三余弦定理的证明

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三余弦定理
设A为面上一点,过A的直线AO在面上的射影为AB,AC为面上的一条直线,那么∠OAC,∠BAC,∠OAB三角的余弦关系为:
cos∠OAC=cos∠BAC×cos∠OAB
通俗点说就是,cos平面斜线与平面直线夹角(OAC)=cos斜线射影与平面直线夹角(BAC)xcos平面斜线与斜线射影夹角(OAB).又叫最小角定理或爪子定理,可以用于求平面斜线与平面内直线成的最小角.
如上图,自点O作OB⊥AB于点B,过B作BC⊥AC于C,连OC,则易知△ABC、△AOC、△ABO均为直角三角形.cosθ1=AB∶OA,cosθ2=AC∶AB,cosθ=AC∶OA,不难验证:cosθ=cosθ1×cosθ2.
例1如图,已知A1B1C1-ABC是正三棱柱,D是AC中点,若AB1⊥BC1,求以BC1为棱,DBC1与CBC1为面的二面角α的度数.(1994年全国高考理科数学23题)
例2已知Rt△ABC的两直角边AC=2,BC=3.P为斜边AB上一点,现沿CP 将此直角三角形折成直二面角A-CP-B(如下图),当AB=√7时,求二面角P-AC -B大小.(上海市1986年高考试题,难度系数0.28)
例3.已知菱形ABCD的边长为1,∠BAD=60°,现沿对角线BD将此菱形折成直二面角A-BD-C(如图6).( 1)求异面直线AC与BD所成的角;( 2)求二面角A-CD-B 的大小.。

相关文档
最新文档