有限差分法基本原理-较好共47页

合集下载

有限差分法的原理与计算步骤

有限差分法的原理与计算步骤

有限差分法的原理与计算步骤有限差分法(Finite Difference Method)是一种常用的数值计算方法,用于求解偏微分方程的数值解。

其基本原理是将连续的偏微分方程转化为差分方程,通过逼近导数,使用离散的点代替连续的点,从而将问题转化为代数问题。

下面将详细介绍有限差分法的原理和计算步骤:一、基本原理:有限差分法基于Taylor级数展开,通过利用函数在其中一点附近的导数信息来逼近函数在该点处的值。

该方法将连续的偏微分方程转化为差分方程,使用离散的点代替连续的点,从而将问题转化为代数问题。

在有限差分法中,常用的差分逼近方式有前向差分、后向差分和中心差分。

二、计算步骤:1.网格划分:将求解区域划分为有限个离散点,并定义网格上的节点和网格尺寸。

通常使用等距离网格,即每个网格点之间的间距相等。

2.离散化:将偏微分方程中的各个导数项进行逼近,利用差分近似来替代和求解。

一般采用中心差分逼近方式,即通过函数值在两侧点的差来逼近导数。

3.代数方程系统:利用离散化的差分方程,将偏微分方程转化为代数方程系统。

根据问题的边界条件和初值条件,构建代数方程系统的系数矩阵和常数向量。

4. 求解代数方程:利用求解线性方程组的方法求解代数方程系统,常用的方法有直接法(如高斯消元法、LU分解法)和迭代法(如Jacobi迭代法、Gauss-Seidel迭代法)。

求解得到各个离散点的解。

5.后处理:根据求解结果进行后处理,包括结果的插值和可视化。

将离散点的解通过插值方法进行平滑处理,并进行可视化展示,以得到连续的函数解。

三、优缺点:1.直观:有限差分法基于网格划分,易于理解和实现。

2.精度可控:可通过调整网格大小和差分逼近方式来控制计算的精度。

3.广泛适用性:可用于求解各种偏微分方程,适用于不同的边界条件和初值条件。

然而,有限差分法也存在一些缺点:1.精度依赖网格:计算结果的精度受到网格划分的影响,因此需要谨慎选择网格大小。

2.限制条件:有限差分法适用于边界对应点处导数有定义的问题,不适用于奇异点和非线性问题。

有限差分法的基本原理

有限差分法的基本原理

f (x) ≈
2h
中心二阶差商
′′
f (x+h)−2f (x)+f (x−h)
f (x) ≈
h2
O(h) O(h)
2
O(h )
2
O(h )
其中,h表示网格间距,O(hn)表示截断误差与hn成正比。可以看出,中心差商比前向或后向差商具有更高的精度。
误差分析
有限差分法求得的数值解与真实解之间存在误差,这些误差主要来源于以下几个方面:
常用差分格式
有限差分法中最重要的步骤是构造合适的差分格式来近似微分项。根据泰勒展开式,可以得到以下常用的一阶和二阶差分格式:
差分格式
表达式
截断误差
前向一阶差商

f (x+h)−f (x)
f (x) ≈
h
后向一阶差商

f (x)−f (x−h)
f (x) ≈
h
中心一阶差商

f (x+h)−f (x−h)
截断误差:由于使用有限项级数来近似无穷级数而产生的误差; 舍入误差:由于计算机对小数进行四舍五入而产生的误差;
离散误差:由于对连续区域进行离散化而产生的误差; 稳定性误差:由于数值格式的稳定性不足而导致误差的累积或放大。
为了减小误差,一般可以采取以下措施:
选择更高阶或更精确的差分格式; 减小网格间距或时间步长; 选择合适的初始条件和边界条件; 选择稳定且收敛的数值格式。
+
。 2
h)
为了验证上述方法的正确性,我们取M = 10, N = 100,则原问题可以写为如下形式:
则该问题对应的递推关系式为:
⎧ut (x, t) − uxx (x, t) = 0,

