中考数学专题练习二元一次方程组的解(含解析)

合集下载

中考数学总复习《二元一次方程组》专项提升练习(附答案)

中考数学总复习《二元一次方程组》专项提升练习(附答案)

中考数学总复习《二元一次方程组》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________知识点复习一、二元一次方程组定义1:含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程,它的一般形式是()00,0ax by c a b ++=≠≠。

定义2:把两个方程合在一起,就组成了方程组。

定义3:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,这样的方程组叫做二元一次方程组。

定义4:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

定义5:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

二、解二元一次方程组的方法(1)代入消元法:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这种方法叫做代入消元法,简称代入法。

(2)加减消元法:当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。

这种方法叫做加减消元法,简称加减法。

三、方程(组)与实际问题解有关方程(组)的实际问题的一般步骤:第1步:审题。

认真读题,分析题中各个量之间的关系。

第2步:设未知数。

根据题意及各个量的关系设未知数。

第3步:列方程(组)。

根据题中各个量的关系列出方程(组)。

第4步:解方程(组)。

根据方程(组)的类型采用相应的解法。

第5步:答。

专题练习一、单选题1.已知关于x ,y 的二元一次方程组3221ax y x y +=⎧⎨-=⎩无解,则a 的值是( ) A .2 B .6 C .2- D .6-2.已知23a b -=,1a b +=则36a b -的值为( )A .6B .4C .3D .23.某班有x 人,分y 组活动,若每组7人,则余下3人;每组8人,则有一组差5人,根据题意下列方程组正确的是( )A .7385y x y x =+⎧⎨=+⎩B .7385y x x y =+⎧⎨=-⎩C .7385y x y x =-⎧⎨=+⎩D .7385x y x y =-⎧⎨=+⎩ 4.文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入144元;第2天,卖出18支牙刷和11盒牙膏,收入219元;第3天,卖出23支牙刷和20盒牙膏,收入368元;第4天,卖出17支牙刷和11盒牙膏,收入216元.已知第1天和第2天的记录无误,第3天和第4天有一天的记录有误,则记录有误的一天收入( )A .多记1元B .多记2元C .少记1元D .少记2元5.两位同学在解方程组273ax by cx y +=⎧⎨+=⎩时,甲同学正确地解出11x y =-⎧⎨=-⎩,乙同学因把c 抄错了解得32x y =-⎧⎨=-⎩,则a 、b 、c 正确的值应为( )A .315a b c =-=-=-,,B .115a b c ==-=-,,C .2410a b c ==-=-,,D .315a b c ===-,,6.小华准备购买单价分别为4元和5元的两种瓶装饮料,且每种瓶装饮料的购买数量不为0.若小华将50元恰好用完,则购买方案共有( )A .2种B .3种C .4种D .5种7.在一个停车场,停了小轿车和摩托车一共32辆,这些车一共有108个轮子,则该停车场小轿车和摩托车的辆数分别为( )A .21,11B .22,10C .23,9D .24,8 8.已知关于x ,y 的方程2|18|(26)(2)0n m m x n y +--++=是二元一次方程,则m n +的值(若29m =,则3m =±)是( )A .5-B .3-C .1D .3二、填空题9.当方程组2520x ay x y +=⎧⎨-=⎩解是正整数时,整数a 值为 . 10.如果35x y =⎧⎨=-⎩是方程22mx y +=-的一组解,那么m 的值为 . 11.若关于x y ,的方程组1235x y c x y c +=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,则方程组()()()()12113151x y c x y c ⎧-++=⎪⎨-++=⎪⎩的解为 .12.A,B两地相距80千米,一船从A出发顺水行驶4小时到达B,而从B出发逆水行驶5小时才能到达A,则船在静水中的航行速度是千米/时.13.若关于x的不等式组20,21xx m-<⎧⎨-≥-⎩恰有三个整数解,关于x的方程组26,3x yx y m+=⎧⎨-=⎩的解是正数,则m的取值范围是.三、解答题14.解方程组:(1)25 328 y xx y=-⎧⎨-=⎩(2)434 2312x yx y⎧+=⎪⎨⎪-=⎩15.已知方程组45321x yx y+=⎧⎨-=⎩和31ax byax by+=⎧⎨-=⎩有相同的解,求222a ab b-+的值.16.用加减法解方程组344328x y x y -=⎧⎨-=⎩①②其解题过程如下: 第一步:-①②,得4248y y --=-,解得23y =. 第二步:把23y =,代入①,得8343x -=,解得209x =. 第三步:所以这个方程组的解为20923x y ⎧=⎪⎪⎨⎪=⎪⎩上述解题过程是否正确?若不正确,则从第几步开始出现错误?请写出正确的解题过程.17.印江河是印江的母亲河,为了确保河道畅通,现需要对一段长为180米的河道进行清淤处理,清淤任务由A 、B 两个工程队先后接力完成,A 工程队每天完成12米,B 工程队每天完成8米,共用时20天. 根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:128x y x y ⎧+=⎪⎨+=⎪⎩ 乙:128x y x y ⎧+=⎪⎨+=⎪⎩(1)根据甲同学所列的方程组,请你指出未知数x 、y 表示的意义.x 表示______,y 表示______;请你补全乙同学所列的方程组______(2)求A 、B 两工程队分别完成河道清淤多少米?(写出完整的解答过程)18.“一盔一带”安全守护行动在我县开展以来,市场上头盔出现了热销,某商场购进了一批头盔.已知购进6个A型头盔和4个B型头盔需要440元,购进4个A型头盔和6个B型头盔需要510元.(1)购进1个A型头盔和1个B型头盔分别需要多少元?(2)若该商场准备购进200个这两种型号的头盔,总费用不超过10200元,那么最多可购买B型头盔多少个?(3)在(2)的条件下,若该商场分别以售价为58元/个、98元/个的售价销售完A、B两类型号的头盔共200个,能否实现利润不少于6190元的目标?若能,直接写出相应的采购方案;若不能,请说明理由.参考答案:1.D2.A3.C4.C5.C6.A7.B8.B9.1或3-10.83/22311.65 xy⎧=⎨=⎩12.1813.21m-<≤-14.(1)21 xy=⎧⎨=-⎩(2)1083 xy=⎧⎪⎨=⎪⎩15.116.不正确,从第一步开始出现错误;正确的解题过程见解析,原方程组的解为:42 xy=⎧⎨=⎩17.(1)x表示A工程队工作的天数,y表示B工程队工作的天数,18020 128x yx y+=⎧⎪⎨+=⎪⎩(2)A工程队完成河道清淤60米,B工程队完成河道清淤120米18.(1)购进1个A型头盔30元,1个B型头盔65元;(2)最多可购买B型头盔120个;(3)三种购买方案。

中考数学总复习二元一次方程组专题复习(含答案)

中考数学总复习二元一次方程组专题复习(含答案)

中考数学总复习二元一次方程组专题复习(含答案)一、选择题。

(在每小题给出的四个选项中,只有一个选项是符合题目要求的。

)1、下列各式中是二元一次方程的是()。

A、6x+2y=zB、+2=3yC、x-5=y2D、2x+5y=132、二元一次方程组的解是()。

3、若方程4x-3ky=12有一组解是,则k的值等于()。

A、-4B、4C、5D、-54、当方程kx+4y=9x-8是二元一次方程时,k的取值为()。

A、k≠0B、k≠-9C、k≠9D、k≠45、如果是二元一次方程组的解,那么m+n=()。

A、-1B、1C、-5D、56、可以使得方程x+5y=8和3x+y=-4同时成立的x、y的值分别为()。

A、x=2且y=2B、x=-2且y=2C、x=2且y=-2D、x=-2且y=27、方程5x-y=8的非负整数解有()。

A、2组B、3组C、4组D、无数组8、已知新星学校和山泉中学相距4千米,苏兰和肖英两人分别从新星学校和山泉中学同时出发,若同向而行,苏兰2小时可追上肖英;若两人相向而行,1小时相遇。

