《函数的概念》的教学设计
§3.1 函数的概念(一)教学设计
§3.1 函数的概念(第一课时)【教学目标】⒈初步理解函数的概念和记号,明确函数概念的三要素;⒉初步掌握函数的三种主要表示方法;⒊会求一些简单函数的定义域;⒋通过对函数表示方法的理解,加深对数形结合的思想的体会.⒌领会事物都是在不断变化,而且是相互联系、相互制约的,从而理解和增强静与动的辨证唯物主义观点.【教学重点】函数的概念.【教学难点】函数概念中三要素的理解,函数定义域的求法.【教学方法】学生预习,多媒体辅助教学.【教学过程】一、预习要求:(自学教材P71~73页,并思考下列问题)⒈什么叫y就是x的函数?⒉什么叫自变量、定义域?什么叫函数值、值域?函数概念的三要素.⒊函数的表示方法有哪些?它们各自有什么优缺点?⒋如何判别两个函数是同一函数?二、情景设置:①某位教师为了表扬在宿舍卫生方面做的好的学生,引起学生对卫生的重视,对班级内该天受到卫生表扬的宿舍发放一朵小红花以便进行精神鼓励,问该班一男生宿舍一个月内受到的表扬次数x和教师发给他们的小红花数目y有何关系?这里的x取值有什么要求?(设卫生评比每天一次)②初中所学的常数函数、正、反比例函数、一次函数、二次函数等的简要说明,引出函数关系.三、引导并逐渐展现预习题答案:⒈ 函数:在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,那么y就是x 的函数.记作() , y f x x D =∈.⒉ 自变量:x 叫做自变量. 定义域:x 的取值范围D 叫做函数的定义域. 函数值:和x 的值相对应的y 的值叫做函数值.值域: 函数值的集合叫做函数的值域.函数三要素:定义域、从定义域到值域的对应法则、值域.⒊ 函数的表示方法:解析式法、图象法、列表法.(举例说明)☆ 师生共同归纳三种方法各自的优缺点.例1:求下列函数的定义域:24021212()()2(4)43()()5x x x x f x f x xx x x x f x f x x x +--==--+==--⑴ ⑵ -⑶ ⑷ ☆ 结合上述例题和实际生活,学生讨论总结求函数定义域时需要考虑哪些因素?例2:已知2()1f x x x =++ ,求(2)()(1)f f a f a +、、的值 .⒋ 同一函数:如果两个函数,他们的定义域相同,对应法则也完全相同,则值域也相同,那么这两个函数是同一函数.(自变量用什么字母是无关紧要的)例3:判断下列函数是否时同一函数:02()1()()()33()()3313()()()124f xg x x f x xh x x x x f x g x x x f x x g t t t ====++==--=++=++2 ⑴ ,⑵ ,⑶ , ⑷ ,例4:试举出一个定义域为[2,1)(1,2]-的函数.四、课堂小结:函数概念的三要素、函数的三种主要表示方法、函数定义域的求法.【作业布置】①教科书:P74页习题3.1:第1、2题.②试举出一个定义域为[3,2)(2,4]-的函数.-的函数.③思考:试举出一个定义域为[3,1)(2,4]【教学后记】⒈讲课要更有激情,做到抑扬顿挫。
《3.1函数的概念》教学设计教学反思-2023-2024学年中职数学高教版21基础模块上册
《函数的概念》教学设计方案(第一课时)一、教学目标1. 理解函数的概念,掌握函数的三要素。
2. 能够正确描述函数关系,理解自变量和因变量的关系。
3. 培养运用函数观点看待问题的意识。
二、教学重难点1. 教学重点:理解函数的概念,掌握描述函数关系的方法。
2. 教学难点:理解自变量和因变量的关系,掌握函数的三要素。
三、教学准备1. 准备教学用具:黑板、白板、笔、函数图表等。
2. 准备教学内容:设计案例,帮助学生理解函数概念。
3. 复习相关知识:在讲授新课前,简要复习方程、等式、变量等预备知识。
4. 确定教学方法:采用案例教学、小组讨论、课堂互动等方法,引导学生积极参与,加深理解。
四、教学过程:本节课的主要教学目标是帮助学生理解函数的概念,培养他们的数学思维能力和抽象思维能力。
在教学过程中,我们将通过以下几个环节来实施:1. 引入环节:首先,我们会通过一些具体的实例,让学生直观地了解函数的概念和性质。
这些实例可以包括商品价格与时间的关系、路程与时间的关系等等。
通过这些实例,学生可以初步感受到函数在现实生活中的应用,从而激发他们的学习兴趣。
2. 讲解环节:在引入环节之后,我们将进入讲解环节。
在这个环节中,我们会详细解释函数的定义,包括定义域、值域、对应法则等概念。
同时,我们还会引导学生理解函数的三要素,即定义域、值域和对应法则。
通过这些讲解,学生可以更加深入地理解函数的概念。
3. 探究环节:为了帮助学生更好地理解和掌握函数的概念,我们将组织学生进行探究活动。
这些活动可以包括小组讨论、案例分析等等。
通过这些活动,学生可以更加深入地思考函数的问题,从而培养他们的数学思维能力和抽象思维能力。
4. 反馈与评价:在教学过程中,我们会及时收集学生的反馈,了解他们对知识的掌握情况。
同时,我们还会通过课堂小测验、课后作业等方式,对学生的掌握情况进行评估。
根据学生的反馈和评估结果,我们会及时调整教学策略,确保教学效果的优化。
函数的概念教学设计
《函数的概念》教学设计【教学目标】一、使学生明白得函数的概念,明确决定函数的概念域、值域和对应法那么三个要素;二、明白得函数符号的含义,能依照函数表达式求出概念域、值域;3、使学生能够正确利用“区间”、“无穷大”的记号;4、使学生明白静与动的辩证关系,激发学生学习数学的爱好和踊跃性。
【教学重点】函数的概念,函数的三要素。
【教学难点】函数概念及符号y=f(x)的明白得。
【教具预备】多媒体教学【教学设计】初中概念从运动转变的观点动身,把函数看成是变量之间的依托关系。
从历史上看,初中给出的概念来源于物理公式,最初的函数概念几乎等同于解析式.后来,人们慢慢意识到概念域与值域的重要性,而要说清楚变量和两个变量间转变的依托关系,往往先要弄清各个变量的物理意义,这就使研究受到了必然的限制。
若是只依照变量观点,那么有些函数就很难进行深切研究。
例如:对那个函数,若是用变量观点来讲明,会显得十分勉强,也说不出x的物理意义是什么。
但用集合、对应的观点来讲明,就十分自然。
因此有必要引入高中的函数概念。
这节课以教师教学为主,运用引导、对照的手法,启发学生进行针对性反复比较几个概念的异同,并通过师生的一起讨论来帮忙学生深刻明白得,使学生真正对函数概念有很准确的熟悉。
【教学进程】一、温习引入1.用集合、对应概念函数问题1同窗们在初中已经学习过“函数”,请你举几个函数的具体例子。
设计用意:通过具体例子,让学生回忆初中学习过的函数概念,把握内涵。
教师依照所举例子的具体情形,引导学生列举别离用解析式、图象、表格表示对应关系的函数。
若是学生所列举的例子都是用解析式表示的,教师那么问:“函数关系都是能够用解析式表示的吗?”引导学生开阔思路,再列举些用图象、表格表示对应关系的函数。
教师能够举例:例1下面哪些对应能够表示函数?例2 图1的兰色曲线记录的是2020年2月20日自上午9:30至下午3:00上海证券交易所的股票指数的情形。
股票指数是时刻的函数吗?图2 例3 国际上经常使用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高。
数学核心素养下函数概念的教学设计
数学核心素养下函数概念的教学设计教学目标:1.了解函数的定义和性质。
2.掌握函数的图像、函数的增减性。
3.能够利用函数解决实际问题。
教学内容:1.函数的定义和性质。
2.函数的图像和性质。
3.函数的增减性。
4.利用函数解决实际问题。
教学过程:引入部分:1.利用教具或幻灯片展示函数的概念,引起学生的兴趣和思考。
2.进行简单的讨论,让学生说出他们对函数的理解和认识。
第一部分:函数的定义和性质(约30分钟)1.通过具体的例子,引导学生理解函数的定义。
2.谈及函数的定义域、值域和对应关系,帮助学生理解函数的基本性质。
3.引导学生发现函数的奇偶性、周期性等特征,加深学生对函数性质的理解。
第二部分:函数的图像和性质(约40分钟)1.利用电子白板或幻灯片,展示不同函数的图像。
2.讲解函数的图像上的重要点,如最大值、最小值、拐点等,并指导学生如何通过图像得出函数的性质。
3.给学生一些简单的函数,让他们根据图像判断函数的单调性和凹凸性。
第三部分:函数的增减性(约30分钟)1.通过具体的例子,引导学生理解函数的增减性。
2.引入导数的概念,解释导数与函数的增减性之间的关系。
3.通过图像和导数的关系,帮助学生理解函数的增减性。
第四部分:利用函数解决实际问题(约20分钟)1.展示一些实际问题,并引导学生思考如何建立与解决函数方程。
2.引导学生利用函数解决实际问题,如经济问题、几何问题等。
3.让学生在小组合作中解决一些实际问题,并展示他们的解决方法。
总结部分:1.对本节课的要点进行总结,并强调函数的重要性和应用范围。
2.鼓励学生根据自己的实际情况继续学习和应用函数的知识。
教学策略:1.启发式教学策略:通过引导式的提问和讨论,激发学生的学习兴趣和思考能力。
2.情境教学策略:通过提供实际问题的情境,引导学生利用函数解决实际问题,培养学生的应用能力和创新思维。
