线性规划与灵敏度分析练习题

合集下载

线性规划练习题

线性规划练习题

线性规划练习题一、选择题1. 线性规划问题中,目标函数的最优值是:A. 最大化B. 最小化C. 既可能最大化也可能最小化D. 不确定2. 下列哪个不是线性规划的基本假设?A. 目标函数是线性的B. 约束条件是线性的C. 约束条件是连续的D. 约束条件是不等式的3. 线性规划问题的图形解法中,可行域的边界条件是:A. 等式B. 不等式C. 既可能是等式也可能是不等式D. 无法确定4. 单纯形法是解决线性规划问题的哪种算法?A. 图形解法B. 枚举法C. 迭代法D. 直接法5. 以下哪个条件不是线性规划问题的基本假设?A. 目标函数是线性的B. 约束条件是线性的C. 目标函数和约束条件都是线性的D. 约束条件是确定的二、填空题6. 线性规划问题中,目标函数的最优解可能位于可行域的_________。

7. 单纯形法中,如果目标函数的系数在所有基变量上的系数都是_________,则该基可行解是最优解。

8. 线性规划问题中,如果目标函数是最大化问题,当可行域是无界的,则最优解是_________。

9. 线性规划问题中,如果约束条件中存在_________,则该问题可能没有可行解。

10. 单纯形法中,如果某一非基变量的系数在目标函数中为_________,则该变量在当前基可行解中为零。

三、简答题11. 解释线性规划问题中,为什么需要引入松弛变量?12. 描述单纯形法的基本步骤,并说明每一步的目的。

13. 线性规划问题中,如果目标函数是最大化问题,当可行域有界时,最优解可能出现在哪些位置?14. 解释线性规划问题中的对偶问题,并说明对偶问题与原问题之间的关系。

15. 什么是退化现象?在单纯形法中如何避免退化现象?四、计算题16. 考虑以下线性规划问题:Max Z = 3x + 4ys.t.2x + y ≤ 10x + 2y ≤ 8x, y ≥ 0求该问题的最优解,并给出最优值。

17. 假设你有一个生产问题,需要决定生产两种产品A和B的数量,以最大化利润。

实验二___线性规划灵敏度分析

实验二___线性规划灵敏度分析

实验二线性规划模型及灵敏度分析(一)实验目的:掌握使用Excel软件进行灵敏度分析的操作方法。

(二)实验内容和要求:用Excel软件完成案例。

(三)实例操作:(1)建立电子表格模型;(2)使用Excel规划求解功能求解问题并生成“敏感性报告”;(3)结果分析:哪些问题可以直接利用“敏感性报告”中的信息求解,哪些问题需要重新规划求解,并对结果提出你的看法;(4)在Word文档中书写实验报告,包括线性规划模型、电子表格模型、敏感性报告和结果分析等。

案例1 市场调查问题某市场调查公司受某厂的委托,调查消费者对某种新产品的了解和反应情况。

该厂对市场调查公司提出了以下要求:(1)共对500个家庭进行调查;(2)在被调查家庭中,至少有200个是没有孩子的家庭,同时至少有200个是有孩子的家庭;(3)至少对300个被调查家庭采用问卷式书面调查,对其余家庭可采用口头调查;(4)在有孩子的被调查家庭中,至少对50%的家庭采用问卷式书面调查;(5)在没有孩子的被调查家庭中,至少对60%的家庭采用问卷式书面调查。

对不同家庭采用不同调查方式的费用如下表所示:市场调查费用表家庭类型调查费用(元)问卷式书面调查口头调查有孩子的家庭50 30没有孩子的家庭40 25问:市场调查公司应如何进行调查,使得在满足厂方要求的条件下,使得总调查费用最少?案例2 经理会议建议的分析某公司生产三种产品A1,A2,A3,它们在B1,B2两种设备上加工,并耗用C1,C2两种原材料,已知生产单位产品耗用的工时和原材料以及设备和原材料的每天最多可使用量如下表所示:生产三种产品的有关数据资源产品A1 产品A2 产品A3 每天最多可使用量设备B1(min) 1 2 1 430设备B2(min) 3 0 2 460原料C1(kg) 1 4 0 420原料C2(kg) 1 1 1 300每件利润(元) 30 20 50已知每天对产品A2的需求不低于70件,对A3不超过240件。

附1:用LINGO求解线性规划的例子一奶制品加工厂用牛奶生产A1、A2

附1:用LINGO求解线性规划的例子一奶制品加工厂用牛奶生产A1、A2

附1:用LINGO求解线性规划的例子一奶制品加工厂用牛奶生产A1、A2两种奶制品,1桶牛奶可以在设备甲上用12小时加工成3公斤A1,或者在设备乙上用8小时加工成4公斤A2。

根据市场需求,生产的A1、A2能全部售出,且每公斤A1获利24元,每公斤A2获利16元。

现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间为480小时,并且设备甲每天至多能加工100公斤A1,设备乙的加工能力没有限制。

试为该厂制定一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题:1)若用35元可以购买到1桶牛奶,应否作这项投资?若投资,每天最多购买多少桶牛奶?2)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元?3)由于市场需求变化,每公斤A1的获利增加到30元,应否改变生产计划?数学模型:设每天用x1桶牛奶生产A1 ,用x2桶牛奶生产A2目标函数:设每天获利为z元。

x1桶牛奶可生产3x1公斤A1,获利24*3x,x2桶牛奶可生产4*x2公1斤A2,获利16*4x2,故z=72x1+64x2约束条件:原料供应:生产A1、A2的原料(牛奶)总量不超过每天的供应50桶,即x1+x2≤50劳动时间:生产A1、A2的总加工时间不超过每天正式工人总的劳动时间480小时,即12x1+8x2≤480设备能力:A1的产量不得超过设备甲每天的加工能力100小时,即3x1≤100≥0非负约束:x1、x2均不能为负值,即x1≥0,x2综上所述可得max z=72x1+64x2s.t.x1+x2≤5012x1+8x2≤4803x1≤100x1≥0,x2≥0显然,目标函数和约束条件都是线性的,这是一个线性规划(LP),求出的最优解将给出使净利润最大的生产计划,要讨论的问题需要考虑参数的变化对最优解和影响,一般称为敏感性(或灵敏度)分析。