求苏兰、肖英两人的速度各是多少?如果设苏兰的速度为x千米/时,肖英的速度为y千米/时,则可以得一个二元一次方程组为()。

9、有一个两位数,它的十位数字与个位数字之和为8,则符合条件的两位数有()。

A、6个B、7个C、8个D、9个10、已知是二元一次方程组的解,则(3m+n)3的值为()。

A、1B、-1C、2D、-2二、填空题。

(将正确的答案填在括号里。

)1、若是二元一次方程,则m=(),n=()。

2、若是二元一次方程2x-ky=11的一个解,则k=()。

3、如果关于x、y的二元一次方程组的解满足2(x+y)-16≤0,则t的取值范围为()。

4、若(4x+y-13)2+│3x+2y-1│=0 则x-4y=()。

5、育龙中学组织一场知识竞赛。

规定知识竞赛的记分为:答对一题得3分,答错一题扣1分。

已知九(1)班答了12道题,共得24分,那么九(1)班答对了()道题。

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)解下列二元一次方程组:1. {x +y = 2 3x +7y =10;2.{x +3y = 810x −y =18;3.{3x +2y =1364x −3y =1;4.{ x+52+y−43=2x+20.3−y+70.4= −10 ;5.{ 4x −3y =−1 x 5=y 7 ;6. {3(x +2)=2(y +3)4(x −2)=3(y −3);7.{ x 5+y 7=10 x 3−y 4=3;8.{x 2+y 3=42x +7y =50 ;9.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ;10.{0.2x +0.5y =9x+22+y+105=15 ;11.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3;12.{x+2y 2 +x−2y 3 = 113(x +2y )−4(x −2y )=30 ;参考答案1. {x +y = 23x +7y =10 ;解: {x +y = 2−−−−−−①3x +7y =10−−−−②①×3,得3x+3y=6-------③②-③,得4y=4,即y=1将y=1代入①,解得x=1故原方程组的解是: {x =1y =12.{x +3y = 810x −y =18; 解:{x +3y = 8−−−−−−−①10x −y =18−−−−−−②②×3,得 30x-3y=54----③①+③,得31x=62,即x=2将x=2代入①,得2+3y=8,y=2故原方程组的解是: {x =2y =23.{3x +2y =1364x −3y =1; 解:{3x +2y =136−−−−−−①4x −3y =1−−−−−−② ①×3,得9x+6y= 132------③ ②×2,得8x-6y=2-----④③+④,得17x= 172 ,x= 12 将x= 12代入②,2-3y=1,y= 13 故原方程组的解是: {x = 12y = 134.{ x+52+y−43=2 x+20.3−y+70.4= −10; 解:{ x+52+y−43=2 −−−−−−−① x+20.3−y+70.4= −10−−−−−−②①等号两边同时乘以6,得3(x+5)+2(y-4)=123x+15+2y-8=12整理,得3x+2y=5----------③②等号两边同时乘以0.3×0.4,得0.4(x+2)-0.3(y+7)=-1.2两边同时乘以10,得4(x+2)-3(y+7)=-124x+8-3y-21=-12整理,得4x-3y=1--------④③×3,得9x+6y=15------⑤④×2,得8x-6y=2-------⑥⑤+⑥,得17x=17,即x=1将x=1代入③,得3+2y=5,y=1故原方程组的解是: {x =1y =15.{ 4x −3y =−1 x 5=y 7 ; 解:{ 4x −3y =−1 −−−−−−−−−−−① x 5=y 7−−−−−−−−−−−−−−−② ②变化为x= 57 y--------------③ 将③代入①,得4×57y -3y=-1 20−217 y =-1,整理得y=7将y=7代入③,得x= 57 ×7,x=5 故原方程组的解是: {x =5y =76. {3(x +2)=2(y +3)4(x −2)=3(y −3); 解:{3(x +2)=2(y +3)4(x −2)=3(y −3)方程组去括号,得{3x +6=2y +64x −8=3y −9整理得{3x −2y =0−−−−①4x −3y +1=0−−②①×3,得9x-6y=0--------③②×2, 得8x-6y+2=0------④③-④,得x-2=0,即x=2将x=2代入①,得6-2y=0,y=3故原方程组的解是: {x =2y =37.{ x 5+y 7=10 x 3−y 4=3; 解:{ x 5+y 7=10 x 3−y 4=3 方程组去分母,得{ 7x +5y =350−−−−−−①4x −3y =36−−−−−−−②①×3,得21x+15y=1050---③②×5,得20x-15y=180----④③+④,得41x=1230,即x=30将x=30代入①,得210+5y=350,y=28故原方程组的解是: {x =30y =288.{x 2+y 3=4 2x +7y =50; 解:{x 2+y 3=4 2x +7y =50方程组去分母,得{3x +2y =24−−−−−−−① 2x +7y =50−−−−−−−②①×2,得6x+4y=48-----③②×3,得6x+21y=150---④④-③,得17y=102,即y=6将y=6代入① ,得3x+12=24,x=4故原方程组的解是: {x =4y =69.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ; 解:{12(x +3)+13(y −4)=5−−−−① 2(x −3)+5(y +4)=70−−−②①去分母,得3(x+3)+2(y-4)=30去括号,得3x+9+2y-8=30整理,得3x+2y-29=0-----------③②去括号,得2x-6+5y+20=70整理,得2x+5y-56=0-----------④③×2,得6x+4y-58=0------------⑤④×3,得6x+15y-168=0----------⑥⑥-⑤,得11y-110=0,即y=10将y=10代入③,得3x+20-29=0,x=3故原方程组的解是:{x=3 y=1010.{0.2x+0.5y=9x+2 2+y+105=15 ;解:{0.2x+0.5y=9−−−−−①x+22+y+105=15−−−−−−②①等号两边同时乘以10,得2x+5y=90------------------③②去分母,得5(x+2)+2(y+10)=150去括号,整理得5x+2y=120---④③×5,得10x+25y=450------⑤④×2,得10x+4y=240-------⑥⑤-⑥,得21y=210,即y=10将y=10代入③,得2x+50=90,x=20故原方程组的解是:{x=20 y=1011.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3; 解:{4(x −1) +3(y +1) =3−−−−−−−−−①20%(x +1)+80%(y −1)=−3−−−−−−② ①去括号,得4x-4+3y+3=3,整理得4x+3y=4-----③ ②去百分号,得0.2(x+1)+0.8(y-1)=-3等号两边同时乘以10,得2(x+1)+8(y-1)=-30 去括号,得2x+2+8y-8=-30,整理得x+4y=-12----④ ④×4,得4x+16y=-48------------------------⑤ ⑤-③,得13y=-52,即y=-4将y=-4代入④,得x-16=-12,x=4故原方程组的解是: {x =4y =−412.{x+2y 2 +x−2y 3 = 11 3(x +2y )−4(x −2y )=30; 解:{x+2y 2 +x−2y 3 = 11 −−−−−−−−−−−−−−① 3(x +2y )−4(x −2y )=30−−−−−−② ①×6,得3(x+2y )+2(x-2y )=66----------------③③-②,得6(x-2y )=36,即x-2y= 6 -------④①×12,得6(x+2y )+4(x-2y )=132---------------⑤⑤+②,得9(x+2y)=162,即x+2y=18---⑥④+⑥,得2x=24,即x=12④-⑥,得-4y=-12,即y=3故原方程组的解是:{x=12 y=3。