教学评价:1.利用课堂小测验检查学生对函数的定义和性质的理解程度。
2.观察学生在小组合作中解决实际问题的能力。
高一数学(函数的概念)教学设计 教案
1.2.1 函数的概念一、内容与解析函数是中学数学中最重要的基本概念之一.在中学,函数的学习大致可分为三个阶段.第一阶段是在义务教育阶段,学习了函数的描述性概念,接触了正比例函数、反比例函数、一次函数、二次函数等最简单的函数,了解了它们的图象、性质等.本节学习的函数概念与后续将要学习的函数的基本性质、基本初等函数(Ⅰ)和基本初等函数(Ⅱ)是学习函数的第二阶段,这是对函数概念的再认识阶段.第三阶段是在选修系列的导数及其应用的学习,这是函数学习的进一步深化和提高.在学生学习用集合与对应的语言刻画函数之前,学生已经把函数看成变量之间的依赖关系;同时,虽然函数概念比较抽象,但函数现象大量存在于学生周围.因此,课本采用了从实际例子中抽象出用集合与对应的语言定义函数的方式介绍函数概念.二、教学目标及解析1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;通过学习函数的概念,培养学生观察问题、提出问题的探究能力,进一步培养学习数学的兴趣和抽象概括能力;启发学生运用函数模型表述、思考和解决现实世界中蕴涵的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.2.掌握构成函数的三要素,会求一些简单函数的定义域,体会对应关系在刻画函数概念中的作用,使学生感受到学习函数的必要性和重要性,激发学生学习的积极性.三、问题诊断分析教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数.教学难点:符号“y=f(x)”的含义,不容易认识到函数概念的整体性,而将函数单一地理解成对应关系,甚至认为函数就是函数值.四、教学支持条件分析在本节课()的教学中,准备使用(),因为使用(),有利于().五、教学过程第一课时导入新课问题:已知函数1,0,Rx Qyx Q∈⎧=⎨∈⎩,请用初中所学函数的定义来解释y与x的函数关系?先让学生回答后,教师指出:这样解释会显得十分勉强,本节将用新的观点来解释,引出课题.推进新课新知探究提出问题1.给出下列三种对应:(幻灯片)(1)一枚炮弹发射后,经过26 s落到地面击中目标.炮弹的射高为845 m,且炮弹距地面的高度为h(单位:m)随时间t(单位:s)变化的规律是h=130t-5t2.请回答:①该问题中的自变量与因变量分别是什么?它们的取值范围用集合如何表示?②请得出炮弹飞行1s,5s,10s,20s时距地面的高度③请用集合与对应的语言描述变量之间的依赖关系④用符号语言描述上述的依赖关系时间t的变化范围是数集A={t|0≤t≤26},h的变化范围是数集B={h|0≤h≤845}.则有对应f:t→h=130t-5t2,t∈A,h∈B.(2)近几十年来,大气层的臭氧迅速减少,因而出现了臭氧洞问题.图1-2-1-1中的曲线显示了南极上空臭氧层空洞的面积S(单位:106 km2)随时间t(单位:年)从1979~2001年的变化情况.图1-2-1-1请回答:①该问题中的自变量与因变量分别是什么?它们的取值范围用集合如何表示?②从图中可以看出哪一年臭氧空洞面积最大?哪些年的臭氧空洞的面积大约为1500万平方千米?③请用集合与对应的语言描述变量之间的依赖关系④用符号语言描述上述的依赖关系根据图1-2-1-1中的曲线,可知时间t的变化范围是数集A={t|1979≤t≤2001},空臭氧层空洞面积S的变化范围是数集B={S|0≤S≤26},则有对应:f:t→S,t∈A,S∈B.(3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.下表中的恩格尔系数y 随时间t(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化. “八五”计划以来我国城镇居民恩格尔系数变化情况时间 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 恩格尔系数y 53.852.950.149.949.948.646.444.541.939.237.9请回答:①恩格尔系数与时间之间的关系是否和前两个实例中的两个变量之间的关系相似?如何用集合与对应的语言来描述这个关系?②用符号语言描述上述的依赖关系根据上表,可知时间t 的变化范围是数集A={t|1991≤t≤2001},恩格尔系数y 的变化范围是数集B={S|37.9≤S≤53.8}.则有对应: f:t→y,t∈A,y∈B.(2)以上三个实例有什么共同特点?(3)请用集合的观点给出函数的定义. 函数f:A→B 的值域为C,那么集合B=C 吗?初中函数定义:在某一变化过程中,有两个变量x ,y 。
函数概念的教学设计
函数概念的教学设计教学目标:1.了解函数的概念和作用;2.掌握函数的定义和使用;3.能够灵活运用函数解决问题。
教学内容:1.函数的概念和作用;2.函数的定义和调用;3.函数的参数和返回值;4.函数的递归调用;5.函数的作用域和局部变量。
教学步骤:第一步:导入问题引入问题:在日常生活中,我们常常需要将一系列操作封装成一个整体,以便在需要时调用。
那么,你知道如何实现这个功能吗?第二步:引入函数的概念1.通过实例引入函数的概念:比如,在日常生活中,我们常常会使用机器来完成一些操作,比如洗衣机用来洗衣服,电视遥控器用来控制电视,那么这些机器和遥控器其实就是函数的概念。
2.定义函数:引导学生定义函数,即封装一系列操作的代码块,以便在需要时调用。
第三步:函数的定义和调用1.函数的定义:通过示范将一个简单的操作封装成一个函数的示例,如求两个数的和。
2.函数的调用:通过示范调用已定义的函数来实现封装的功能。
第四步:函数的参数和返回值1.函数的参数:引导学生通过例子,引入函数参数的概念,并进行函数定义和调用。
2.函数的返回值:通过例子引导学生理解函数的返回值,并进行函数定义和调用。
第五步:函数的递归调用1.引导学生理解递归的概念和原理;2.通过实例展示函数的递归调用,并指导学生进行实践。
第六步:函数的作用域和局部变量1.通过示例引导学生理解变量的作用域;2.通过函数和外部变量的示例引导学生理解函数的作用域和局部变量。
第七步:综合练习与巩固结合实际问题和练习题进行实践,巩固学生对函数概念和使用的理解。
第八步:总结与扩展1.总结函数的概念和作用、定义与调用、参数和返回值、递归调用、作用域与局部变量;2.引导学生思考函数的扩展应用,并引入匿名函数等扩展内容。
教学评价:在教学过程中,可以通过让学生进行问题解决和程序设计的实践,评价学生对函数概念的掌握程度以及能否熟练地使用函数解决问题。
可以通过课堂练习和作业、小组讨论等方式进行评价,确保学生掌握函数的概念和使用。
3.1.1函数概念(第1课时)教学设计.docx
3.1.1函数的概念(第一课时)(人教A版普通高中教科书数学必修第一册第三章)一、教材地位本节课是普通高中课程标准实验教科书人教A版第三章第一节第一课时(第60~64页).1.概念本身角度:函数是高中数学最抽象的概念,初中曾用运动变化的观点给出函数的描述性定义,并把函数看作两个变量间的依赖关系,但这一定义有一定的阶段性和局限性.2.学科角度:函数是高中数学的核心概念,是整个高中函数知识体系的基石,它不仅将函数概念由“对应论”发展到“集合论”,更承上启下,为后继研究基本初等函数,比如指数函数、对数函数、幂函数、三角函数以及函数的性质等提供研究方法和理论依据,让我们体会到重要概念对数学发展和数学学习的巨大作用;同时,函数的基础知识在日常生活、社会经济、以及等其他学科也有着广泛应用.3.高考角度:函数是高考数学的热点,函数图象性质、函数与代数式方程不等式数列三角解析几何导数的结合问题常考常新,从基础题、中档题到压轴题,每年高考都是绝对重点,高考所考察的五大数学思想中的数形结合思想、函数与方程思想贯穿高中数学学习的全过程.有人说,“得函数者得数学,得数学者得高考”,更是形象的道出了函数在高考中的重要地位.二、学情分析1.从学生知识层面看:通过初中函数相关知识的学习,学生具备了一定的知识经验和基础;通过必修一第一章“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数、从根本上揭示函数的本质提供了知识保证.2.从学生能力层面看:学生已有一定的分析、推理和概括能力,初步具备了运用数形结合思想解决问题的能力,但数形结合的意识和思维的深刻性还有待进一步加强.3.从学生情感培养方面看:多数学生对教学新内容的学习有很高学习兴趣和积极性,但探究能力以及合作交流等能力仍需要通过课堂主渠道加以培养和提高.三、教学目标1.知识与技能:会用集合与对应的语言来刻画函数,理解函数的概念;理解函数符号y=f(x)的含义;了解函数的三要素;会求一些简单函数的定义域.(重点)2.过程与方法:让学生亲身经历函数概念的形成过程,经历从具体到抽象、从特殊到一般、从感性到理性的认知过程,培养学生抽象概括能力,让学生学会数学表达和交流,激发数学学习兴趣,发展数学应用意识.(难点)3.情感、态度与价值观:培养学生细心观察、认真分析、严谨表达的良好思维习惯,养成用函数模型描述和解决现实世界中蕴含的规律,培养学生提出问题的能力,培养创新意识.