第五章 有限差分法 知识讲解课件

第五章  有限差分法 知识讲解课件

的 m=4,即此表对应差商的精度是四阶的。从这些表可以看出,一般地说,随着
差分阶数的增大和对应差商精度的提高,差分表达式所包含的项数将增多。
表 5-1
j
n0 1 2 34
1 -1
aj 1
2 1 -2 1
3 -1 3 -3 1
4 1 -4 6 -4 1
表 5-3 j
n0 1 2345 aj
1 -3 4 -1 2 2 -5 4 -1 3 -5 18 -24 14 -3 4 3 -14 26 -24 11 -2
依此类推,任何阶差分都可由其低一阶的差分再作一阶差分得到。例如 n 阶前差
分为
∆n y = ∆(∆n−1 y) = ∆[∆(∆n−2 y)]
⋯⋯ = ∆{∆⋯[∆(∆y)]} = ∆{∆⋯[∆( f (x + ∆x) − f (x)]}
n 阶的向后差分、中心差分的型式类似。
(5-6)
函数的差分与自变量的差分之比,即为函数对自变量的差商。如一阶向前差
二阶差商多取中心式,即
∆2 y ∆x 2
=
f (x + ∆x) − 2 f (x) + (∆x) 2
f (x − ∆x) 。
(5-9) (5-10) (后的二阶差商。 以上是一元函数的差分与差商。多元函数 f(x,y,…)的差分与差商也可以类推。
如一阶向前差商为
应地,上式中的 ∆y 、 ∆x 分别称为函数及自变量的差分, dy //#######为函数对 dx
自变量的差商。 在导数的定义中 ∆x 是以任意方式趋近于零的,因而 ∆x 是可正可负的。在差
分方法中, ∆x 总是取某一小的正数。这样一来,与微分对应的差分可以有 3 种
形式: 向前差分 向后差分 中心差分

有限差分法基本原理

有限差分法基本原理
该方法基于差分原理,即用离散点的 差商来代替微商,将微分方程转化为 差分方程,以便于通过代数方法求解。
有限差分法的应用领域
流体力学
用于模拟流体在固定或变形网格 上的流动,如计算流体动力学 (CFD)中的数值模拟。
热传导
用于求解热传导方程,模拟热 量在物体中的传播和分布。
波动传播
用于求解波动方程,如地震波 、声波和电磁波的传播。
有限差分法基本原理
CONTENTS 目录
• 引言 • 有限差分法的基本原理 • 有限差分法的实现 • 有限差分法的优缺点 • 有限差分法的改进方向
CHAPTER 01
引言
有限差分法的定义
有限差分法是一种数值计算方法,通 过将连续的物理量离散化为有限个离 散点上的数值,并建立代数方程来近 似描述物理量随时间和空间的变化规 律。
缺点
精度问题
由于有限差分法采用的是离散化的方法, 因此其精度受到网格大小的影响,网格越
小精度越高,但同时也会增加计算量。
数值耗散误差
在模拟非线性问题时,有限差分法可能会 产生数值耗散误差,导致能量的损失或者
非物理振荡。
数值色散误差
在模拟波动性问题时,有限差分法可能会 产生数值色散误差,导致波的传播速度发 生变化。
常用的离散化方法包括均匀网格、非均匀网格、有限元法等,
应根据实际问题选择合适的离散化方法。
差分近似
Hale Waihona Puke 01差分近似公式根据微分方程的性质,构造差分 近似公式,将微分方程转化为差 分方程。
精度分析
02
03
稳定性分析
分析差分近似公式的精度,确定 其与微分方程的误差大小和分布。
分析差分近似公式的数值稳定性, 确保计算过程中误差不会累积放 大。