LINGO求解线性规划用LINGO求解线性规划时,首先在LINGO软件的模型窗口输入一个LP模型,模型以MAX或MIN 开始,按线性规划问题的自然形式输入(见下面例子所示)。

《运筹学》试题

《运筹学》试题

《运筹学》试题一、名词解释(20分)对偶可行基影子价格灵敏度分析平衡运输问题不平衡运输问题纯整数规划0—1规划问题混合整数规划网络最大流问题二、选择题(20分)1、我们可以通过()来验证模型最优解。

A观察B应用C实验D调查2、建立运筹学模型的过程不包括()阶段。

A观察环境B数据分析C模型设计D模型实施3、建立模型的一个基本理由是去揭晓那些重要的或有关的()A数量B变量 C 约束条件 D 目标函数4、模型中要求变量取值()A可正B可负C非正D非负5、运筹学研究和解决问题的效果具有()A连续性 B 整体性 C 阶段性 D 再生性6、如果线性规划问题有可行解,那么该解必须满足()A所有约束条件 B 变量取值非负 C 所有等式要求 D 所有不等式要求7、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在()集合中进行搜索即可得到最优解。

A基 B 基本解 C 基可行解 D 可行域8、线性规划问题是针对()求极值问题.A约束B决策变量 C 秩D目标函数9、如果第K个约束条件是“≤”情形,若化为标准形式,需要()A左边增加一个变量B右边增加一个变量C左边减去一个变量D右边减去一个变量10、若某个bk≤0, 化为标准形式时原不等式()A不变 B 左端乘负1 C 右端乘负1 D 两边乘负1三、填空题(20分)1、线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都有一个求()的线性规划问题与之对应,反之亦然。

2、在一对对偶问题中,原问题的约束条件的右端常数是对偶问题的()。

3、如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为()。

4、对偶问题的对偶问题是()。

5、若原问题可行,但目标函数无界,则对偶问题()。

6、在某线性规划问题中,已知某资源的影子价格为Y1,相应的约束常数b1,在灵敏度容许变动范围内发生Δb1的变化,则新的最优解对应的最优目标函数值是()(设原最优目标函数值为Z﹡)7、若某约束常数bi的变化超过其容许变动范围,为求得新的最优解,需在原最优单纯形表的基础上运用()求解。

第3篇 线性规划模型 - 题目

第3篇 线性规划模型 - 题目

第3篇 线性规划模型线性规划通常研究资源的最优利用问题.例如,在任务确定的条件下,如何用最少的资源(如资金、原材料、人工、时间、设备等)去完成确定的任务;在资源一定的条件下,如何组织生产,使得成本最小,或者利润最大,等等.线性规划可以分为连续规划、整数规划和0-1规划.3.1 生产计划问题例3.1 一个奶制品加工厂用牛奶生产1A 、2A 两种奶制品,1桶牛奶可以在甲车间用12小时加工成3千克1A ,或者在乙车间用8小时加工成4千克2A .根据市场需求,生产出的1A 、2A 能够全部售出,且每千克1A 获利24元,每千克2A 获利16元.现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间为480小时,并且甲车间的设备每天至多能加工100千克1A ,乙车间的设备的加工能力可以认为没有上限限制,(即加工能力足够大),试为该厂制订一个生产计划,使得每天的获利最大.3.2 零件配套问题例3.2 某产品由2件甲零件和3件乙零件组装而成。