四、教学重点用集合语言和对应关系刻画函数的概念.五、教学难点对函数概念的理解.六、教学过程1.函数概念的形成1.1创设情境,引发思考思考1:(1)若正方形的边长为1,则其周长l= ;(2)若正方形的边长为2,则其周长l= ; (3)若正方形的边长为x ,则其周长l= ;【预设答案】(1)4(2)8(3)4x【设计意图】通过具体的例子复习函数的概念,让学生再次体会函数高度“抽象”的作用.思考2:初中学习的函数的概念是什么?【预设答案】设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说y 是x 的函数.其中x 叫自变量,y 叫因变量.【设计意图】复习初中函数概念,强调函数是一种特殊的对应.思考3:请同学们考虑以下两个问题【设计意图】从初中的概念来看,这两组中的两个函数没什么不同,但我们有感觉它们是不同函数.让学生体会初中函数概念不够精确,从而有些问题解决不了.1.2探究典例,形成概念问题1: 某“复兴号”高速列车到350km/h 后保持匀速运行半小时.这段时间内,列车行进的路程S (单位:km )与运行时间t (单位:h )的关系可以表示为 S=350t.思考:根据对应关系S=350t ,这趟列车加速到350km/h 后,运行1h 就前进了350km ,这个说法正确吗?44y x l x ==(1)与周长是同一函数吗?22x y x y x==()与是同一函数吗?【预设答案】不正确.对应关系应为S=350t ,其中 }1750|{},5.00|{11≤≤=∈≤≤=∈s s B s t t A t .问题2 :某电气维修告诉要求工人每周工作至少1天,至多不超过6天.如果公司确定的工资标准是每人每天350元,而且每周付一次工资,那么你认为该怎样确定一个工人每周的工资?一个工人的工资w (单位:元)是他工作天数d 的函数吗?【预设答案】是函数,对应关系为w=350d,其中},6,5,4,3,2,1{2=∈A d}2100,1750,1400,1050,700,350{2=∈B w .思考:在问题1和问题2中的函数有相同的对应关系,你认为它们是同一个函数吗?为什么?【预设答案】不是.自变量的取值范围不一样.问题3 :如图,是北京市2016年11月23日的空气质量指数变化图.如何根据该图确定这一天内任一时刻th 的空气质量指数的值I ?你认为这里的I 是t 的函数吗?【预设答案】是,t 的变化范围是}240|{A 3≤≤=t t ,I 的范围是}1500|{I B 3<<=I .问题4: 国际上常用恩格尔系数)总支出金额食物支出金额=r r ( 反映一个地区人民生活质量的高低,恩格尔系数越低,生活质量越高.上表是我国某省城镇居民恩格尔系数变化情况,从表中可以看出,该省城镇居民的生活质量越来越高.你认为该表给出的对应关系,恩格尔系数r 是年份y 的函数吗?思考:上述问题1到问题4中的函数有哪些共同点和不同点?【预设答案】共同点有:(1)都包含两个非空数集,用A ,B 来表示;(2)都有一个对应关系不同点有:(1)(2)是通过解析式表示对应关系,(3)是通过图象,(4)是通过表格【设计意图】通过四个具体的例子,发现要在集合的基础上定义函数会比较准确,同时让学生体会函数对应关系的3种表示形式.函数概念:一般地,设A , B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A B →为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}()f x x A |∈叫做函数的值域.函数的三个要素:定义域,对应关系,值域.常见函数的三要素:正比例函数:y kx =的定义域是R ,值域也是R .对应关系f 把R 中的任意一个数x ,对应到R 中唯一确定的数(0)ax b a +≠.一次函数:(0)y ax b a =+≠的定义域是R ,值域也是R .对应关系f 把R 中的任意一个数x ,对应到R 中唯一确定的数(0)ax b a +≠.二次函数:2(0)y ax bx c a =++≠的定义域是R ,值域是B .当a >0时,244ac b B y y a ⎧⎫-⎪⎪=≥⎨⎬⎪⎪⎩⎭;当a <0时,244ac b B y y a ⎧⎫-⎪⎪=≤⎨⎬⎪⎪⎩⎭.对应关系f 把R 中的任意一个数x ,对应到B 中唯一确定的数2(0)ax bx c a ++≠. 反比例函数:(0)k y k x =≠的定义域为{}0x x ≠,对应关系为“倒数的k 倍”,值域为{}0y y ≠.反比例函数用函数定义叙述为:对于非空数集{}0A x x =≠中的任意一个x 值,按照对应关系f :“倒数(0)k k ≠倍”,在集合{}0B y y =≠中都有唯一确定的数k x 和它对应,那么此时f :A B →就是集合A 到集合B 的一个函数,记作()(0),.k f x k x A x=≠∉2.例题讲解,理解概念例1.判断下列对应是否是函数【预设答案】(1)是(2)是(3)不是【设计意图】让学生体会函数只能是“一对一”或“多对一”,不能“一对多”.例2. 判断下列图象能表示函数图象的是()【预设答案】D【设计意图】让学生体会概念中的“唯一”二字例3 .你能构建一个问题情景,使其中函数的对应关系为y=x(10-x)吗?【预设答案】长方形的周长为20,设一边长为x,面积为y,那么y=x(10-x),其中x的取值范围是A={x|0<x<10},y的取值范围是B={y|0<y≤25}.对应关系f把每一个长方形的边长x,对应到唯一确定的面积x(10-x)【设计意图】让学生体会数学建模,数学应用思想,同时巩固函数概念是建立在集合基础上的.3.课堂练习,巩固新知练习1.若函数y=f(x)的定义域为{x|−3≤x≤8,x≠5},值域为{y|−1≤y≤2,y≠0},则y=f(x)的图象可能是()A. B.C. D.【答案】B练习2.已知函数f(x),g(x)分别由下表给出.则g(f(5))=;f(g(2))=.【答案】4 3练习3.集合A,B与对应关系f,如图所示,f:A→B是否为从集合A到集合B的函数?如果是,那么定义值域与对应关系各是什么?【答案】由图知A中的任意一个数,B中都有唯一确定数,与之对应,所以f:A→B 是从A 到B的函数定义域是A={1,2,3,4,5},值域C={2,3,4,5}4.构建一个问题情景,使其中的变量关系能用解析式y=√x来描述.【答案】正方形的面积为x,其边长为y,则y=√x,其中x的取值范围是A={x|0<x},y的取值范围是B={y|0<y}4.课堂小结,思想升华本节课主要是在集合的基础上重新定义了函数,让函数的概念更加清晰准确.。
《函数的概念》教学设计
《函数的概念》教学设计【课时目标】了解:通过丰富实例让学生了解函数是非空数集到非空数集的一个对应;了解构成函数的三要素;理解:函数概念的本质;抽象的函数符号的意义; (为常数与的区别与联系;会求一些简单函数的定义域;经历:让学生经历函数概念的形成过程,函数的辨析过程,函数定义域的求解过程以及求函数值的过程;渗透归纳推理、发展学生的抽象思维能力;体验:通过经历以上过程,让学生体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学会用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用,体验函数思想;通过师生互动、生生互动,让学生在民主、和谐的课堂氛围中,感受数学的抽象性和简洁美.【重点】函数概念的形成,正确理解函数的概念.【难点】发展学生的抽象思维能力,对函数概念本质的理解.【教法】问题导向式教学【学法】探究式学法【教学用具】黑板板书为主结合多媒体来辅助教学。
【教学过程】2020年6月23日,我国著名的北斗三号压轴卫星成功发射,我们时刻关注着北斗系统的第30颗卫星离地面的距离随时间是如何变化的,数学上可以用来描述这种运动变化中的数量关系.1.回忆旧知,引出困惑问题一:初中函数的定义是什么?是函数吗?学生活动:学生思考并回答.2.创设情境,形成概念实例一:一枚炮弹发射后,经过落到地面击中目标.炮弹的射高为,且炮弹距地面的高度(单位:)随时间(单位:)变化的规律是:.问题二:1.的范围是什么?的范围是什么?2.和有什么关系?这个关系有什么特点(师生共同完成)实例二:国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.表中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.时间(年)1991199219931994199519961997199819992002001恩格尔系数(%53.852.950.149.949.948.646.444.541.939.237.9)通过先对两个实例的学生自学,然后请学生谈感受,老师提问,学生回答,师生共同完成.问题三:实例一、实例二、实例三的对应关系在呈现方式上有什么不同?问题四:以上三个实例有什么相同的特征?学生活动:学生分组讨论交流,总结归纳出:共同特点:①都有两个非空数集;②两个数集之间都有一种确定的对应关系;③对于数集中的每一个,按照某种对应关系,在数集中都有唯一确定的值和它对应.