有限差分法基本原理PPT课件

有限差分法基本原理PPT课件

uin1

uin

a
t x
(uin

un i 1
)

ui0 u (xi )
几种差分格式介绍
u a u 0 t x u(x,0) u(x)
FTFS格式(时间向前差分、空间向前差分)
uin1 uin uin1 uin 0
t
x

ui0 u (xi )
uin 1

uin

a
t x
(uin1

uin )

ui0 u (xi )
几种差分格式介绍
FTBS格式(时间向前差分、空间向后差分)
限差分方程的解是收敛T的(i。, n)

lim
x0,t
0
Ti
t
一般情况下,证明收敛性是非常难的,暂不予以证明。
3.稳定性 稳定性讨论的是差分解的误差在计算过程中的发展问题。
在 数值解中,引进误差是不可避免的,电子计算机也有舍入误差, 因此实际算得的有限差分方程的解是近似解。这种误差是要向其 他方向传播的,如果计算中引入的误差在以后逐层计算过程中影 响逐渐消失或者保持有界,则称差分方程是稳定的。否则就是不 稳定的。
Von Neumann稳定性分析方法简介
分析例题
T n1 i
Ti n

t x 2
(Ti
n 1

2Ti n

Ti
n 1
),
S


t x 2
Ti n1

STi n1

(1
2S )Tin

STi
n 1
上式T中i n 近似数值

有限差分法基础ppt课件

有限差分法基础ppt课件

由(1)得到,
f (x x) f (x) x d f (x) (x)2 d 2 f (x) (x)3 d 3 f (x) (x)4 d 4 f (x)
dx
2! dx2
3! dx3
4! dx4
d f (x) f (x x) f (x) O(x)
dx
x
(3) (4)
9
d f (x) f (x x) f (x) O(x)
如果1更靠近0点则可以用x方向的线性插值给出0点的函数值如果2更靠近0点则可以用x方向的线性插值给出0点的函数值21c双向插值法i1ji1ji1j1i1j1ij1i1j1i1j1i1i1j1变步长二次偏导数222第二类和第三类边界条件对于点o过o点向边界g做垂线pq交边界于q交网线段vr于popahprbhvpch因为p一般不是节点其值应当以点和pr点的插值给出代入第二三类边界条件23图中o与r重合图中v与r点重合2第二类和第三类边界条件2424差分方程对于具体地球物理问题的偏微分方程组利用上述差分格式可以给出偏导数的微商近似进一步得到差分方程组
3. 如何数值求解差分方程组
6
2.2 网格剖分
• 网格剖分就是研究区域和边界的离散化 • 1.矩形分割 • 2.三角形分割 • 3.极网格分割
7
对地球物理问题的连续求解区域通过网格划分离散为空间上得一系 列网格点,接下来需要利用一定的差分格式对偏微分方程组中的导 数用差商进行近似,从而将偏微分方程组离散化为差分方程组。
dx
2x
单侧,一阶精度 单侧,一阶精度 对称,二阶精度
d2 dx2
f (x)
f (x x) 2 f (x) (x)2
f (x-x)
二阶精度
13
• 定解问题的有限差分解法 1.离散

有限差分法的原理及应用

有限差分法的原理及应用

有限差分法的原理及应用1. 前言有限差分法(Finite Difference Method)是一种常见的数值计算方法,用于求解偏微分方程(Partial Differential Equations,简称PDE)。