两种零件必须在设备A 、B 上加工,每件甲零件在A 、B 上的加工时间分别为5分钟和9分钟,每件乙零件在A 、B 上的加工时间分别为4分钟和10分钟。

现有2台设备A 和3台设备B ,每天可供加工时间为8小时。

为了保持两种设备均衡负荷生产,要求一种设备每天的加工总时间不超过另一种设备总时间1小时。

怎样安排设备的加工时间使得每天加工的产品的产量最大?3.3 背包问题例3.3 一个旅行者的背包最多只能装20千克物品. 现有4件物品的重量分别为4千克、6千克、6千克、8千克,4件物品的价值分别为1000元,1500元, 900元, 2100元. 这位旅行者应携带哪些物品使得携带物品的总价值最大?3.4 选择加工方式问题例3.4 企业计划生产4000件某种产品,该产品可自己加工、外协加工任意一种形式生产.已知每种生产的固定成本、生产该产品的单件成本以及每种生产形式的最大加工数量如表3-1所示,怎样安排产品的加工使总成本最小.3.5 灵敏度分析在线性规划模型(3-6)中,对于价值系数j c 、资源系数i b 和工艺系数ij a ,当其中的某些参数发生微小的变化时,最优解和最优值的变化情况怎样?这就是线性规划的灵敏度分析.具体来说,灵敏度分析主要分析以下2个方面:1.系数变化时,最优解有什么变化;2.系数在什么范围内变化时,原最优解不变. 我们以例3.1为例来说明灵敏度分析的方法.2.5.1 对价值系数j c 进行灵敏度分析在模型(3-6)中,假设每千克1A 获利由24元提高到25元,那么目标函数为127564f x x =+.模型的其余部分都不变,使用lingo 软件求解,程序和结果见附录9. 从求解结果来看,最优解没有变化,仍然是*(20,30)T x =.当然由于价格变大了,最优值必然会增加的(增加了60元).反复实验,可以发现,只要价格在[21,31]内,最优解都是不变的.这说明最优生产方案对于奶制品1A 的价格变化不是很敏感.类似地可以分析奶制品2A 对价格的敏感性. 2.5.2 对资源系数i b 进行灵敏度分析在模型(3-6)中,假设每天能得到51桶牛奶的供应,那么,原料供应约束为1251x x +≤.其余部分都不变,使用lingo 软件求解,程序和结果见附录10. 从求解结果来看,最优解发生了变化,是*(18,33)T x =.最优值增加了48元.这说明最优生产方案对于牛奶的供应量的变化是非常敏感的.我们把48元叫做1桶牛奶的影子价格,它记录在“Dual Price ”一栏.影子价格的功能是,如果购买1桶牛奶的成本低于48元,就可以扩大购买量来扩大生产规模,因为这样可以增加利润;如果购买1桶牛奶的成本高于48元,就可以卖掉牛奶来压缩生产规模,因为这样也可以增加利润;其实,有关资源系数的灵敏度分析可以直接根据原模型(3-6)的求解结果“Dual Price ”一栏的数据进行,而不必重新建模.比如,对于劳动时间约束,每增加1小时,总收入增加2元.而对于设备甲的加工能力约束,就完全没有敏感性了,因为此时还剩余46小时没有用完.2.5.3 对工艺系数ij a 进行灵敏度分析在模型(3-6)中,假设1桶牛奶可以在甲车间用13小时加工成3千克1A (加工时间增加了1小时),劳动时间约束变为12138480x x +≤.其余部分都不变,使用lingo 软件求解,程序和结果见附录11. 从求解结果来看,最优解发生了变化,是*(16,34)Tx =.生产奶制品1A 的牛奶减少4桶,而生产奶制品2A 的牛奶增加4桶,这说明最优生产方案对于1A 的工艺系数是非常敏感的.由于生产效率降低了,所以应该减少奶制品1A 的生产规模.并不是对每个系数都要进行灵敏度分析.比如,在本例中,工艺系数在一定时期内是相对固定的,除非企业要进行技术改造,因此对工艺系数就没有必要进行灵敏度分析.3.6 两辆铁路平板车的装货问题例3.5 有7种规格的包装箱要装到两辆平板车上去,包装箱的宽和高是一样的,但厚度t (以厘米计)及重量w (以千克计)是不同的。

线性规划练习试题含答案及解析

线性规划练习试题含答案及解析

专业知识整理分享线性规划练习题含答案一、选择题1.已知不等式组2,1,0y x y kx x ≤-+⎧⎪≥+⎨⎪≥⎩所表示的平面区域为面积等于1的三角形,则实数k 的值为A .-1 BD .1 【答案】B【解析】略作出不等式组表示的可行域如右图所示阴影部分,由于AOB ∆的面积为2, AOC ∆的面积为1,所以当直线y=kx+1过点A (2,0),B (0,1故选B 。

2.定义()()max{,}a a b a b b a b ≥⎧⎪=⎨<⎪⎩,已知实数y x ,满足设{}m a x ,2z x y x y=+-,则z 的取值范围是 ( ) A【答案】D【解析】{},2,20max ,22,22,20x y x y x y x y x y z x y x y x y x y x y x y x y ++≥-+-≤⎧⎧=+-==⎨⎨-+<--->⎩⎩, 当z=x+y 时,对应的点落在直线x-2y=0z=2x-y 时,对应的点落在直线x-2y=0的右下3.若实数x ,y 满足⎪⎩⎪⎨⎧≤+≥≥,1234,0,0y x y x 则 )试卷第2页,总12页A .BCD【答案】DP(x,y)与点(-1,-3)连续的斜率,数形结3,,4PA k =应选D4.设,x y ∈R 且满足1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,则2z x y =+的最小值等于 ( )A. 2B. 3C.5D. 9【答案】B【解析】解:因为设,x y ∈R 且满足满足1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩故其可行域为当直线Z=x+2y 过点(1,1)时,z=x+2y 取最小值3, 故选B5.若实数,满足条件则的最大值为( )(A ) (B ) (C ) (D ) 【答案】A【解析】作出如右图所示的可行域,当直线z=2x-y 过点A 时,Z 取得最大值.因为A(3,-3),所以Z max =23(3)9⨯--=,故选A.x y 0,30,03,x y x y x +≥⎧⎪-+≥⎨⎪≤≤⎩2x y -9303-专业知识整理分享6.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-120y x a y x y x ,若目标函数z=2x+6y 的最小值为2,则a =A .1B .2C .3D .4 【答案】A【解析】解:由已知条件可以得到可行域,,要是目标函数的最小值为2,则需要满足直线过x 2y 1+=与x+y=a 的交点时取得。

运筹学灵敏度分析题

运筹学灵敏度分析题

运筹学灵敏度举例1.已知以下线性规划问题max z= 2x 1 +x 2-x 3 s.t. x 1 +2x 2 +x 3 ≤8 -x 1 +x 2 -2x 3≤4x 1,x 2,x 3≥0 的最优单纯形表如下:z x 1 x 5(1) 求使最优基保持不变的c 2=1的变化范围C 2 1+δ-1 0 0 0C B z 2 x 1 0x 53-δ≥0,δ≤3,即c 2≤4。