2023年中考数学----二元一次方程组之解二元一次方程组知识点及专项练习题(含答案解析)

2023年中考数学----二元一次方程组之解二元一次方程组知识点及专项练习题(含答案解析)

2023年中考数学----二元一次方程组之解二元一次方程组知识点及专项练习题(含答案解析)知识点1. 解二元一次方程组的思想:消元思想:将方程组中的未知数由多化少,逐一解决的思想。

2. 解二元一次方程组的方法:①代入消元法:将其中一个方程的其中一个未知数用另一个未知数表示出来代入另一个方程中,实现消元,进而求出方程组的解的方法叫做代入消元法。

(通常适用于有未知数的系数是±1的方程组)②加减消元法:当方程组中的两个方程的同一个未知数的系数相同或相反时,则可以利用将两个方程相减或相加的方法消掉这个未知数的方法叫做加减消元法。

专项练习题1、.(2022•株洲)对于二元一次方程组⎩⎨⎧=+−=721y x x y ,将①式代入②式,消去y 可以得到( ) A .x +2x ﹣1=7 B .x +2x ﹣2=7C .x +x ﹣1=7D .x +2x +2=7 【分析】将①式代入②式,得x +2(x ﹣1)=7,去括号即可.【解答】解:,将①式代入②式,得x +2(x ﹣1)=7,∴x +2x ﹣2=7,故选:B .2、(2022•潍坊)方程组⎩⎨⎧=−=+0231332y x y x 的解为 . 【分析】由第一个方程得4x +6y =26,由第二个方程得9x ﹣6y =0,两个方程相加消去y ,解出x ,再进一步解出y 即可.【解答】解:,由①×2得4x +6y =26③,由②×3得9x ﹣6y =0④,由③+④得13x =26,解得x =2,将x =2代入②得3×2﹣2y =0,解得y =3,所以原方程组的解为. 故答案为:. 3、(2022•沈阳)二元一次方程组⎩⎨⎧==+x y y x 252的解是 . 【分析】用代入消元法解二元一次方程组即可.【解答】解:,将②代入①,得x +4x =5,解得x =1,将x =1代入②,得y =2,∴方程组的解为,故答案为:. 4、(2022•无锡)二元一次方程组⎩⎨⎧=−=+121223y x y x 的解为 .【分析】根据代入消元法求解即可得出答案.【解答】解:,由②得:y =2x ﹣1③,将③代入①得:3x +2(2x ﹣1)=12,解得:x =2,将x =2代入③得:y =3,∴原方程组的解为. 故答案为:. 5、(2022•随州)已知二元一次方程组⎩⎨⎧=+=+5242y x y x ,则x ﹣y 的值为 . 【分析】将第一个方程化为x =4﹣2y ,并代入第二个方程中,可得2(4﹣2y )+y =5,解得y =1,将y =1代入第一个方程中,可得x =2,即可求解.【解答】解:解法一:由x +2y =4可得:x =4﹣2y ,代入第二个方程中,可得:2(4﹣2y )+y =5,解得:y =1,将y =1代入第一个方程中,可得x +2×1=4,解得:x =2,∴x ﹣y =2﹣1=1,故答案为:1;解法二:∵,由②﹣①可得:x﹣y=1,故答案为:1.6、(2022•安顺)若a+2b=8,3a+4b=18,则a+b的值为.【分析】直接利用已知解方程组进而得出答案.【解答】解:方法一、∵a+2b=8,3a+4b=18,则a=8﹣2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.方法二、∵a+2b=8,3a+4b=18,∴2a+2b=10,∴a+b=5,故答案为:5.本课结束。

中考数学专题练习 二元一次方程组(含解析)

中考数学专题练习 二元一次方程组(含解析)