问题五:满足以上共同特点的两个数集的对应关系,我们把它叫做什么呢?(学生回答老师补充)引导学生思考:在三个实例中,大家用集合与对应的语言分别描述了两个变量之间的依赖关系,其中一个变量都是另一个变量的函数.你能否用集合与对应的语言来刻画函数,抽象概括出函数的概念呢?函数概念:设是非空的数集,如果按某种确定的对应关系,使对于集合中的任意一个数,在集合中都有唯一确定的数和它对应,那么就称为集合到集合的一个函数,记作 .其中,叫做自变量,的取值范围叫做函数的定义域;与的值相对应的的值叫做函数值,函数值的集合叫做函数的值域.显然,值域是集合B的子集.问题六:请同学们根据现在函数的定义说说前面三个实例是否表示两个集合的函数关系?问题七:是函数吗?问题八:用几何画板在平面直角坐标系中画出一段弧,并作平移和旋转,同时让学生判断这些平移和旋转中的弧是否表示函数图象.方法引导:如何判断给定的两个变量间是否具有函数关系?依据定义中的哪几个要点?要注意函数概念中的哪些关键词?3.质疑解惑,剖析概念问题九:请同学们画出概念中的关键词,并用简洁的语言说明.通过交流得出以下几点:①都是非空的数集;②任意性与唯一性;③确定的对应关系,对应关系可以是解析式、图象、表格.问题十:函数由几部分组成?怎样理解符号 ?三要素:定义域、值域、对应法则,缺一不可.在法则下,所对应的函数值,并结合生活实例说明.4.讨论研究,深化理解【例1】已知函数,(1)求函数的定义域;(2)求的值;(3)当时,求的值.想一想:函数的定义域该怎么求?符号 (为常数)与有哪些区别与联系? (学生思考、计算,老师提问,师生共同完成)5.即时训练,巩固新知练习1.求函数的定义域:练习2.已知函数求的值.学生活动:两位学生板书后,师生共同评价完善.6.总结反思,提高认识(学生思考并回答,老师补充.)我们在初中函数定义的基础上,运用集合与对应的语言重新刻画了函数,比较两个函数的定义,同学们有什么新的认识.7.分层作业,自主探究作业:一、举出生活中函数的例子(两个以上),并用集合与对应的语言来描述函数;二、必做:P24 1、2、3;选做:P25 1题.5。
《函数的概念》教学设计
3.1函数的概念及其表示(第一课时)一、教学内容解析函数是现代数学中最基本的概念,是描述客观世界中变量关系和规律的最为基本的数学语言和工具.在高中阶段,函数不仅贯穿数学课程的始终,而且是学习方程、不等式、数列、导数等内容的工具和基础.在初中,函数定义采用“变量说”,高中阶段要建立函数的“对应关系说”,与初中的“变量说”相比,高中用集合语言与对应关系表述函数概念,明确了定义域、值域,引入抽象符号f(x).函数概念的核心是“对应关系”:两个非空数集A、B间有一种确定的对应关系f,即对于数集A中每一个x,数集B中都有唯一一个确定的y和它对应.基于以上分析,确定本节课的教学重点和难点.二、重、难点分析1.教学重点:用集合语言与对应关系建立函数概念,培养学生的数学抽象素养.2.教学难点:从不同的问题情境中提炼出函数要素,并由此抽象出函数的概念,理解函数的对应关系f.三、教学目标分析1.目标(1)在“变量说”的基础上,理解函数的“对应关系说”;(2)经历函数概念的抽象过程,培养学生的数学抽象素养;(3)从数学模型构成要素的角度认识具体函数,并通过函数的表示,进一步加深对函数概念的认识.2.目标达成(1)学生从具体实例出发,能在初中“变量说”的基础上,进一步抽象对应关系、定义域与值域等三个要素,构建函数的一般概念;(2)学生能在确定变量变化范围的基础上,通过解析式、图象、表格等形式表示对应关系,理解函数对应关系的本质,体会引入符号f表示对应关系的必要性;(3)学生能在不同实例的比较、分析基础上,归纳共性进而抽象出函数概念,体验用数学的眼光看待事物,发展数学抽象素养.四、学情分析由于初中函数的概念是“变量说”定义,学生对这种定义已经很熟悉,应用起来得心应手,受先入为主思想的影响对“对应关系说”定义引入的必要性认识不足,对函数的“对应关系说”定义接受起来多少有一种排斥心理;学生初中对函数的理解仅停留在一些具体函数的层面上,更确切的说是局限于对函数具体解析式的理解,初中数学学习学生重计算、重例题,对抽象的函数概念的理解有一定困难.不过,学生生活中已经积累了丰富的函数的实例素材,这为函数教学做好了准备.从学生的学习习惯上看,学生初入高中自主学习的目的性、主动性还不够,知识的接受基本在课堂,有的学生甚至还不会听课.所以高中数学教学还肩负着教会学生学习的任务.在课堂教学中采用课前预习、引导发现、学生合作交流的教学方法,通过课前预习,实现课堂教学效益的最大化.五、教学方法归纳法教学六、教学过程设计为达到本节课的教学目标,突出重点,突破难点,计划将教学过程设计为六个阶段:(一)引入1.回顾初中学过的函数及其表示(1)一次函数y=ax+b(a ≠0)(2)二次函数y=ax 2+bx+c(a ≠0)(3)反比例函数y=xk (k ≠0) 提问:这些函数的共性是什么?如何描述?2.初中函数的概念(变量说)一般地,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,则称y 是x 的函数.[师生活动] 教师提出问题,学生自主回答,教师归纳总结.[设计意图] 让学生再次归纳,复习巩固“变量说”.3.思考:正方形的周长l 与边长x 的对应关系是l=4x ,l 是x 的函数吗?若是,它与正比例函数y=4x 相同吗?你能用已有的函数知识判断y=x 与y=x x 2是否相同吗?[师生活动] 教师提出问题,让学生产生疑惑.[设计意图] 说明学习函数概念的“对应关系说”的必要性.(二)函数概念的构建问题1 阅读教材中的实例1,回答下列问题:(1)这段时间内,列车行进的路程S (单位:km )与运行时间t (单位:h )的关系如何表示?这是一个函数吗?为什么?(2)有人说:“根据对应关系S=350t ,这趟列车加速到350km/h 后运行1h 就前进了350km.”这个说法正确吗?为什么?(3)时间t 的变化范围是什么?(4)能根据现有条件回答0.6h 时对应的距离是多少吗?(5)你认为如何描述才能准确反映问题情境?[师生活动] 教师给出问题,学生先思考并将问题的要点写出,然后小组交流,收集并归纳问题的回答要点,教师点评.[设计意图] 问题(1)是为了让学生回顾初中所学函数的概念用“是否满足定义要求”来回答问题;问题(2)(3)(4)是要激发学生认知冲突,发现其中的不严谨;问题(5)是为了让学生关注到t 的变化范围,并尝试用精确的语言表述.问题2 阅读教材中的实例2,回答下列问题:(1)你认为该怎样确定一个工人的每周所得?(2)一个工人的工资w 是他工作天数d 的函数吗?(3)你以仿照问题1对S 与t 的对应关系的精确表示,给出这个问题中w 与d 的对应关系的精确表示吗?(4)问题1和问题2中的函数有相同的对应关系,你认为它们是同一个函数吗?为什么?[师生活动] 学生阅读题目后,自主回答.[设计意图] 问题(1)是引导学生使用不同的表示方法;问题(3)是让学生模仿问题1的方法给出描述,既让他们熟悉表述方法,又训练抽象概括能力;问题(4)是使学生进一步关注到对于函数而言,解析式与自变量的变化范围都是确定函数的要素.问题3 阅读教材中的实例3,回答下列问题:(1)I是t的函数吗?为什么?①给定t的值,怎么给?(在0~24小时内给定一个时该t)②通过图形能确定唯一的I与t0对应,怎么找?(在横轴上,过t作垂线交曲线于点(t0,I),I就是与t对应的值.)(2)从所给的图中能回答11月24日8:00的AQI值吗?为什么?(3)11月23日这一天AQI的值的变化范围是什么?(4)这是一个函数,有解析式吗?如果让你表示出这个函数,你会怎么做?(5)模仿问题1,你能用准确的集合语言和对应关系描述这个问题情境吗?[师生活动] 给学生适当的时间阅读思考,教师引导学生一起分析上述问题,并归纳出结果.[设计意图] 问题(1)是让学生认可图象表示一个函数;问题(2)再次强调自变量的取值集合;问题(3)让学生意识到函数值构成集合;问题(4)(5)通过教师讲解,给出对应,关系的描述方法,化解难点. 问题4阅读教材中的实例4,回答下列问题:(1)这个表格中,时间的变化范围是什么?能不能用[2006,2015]表示?恩格尔系数的变化范围是什么?(2)由这个表格,恩格尔系数是不是年份的函数?你能说清楚到底是怎么对应的吗?(3)由这个表格,能得到2005年的恩格尔系数吗?(4)这个函数有解析式吗?如果让你表示出这个函数,你会怎么做?(5)模仿问题1,你能用准确的集合语言和对应关系描述这个问题情境吗?[师生活动] 先让学生思考,然后师生一起归纳结果.[设计意图] 与问题3的情况类似,学生对用表格表示的对应关系是否为函数关系的判断存在疑惑,通过问题引导学生思考,教师再作适当讲解,从而使学生接受.问题5上述问题1~问题4中的函数有哪些共同特征?由此你能概括出函数概念的本质特征吗?[师生活动] (1)给学生充分的思考时间,引导学生重新回顾用集合与对应语言刻画函数的过程,小组合作完成上述表格.(2)教师引导学生得出:①都包含两个非空实数集;②都有一个对应关系;③尽管对应关系的表示方法不同,但它们都有如下特征:对于数集A中的任意一个x,按照对应关系,在数集B中都有唯一确定的y和它对应.