当c 2=5,即δ=4z x 1 8/2 x 512/3x2进基,x 1离基z x 2 x 5新的最优解为x 1=0,x 2=0,x 3=0,x 4=0,x 5=0,max z=20 (2) 对c 1=2进行灵敏度分析C 2+δ1 -1 0 0 0C B z 2+δ x 1 0x 53203020+≥+≥+≥⎧⎨⎪⎩⎪δδδ,δδδ≥-≥-≥-⎧⎨⎪⎩⎪3232/,当δ≥-3/2时,即c 1≥1/2时,最优基保持不变。

当c 1=4时,δ=4-2=2,最优基保持不变,最优解的目标函数制为z=16+8δ=32。

(3)增加一个新的变量x 6,c 6=4,a 612=⎡⎣⎢⎤⎦⎥。

[]z c c T666620124242-=-=⎡⎣⎢⎤⎦⎥-=-=-W aY B a 61610111213==⎡⎣⎢⎤⎦⎥⎡⎣⎢⎤⎦⎥=⎡⎣⎢⎤⎦⎥- 新的单纯形表为z x 1 x 5x 6进基,x 5离基z x 1 x 6新的最优解为x 1=4,x 2=0,x 3=0,x 4=0,x 5=0,x 6=4,max z=24。

(4)增加一个新的约束x 2+x 3≥2,求新的最优基和最优解。

z x 1 x 5 x 63/13/1用对偶单纯形法求解z xx x x x x RHSz x 1 x 5 x 2新的最优解为x 1=4,x 2=2,x 3=0,x 4=0,x 5=6,x 6=0,max z=10。

2.(1)利润最大化的线性规划模型为:max z= 25x1+12x2+14x3+15x4s.t. 3x1+2x2+x3+4x4≤24002x1+2x3+3x4≤3200x1+3x2+2x4≤1800x1, x2, x3, x4≥0单纯形表为:zx5x6x7x1进基,x5离基zx1x6x7x3进基,x6离基zx1x3x7x2进基,x1离基zx2x3x7最优解为:x1=0,x2=400,x3=1600,x4=0,x5=0,x6=0,x7=600,max z=27200即最优生产计划为:产品A不生产;产品B生产400万件;产品C生产1600万件;产品D不生产,最大利润:27200万元。

EXCEL求解第一章线性规划和灵敏度分析

EXCEL求解第一章线性规划和灵敏度分析
求解线性规划 影子价格和灵敏度分析
线性规划模型的描述
例1:某工厂生产两种新产品:门和窗。经测算,每 生产一扇门需要在车间1加工1小时、在车间3加工3小 时;每生产一扇窗需要在车间2和车间3各加工2小时。 而车间1每周可用于生产这两种新产品的时间为4小 时、车间2为12小时、车间3为18小时。已知每扇门 的利润为300元,每扇窗的利润为500元。根据市场 调查得到的这两种新产品的市场需求状况可以确定, 按当前的定价可确保所有的新产品均能销售出去。 问:该工厂如何安排这两种新产品的生产计划,才 能使总利润最大?
$D$12) 复制E7单元格到E8、E9
EXCEL求解线性规划模型
(3)总利润计算: 在G12单元格输入公式: =C4*C12+D4*D12 或: =SUMPRODUCT(C4:D4,C12:D12)
EXCEL求解线性规划模型
在电子表格中建立线性规划模型步骤总结
收集问题数据; 在电子表格中输入数据(数据单元格); 确定决策变量单元格(可变单元格); 输入约束条件左边的公式(输出单元格)使用
EXCEL求解线性规划模型
2、主要求解结果 ■两种新产品每周的产量; ■两种新产品每周各实际使用的工时 (不能超过计划工时); ■两种新产品的总利润
EXCEL求解线性规划模型
3、主要结果的计算方法
(1)两种新产品的每周产量:C12、D12,初始 值为0。
(2)实际使用工时计算(三种方法) 1)分别在E7、E8、E9中输入相应的计算公 式:
例:车间2:12——13,车间3:18——17 例:车间2:12——16,车间3:18——15
EXCEL求解线性规划模型
5、aij变化 例:由于车间2采用新的生产工艺,生产

线性规划问题及其数学模型(最新整理)

线性规划问题及其数学模型(最新整理)

试根据对偶问题性质证明上述线性规划问题目标函数值无界。
7. 给出线性规划问题
2
max z 2x1 4x2 x3 x4
2xx12x13xxx322xx64 468
x1
x2
x3
9
x j 0 ( j 1,,4)
要求:(1)写出其对偶问题;(2)已知原问题最优解为 X*=(2,2,4,0),试根据
每捆原稿纸用白坯纸 3 1 kg, 每打日记本用白坯纸 13 1 kg, 每箱练习本用白坯纸
3
3
26 2 kg。 已知生产各种产品的赢利为:每捆原稿纸 1 元,每打日记本 2 元,每箱练 3
习本 3 元。试决定:(1)在现有生产条件下使该厂赢利最大的方案;(2)如白坯纸
供应量不变,而工人数量不足时可从市场上招收临时工,临时工费用为每人每天 15
(4)
n
aij x j
bi
(i 1,, m1 m)
j1
n
aij x j
bi
(i m1 1, m2 2,, m)
j1
x
j
0无约束
( j 1,, n1,, n)
2. 判断下列说法是否正确,为什么?
(1)如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解;
(2)如果线性规划的对偶问题无可行解,则原问题也一定无可行解;
变;
(3)约束条件右端项由
13
变为
2 3

(4)增加一个新的变量 x6 , P6 11, c6 7 ;
4
(5)增添一个新的约束 x1+2x2+x3≤4。 13. 分析下列线性规划问题中,当且变化时最优解的变化,并画出 z(λ)对 λ 的 变化关系图。