二元一次方程组一、填空题1.用加减消元法解方程组,由①×2﹣②得.2.在方程3x﹣y=5中,用含x的代数式表示y为:y= ,当x=3时,y= .3.在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k= ;当m=2,n=﹣3时代数式的值是.4.已知方程组与有相同的解,则m= ,n= .5.若(2x﹣3y+5)2+|x+y﹣2|=0,则x= ,y= .6.有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x,十位数字为y,则用代数式表示原两位数为,根据题意得方程组.7.如果是方程6x+by=32的解,则b= .8.若是关于x、y的方程ax﹣by=1的一个解,且a+b=﹣3,则5a﹣2b= .9.已知a2﹣a+1=2,那么a﹣a2+1的值是.10.若|3a+4b﹣c|+(c﹣2b)2=0,则a:b:c= .二、选择题11.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2 B.x=2,y=﹣3 C.x=﹣2,y=3 D.x=3,y=﹣212.已知是方程组的解,则a,b间的关系是()A.4b﹣9a=1 B.3a+2b=1 C.4b﹣9a=﹣1 D.9a+4b=113.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为()A.3 B.﹣3 C.﹣4 D.414.若二元一次方程3x﹣2y=1有正整数解,则x的取值应为()A.正奇数B.正偶数C.正奇数或正偶数D.015.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是()A.a<﹣1 B.a<1 C.a>﹣1 D.a>116.方程ax﹣4y=x﹣1是二元一次方程,则a的取值为()A.a≠0 B.a≠﹣1 C.a≠1 D.a≠217.当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时这个式子的值为()A.6 B.﹣4 C.5 D.118.设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v千米/小时,并有:①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求x、u、v.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A.x=u+4 B.x=v+4 C.2x﹣u=4 D.x﹣v=4三、解答题19.解方程组:.20.解方程组:.21.解方程组:.22.王大伯承包了25亩土地,今年春季改种黄瓜和西红柿两种大棚蔬菜,用去了44 000元,其中种黄瓜每亩用了1700元,获纯利润2600元;种西红柿每亩用了1800元,获纯利润2800元,问王大伯一共获纯利润多少元?23.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段某市的一环路、二环路、三环路的车流量已知关于x、y的方程组与有相同的解,求a、b的值.28.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如表所示.现租用该公司的甲种货车3辆乙种货车5辆,一次刚好运完这批货物,如果按每吨付运费30元计算,问货主应付运费多少元?第一次第二次甲种货车辆(辆) 2 5 乙种货车辆(辆) 3 6 累计运货吨数(吨)15.5 35二元一次方程组参考答案与试题解析一、填空题1.用加减消元法解方程组,由①×2﹣②得2x=﹣3 .【考点】解二元一次方程组.【专题】计算题.【分析】此题主要考查加减消元法的应用,按照题目要求解答即可.【解答】解:①×2﹣②得,6x+2y﹣(4x+2y)=﹣2﹣1,合并同类项得,2x=﹣3.【点评】注意掌握二元一次方程的加减消元法.2.在方程3x﹣y=5中,用含x的代数式表示y为:y= 12x﹣20 ,当x=3时,y= 16 .【考点】解二元一次方程.【分析】本题是将二元一次方程变形,用一个未知数表示另一个未知数,可先移项,再系数化为1,得到y的表达式,最后把x的值代入方程求出y值.【解答】解:①由已知方程3x﹣y=5,移项,得,系数化为1,得y=12x﹣20;②当x=3代入y=12x﹣20,得y=16.【点评】本题考查的是方程的基本运算技能:移项,合并同类项,系数化为1等.3.在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k= ﹣2 ;当m=2,n=﹣3时代数式的值是﹣7 .【考点】代数式求值.【分析】直接把m=﹣2,n=1代入代数式,求得k,再利用代入法求代数式的解.【解答】解:∵m=﹣2,n=1∴3m+5n﹣k=1∴k=﹣2∵m=2,n=﹣3,k=﹣2∴3m+5n﹣k=3×2+5×(﹣3)﹣(﹣2)=﹣7.【点评】解题关键是先把m=﹣2,n=1代入代数式求出k的值,再把k的值,m=2,n=﹣3代入代数式求值.4.已知方程组与有相同的解,则m= ,n= 12 .【考点】同解方程组.【专题】计算题.【分析】解此题可先将第二个方程组解出x、y的值,再代入第一个方程组,化为只有m、n的方程组,即可求出n、m.【解答】解:由(1)×2+(2),得10x=20,x=2,代入,得y=0.将x、y代入第一个方程组可得,解,得.【点评】此题考查的是考生对二元一次方程组的解的理解和二元一次方程组的解法,解出x、y的值,再代入方程组求出m、n的值、最重要的是将方程化简到只含有两个未知数.5.若(2x﹣3y+5)2+|x+y﹣2|=0,则x= ,y= .【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x、y的值.【解答】解:∵(2x﹣3y+5)2+|x+y﹣2|=0,∴,解,得x=,y=.【点评】本题考查了非负数的性质.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.6.有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x,十位数字为y,则用代数式表示原两位数为10y+x ,根据题意得方程组.【考点】由实际问题抽象出二元一次方程组.【分析】如果设原两位数的个位数字为x,十位数字为y,那么原两位数可表示为10y+x.此题中的等量关系有:①有一个两位数,它的两个数字之和为11可得出方程x+y=11;②根据“把这个两位数的个位数字与十位数字对调,所得的新数比原数大63”,可得出方程为(10x+y)﹣(10y+x)=63,那么方程组是.【解答】解:根据数位的意义,该两位数可表示为10y+x.根据有一个两位数,它的两个数字之和为11,可得方程x+y=11;根据把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,可得方程(10x+y)﹣(10y+x)=63.那么方程组是.故答案为:10y+x,.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.本题要注意两位数的表示方法.7.如果是方程6x+by=32的解,则b= 7 .【考点】二元一次方程的解.【专题】方程思想.【分析】将x=3,y=2代入方程6x+by=32,把未知数转化为已知数,然后解关于未知系数b的方程.【解答】解:把x=3,y=2代入方程6x+by=32,得6×3+2b=32,移项,得2b=32﹣18,合并同类项,系数化为1,得b=7.【点评】本题的关键是将方程的解代入原方程,把关于x、y的方程转化为关于系数b的方程,此法叫做待定系数法,在以后的学习中,经常用此方法求函数解析式.8.若是关于x、y的方程ax﹣by=1的一个解,且a+b=﹣3,则5a﹣2b= ﹣43 .【考点】二元一次方程的解.【分析】要求5a﹣2b的值,要先求出a和b的值.根据题意得到关于a和b的二元一次方程组,再求出a和b的值.【解答】解:把代入方程ax﹣by=1,得到a+2b=1,因为a+b=﹣3,所以得到关于a和b的二元一次方程组,解这个方程组,得b=4,a=﹣7,所以5a﹣2b=5×(﹣7)﹣2×4=﹣35﹣8=﹣43.【点评】运用代入法,得关于a和b的二元一次方程组,再解方程组求解是解决此类问题的关键.9.已知a2﹣a+1=2,那么a﹣a2+1的值是0 .【考点】代数式求值.【专题】整体思想.【分析】先求出a2﹣a的值,再把原式化为﹣(a2﹣a)+1的形式进行解答.【解答】解:∵a2﹣a+1=2,∴a2﹣a=1,∴a﹣a2+1=﹣(a2﹣a)+1,=﹣1+1=0.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a2﹣a的值,然后利用“整体代入法”求代数式的值.10.若|3a+4b﹣c|+(c﹣2b)2=0,则a:b:c= ﹣2:3:6 .【考点】解三元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】解此题可以根据函数的非负性进行求解,含不等式的式子必大于0,含平方的式子也必大于0,因此可知|3a+4b﹣c|=0,且(c﹣2b)2=0,据此可以求出a,b,c的比.