(3)归纳得出,除解析式、图象、表格外,还有其他表示对应关系的方法,为了表示方便,引入符号f统一表示对应关系,进而给出函数的一般性定义.教师解释函数记号y=f(x),x∈A.[设计意图] 让学生通过归纳四个实例中的函数的共同特征,体会数学抽象过程,概括出用集合对应语言刻画的一般性函数概念.在此过程中,要突破“如何在四个实例基础上让学生进行归纳、概括、抽象函数的概念,并以此培养学生的数学抽象素养”这一难点,突出“在学生初中已有函数的认识基础上,通过实例归纳概括出函数的基本特征(要素),用集合与对应的语言建立函数的概念”这一教学重点.(三)函数概念的理解1.函数的概念:一般地,设A,B是非空的实数集,如果对于集合A中的任意一个函数,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.其中,x 叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.2.理解:(1)集合A,B及对应关系f是一个整体,函数是两个集合的元素间的一种对应关系;(2)y=f(x)的意义:把对应关系f作用到x就得到一个y;(3)f可以是一个解析式,也可以是一个图象,还可以是一个表格.从图表中可以比较直观地看出x与y之间的对应关系.[师生活动]师生一起归纳出函数的概念,教师再逐一解读.[设计意图]理解函数的概念,培养学生的归纳整理能力.(四)函数概念的初步应用问题6如果让你用函数的定义重新认识一次函数、二次函数与反比例函数,那么你会怎样表述这些函数?随堂练习:教材63页练习1,练习3[师生活动] 在学生思考后,教师用一次函数与二次函数进行示范,学生用反比例函数进行练习,之后让学生独立完成上述表格,最后让学生完成教材63页练习1,练习3,教师进行点评.[设计意图] 用函数定义重新认识已学函数,加深对函数定义的理解,进一步体会定义域,对应关系与值域是函数的三个要素.问题7试构建一个问题情境,使其中的变量关系可以用解析式y=x(10-x)来描述.随堂练习:教材64页练习4[师生活动] 在学生思考后,教师以例1进行示范,学生完成教材64页练习4.[设计意图] 让学生在完成例1的过程中,进一步体会函数模型应用的广泛性,加深对函数概念的理解. (五)课堂小结教师引导学生回顾本节课的学习内容,并引导学生回答问题:(1)什么是函数?其三要素是什么?(2)对于对应关系f,你有哪些认识?(3)与初中学习过的函数概念相比,你对函数又有什么新的认识》(4)本节课我们是怎样得到函数概念的?结合本节课的学习,你对如何学习数学又有什么体会?[师生活动] 教师出示问题后,先由学生思考,再由全班交流,最后教师再进行总结,要强调如下几点:(1)函数的定义是判断一个对应关系是不是函数的标准;(2)要通过具体例子理解函数的对应关系f 的特征,特别是对于“A 中任意一个数”“B 中都有唯一 确定的数”等关键词含义要认真体会;(3)对应关系f 的表示形式可以是解析式、图象、表格等多种形式,但它们的实质相同.[设计意图] 引导学生从函数概念的内涵、要素的归纳过程,关键词的理解角度进行小结,进一步加深对函数概念的理解.(六)布置作业1.复习巩固设集合A={x|0≤x ≤6},B={y|0≤y ≤2},下列对应关系f:A →B 上从A 到B 的函数的是( )A. f:x →y=21xB.f:x →y=31x C.f:x →y=x D.f:x →y=x+1[设计意图]考查学生对函数概念的认识,巩固函数概念.2.综合运用(1)教材73页习题3.1第8题和第11题;(2)试构建一个问题情境,使其中的变量关系可以用解析式22⎪⎭⎫ ⎝⎛⋅=ππx y 来描述. [设计意图]考查学生运用函数概念刻画实际问题的能力. 七、板书设计[设计意图] 强调函数的概念集合对应说中的关键词八、课后反思本节课是在初中的已有知识的基础上对函数从集合对应说这个角度做了一个诠释,引导学生结合实例归纳总结出函数的概念,并会用函数的集合对应说解释一次函数、二次函数和反比例函数.本节课的成功之处是对4个实例的分析,通过对这4个实例的一步步分析,引导学生进一步认识函数、了解函数、掌握函数;而败笔之处是对对应关系的解读不够清楚,学生仍然带有疑惑,对符号y=f(x)没有一个清晰的认识,这一点需要在今后的课堂中加以重视,多次讲解.。
《函数的概念》教学设计
《函数的概念》教学设计人教版《普通高中课程标准实验教科书数学Ⅰ必修本(A 版)》第一章概述:《函数的概念》的教学需要两课时,本节课是第一课时,是一节函数的概念课.如何上好一节概念课,概念不是由老师讲出,而是让学生去发现,并归纳概括出概念呢?从而让学生更好的理解概念,熟练的去应用概念解决问题.在本节课的教学中,我以学生作为活动的主体,创设恰当的问题情境,引导学生积极思考,大胆探索,从而去发现问题、提出问题和解决问题.注重培养他们的观察、分析和解决问题的能力,培养他们的逻辑思维能力及抽象概括能力.运用新课标的理念,我从以下几个方面加以说明:教材内容分析、教学目标分析、教法学法分析、教学过程分析、教学评价分析【教材内容分析】1.教材的地位及作用函数的概念是人教版数学必修①第一章第二节的内容,它不仅对前面研究的集合作了巩固和发展,而且是学好后继知识的基础和工具.本节的主要内容就是函数的概念和函数的三个要素,研究了本小节后,为以后研究其他类型的函数打下扎实的基础。
由于函数反映出的数学思想渗透到数学的各个领域并且它在物理﹑化学及生物等其他领域也有广泛的应用.因此,函数概念是中学数学最重要的基本概念之一。
2.学情分析在学生研究用集合与对应的语言刻画函数之前,学生已经会把函数看成变量之间的依赖关系,且比较惯的用解析式表示函数,但这是对函数很不全面的认识。
由于函数的概念比较抽象,学生思维不成熟、不严密,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。
【教学目标分析】根据上述教材内容分析,并结合学生的研究心理和认知结构,我将教学目标分成三部分进行说明:知识与技能:1、从集合与对应的观点动身,加深对函数观点的理解2、理解函数的三要素:定义域、值域和对应法则3、理解函数符号的含义。
过程与方法:在丰富的实例中,通过关键词的强调和引导,使学生发现、概括出它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。
函数的概念教学设计说明
函数的概念教学设计说明教学设计说明:函数的概念一、教学目标:1.理解函数的定义和概念;2.掌握函数的表示方法和基本性质;3.能够利用函数解决实际问题;4.培养学生的抽象思维和问题解决能力。
二、教学内容:1.函数的定义和概念;2.函数的表示方法;3.函数的基本性质;4.函数的实际应用。
三、教学重难点:1.掌握函数的定义和概念;2.理解函数的表示方法和基本性质。
四、教学方法:1.归纳法:通过具体例子引出函数的定义和概念;2.演绎法:通过推导和证明,引导学生理解函数的表示方法和基本性质;3.实践法:通过实际问题的解决,巩固学生对函数的理解。
五、教学过程设计:1.导入(10分钟)教师将一张纸剪成两半,学生观察两张纸的大小是否一样,引导学生思考为什么纸剪成两半后大小不变。
2.引入(15分钟)教师通过具体例子引出“函数”的概念,如:身高与年龄的关系、投资收益与投资金额的关系等。
然后给出函数的定义:“如果每一个自变量x都对应唯一的因变量y,那么就称y是x的函数”。
并解释函数的基本概念:自变量、函数值、定义域、值域等。
3.讲解(20分钟)(1)函数的表示方法:用函数的符号表示法和一般公式表示法。
分别给出两种表示方法的示例,并解释其意义和用法。
(2)函数的基本性质:定义域、值域、单调性、奇偶性、周期性等。
对每个性质,给予定义和例子,并进行推导和证明。
4.练习(20分钟)学生在教师的指导下,完成一些简单的练习,巩固函数的定义、表示方法和基本性质。
例如,确定函数的定义域和值域,判断函数的单调性和奇偶性等。
5.实际应用(25分钟)提供一些实际问题,引导学生运用所学的函数概念和方法解决问题。
例如,给定一段函数的图像,求解函数的表达式;给定一个实际问题,建立相应的函数模型。
6.总结(10分钟)学生和教师共同总结本节课所学的内容,梳理函数的定义、表示方法和基本性质。
回顾一些重要的例子和技巧。
六、教学评价:1.在课堂上观察学生的参与情况,了解学生对函数概念和方法的理解程度;2.布置课后练习,检测学生对所学内容的掌握情况;3.收集学生的学习反馈,及时调整教学策略。
《函数的概念》教学设计
《函数的概念》教学设计一、教学目标:1.理解函数的概念,能够区分函数和非函数关系;2.掌握函数的表示方法,包括用方程、图像、表格等形式表示函数;3.能够根据函数的定义和表示方法,对函数进行分析和运用;4.培养学生独立解决问题的能力,培养学生数学思维。
二、教学重点:1.函数的定义和性质;2.函数的表示方法;3.函数的应用。
三、教学难点:1.区分函数和非函数的关系;2.基本函数的性质和应用。
四、教学过程:1.导入(5分钟)教师简要介绍函数的概念,引导学生思考日常生活中的各种关系,例如温度和时间的关系、距离和时间的关系等,并让学生探讨这些关系是否符合函数的定义。
2.探究函数的定义(15分钟)通过实际例子引导学生了解函数的定义,即每个自变量对应唯一的因变量。