线性规划的灵敏度分析试题

线性规划的灵敏度分析试题

线性规划的灵敏度分析试题一、填空题1、灵敏度分析研究的是线性规划模型的原始、最优解数据变化对产生的影响。

2、在线性规划的灵敏度分析中,我们主要用到的性质是_可行性,正则性。

3.在灵敏度分析中,某个非基变量的目标系数的改变,将引起该非基变量自身的检验数的变化。

4.如果某基变量的目标系数的变化范围超过其灵敏度分析容许的变化范围,则此基变量应出基。

5.约束常数b;的变化,不会引起解的正则性的变化。

6.在某线性规划问题中,已知某资源的影子价格为Y1,相应的约束常数b1,在灵敏度容许变动范围内发生Δb1的变化,则新的最优解对应的最优目标函数值是Z*+y i△b(设原最优目标函数值为Z﹡)7.若某约束常数b i的变化超过其容许变动范围,为求得新的最优解,需在原最优单纯形表的基础上运用对偶单纯形法求解。

8.已知线性规划问题,最优基为B,目标系数为C B,若新增变量x t,目标系数为c t,系数列向量为Pt,则当C t≤C B B-1P t时,x t不能进入基底。

9.如果线性规划的原问题增加一个约束条件,相当于其对偶问题增加一个变量。

10、若某线性规划问题增加一个新的约束条件,在其最优单纯形表中将表现为增加一行,一列。

11.线性规划灵敏度分析应在最优单纯形表的基础上,分析系数变化对最优解产生的影响12.在某生产规划问题的线性规划模型中,变量x j的目标系数C j代表该变量所对应的产品的利润,则当某一非基变量的目标系数发生增大变化时,其有可能进入基底。

二、单选题1.若线性规划问题最优基中某个基变量的目标系数发生变化,则C。

A.该基变量的检验数发生变化B.其他基变量的检验数发生变化C.所有非基变量的检验数发生变化D.所有变量的检验数都发生变化2.线性规划灵敏度分析的主要功能是分析线性规划参数变化对D的影响。

A.正则性B.可行性C.可行解D.最优解3.在线性规划的各项敏感性分析中,一定会引起最优目标函数值发生变化的是B。

线性规划练习题

线性规划练习题

线性规划练习题1、某工厂利用两种原料甲、乙生产三种产品。

如果每月可供应的原料数量(单位:吨)、每万件产品所需各种原料的数量及每万件产品的利润如下表所示:试制订每月的最优生产计划,使该厂可获最大利润。

2. 某工厂生产1A 、2A 两种型号的产品都必须经过零件装配和检验两道工序,如果每天可用于零件装配的工时只有100h ,可用于检验的工时只有120h,各型号产品每件需占用各工时序时数和可获得的利润如下表所示:(1)试写出此问题的数学模型,并求出最优化生产方案; (2)对产品1A 的利润进行灵敏度分析; (3)对装配工序的工时进行灵敏度分析;(4)如果工厂试制了3A 型产品,每件3A 产品需装配工时4h ,检验工时2h ,可获利润5元,那么该产品是否应投入生产?3.某工厂制造三种产品,生产这三种产品需要三种资源:技术服务、劳动力和行政管理。

下表列出了三种单位产品对每种资源的需求量:现有100h的技术服务、600h劳动力和300h的行政管理时间可供使用,求最优产品品种规划,且回答下列问题:(1)若产品C值得生产的话,它的利润是多少?假使将产品C的利润增加至25/3元,求获利最多的产品品种规划;(2)确定全部资源的影子价格;(3)制造部门提出建议,要生产一种新产品,该种产品需要技术服务1h、劳动力4h和行政管理4h.。

销售部门预测这种产品售出时有8元的单位利润,管理部门应有怎样的决策?(4)假定该工厂至少生产10件产品C,试确定最优产品品种规划。

4.已知某工厂计划生产I、II、III三种产品,各产品需要在A、B、C设备上加工,有关数据如下:试回答:(1)如何发挥生产能力,使生产盈利最大?(2)若为了增加产量,可借用别的工厂设备B,每月可借用60台时,租金1、8万元,借用B设备是否划算?。

运筹学:对偶理论与灵敏度分析习题与答案

运筹学:对偶理论与灵敏度分析习题与答案

一、填空题1、对偶问题的对偶问题是()。

正确答案:原问题2、若X﹡和Y﹡分别是线性规划的原问题和对偶问题的最优解,则有CX﹡()Y﹡b。

正确答案:=3、若X、Y分别是线性规划的原问题和对偶问题的可行解,则有CX()Yb。

正确答案:<=4、若X﹡和Y﹡分别是线性规划的原问题和对偶问题的最优解,则有CX﹡()Y*b。

正确答案:=5、设线性规划的原问题为maxZ=CX,Ax≤b,X≥0,则其对偶问题为()。

正确答案:min=Yb YA>=c Y>=06、影子价格实际上是与原问题各约束条件相联系的()的数量表现。

正确答案:对偶变量7、线性规划的原问题的约束条件系数矩阵为A,则其对偶问题的约束条件系数矩阵为()。

正确答案:AT8、在对偶单纯形法迭代中,若某bi<0,且所有的aij≥0(j=1,2,…n),则原问题()。

正确答案:无解二、选择题1、线性规划原问题的目标函数为求极小值型,若其某个变量小于等于0,则其对偶问题约束条件为()形式。

A. “≥”B. “≤”C. “>”D. “=”正确答案:A2、如果z*是某标准型线性规划问题的最优目标函数值,则其对偶问题的最优目标函数值w﹡满足()。

A.W﹡=Z﹡B.W﹡≠Z﹡C.W﹡≤Z﹡D.W﹡≥Z﹡正确答案:A3、如果某种资源的影子价格大于其市场价格,则说明()。

A.该资源过剩B.该资源稀缺C.企业应尽快处理该资源D.企业应充分利用该资源,开辟新的生产途径正确答案:B4、线性规划原问题的目标函数为求极小值型,若其某个变量小于等于0,则其对偶问题约束条件为()形式。