【解答】解:依题意得:|3a+4b﹣c|=0,且(c﹣2b)2=0,∴,∴由②得3a=﹣2b,即a=﹣b,∴a:b:c=﹣b:b:2b=﹣2:3:6.故答案为:﹣2:3:6.【点评】此题考查的是非负数的性质,据此可以列出二元一次方程组,求出相应的比,就可以计算出此题.二、选择题11.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2 B.x=2,y=﹣3 C.x=﹣2,y=3 D.x=3,y=﹣2【考点】同类项;解二元一次方程组.【专题】计算题.【分析】本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.【解答】解:由同类项的定义,得,解这个方程组,得.故选B.【点评】根据同类项的定义列出方程组,是解本题的关键.12.已知是方程组的解,则a,b间的关系是()A.4b﹣9a=1 B.3a+2b=1 C.4b﹣9a=﹣1 D.9a+4b=1【考点】二元一次方程组的解.【分析】解此题时可将x,y的值代入方程,化简可得出结论.【解答】解:根据题意得,原方程可化为要确定a和b的关系,只需消去c即可,则有9a+4b=1.故选D.【点评】此题考查的是对方程组性质的理解,运用加减消元法来求解.13.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为()A.3 B.﹣3 C.﹣4 D.4【考点】解三元一次方程组.【专题】计算题.【分析】由题意建立关于x,y的方程组,求得x,y的值,再代入y=kx﹣9中,求得k的值.【解答】解:解得:,代入y=kx﹣9得:﹣1=2k﹣9,解得:k=4.故选D.【点评】本题先通过解二元一次方程组,求得后再代入关于k的方程而求解的.14.若二元一次方程3x﹣2y=1有正整数解,则x的取值应为()A.正奇数B.正偶数C.正奇数或正偶数D.0【考点】解二元一次方程.【分析】应先用方程表示y的值,然后再根据解为正整数分析解的情况.【解答】解:由题意,得,要使x,y都是正整数,必须满足3x﹣1大于0,且是2的倍数.根据以上两个条件可知,合适的x值为正奇数.故选A.【点评】解题关键是把方程做适当的变形,再确定符合条件的x的取值范围.15.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是()A.a<﹣1 B.a<1 C.a>﹣1 D.a>1【考点】解二元一次方程组;解一元一次不等式.【分析】解此题时可以解出二元一次方程组中x,y关于a的式子,代入x+y>0,然后解出a的取值范围.【解答】解:方程组中两个方程相加得4x+4y=2+2a,即x+y=,又x+y>0,即>0,解一元一次不等式得a>﹣1,故选C.【点评】本题是综合考查了二元一次方程组和一元一次不等式的综合运用,灵活运用二元一次方程组的解法是解决本题的关键.16.方程ax﹣4y=x﹣1是二元一次方程,则a的取值为()A.a≠0 B.a≠﹣1 C.a≠1 D.a≠2【考点】二元一次方程的定义.【专题】计算题.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面考虑求a的取值.【解答】解:方程ax﹣4y=x﹣1变形得(a﹣1)x﹣4y=﹣1,根据二元一次方程的概念,方程中必须含有两个未知数,所以a﹣1≠0,即a≠1.故选C.【点评】二元一次方程必须符合以下三个条件:(1)方程中必须只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.解本题时是根据条件(1).17.(2013春•苏州期末)当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时这个式子的值为()A.6 B.﹣4 C.5 D.1【考点】代数式求值.【专题】整体思想.【分析】把x=2代入ax3+bx+1=6,得到8a+2b=5;又当x=﹣2时,ax3+bx+1=﹣8a﹣2b+1=﹣(8a+2b)+1.所以把8a+2b当成一个整体代入即可.【解答】解:当x=2时,代数式ax3+bx+1的值为6,即8a+2b+1=6,∴8a+2b=5①当x=﹣2时,ax3+bx+1=﹣8a﹣2b+1=﹣(8a+2b)+1②把①代入②得:ax3+bx+1=﹣5+1=﹣4.故选B.【点评】此题考查的是代数式的性质,将已知变形然后求解.18.设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v千米/小时,并有:①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求x、u、v.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A.x=u+4 B.x=v+4 C.2x﹣u=4 D.x﹣v=4【考点】由实际问题抽象出二元一次方程.【专题】行程问题.【分析】首先由题意可得,甲乙各走了一小时的路程.根据题意,得甲走的路程差4千米不到2x千米,即u=2x﹣4或2x﹣u=4;乙走的路程差4千米不到x千米,则v=x﹣4或x=v+4、x﹣v=4.【解答】解:根据甲走的路程差4千米不到2x千米,得u=2x﹣4或2x﹣u=4.则C正确;根据乙走的路程差4千米不到x千米,则v=x﹣4或x=v+4、x﹣v=4.则B,D正确,A错误.故选:A.【点评】此题的关键是用代数式表示甲、乙走一小时的路程,同时用到了路程公式,关键是能够根据题中的第三个条件得到甲、乙所走的路程分别和总路程之间的关系.三、解答题19.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】观察本题可知x的系数的最小公倍数较小,应考虑消去x,具体用加减消元法.【解答】解:(1)×7+(2)×2得:﹣11y=66,y=﹣6,把y=﹣6代入(1)得:2x+18=8,x=﹣5,∴原方程组的解为.【点评】两个未知数系数的符号都相反,可考虑消去最小公倍数较小的未知数.20.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】在方程2中,y的系数为1,所以可用含x的式子表示y,即用代入消元法比较简单.【解答】解:由(2)变形得:y=3x+1,代入(1)得:x+2(3x+1)=9,解得:x=1.代入y=3x+1得:y=4.∴方程组的解为.【点评】这类题目的解题关键是掌握方程组解法中的加减消元法和代入法.21.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.【解答】解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.【点评】本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.22.王大伯承包了25亩土地,今年春季改种黄瓜和西红柿两种大棚蔬菜,用去了44 000元,其中种黄瓜每亩用了1700元,获纯利润2600元;种西红柿每亩用了1800元,获纯利润2800元,问王大伯一共获纯利润多少元?【考点】二元一次方程组的应用.【专题】应用题.【分析】根据建立方程组,先求到两种蔬菜种植的亩数,再求一共获的纯利润.【解答】解:设王大伯种了x亩黄瓜,y亩西红柿,根据题意可得.共获纯利润=2600×10+2800×15=68 000(元)答:王大伯一共获纯利润68 000元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题一共获的纯利润指黄瓜和西红柿的利润和.23.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段某市的一环路、二环路、三环路的车流量(2014春•惠山区校级期末)已知关于x、y的方程组与有相同的解,求a、b的值.【考点】同解方程组.【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【解答】解:据题意得,解得,代入其他两个方程,可得方程组为,解得.【点评】此题比较复杂,考查了学生对方程组有公共解定义的理解能力及应用能力,是一道好题.28.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如表所示.现租用该公司的甲种货车3辆乙种货车5辆,一次刚好运完这批货物,如果按每吨付运费30元计算,问货主应付运费多少元?第一次第二次甲种货车辆(辆) 2 5乙种货车辆(辆) 3 6累计运货吨数(吨)15.5 35【考点】二元一次方程组的应用.【分析】应先算出甲种货车和乙种货车一次各运多少吨货物.等量关系为:2×每辆甲种车的载重+3×每辆乙种车的载重=15.5;5×每辆甲种车的载重+6×每辆乙种车的载重=35.【解答】解:设甲种车每辆装x吨,乙种车每辆装y吨.则解得,运费为30×(3×4+5×2.5)=735(元).答:货主应付运费735元.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.。

