . . . . .. . c. .. .. . A( 2, 2) 0.000000 0.000000 A( 2, 3) 0.000000 0.000000 A( 2, 4) 1.000000 0.000000 A( 2, 5) 0.000000 0.000000 A( 3, 1) 0.000000 0.000000 A( 3, 2) 4.000000 0.000000 A( 3, 3) 0.000000 0.000000 A( 3, 4) 0.000000 0.000000 A( 3, 5) 1.000000 0.000000

Row Slack or Surplus Dual Price 1 17.00000 1.000000 2 0.000000 0.000000 3 0.000000 0.5000000 4 0.000000 0.7500000

最优解(4,3,2,0,0)最优值z=17 分析 Ranges in which the basis is unchanged:

Objective Coefficient Ranges Current Allowable Allowable Variable Coefficient Increase Decrease X( 1) 2.000000 INFINITY 2.000000 X( 2) 3.000000 INFINITY 3.000000 X( 3) 0.0 1.500000 INFINITY X( 4) 0.0 0.5000000 INFINITY X( 5) 0.0 0.7500000 INFINITY

Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease 2 12.00000 INFINITY 2.000000 3 16.00000 8.000000 16.00000 4 12.00000 4.000000 12.00000

相关文档
最新文档