A.≥B.≤C. >D. =正确答案:A5、对偶单纯形法的迭代是从()开始的。

A.正则解B.最优解C.可行解D.可行解正确答案:A6、如果某种资源的影子价格大于其市场价格,则说明()。

A.该资源过剩B.该资源稀缺C.企业应尽快处理该资源D.企业应充分利用该资源,开辟新的生产途径正确答案:B7、线性规划灵敏度分析的主要功能是分析线性规划参数变化对()的影响。

对偶问题及灵敏度分析典型例题

对偶问题及灵敏度分析典型例题

对偶问题及灵敏度分析典型例题
某工厂生产甲、乙两种产品,需要三种资源:煤、电、油。

有关数据如下,求解下列问题。

(30分)
1、为使总收入最大,请写出其线性规划模型。

5分
2、另一厂家希望以最低的价格购买其所有资源,试建立购买者的线性规划
模型。

5分
3、电的影子价格是多少?最优解保持不变的情况下,电资源的变化范围是
多少?若有人愿意以每单位1元的价格向该厂供应25个单位的电资源,问是否值得接受?10分
4、甲产品的价格在什么范围内变化时,现最优解不变?5分
5、现又考虑一新产品丙,其三种资源单耗为10、2、5,售价为
6.5,该产品
是否可投产?5分
解:
1.总收入最大的线性规划模型:
2.购买者的线性规划模型:
3.用单纯形法求该问题的单纯性表如下:
由最优单纯性表知电的影子价格为1.36元
因25在B的适用范围内(即影子价格适用),且1.36-1.00>0。

故该25单位的电资源值得接收。

4、
5、
上一页下一页。

LINGO线性规划及其灵敏度分析

LINGO线性规划及其灵敏度分析

线性规划问题及灵敏度分析在LINGO软件中的实现一、问题的提出:某公司饲养实验用的动物以出售给动物研究所,已知这些动物的生长对饲料中3种营养成分(蛋白质、矿物质和维生素)特别敏感,每个动物每周至少需要蛋白质60g,矿物质3g,维生素8mg,该公司能买到5种不同的饲料,每种饲料1kg所含各种营养成分和成本如下表所示,如果每个小动物每周食用饲料不超过52kg,才能满足动物生长需要。

A1A2A3A4A5营养最低要 求蛋白质(g)0.3210.6 1.860矿物质(g)0.10.050.020.20.053维生素(mg)0.050.10.020.20.088成本(元/ kg)0.20.70.40.30.5问题:1.求使得总成本最低的饲料配方?2.如果另一个动物研究对蛋白质的营养要求变为59单位,但是要求动物的价格比现在的价格便宜0.3元,问该养殖所值不值得接受?3.由于市场因素的影响,X2的价格降为0.6元每千克,问是否要改变饲料配方?二、建立线性规划数学模型解答:(1)设需要饲料A1, A2, A3, A4分别为X1, X2, X3, X4kg,则建立线性规划数学模型如下:目标函数:MinS=0.2X1+0.7X2+0.4X3+0.3X4+0.5X5约束条件:0.3X1+2X2+X3+0.6X4+1.8X5>=600.1X1+0.05X2+0.02X3+0.2X4+0.05X5>=3005X1+0.1X2+0.02X3+0.2X4+0.08X5>=8X1+X2+X3+X4+X5<=52X1, X2, X3, X4, X5>=0三、在LINGO软件中的求解在LINGO中输入下面的命令:Model:Min=0.2*x1+0.7*x2+0.4*x3+0.3*x4+0.5*x5;0.3*x1+2*x2+x3+0.6*x4+1.8*x5>60;0.1*x1+0.05*x2+0.02*x3+0.2*x4+0.05*x5>3;0.05*x1+0.1*x2+0.02*x3+0.2*x4+0.08*x5>8;x1+x2+x3+x4+x5<52;end操作:选菜单Lingo|Solve(或按Ctrl+S),或用鼠标点击“求解”按纽,如果模型有语法错误,则弹出一个标题为“LINGO Error Message”(错误信息)的窗口,指出在哪一行有怎样的错误,每一种错误都有一个编号(具体含义可查阅相关文献或LINGO的Help).改正错误以后再求解,如果语法通过,LINGO用内部所带的求解程序求出模型的解,然后弹出一个标题为“LINGO Solver Status”(求解状态)的窗口,其内容为变量个数、约束条件个数、优化状态、耗费内存、所花时间等信息,点击Close关闭窗口,屏幕上出现标题为“Solution Report”(解的报告)的信息窗口,显示优化计算(线性规划中换基迭代)的步数、优化后的目标函数值、列出各变量的计算结果.输出结果如下:Global optimal solution found at iteration: 4Objective value: 22.40000Variable Value Reduced CostX1 0.000000 0.7000000X2 12.00000 0.000000X3 0.000000 0.6166667X4 30.00000 0.000000X5 10.00000 0.000000Row Slack or Surplus Dual Price1 22.40000 -1.0000002 0.000000 -0.58333333 4.100000 0.0000004 0.000000 -4.1666675 0.000000 0.8833333四、结果分析:(一) 一般分析1.因此,每周每个动物的配料为饲料A2、A4、A5分别为12、30和10kg,合计为52KG,可使得饲养成本达到最小,最小成本为22.4元;2. “Reduced Cost”表示当变量有微小变动时, 目标函数的变化率。