中考数学一轮复习第八章 二元一次方程组练习题附解析

中考数学一轮复习第八章 二元一次方程组练习题附解析

中考数学一轮复习第八章 二元一次方程组练习题附解析一、选择题1.已知31x y =⎧⎨=⎩是方程组102ax by x by -=⎧⎨+=⎩的解,则x ay b=⎧⎨=⎩是哪一个方程的解( )A .34x y +=B .34x y -=C .439x y -=D .439x y +=2.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( ) A . 4.50.51y x y x =-⎧⎨=+⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =+⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩3.三元一次方程5x y z ++=的正整数解有( ) A .2组B .4组C .6组D .8组4.为保护生态环境,某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米.设改变后耕地面积x 平方千米,林地面积y 平方千米,根据题意,列出如下四个方程组,其中正确的是( )A .1800250xy y x +=⎧⎪⎨-=⎪⎩ B .1800250x y x y +=⎧⎪⎨-=⎪⎩ C .1800250x y x y +=⎧⎪⎨=⋅⎪⎩ D .1800250x y y x +=⎧⎪⎨=⋅⎪⎩5.如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律, A 2019的坐标为( )A .(﹣1008,0)B .(﹣1006,0)C .(2,﹣504)D .(2,-506)6.某单位采购小李去商店买笔记本和笔,他先选定了笔记本和笔的种类,若买25本笔记本和30支笔,则他身上的钱缺30元;若买15本笔记本和40支笔,则他身上的钱多出30元.( )A .若他买55本笔记本,则会缺少120元B .若他买55支笔,则会缺少120元C .若他买55本笔记本,则会多出120元D .若他买55支笔,则会多出120元7.已知方程组4520430x y z x y z -+=⎧⎨+-=⎩(xyz≠0),则x :y :z 等于( )A .2:1:3B .3:2:1C .1:2:3D .3:1:28.设1a ,2a ,…,2018a 是从1,0,-1这三个数取值的一列数,若1a +2a +…+2018a =69,222122018(1)(1)(1)4001a a a +++++=,则1a ,2a ,…,2018a 中为0的个数是( ) A .173 B .888 C .957 D .69 9.某瓶中装有1分,2分,5分三种硬币,15枚硬币共3角5分,则有多少种装法( ) A .1.B .2.C .3.D .4.10.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( )A .112l B .116l C .516l D .118l 二、填空题11.自来水厂的供水池有7个进出水口,每天早晨6点开始进出水,且此时水池中有水15%,在每个进出水口是匀速进出的情况下,如果开放3个进口和4个出口,5小时将水池注满;如果开放4个进口和3个出口,2小时将水池注满.若某一天早晨6点时水池中有水24%,又因为水管改造,只能开放3个进口和2个出口,则从早晨6点开始经过____小时水池的水刚好注满. 12. 已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______. 13.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为_____.14.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的35,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书_____本. 15.若3x -5y -z =8,请用含x ,y 的代数式表示z ,则z =________.16.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中,,A B C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是____________________. (-=100%⨯商品的售价商品的成本价商品的利润率商品的成本价)17.定义一种新运算“※”,规定x ※y =2ax by +,其中a 、b 为常数,且1※2=5,2※1=3,则2※3=____________.18.如图,在长方形ABCD 中,放入六个形状,大小相同的长方形(即空白的长方形),AD =12cm ,FG =4cm ,则图中阴影部分的总面积是 __________2cm .19.王虎用100元买油菜籽、西红柿种子和萝卜籽共100包.油菜籽每包3元,西红柿种子每包4元,萝卜籽1元钱7包,问王虎油菜籽、西红柿、萝卜籽各买了_______包. 20.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________. 三、解答题21.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.22.泉州市某校准备组织教师、学生、家长到福州进行参观学习活动,旅行社代办购买动车票,动车票价格如下表所示: 运行区间 大人票价 学生票 出发站 终点站 一等座二等座二等座泉州福州65(元) 54(元) 40(元)根据报名总人数,若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生全部按表中的“学生票二等座”购买),则共需8820元;已知家长的人数是教师的人数的2倍.(1)设参加活动的老师有m 人,请直接用含m 的代数式表示教师和家长购买动车票所需的总费用;(2)求参加活动的总人数;(3)如果二等座动车票共买到x 张,且学生全部按表中的“学生票二等座”购买 ,其余的买一等座动车票,且买票的总费用不低于9000元,求x 的最大值.23.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A 和B 两种款式的瓷砖,且A 款正方形瓷砖的边长与B 款长方形瓷砖的长相等, B 款瓷砖的长大于宽.已知一块A 款瓷砖和-块B 款瓷砖的价格和为140元; 3块A 款瓷砖价格和4块B 款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A 款瓷砖的数量比B 款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A 款瓷砖的用量比B 款瓷砖的2倍少14块,且恰好铺满地面,则B 款瓷砖的长和宽分别为_ 米(直接写出答案). 24.a 取何值时(a 为整数),方程组2420x ay x y +=⎧⎨-=⎩的解是正整数,并求这个方程组的解.25.对于两个不相等的实数a 、b ,我们规定符号}max{,?a b 表示a 、b 中的较大值,}min{,?a b 表示a 、b 中的较小值.如: }max{2,4?4=, }min{2,4?2=, 按照这个规定,解方程组:}}1{,?{?3{39,311?4max x x ymin x x y-=++=. 26.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)请你设计一种方案,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】将31x y =⎧⎨=⎩代入102ax by x by -=⎧⎨+=⎩后求出,a b 的值,最后把x ay b =⎧⎨=⎩分别代入四个选项即可.【详解】将31x y =⎧⎨=⎩代入102ax by x by -=⎧⎨+=⎩得:31032a b b -=⎧⎨+=⎩, 解得31a b =⎧⎨=-⎩,即31x y =⎧⎨=-⎩,当31x y =⎧⎨=-⎩时,30x y +=,A 选项错误;36x y -=,B 选项错误; 4315x y -=,C 选项错误; 439x y +=,D 选项正确;【点睛】本题考查对方程的解的理解,方程的解:使方程成立的未知数的值.2.C解析:C【分析】根据题中的等量关系即可列得方程组.【详解】设木头长为x尺,绳子长为y尺,∵用一根绳子去量一根木头的长、绳子还剩余4.5尺,∴y=x+4.5,∵将绳子对折再量木头,则木头还剩余1尺,∴0.5y=x+1,故选:C.【点睛】此题考查二元一次方程组的实际应用,正确理解题意找到题目中绳子和木头之间的等量关系是解题的关键.3.C解析:C【分析】最小的正整数是1,当x=1时,y+z=4,y分别取1,2,,3,此时z分别对应3,2,1;当x=2时,y+z=3,y分别取1,2,此时z分别对应2,1;当x=3时,y+z=2,y分别取1,此时z分别对应1;依此类推,然后把个数加起来即可.【详解】解:当x=1时,y+z=4,y分别取1,2,,3,此时z分别对应3,2,1,有3组正整数解;当x=2时,y+z=3,y分别取1,2,此时z分别对应2,1,有2组正整数解;当x=3时,y+z=2,y分别取1,此时z分别对应1,有1组正整数解;所以正整数解的组数共:3+2+1=6(组).故选:C.【点睛】本题考查三元一次不定方程的解,解题关键是确定x、y、z的值,分类讨论.4.C解析:C【解析】设耕地面积x平方千米,林地面积为y平方千米,根据题意列方程组18025% x yx y+=⎧⎨=⨯⎩.故选C解析:A 【分析】用题中已知条件观察所给例子、图形,找出规律,再运用规律解决问题. 【详解】依题意列出前面几个n A 的坐标如下表对于n A ,当n 除以4余1时,n A 的纵坐标为0,横坐标32n +; 当n 除以4余2时,n A 的纵坐标为n2,横坐标1; 当n 除以4余3时,n A 的纵坐标为0,横坐标32n --; 当n 除以4,整除时,n A 的纵坐标为2n,横坐标2. 运用发现规律,当n=2019时,2019除以4,余3,故点2019A 的纵坐标为0,横坐标为2019310082--=-,所以点2019A 的坐标为(-1008,0) . 故选:A . 【点睛】 本题是探索规律题型.探索规律的思维模式是:观察前几例做出猜想,再验证猜想,这个过程反复进行,直到发现规律.本题的解决不仅要观察点的坐标的变化,还要观察图形中点的位置变化.6.D解析:D 【分析】设笔记本的单价为x 元,笔的单价为y 元,根据小李身上的总额列出方程,然后变形即可求解. 