它通过在求解域中采用离散点来逼近微分算子,将连续的微分方程转换为离散的代数方程,从而实现对PDE的数值求解。

有限差分法具有简单易懂、易于实现的优点,被广泛应用于科学计算、工程分析等领域。

2. 原理有限差分法的原理基于以下两个基本思想: - 寻找定义域上的离散点,并通过这些离散点来近似表示原方程中的未知函数。

- 使用差分格式来近似微分算子,从而将偏微分方程转化为代数方程组。

具体而言,有限差分法将定义域按照均匀的网格划分为一个个网格点,这些点被称为节点。

同时,有限差分法还使用网格点上的函数值来近似表示原方程中的未知函数。

通过将对原方程中的微商用差商来近似表示,然后将差商带入到原方程中,得到离散的代数方程。

3. 应用有限差分法广泛应用于各个科学领域和工程领域中的数值计算问题。

以下列举几个常见的应用领域:3.1 流体力学在流体力学中,有限差分法被用来模拟流体的运动。

通过将流体领域离散化,将流体的速度、压力等参数表示为离散点上的函数值,可以使用有限差分法求解Navier-Stokes方程,从而得到流体的流动行为。

3.2 热传导有限差分法可以用于求解热传导方程。

通过将传热领域离散化,并将温度表示为离散点上的函数值,可以使用有限差分法求解热传导方程,从而得到材料内的温度分布。

3.3 结构力学有限差分法也被广泛用于求解结构力学中的问题。

例如,在弹性力学中,可以通过将结构域离散化,并将结构的位移、应力等参数表示为离散点上的函数值,使用有限差分法求解相应的弹性方程,从而得到结构的应力分布和变形情况。

3.4 电磁场分析在电磁场分析中,有限差分法被用来求解麦克斯韦方程组。

通过将电磁场的定义域离散化,并将电场、磁场等参数表示为离散点上的函数值,可以使用有限差分法求解麦克斯韦方程组,从而得到电磁场的分布情况。

有限差分方法基础ppt课件

有限差分方法基础ppt课件



t


x
0
(x,0) (x)
这里 (x) 为某已知函数。同样,差分方程也必须有初始条件:
(2-7)


n1 i


n i



n i 1


n i 1
0
t
2x

0 i


(xi )
(2-8)
初始条件是一种定解条件。如果是初边值问题,定解条件中还应有适当的边界条件。差分方程和其定解条件一起, 称为相应微分方程定解问题的差分格式。
图1-3 均匀和非均匀网格实例2
22
第二节 差分方程、截断误差和相容性/差分方程(1/3)
差分相应于微分,差商相应于导数。差分和差商是用有限形式表 示的,而微分和导数则是以极限形式表示的。如果将微分方程中 的导数用相应的差商近似代替,就可得到有限形式的差分方程。 现以对流方程为例,列出对应的差分方程。
FTCS格式的截断误差为
Rin O(t, (x)2 )
FTFS和FTBS格式的截断误差为
Rin O(t, x)
3种格式对 t 都有一阶精度。
(2-12) (2-13)
30
第二节 差分方程、截断误差和相容性/相容性(1/3)
25
第二节 差分方程、截断误差和相容性/截断误差(1/6)
按照前面关于逼近误差的分析知道,用时间向前差商代替时间导数时的误差为 O(t) ,
用空间中心差商代替空间导数时的误差为 O((x)2 ) ,因而对流方程与对应的差分方程之间也存在一个误差,它是
Rin O(t) O((x)2 ) O(t, (x)2 )
表2