线性规划题及答案

线性规划题及答案

线性规划题及答案一、问题描述某公司生产两种产品A和B,每一个产品都需要通过两个工序进行加工。

每一个工序的加工时间和利润都不相同。

现在需要确定每一个产品在两个工序上的加工时间和产量,以最大化总利润。

请根据以下要求进行线性规划求解。

二、问题分析1. 产品A在工序1上的加工时间为x1小时,产品A在工序2上的加工时间为x2小时。

2. 产品B在工序1上的加工时间为y1小时,产品B在工序2上的加工时间为y2小时。

3. 产品A在工序1上的产量为a1个,产品A在工序2上的产量为a2个。

4. 产品B在工序1上的产量为b1个,产品B在工序2上的产量为b2个。

5. 产品A在工序1上的利润为p1元/个,产品A在工序2上的利润为p2元/个。

6. 产品B在工序1上的利润为q1元/个,产品B在工序2上的利润为q2元/个。

三、目标函数和约束条件1. 目标函数:最大化总利润Z = p1 * a1 + p2 * a2 + q1 * b1 + q2 * b2。

2. 约束条件:a) 工序1的总加工时间:x1 + y1 ≤ 100小时。

b) 工序2的总加工时间:x2 + y2 ≤ 80小时。

c) 产品A的总产量:a1 + a2 ≤ 200个。

d) 产品B的总产量:b1 + b2 ≤ 150个。

e) 非负约束:x1, x2, y1, y2, a1, a2, b1, b2 ≥ 0。

四、线性规划模型最大化总利润Z = p1 * a1 + p2 * a2 + q1 * b1 + q2 * b2,满足约束条件:x1 + y1 ≤ 100,x2 + y2 ≤ 80,a1 + a2 ≤ 200,b1 + b2 ≤ 150,x1, x2, y1, y2, a1, a2, b1, b2 ≥ 0。

五、求解过程1. 根据线性规划模型,我们可以使用线性规划求解方法求解该问题。

2. 根据目标函数和约束条件,可以建立线性规划模型,并使用线性规划求解器进行求解。

3. 求解得到最优解,即每一个产品在两个工序上的加工时间和产量,以及最大化的总利润。

灵敏度分析习题(2011)

灵敏度分析习题(2011)
c n+m x n+m a 1n+m a 2n+m ┇ a mn+m
n+m
θ θ θ ┇ θ
i
1 2
I
m
O …
… … … … ┇ …
最优单纯形表
θ θ θ ┇ θ
m i
1 2
B-1
… (BT)-1cB σ
灵敏度分析
为什么进行灵敏度分析?
灵敏度分析的两把尺子:
σj =Cj-CBB-1pj≤ 0; (最优性) xB= B-1b ≥0 (可行性)

例、上例最优单纯形表如下
C
i
2 XB X1 X5 X2 σ
j
3 X2 0 0 1 0
0 X3 0 -2 1 /2 -1 .5
0 X4 1 /4 1 /2 -1 /8 -1 /8
0 X5 0 1 0 0
CB 2 0 3
B 4 4 2
X1 1 0 0 0
0 0.25 0 这里 B-1 = -2 0.5 1 各列分别对应 b1、b2、b3 的 单一 0.5 -0.125 0 变化。因此,设 b1 增加 4,则 x1 , x5 , x2 分别变为: 4 + 0*4 = 4,4 + (-2)*4 = - 4 < 0,2 + 0.5*4 = 4 用对偶单纯形法进一步求解,可得: x* = ( 4, 3, 2, 0, 0 )T f* = 17
2、若 cs 是基变量的系数: 设 cs 变化为 cs + cs ,那么 j’= cj -∑ cri arij - ( cs + cs ) asj = j - cs asj ,对所有非基变量
i≠s
只要对所有非基变量 j’≤ 0 ,即 j ≤ cs asj ,则最优 解不变;否则,将最优单纯形表中的检验数 j 用 j’取代, 继续单纯形法的表格计算。

运筹学灵敏度分析题

运筹学灵敏度分析题

运筹学灵敏度举例1.已知以下线性规划问题max z= 2x 1 +x 2-x 3 s.t. x 1 +2x 2 +x 3 ≤8 -x 1 +x 2 -2x 3≤4x 1,x 2,x 3≥0 的最优单纯形表如下:z x 1 x 5(1) 求使最优基保持不变的c 2=1的变化范围C 2 1+δ-1 0 0 0C B z 2 x 1 0x 53-δ≥0,δ≤3,即c 2≤4。

当c 2=5,即δ=4z x 1 8/2 x 512/3x2进基,x 1离基z x 2 x 5新的最优解为x 1=0,x 2=0,x 3=0,x 4=0,x 5=0,max z=20 (2) 对c 1=2进行灵敏度分析C 2+δ1 -1 0 0 0C B z 2+δ x 1 0x 53203020+≥+≥+≥⎧⎨⎪⎩⎪δδδ,δδδ≥-≥-≥-⎧⎨⎪⎩⎪3232/,当δ≥-3/2时,即c 1≥1/2时,最优基保持不变。

当c 1=4时,δ=4-2=2,最优基保持不变,最优解的目标函数制为z=16+8δ=32。

(3)增加一个新的变量x 6,c 6=4,a 612=⎡⎣⎢⎤⎦⎥。

[]z c c T666620124242-=-=⎡⎣⎢⎤⎦⎥-=-=-W aY B a 61610111213==⎡⎣⎢⎤⎦⎥⎡⎣⎢⎤⎦⎥=⎡⎣⎢⎤⎦⎥- 新的单纯形表为z x 1 x 5x 6进基,x 5离基z x 1 x 6新的最优解为x 1=4,x 2=0,x 3=0,x 4=0,x 5=0,x 6=4,max z=24。