【详解】设笔记本的单价为x 元,笔的单价为y 元,根据题意得: 25x+30y-30=15x+40y+30 整理得:10x-10y=60,即x-y=6∴()253063055210x x x +--=-,即买55个笔记本缺少210元()256303055120y y y ++-=+,即买55支笔多出120元故选D . 【点睛】本题考查了二元一次方程组,根据题意列出等量关系然后进行推导是本题的关键.7.C解析:C 【分析】先利用加减消元法将原方程组消去z ,得出x 和y 的关系式;再利用加减消元法将原方程组消去y ,得出x 和z 的关系式;最后将::x y z 中y 与z 均用x 表示并化简即得比值. 【详解】 ∵4520430x y z x y z -+=⎧⎨+-=⎩①②∴由①×3+②×2,得2x y = 由①×4+②×5,得3x z = ∴:::2:31:2:3x y z x x x == 故选:C . 【点睛】本题考查加减消元法及方程组含参问题,利用加减消元法将多个未知数转化为同一个参数是解题关键.8.A解析:A 【分析】首先根据(a 1+1)2+(a 2+1)2+…+(a 2018+1)2得到a 12+a 22+…+a 20182+2156,然后设有x 个1,y 个-1,z 个0,得到方程组()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== ,解方程组即可确定正确的答案. 【详解】解:(a 1+1)2+(a 2+1)2+…+(a 2018+1)2=a 12+a 22+…+a 20182+2(a 1+a 2+…+a 2018)+2018 =a 12+a 22+…+a 20142+2×69+2018 =a 12+a 22+…+a 20142+2156, 设有x 个1,y 个-1,z 个0∴()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== 化简得x-y=69,x+y=1845,解得x=888,y=957,z=173, ∴有888个1,957个-1,173个0, 故答案为173. 【点睛】本题考查数字的变化类问题,解题关键是对给出的式子进行正确的变形,难度较大.9.C解析:C 【详解】解:设1分的硬币有x 枚,2分的硬币有y 枚,则5分的硬币有(15-x-y)枚, 可得方程x+2y+5(15-x-y)=35, 整理得4x+3y=40,即x=10-34y , 因为x ,y 都是正整数, 所以y=4或8或12, 所以有3种装法, 故选C.10.B解析:B 【分析】设两个大正方形边长为x ,小正方形的边长为y ,由图可知周长和列方程和方程组,解答即可. 【详解】 解:长方形ABCD 被分成3个正方形和2个长方形后仍是中心对称图形,∴两个大正方形相同、2个长方形相同.设小正方形边长为x ,大正方形的边长为y ,∴小长方形的边长分别为()y x -、()x y +,大长方形边长为()2y z -、()2y x +.长方形周长l =,即:()()222y x y x l -++⎤⎣⎦=⎡, 8y l ∴=,18y l ∴=.3个正方形和2个长方形的周长和为94l , ()()9244224y x x y y x l ∴⨯++⨯⨯+⎤⎣⎦=⎡+-,91644y x l ∴+=,116x l ∴=.∴标号为①的正方形的边长116l.故选:B.【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系.二、填空题11..【分析】设每个进水口每小时进水量为x,每个出水口每小时出水量为y,根据题意,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入中即可求出结论.【详解】设每个进水口每小时进解析:38 17.【分析】设每个进水口每小时进水量为x,每个出水口每小时出水量为y,根据题意,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入124%32x y--中即可求出结论.【详解】设每个进水口每小时进水量为x,每个出水口每小时出水量为y,依题意,得:()() 534115% 243115%x yx y⎧-=-⎪⎨-=-⎪⎩,解得:0.170.085 xy=⎧⎨=⎩,∴124%38 3217x y-=-.故答案为:38 17.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.12.±3【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【详解】解:把代入方程组得:,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9解析:±3【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【详解】解:把21xy=⎧⎨=⎩代入方程组得:2821m nn m+=⎧⎨-=⎩①②,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9,9的平方根是±3,故答案为:±3【点睛】此题考查了二元一次方程组的解,以及平方根,熟练掌握运算法则是解本题的关键.13.【分析】先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且解析:【分析】先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且每个盒子均恰好装满,∴0<x<10,0<y≤11,0<z≤15,且x,y,z都是整数,则10x+9y+6z=108,∴x=1089610--y z=3(3632)10--y z,∵0<x<10,且为整数,∴36﹣3y﹣2z是10的倍数,即:36﹣3y﹣2z=10或20或30,当36﹣3y﹣2z=10时,y=2623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴26﹣2z=3或6或9或12或15或18或21或24,∴z=232(舍)或z=10或z=172(舍)或z=7或z=112(舍)或z=4或z=52(舍)或z=1,当z=10时,y=2,x=3,当z=7时,y=4,x=3,当z=4时,y=8,x=3当z=1时,y=8,x=3,当36﹣3y﹣2z=20时,y=1623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴16﹣2z=3或6或9或12或15或18或21或24,∴z=132(舍)或z=5或z=72(舍)或z=2或z=12(舍)当z=5时,y=2,x=6,当z=2时,y=4,x=6,当36﹣3y﹣2z=30时,y=623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴6﹣2z=3,∴z=32(舍)即:满足条件的不同的装法有6种,故答案为6.【点睛】此题主要考查了三元一次方程,整除问题,分类讨论时解本题的关键.14.【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答.【详解】设甲班的人均捐书数量为x本,乙班的人均捐书数量为(x+5)本,丙班的人均捐书数量为本,设甲班解析:【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答.【详解】设甲班的人均捐书数量为x 本,乙班的人均捐书数量为(x +5)本,丙班的人均捐书数量为2x 本, 设甲班有y 人,乙班有(80﹣y )人.根据题意,得xy +(x +5)(80﹣y )+2x •40=3(5)1205x +⨯ 解得:y =284035855x x x +=++, 可知x 为2且5的倍数,故x =10,y =64,共捐书10×64+15×16+5×40=1080.答:甲、乙、丙三班共捐书1080本.故答案为1080.【点睛】此题考查二元一次方程的实际应用,题中有三个量待求,但是只有一个等量关系,因此只能设出两个未知数,用一个未知数表示另一个未知数,根据数量的要求及代数式的形式确定未知数的值,这是此题的难点.15.3x -5y -8【解析】【分析】根据等式的性质,移项即可解题.【详解】解:∵3x -5y -z =8,∴z=3x -5y -8(移项).【点睛】本题考查了等式的性质,属于简单题,熟练运用移项是解解析:3x -5y -8【解析】【分析】根据等式的性质,移项即可解题.【详解】解:∵3x -5y -z =8,∴z=3x -5y -8(移项).【点睛】本题考查了等式的性质,属于简单题,熟练运用移项是解题关键.16.【解析】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售袋,乙销售袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a袋甲种粗粮的利润+b袋乙种粗粮的利润,列出方程解析:8 9【解析】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售a袋,乙销售b袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a袋甲种粗粮的利润+b袋乙种粗粮的利润,列出方程进行整理即可得.【详解】用表格列出甲、乙两种粗粮的成分:由题意可得甲的成本价为:130%=45(元),甲中A的成本为:3×6=18(元),则甲中B、C的成本之和为:45-18=27(元),根据乙的组成则可得乙的成本价为:6+27×2=60(元),设甲销售a袋,乙销售b袋使总利润率为24%,则有(45a+60b)×24%=(58.5-45)a+(72-60)b,整理得:2.7a=2.4b,所以,a:b=8:9,故答案为8 9 .【点评】本题考查了方程的应用,难度较大,根据题意求出甲、乙两种包装的成本价是解题的关键.17.11【解析】分析:1※2=5,2※1=3的含义是当x=1,y=2时,ax+by2=5,当x=2,y=1时,ax+by2=3,由此列二元一次方程组求a,b的值后,再求解.详解:根据题意得,解得.解析:11【解析】分析:1※2=5,2※1=3的含义是当x=1,y=2时,ax+by2=5,当x=2,y=1时,ax +by2=3,由此列二元一次方程组求a,b的值后,再求解.详解:根据题意得4523a ba b⎧⎨⎩+=+=,解得11ab⎧⎨⎩==.当a=1,b=1时,x※y=x+y2.所以2※3=2+32=11.故答案为11.点睛:本题考查了二元一次方程组的解法和新定义,当方程组中有未知数的系数为1时,可考虑用代入消元法求解,对于新定义,要理解它所规定的运算规则,再根据这个规则去运算.18.48【解析】设小长方形的长为x cm,宽为y cm,根据图形可得①-②得4y=8,所以y=2,代入②得x=6,因此阴影部分总面积=12×10-6×2×6=48.故答案:48.