让学生在小组内互相讨论、设计实验验证函数的定义,并总结出符合函数定义的例子。
3.函数的表示方法(20分钟)教师介绍函数的表示方法,包括函数方程、图像和表格等形式。
通过示例讲解,引导学生学会用这些表示方法来描述函数的特点和性质。
让学生自行练习,将给定的函数用不同的表示方法表示出来。
4.函数的性质(20分钟)教师讲解函数的基本性质,包括定义域、值域、奇偶性、单调性等。
通过例题演练,帮助学生理解这些性质的含义和作用,并能灵活运用到具体问题中。
5.函数的应用(20分钟)教师介绍函数在实际生活中的应用,例如成本函数、收入函数、利润函数等。
通过实例分析,让学生了解函数在解决实际问题中的重要性,并培养学生应用函数分析问题的能力。
6.练习与讨论(15分钟)学生进行一些练习题,巩固所学知识,并在小组内讨论解答过程中遇到的问题。
教师进行点拨和解答,指导学生掌握函数的相关知识。
7.总结与展望(5分钟)教师对本节课的内容进行总结,强调函数的重要性和应用价值。
展望下节课的内容,引导学生继续深入学习函数的更多性质和应用。
五、教学反思:本节课通过引导学生探究函数的定义、性质和表示方法,让学生初步了解函数的基本概念。
《函数的概念(微课)》教学设计
一、教学目标
1.知识目标:正确理解现阶段函数的概念,理解定义域的概念
2.能力目标:使学生具有使用函数模型研究生活中简单的事物变化规律的能力。
3.情感目标:渗透数学来源于生活,运用于生活的思想。
重点:让学生理解现阶段函数的概念,定义域的概念。
难点:用函数模型去研究生活中简单的事物变化规律时,如何确定定义域.
二、学情分析
授课学生为高一年级的学生,有朝气,有活力,爱实践,爱生活。
本课之前,学生已经学习了初中函数概念,为本课的学习打下基础。
三、教法与学法教法:
微课视频中包含情境教学法、多媒体辅助教学法的使用。
教学过程
1看视频。
2听老师解说,函数是研究世界变化规律的数学模型之一。
3了解函数的作用,对函数产生兴趣。
通过让学生观看视频,并对学生讲解,让学生了解函数是用来研究事物变化规律的数学模型之一,这样学生能更深刻的理解函数的功能,即激发了学生学习热情,又回顾初中学习的数学函数的定义。
函数的定义:
在某一个变化的过程中有两个变量x和y,设变量x的取值范围为数集D,如果对于D内的每一个x值,按照某个对应法则f,y都有唯一确定的值与它对应环节三知识总结(1)函数的概念。
(2)强调用函数来研究事物变化规律的前提是确定自变量x的取值范围,即定义域。
学生回顾本次微课所学习的知识。
让学生回顾本节课学习内容,强化本节课重点,为下节课打下基础。
函数的概念教学设计与反思(201197)
函数的概念教学设计与反思(2011.9.7)1.2.1函数的概念【一教学目标】1.知识与技能(1)理解函数的概念;体会随着数学的发展,函数的概念不断被精炼、深化、丰富.(2)初步了解函数的定义域、值域、对应法则的含义.2.过程与方法(1)回顾初中阶段函数的定义,通过实例深化函数的定义.(2)通过实例感知函数的定义域、值域,对应法则是构成函数的三要素,将抽象的概念通过实例具体化.3.情感、态度与价值观在函数概念深化的过程中,体会数学形成和发展的一般规律;由函数所揭示的因果关系,培养学生的辨证思想.【二教学重点与难点】重点:理解函数的概念;难点:理解函数符号y = f (x)的含义.【三教学方法】回顾旧知,通过分析探究实例,深化函数的概念;体会函数符号的含义. 在自我探索、合作交流中理解函数的概念;尝试自学辅导法.【四教学过程】教学环节教学内容师生互动设计意图回顾复习提出问题函数的概念:(初中)在一个变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的值与对应. 那么就说y是x的函数,其中x叫做自变量.师:初中学习了函数,其含义是什么.生:回忆并口述初中函数的定义.(师生共同完善、概念)由旧知引入函数的概念.形成概念示例分析示例1:一枚炮弹发射后,经过26s落到地面击中目标. 炮弹的射高①为845m,且炮弹距地面的高度h (单位:m)随时间t (单位:s)变化的规律是h = 130t – 5t2.示例2:近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空沿问题. 下图中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情况.老师引导、分析三个示例,师生合作交流揭示三个示例中的自变量以及自变量的变化范围,自变量与因变量之间的对应关系.利用示例,探究规律,形成并深化函数的概念.示例3 国际上常用恩格尔系数②反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高,下表中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.“八五”计划以来我国城镇居民恩格尔系数变化情况时间(年) 1991 1992 1993 1994 1995 1996 城镇居民家庭恩格尔系数(%)53.8 52.9 50.1 49.9 49.9 48.6时间(年) 1997 1998 1999 2000 2001城镇居民家庭恩格尔系数(%)46.4 44.5 41.9 39.2 37.9函数的概念:设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function),记作y = f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain);与x 的值相对应的y 值叫做函数值,函数值的集合{f (x ) | x ∈A }叫做函数的值域(range). 显然,值域是集合B 的子集.师生共同探究利用集合与对应的语言描述变量之间的因果关系.体会函数新定义的精确性及实质.例1 函数y = f (x)表示( C )A.y等于f与x的乘积B.f (x)一定是解析式C.y是x的函数D.对于不同的x,y值也不同例2 下列四种说法中,不正确的是( B )A.函数值域中每一个数都有定义域中的一个数与之对应B.函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域只含有一个元素,则值域也只含有一个元素 例3 已知f (x ) = x 2 + 4x + 5,则f (2) = 2.7 ,f (–1) = 2 .例4 已知f (x ) = x 2 (x ∈R ),表明的“对应关系”是 平方 ,它是 R → R 的函数.例5 向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系如右图示,那么水瓶的形状是下图中的( B )【解析】取水深2H h ,注水量V ′>2V,即水深为一半时,实际注水量大小水瓶总水量的一半,A 中V ′<2V ,C 、D 中V ′=2V,故排除A 、C 、D. 高中数学教学设计反思新课程标准的颁布和实验的正式启动,为新一轮教学改革指明了方向,同时也为教师的发展指明了道路,时代呼唤的是研究型、学者型甚至是专家型的教师,因此,作为教师的我们,必须认真学习新课程标准和现代教学教育理论,深刻反思自己的教学实践并上升到理性思考,把理论与实践真正结合起来,尽快跟上时代的步伐。
【高中数学人教】函数的概念与性质 大单元教学设计
函数的概念及其表示
数学运算
直观想象
数学建模
逻辑推理
函数的概念及其表示 单元
学科核心素养
数据分析
1.函数的概念(一)
3.函数的表示(一)
数学抽象
2.函数的概念(二)
4.函数的表示(二)
函数的概念及其表示
主题
单元主题
本单元教学目标
整体设计
函数
函数的概念及其表示
函数的概念及其表示
函数的基本性质及函数的应用 大单元设计专题概览
函数的基本性质及函数的应用
数学运算
直观想象
数学建模
逻辑推理
函数的基本性质及函数应用单元
学科核心素养
数据分析
1.函数的单调性
3.函数的奇偶性
数学抽象
2.函数的最大(小)值
4.函数的应用
函数的基本性质数理解为刻画变量间依赖关系的数学语言和工具,也罢函数理解为实数集合之间的对于关系。
函数是现代数学中最基本的概念,是描述客观世界变化关系和规律的最为基本的数学语言和工具,在解决实际问题中发挥重要作用.函数是贯穿高中数学课程的主线.在函数概念的建立过程中,经历从具体到一般的概念形成过程,提升数学抽象素养.在分段函数的简单应用过程中,体会分类讨论思想.在解决具体的实际问题过程中,理解函数图象的作用,体会数形结合思想,提升直观想象素养.
主题
单元主题
本单元教学目标
整体设计
函数
函数的基本性质及函数的应用
四基四能
通过抽象概括,用代数运算和函数图象揭示函数的主要性质;在现实问题中,能利用函数构建模型,解决问题。
本单元要用代数运算和函数图象研究函数的单调性、奇偶性和最大(小)值以及运用性质解决实际问题.这里既注意体现研究数学性质的一般思路,又注意函数性质的所反映的变化中的规律性、不变性.研究方法上,要注意加强通过代数运算和图象直观揭示函数性质的引导和明示.特别是在单调性的研究中,要构建一个从具体到抽象、从特殊到一般的过程,引导学生归纳概括出用严格的数学语言精确刻画单调性的方法,从而为提升数学运算、直观想象、数学抽象等素养,提升学生的抽象思维水平奠定基础.这种探究函数基本性质的思想和方法对于后续研究其他具体函数也有指导性的意义.