(4)增加一个新的约束x 2+x 3≥2,求新的最优基和最优解。

z x 1 x 5 x 63/13/1用对偶单纯形法求解z xx x x x x RHSz x 1 x 5 x 2新的最优解为x 1=4,x 2=2,x 3=0,x 4=0,x 5=6,x 6=0,max z=10。

2.(1)利润最大化的线性规划模型为:max z= 25x1+12x2+14x3+15x4s.t. 3x1+2x2+x3+4x4≤24002x1+2x3+3x4≤3200x1+3x2+2x4≤1800x1, x2, x3, x4≥0单纯形表为:zx5x6x7x1进基,x5离基zx1x6x7x3进基,x6离基zx1x3x7x2进基,x1离基zx2x3x7最优解为:x1=0,x2=400,x3=1600,x4=0,x5=0,x6=0,x7=600,max z=27200即最优生产计划为:产品A不生产;产品B生产400万件;产品C生产1600万件;产品D不生产,最大利润:27200万元。

线性规划灵敏度分析举例解答

线性规划灵敏度分析举例解答

线性规划灵敏度分析举例解答例5.2一奶制品加工厂用牛奶生产A1,A2两种奶制品,1桶牛奶可以在甲车间用12小时加工成3公斤A1,或者在乙车间用8小时加工成4公斤A2。

根据市场需求,生产的A1,A2全部能售出,且每公斤A1获利24元,每公斤A2获利16元。

现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间480小时,并且甲车间每天至多能加工100公斤A1,乙车间的加工能力没有限制。

试为该厂制订一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题:1)若用35元可以买到1桶牛奶,应否作这项投资?若投资,每天最多购买多少桶牛奶?2)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元?3)由于市场需求变化,每公斤A1的获利增加到30元,应否改变生产计划?模型代码如下:max=72*x1+64*x2;x1+x2<=50;12*x1+8*x2<=480;3*x1<=100;求解这个模型并做灵敏性分析,结果如下。

Global optimal solution found atiteration: 0Objective value: 3360.000 Variable Value Reduced CostX1 20.00000 0.00000 0X2 30.00000 0.00000 0Row Slack or Surplus Dual Price1 3360.000 1.0000002 0.000000 48.000003 0.000000 2.0000004 40.00000 0.000000 Ranges in which the basis is unchanged:Objective Coefficient RangesCurrent Allowable All owableVariable Coefficient Increase Decre aseX1 72.00000 24.00000 8. 000000X2 64.00000 8.000000 1 6.00000Righthand Side RangesRow Current Allowable AllowableRHS Increase Decr ease2 50.00000 10.00000 6.6 666673 480.0000 53.33333 80. 000004 100.0000 INFINITY 4 0.00000结果告诉我们:这个线性规划的最优解为x1=20,x2=30,最优值为z=3360,即用20桶牛奶生产A1, 30桶牛奶生产A2,可获最大利润3360元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划练习题
1、用单纯形表求解以下线性规划问题
(1) max z= x1-2x2+x3
s.t. x1+x2+x3≤12
2x1+x2-x3≤ 6
-x1+3x2≤9
x1, x2, x3≥0
(2) min z= -2x1-x2+3x3-5x4
s.t x1+2x2+4x3-x4≤ 6
2x1+3x2-x3+x4≤12
x1+x3+x4≤ 4
x1, x2, x3, x4≥0
(3) min z= 3x1-x2
s.t. -x1-3x2≥-3
-2x1+3x2≥-6
2x1+x2≤8
4x1-x2≤16
x1, x2≥0
二、配料问题
某工厂要用四种合金T1,T2,T3和T4为原料,经熔炼成为一种新的不锈钢G。

这四种原料含元素铬(Cr),锰(Mn)和镍(Ni)的含量(%),这四种原料的单价以及新的不锈钢材料G所要求的Cr,Mn和Ni的最低含量(%)如下表所示:
表错误!文档中没有指定样式的文字。

-1
设熔炼时重量没有损耗,要熔炼成100公斤不锈钢G,应选用原料T1,T2,T3和T4各多少公斤,使成本最小。

灵敏度分析练习题
一、已知以下线性规划问题
max z= 2x1+x2-x3
s.t. x1+2x2+x3≤8
-x1+x2-2x3≤4
x1, x2, x3≥0
及其最优单纯形表如下:
z
x1
x6
(1)求使最优基保持不变的c2=1的变化范围。

如果c2从1变成5,最优基是否变化,如果变化,求出新的最优基和最优解。

(2)对c1=2进行灵敏度分析,求出c1由2变为4时的最优基和最优解。

(3)对变量x3在第二个约束中的系数a23=-2进行灵敏度分析,求出a23从-2变为1时新的最优基和最优解。

(4)增加一个新的变量x6,它在目标函数中的系数c6=4,在约束条件中的系数向量为a6
1
2
=





⎥,
求新的最优基和最优解。

(5)增加一个新的约束x2+x3≥2,求新的最优基和最优解。

(6)设变量x1在约束条件中的系数向量由
1
1
-





⎥变为
-⎡





1
2
,求出新的最优基和最优解。

二、某工厂用甲、乙、丙三种原料生产A、B、C、D四种产品,每种产品消耗原料定额以及三种原料
的数量如下表所示:
(1)求使总利润最大的生产计划和按最优生产计划生产时三种原料的耗用量和剩余量。

(2)求四种产品的利润在什么范围内变化,最优生产计划不会变化。

(3)求三种原料的影子价格和四种产品的机会成本,并解释最优生产计划中有的产品不安排生产的原因。

(4)在最优生产计划下,哪一种原料更为紧缺?如果甲原料增加120吨,这时紧缺程度是否有变化?。

相关文档
最新文档