有限差分法基本原理-较好

有限差分法基本原理-较好

如折射、反射、散射等现象。
电磁波控制
03
在电磁场模拟中,有限差分法还可以用于研究电磁波的调控技
术,如波导、滤波器等器件的设计和优化。
有限差分法在气候模拟中的应用
气候模型
气候模拟是有限差分法的另一个重要应用领域,用于研究地球气 候系统的演变和预测。
大气环流模型
通过有限差分法,可以建立大气环流模型,模拟大气中温度、湿 度、风速等变量的变化和传播。
有限差分法的稳定性分析
稳定性定义
有限差分法的稳定性是指当时间步长趋于无 穷小时,数值解的误差不会发散,而是趋于 零。
稳定性条件
为了确保有限差分法的稳定性,需要满足一定的条 件,例如CFL条件(Courant-Friedrichs-Lewy条件 )等。
不稳定性分析
对于某些初始条件和参数,有限差分法可能 会出现数值不稳定的情况,需要进行不稳定 性分析并采取相应的措施。
3
边界条件处理
在流体动力学应用中,有限差分法需要考虑复杂 的边界条件,如固壁、滑移边界等,以实现准确 的数值模拟。
有限差分法在电磁场模拟中的应用
麦克斯韦方程
01
有限差分法可以用于求解电磁场中的麦克斯韦方程,以模拟电
磁波的传播和散射等行为。
电磁波传播
02
通过有限差分法,可以模拟电磁波在复杂介质中的传播特性,
THANKS FOR WATCHING
感谢您的观看
未来研究方向与展望
研究方向 展望
针对有限差分法的局限性和不足,未来的研究可 以关注如何改进算法,提高计算精度和稳定性, 以及如何拓展该方法的应用范围。
随着计算机技术的不断发展和数值计算方法的进 步,有限差分法有望在未来得到更广泛的应用和 更深入的研究,为解决各种科学和工程问题提供 更加有效的数值计算方法。

04有限差分法.ppt

04有限差分法.ppt
uin n 1 n 1 a n n n ui ui ui 1 ui 1 2 ui 1 2uin uin 1 2h h uin n a n n 1 n n ui ui ui 1 ui 1 2 ui 1 2uin uin 1 或 2h h
n Rj
O t x

2

无条件稳定
2.一维混合问题
u 2u 2 0 t x u x ,0 F x u a, t t u b, t t
0 x b, t 0, 0
对于[a,b]区间的内点,可以构造以上各种格式。 如四点显式
例:驱动腔内的流体流动。
3.网格划分
x h y l xi ih
-----称为步长。
u x, y u i , j
xi , y j i, j
y j jl
4.差分格式 将u在(i,j)附近展成Taylor级数
ui 1, j ui , j ui 1, j ui , j 1 2u 1 3u u h 2 h 2 3 h 3 ... 2 x 3! x x i , j i, j i, j 1 2u 1 3u u h 2 h 2 3 h 3 ... 2 x 3! x x i , j i, j i, j


-----中心差分式
O h 表示具有二阶精度。

2
两Taylor展式相加
2u 1 ui 1, j 2ui , j ui 1, j O h 2 x 2 h2 i, j

《计算机数值方法教学课件》第四章 有限差分法的基本概念

《计算机数值方法教学课件》第四章 有限差分法的基本概念
i, n
i 1, n
i 1, n 1
i, n 1
i 1, n 1
x
§4.2 导数的差分近似方法
(1) 泰勒级数展开法

一阶偏导数
t
i 1, n 1 i, n 1 i 1, n 1
时间前差
ui ui u ( t ) t t i
xi

xI
x
U ( x i , tn ) U
n i
discrete grids
§4.1 引言
(2) 离散化网格
复杂外形网格生成
§4.1 引言
(3) 离散化过程
网格生成
L(u)=0 B(u)=0
( u i , j ,k ) 0
n
( u i , j ,k )
g ( u i , j ,k )
第四章 有限差分法的基本概念
§4.1 §4.2 §4.3 §4.4 §4.5 §4.6

引言 导数的差分近似方法 差分方程 显式和隐式差分格式 差分格式的基本性质 数值耗散与数值色散
§4.1 引言
(1) 离散化概念
f(x)
y f ( x ),
i
x [a , b ]
x
u x
~ ~
ui1 ui x i1 x i
ui ui1 x i x i1
ui1 ui1
i1
向前差分
(前差)
向后差分
(后差)
xi-1
xi
xi+1
x
~x
x i1
中心差分
(中心差)
§4.1 引言
(5) 有限差分法
离散对象: 偏微分方程和定解条件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限差分法基本原理-较好
56、死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,亭亭月将圆。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
谢ቤተ መጻሕፍቲ ባይዱ!
相关文档
最新文档