高中数学必修一 《3 1 函数的概念及其表示》优秀教案教学设计
【新教材】3.1.1 函数的概念(人教A版)函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。
2.掌握判定函数和函数相等的方法。
3.学会求函数的定义域与函数值。
数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。
重点:函数的概念,函数的三要素。
难点:函数概念及符号y=f(x)的理解。
教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入初中已经学过:正比例函数、反比例函数、一次函数、二次函数等,那么在初中函数是怎样定义的?高中又是怎样定义?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本60-65页,思考并完成以下问题1. 在集合的观点下函数是如何定义?函数有哪三要素?2. 如何用区间表示数集?3. 相等函数是指什么样的函数?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个属x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x)x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.2.区间概念(a,b为实数,且a<b)3.其它区间的表示四、典例分析、举一反三题型一 函数的定义例1 下列选项中(横轴表示x 轴,纵轴表示y 轴),表示y 是x 的函数的是( )【答案】D解题技巧:(判断是否为函数)1.(图形判断)y 是x 的函数,则函数图象与垂直于x 轴的直线至多有一个交点.若有两个或两个以上的交点,则不符合函数的定义,所对应图象不是函数图象.2.(对应关系判断)对应关系是“一对一”或“多对一”的是函数关系;“一对多”的不是函数关系. 跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )【答案】C题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2;(2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=√x 2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数. 解题技巧:(判断函数相等的方法) 定义域优先原则1.先看定义域,若定义域不同,则函数不相等.2.若定义域相同,则化简函数解析式,看对应关系是否相等. 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√x x,g(x)=√x;③f(x)=√(x +3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x 0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号). 【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数; ②f(x)与g(x)的解析式不同,不是同一函数; ③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数; ④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数. 题型三 区间例3 已知集合A={x|5-x ≥0},集合B={x||x|-3≠0},则A ∩B 用区间可表示为 . 【答案】(-∞,-3)∪(-3,3)∪(3,5] 【解析】∵A={x|5-x ≥0},∴A={x|x ≤5}. ∵B={x||x|-3≠0},∴B={x|x ≠±3}. ∴A ∩B={x|x<-3或-3<x<3或3<x ≤5}, 即A ∩B=(-∞,-3)∪(-3,3)∪(3,5]. 解题技巧:(如何用区间表示集合)1.正确利用区间表示集合,要特别注意区间的端点值能否取到,即“小括号”和“中括号”的区别.2.用区间表示两集合的交集、并集、补集运算时,应先求出相应集合,再用区间表示. 跟踪训练三1.集合{x|0<x<1或2≤x ≤11}用区间表示为 .2. 若集合A=[2a-1,a+2],则实数a 的取值范围用区间表示为 . 【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b. ∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3, ∴实数a 的取值范围是(-∞,3). 题型四 求函数的定义域 例4 求下列函数的定义域: (1)y=(x+2)|x |-x; (2)f(x)=x 2-1x -1−√4-x .【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 解题方法(求函数定义域的注意事项)(1)如果函数f(x)是整式,那么函数的定义域是实数集R;(2)如果函数f(x)是分式,那么函数的定义域是使分母不等于零的实数组成的集合;(3)如果函数f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数组成的集合; (4)如果函数f(x)是由两个或两个以上代数式的和、差、积、商的形式构成的,那么函数的定义域是使各式子都有意义的自变量的取值集合(即求各式子自变量取值集合的交集). 跟踪训练四1.求函数y=√2x +3√2-x1x的定义域.2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域. 【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x ≠0,所以函数y=√2x +3−1√2-x+1x的定义域为{x |-32≤x <2,且x ≠0}.(2)已知f(x)的定义域是[-1,4],即-1≤x≤4. 故对于f(2x+1)应有-1≤2x+1≤4, ∴-2≤2x≤3,∴-1≤x≤32. ∴函数f(2x+1)的定义域是[-1,32]. 题型五 求函数值(域) 例5 (1)已知f(x)=11+x(x ∈R ,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________,f(g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3); ③y =3x−11+x ; ④y =2x -√x −1. 【答案】(1)1317 (2)① R ② [2,6) ③ {y|y ∈R 且y≠3} ④ ⎣⎢⎡⎭⎪⎫158,+∞ 【解析】(1) ∵f (x)=11+x ,∴f(2)=11+2=13.又∵g (x)=x 2+2,∴g (2)=22+2=6, ∴f ( g(2))=f (6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y≠3, ∴y =3x -1x +1的值域为{y|y ∈R 且y≠3}.④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.解题方法(求函数值(域)的方法)1.已知f(x)的表达式时,只需用数a 替换表达式中的所有x 即得f(a)的值.2.求f(g(a))的值应遵循由内到外的原则.3. 求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法或二次函数图像求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为 “反比例函数类”的形式,便于求值域;(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax+b+√cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法. 跟踪训练五1.求下列函数的值域:(1)y = √2x +1 +1;(2)y =1−x 21+x 2. 【答案】(1) [1,+∞) (2) (-1,1]【解析】(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x 2≤2,则y ∈(-1,1]. 所以所求函数的值域为(-1,1]. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计 七、作业课本67页练习、72页1-5本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,尤其在求抽象函数定义域时,先根据特殊函数的规律总结一般规律.。
《函数的概念》教学设计
《函数的概念》教学设计第一篇:《函数的概念》教学设计《函数的概念》教学设计教材分析:函数作为初等数学的核心内容,贯穿于整个初等数学体系之中函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。
在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段对函数的概念加入“对应”,这一章内容渗透了函数的思想、特殊到一般,数形结合思想,从感性到理性,数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响教学目标:知识与技能:(1)理解函数的概念,;(2)能够正确使用“区间”的符号表示某些集合。
2过程与方法:通过学生自身对实际问题分析、抽象与概括,培养了抽象、概括、归纳知识以及建模等方面的能力;3情感与价值观:以熟知的生活实例引入,激发了学习数学的兴趣,增强其数学应用意识、创新意识。
相互合作学习,增强其合作意识体会合作学习的重要性。
教法:启发探究为主,讨论法为辅学法:观察分析、自主探究、合作交流教学重点:理解函数的实际背景,用集合与对应的语言来刻画函数教学难点:理解函数的实际背景,用集合与对应的语言来刻画函数教学过程:一、复习引入:.讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2.回顾初中函数的定义:在一个变化过程中,有两个变量x和,对于x的每一个值,都有唯一确定的值与之对应,此时是x的函数,x是自变量,是因变量。
表示方法有:解析法、列表法、图象法二、概念情景引入:思考1:(本P1)给出三个实例:A.一枚炮弹发射,经26秒后落地击中目标,射高为84米,且炮弹距地面高度h(米)与时间t(秒)的变化规律是。
B.近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况。
(见本P1图).国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。
“八五”计划以来我们城镇居民的恩格尔系数如下表。
函数的概念说课教案8篇
函数的概念说课教案8篇在我们日常的教学生涯中,难免会遇到要写教案的情况,教案是需要结合实际的教学进度和内容的,下面是作者为您分享的函数的概念说课教案8篇,感谢您的参阅。
函数的概念说课教案篇1教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;教学过程:一、引入课题1、复习初中所学函数的概念,强调函数的模型化思想;2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:我国#年4月份非典疫情统计:日期#新增确诊病例数#3、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.二、新课教学(一)函数的有关概念1.函数的概念:设a、b是非空的数集,如果按照某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有唯一确定的数f(x)和它对应,那么就称f:a→b 为从集合a到集合b的一个函数(function).记作:y=f(x),x∈a.其中,x叫做自变量,x的取值范围a叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈a}叫做函数的值域(range).注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)(二)典型例题1.求函数定义域课本p20例1解:(略)说明:○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式.巩固练习:课本p22第1题2.判断两个函数是否为同一函数课本p21例2解:(略)说明:○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《函数的概念》的教学设计
浙江省义乌市第三中学 陈向阳
【教材分析】
本节课选自《普通高中课程标准实验教科书数学Ⅰ必修本(A 版)》的第一章1.2.1
函
数的概念。
函数是中学数学中最重要的基本概念之一,它贯穿在中学代数的始终,从初一字母表示数开始引进了变量,使数学从静止的数的计算变成量的变化,而且变量之间也是相互联系、相互依存、相互制约的,变量间的这种依存性就引出了函数。
在初中已初步探讨了函数概念、函数关系的表示法以及函数图象的绘制。
到了高一再次学习函数,是对函数概念的再认识,是利用集合与对应的思想来理解函数的定义,从而加深对函数概念的理解。
函数与数学中的其他知识紧密联系,与方程、不等式等知识都互相关联、互相转化。
函数的学习也是今后继续研究数学的基础。
在中学不仅学习函数的概念、性质、图象等知识,尤为重要的是函数的思想要更广泛地渗透到数学研究的全过程。
函数是中学数学的主体内容,起着承上启下的作用。
函数又是初等数学和高等数学衔接的枢纽,特别在应用意识日益加深的今天,函数的实质是揭示了客观世界中量的相互依存又互有制约的关系。
因此对函数概念的再认识,既有着不可替代的重要位置,又有着重要的现实意义。
本节的内容较多,分二课时。
本课时的内容为:函数的概念、函数的三要素、简单函数的定义域及值域的求法、区间表示等。
(第二课时内容为:函数概念的复习、较复杂函数的定义域及值域的求法、分段函数、函数图象等)
【学情分析】
学生在学习本节内容之前,已经在初中学习过函数的概念,并且知道可以用函数描述变量之间的依赖关系。
然而,函数概念本身的表述较为抽象,学生对于动态与静态的认识尚为薄弱,对函数概念的本质缺乏一定的认识,对进一步学习函数的图象与性质造成了一定的难度。
初中是用运动变化的观点对函数进行定义,虽然这种定义较为直观,但并未完全揭示出函数概念的本质。
例如,对于函数
⎩⎨
⎧=是无理数时
当是有理数时
当x x x f ,0,1)( 如果用运动变化的观点去看它,就不好解释,显得牵强。
但如果用集合与对应的观点来解释,就十分自然。
因此,用集合与对应的思想来理解函数,对函数概念的再认识,就很有必要。
由于数学符号的抽象性,学生因此会望而却步,从而影响了学生学习数学的积极性。
高一学生虽然在初中已接触了函数的概念,但在重新学习它时还是存在一定的障碍,其中一个原因就是对新引进的函数符号“y=f (x)”不甚其解。
教师应在教学中有意识地挖掘函数符号的审美因素,以美启真。
在本节课的教学过程中,教师应该给学生提供实践动手的机会,为学生创设熟悉的问题情境,引导学生观察、计算、思考,从而理解问题的本质,归纳总结出结论。
【学法指导】
本节内容的学习要注意运动变化观和集合对应观两个观念下函数定义的对比研究;注意借助熟悉的一次函数、二次函数、反比例函数加深对函数这一抽象概念的理解;要重视符号f(x)的学习,借助具体函数来理解符号y=f(x)的含义,由具体到抽象,克服由抽象的数学符号带来的理解困难,从而提高理解和运用数学符号的能力。
【教学目标】
知识目标—— 通过丰富的实例,进一步体会函数是描述变量之间的依赖关系的重要数
学模型;用集合与对应的思想理解函数的概念;理解函数的三要素及函数符号的深刻含义;会求一些简单函数的定义域及值域。
能力目标—— 培养学生观察、类比、推理的能力;培养学生分析、判断、抽象、归纳概
括的逻辑思维能力;培养学生联系、对应、转化的辩证思想;强化“形”与“数”结合并相互转化的数学思想。
情感目标——渗透数学思想和文化,激发学生观察、分析、探求的兴趣和热情;强化学生参与意识,培养学生严谨的学习态度,获得积极的情感体验;体会在探
究过程中由特殊到一般、从具体到抽象、运动变化、相互联系、相互制约、
相互转化的辩证唯物主义观点;感受数学的简洁美、对称美、数与形的和
谐统一美;树立“数学源于实践,又服务于实践”的数学应用意识。
【教学重点】函数的概念及y=f(x)的理解与深化。
【教学难点】函数的概念及函数符号f(x)的理解。
【教学关键】在集合与对应的基础上理解函数的概念。
【教学方法】以建构主义理论为指导,辅以多媒体手段,采用着重于学生探索研究的启发式教学为主,变式教学为辅,及引导、探究、讲解、演练相结合。
在
教学过程中,多一点情境和归纳,多一点探索和发现,多一点思考和回顾。
通过不同形式的自主学习、探究活动,丰富和改善教与学的方式,体验数
学发现和创造的历程,发展创新意识和实践能力。
在课堂结构上,设计“创设情境——引入课题;引导探求——形成知识;
变式训练——巩固知识;讨论研究——深化知识;总结反思——提高认识;任
务后延——自主探究”这样几个主要环节,环环相扣,层层深入,以期达
到教学目标。
设计思想
教学流程:
知识结构:
问题探讨:
本章教学内容的要求与现行高考的要求距离较远,而学生知识现状与课本要求较高之间的矛盾也较突出。
学生原有的运算能力、分析问题的能力直接制约着本章的学习。
这不仅与初中数学内容的衔接、学习方法有较大变化有关,而且与知识更新力度较大有关,
使大部分学生不太适应本章的学习。
新大纲中提出能运用函数性质解决某些简单的实际问题,在本章中很难达到预期要求。
用计算机绘制函数图象,收集数据并建立函数模型,但在信息技术与课程的整合上还有待加强。