【方法点睛】本解析:48【解析】设小长方形的长为x cm,宽为y cm,根据图形可得3124x yx y+=⎧⎨-=⎩,①,②①-②得4y=8,所以y=2,代入②得x=6,因此阴影部分总面积=12×10-6×2×6=482cm.故答案:48.【方法点睛】本题目是一道二元一次方程组的问题,找出等量关系是解决问题的关键. 19.3,20,77.【解析】先设油菜籽、西红柿、萝卜籽各买了x、y、z包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.解:设油菜籽、西红柿、萝卜籽各买了x、y、z包根据题解析:3,20,77.【解析】先设油菜籽、西红柿、萝卜籽各买了x、y、z包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.解:设油菜籽、西红柿、萝卜籽各买了x、y、z包根据题意可列方程组,100341007x y x z x y ++=⎧⎪⎨++=⎪⎩①② ②-3×①,得77020z y =+ 要使x 、y 、z 均为正整数,则3,20,77x y z ===故答案为3、20、77点睛:本题主要考查学生利用方程思想建模解决实际问题的能力.解题的技巧在于要利用题中的相等关系建立方程组,并用含一个未知数的式子表示另一个未知数,再根据实际情况得出满足题意的解.20.【解析】由题意得:,解得:a=,b=,则※b=a+b²+=,故答案为 .点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合 解析:613【解析】由题意得:227{3393a b a b ++=-+-=, 解得:a=13,b=133, 则13※b=13a+b²+13=116913619993++=, 故答案为613. 点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合已知条件得到方程组,求出a 、b 的值.三、解答题21.(1)1辆A 型车满载时一次可运柑橘3吨,1辆B 型车满载时一次可运柑橘2吨;(2)①共有4种租车方案,方案1:租用1辆A 型车,9辆B 型车;方案2:租用3辆A 型车,6辆B 型车;方案3:租用5辆A 型车,3辆B 型车;方案4:租用7辆A 型车;②最省钱的租车方案是租用7辆A 型车,最少租车费是840元【分析】(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,根据“用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)①根据一次运载柑橘21吨,即可得出关于m,n的二元一次方程,结合m,n均为非负整数,即可得出各租车方案;②根据租车总费用=租用每辆车的费用×租用的辆数,即可求出各租车方案所需费用,比较后即可得出结论.【详解】解:(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,依题意,得:2312 3417 x yx y+=⎧⎨+=⎩,解得:32xy==⎧⎨⎩.故答案为:1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨.(2)①依题意,得:3m+2n=21,∴m=7﹣23 n.又∵m,n均为非负整数,∴19mn=⎧⎨=⎩或36mn=⎧⎨=⎩或53mn==⎧⎨⎩或7mn=⎧⎨=⎩.答:共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车.②方案1所需租车费为120×1+100×9=1020(元),方案2所需租车费为120×3+100×6=960(元),方案3所需租车费为120×5+100×3=900(元),方案4所需租车费为120×7=840(元).∵1020>960>900>840,故答案为:最省钱的租车方案是租用7辆A型车,最少租车费是840元.【点睛】本题主要考查列二元一次方程以及利用二元一次方程解决方案问题,正确理想二元一次方程组并运用二元一次方程解决方案问题是本题解题的关键.22.(1)购买一等票为 195m;购买二等票为162m;(2)210;(3)180,193.【分析】(1)求出教师和家长的总人数,根据一等票和二等票两种情况求出代数式.(2)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,根据若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生全部按表中的“学生票二等座”购买),则共需8820元,可求出解.(3)由(2)知所有参与人员总共有210人,其中学生有180人,所以买学生票共180张,有(x ﹣180)名大人买二等座动车票,(210﹣x )名大人买一等座动车票,根据票的总费用不低于9000元,可列不等式求解.【详解】解:(1)购买一等票为:65•3m =195m ;购买二等票为:54•3m =162m ,(2)设参加社会实践的老师有m 人,学生有n 人,则学生家长有2m 人,依题意得: 1956513650{543408820m n m n +=⨯+=,解得:10{180m n ==, 则2m =20,总人数为:10+20+180=210(人)经检验,符合题意;答:参加活动的总人数为210人.(3)由(2)知所有参与人员总共有210人,其中学生有180人,所以买学生票共180张,有(x ﹣180)名大人买二等座动车票,(210﹣x )名大人买一等座动车票. ∴购买动车票的总费用=40×180+54(x ﹣180)+65(210﹣x )=﹣11x +11130. 依题意,得:﹣11x +11130≥9000… 解得:719311x ≤, ∵x 为整数,∴x 的最大值是193.【点睛】本题考查理解题意的能力,关键是根据买一等票和二等票的价格做为等量关系求出人数,然后根据实际买票的总费用列出不等式求出解.23.(1)A 款瓷砖单价为80元,B 款单价为60元.(2)买了11块A 款瓷砖,2块B 款;或8块A 款瓷砖,6块B 款.(3)B 款瓷砖的长和宽分别为1,34或1,15. 【解析】【分析】(1)设A 款瓷砖单价x 元,B 款单价y 元,根据“一块A 款瓷砖和一块B 款瓷砖的价格和为140元;3块A 款瓷砖价格和4块B 款瓷砖价格相等”列出二元一次方程组,求解即可; (2)设A 款买了m 块,B 款买了n 块,且m>n ,根据共花1000 元列出二元一次方程,求出符合题意的整数解即可;(3)设A 款正方形瓷砖边长为a 米,B 款长为a 米,宽b 米,根据图形以及“A 款瓷砖的用量比B 款瓷砖的2倍少14块”可列出方程求出a 的值,然后由92b b-+是正整教分情况求出b 的值.【详解】解: (1)设A 款瓷砖单价x 元,B 款单价y 元, 则有14034x y x y +=⎧⎨=⎩,解得8060 xy=⎧⎨=⎩,答: A款瓷砖单价为80元,B款单价为60元;(2)设A款买了m块,B款买了n块,且m>n,则80m+60n=1000,即4m+3n=50∵m,n为正整数,且m>n∴m=11时n=2;m=8时,n=6,答:买了11块A款瓷砖,2块B款瓷砖或8块A款瓷砖,6块B款瓷砖;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米.由题意得:7997 22114 22b ba ab a b a--⎛⎫⨯⨯=+⨯-⎪++⎝⎭,解得a=1.由题可知,92bb-+是正整教.设92bkb-=+(k为正整数),变形得到921kbk-=+,当k=1时,77(122b=>,故合去),当k=2时,55(133b=>,故舍去),当k=3时,34b=,当k=4时,15b=,答: B款瓷砖的长和宽分别为1,34或1,15.【点睛】本题主要考查了二元一次方程组的实际应用,(1)(2)较为简单,(3)中利用数形结合的思想,找出其中两款瓷砖的数量与图形之间的规律是解题的关键.24.当a=0时,21xy=⎧⎨=⎩;当a=-2时,42xy=⎧⎨=⎩;当a=-3时,84xy=⎧⎨=⎩【分析】先把a当作已知求出x、y的值,再根据方程组有正整数解,得到关于a的一元一次不等式组,求出m的取值范围,再找出符合条件的正整数a的值即可.【详解】解:方程组2420x ay x y +=⎧⎨-=⎩解得:8444x a y a ⎧=⎪⎪+⎨⎪=⎪+⎩∵方程组的解是正数,∴a >-4,∵方程组的解是正整数,a >-4,∴a=-3,-2,0,它的所有正整数解为:84x y =⎧⎨=⎩,42x y =⎧⎨=⎩,21x y =⎧⎨=⎩. 【点睛】本题考查的是解二元一次方程组及解二元一次不等式组,解答此题的关键是先把m 当作已知表示出x 、y 的值,再根据方程组有正整数解得出关于m 的不等式组,求出m 的正整数解即可.25.1{ 3x y == 或 35{?95x y =-= 【解析】分析: }1max{x x y 3-,=,需要分类讨论,当x≥-x 时,x =1y 3;当x <-x 时,-x =1y 3;因为3x +9<3x +11,所以}min{3x 93x 114y +,+=所表示的方程为3x +9=4y ,则可得到两个二元一次方程组. 详解:当x≥-x 时,x =1y 3,原方程组变形为:1{3394x y x y=+=,解得1{3x y ==. 当x <-x 时,-x =1y 3,原方程组变形为:1{3394x y x y -=+=,解得35{95x y -==. 点睛:本题考查了新定义及二次一次方程组的解法,对于新定义,要理解它所规定的运算规则,再根据这个规则,列式或列方程(组),解二元一次方程组的基本思路是消元,通过消元化二元一次方程组为一元一次方程,解一元一次方程求出其中的一个未知数,再代入原方程组中的一个方程中,求另一个未知数,消元的方法有两种:代入消元法和加减消元法,用加减消元法时,尽量消系数的最小公倍数比较小的字母.26.(1)甲乙两种型号的挖掘机各需5台、3台;(2)应选择1辆甲型挖掘机和6辆乙。

中考数学专项复习《二元一次方程组》练习题(附答案)

中考数学专项复习《二元一次方程组》练习题(附答案)

中考数学专项复习《二元一次方程组》练习题(附答案)一、单选题1.某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得 1分.七年级一班在16场比赛中得26分.设该班胜x 场,负y 场,则根据题意,下列方程组中正确的是( ) A .{y =−x +2y =x −1B .{y =−x +2y =x −1C .{x +y =16x +2y =26D .{x +y =162x +y =262.有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问甲乙债券各有多少?( ) A .150,350 B .250,200 C .350,150 D .150,2503.如图小亮拿了一个天平,测量饼干和糖果的质量(每块饼干质量相同,每颗糖果质量相同),第一次,左盘放两块饼干,右盘放三颗糖果,结果天平平衡;第二次,左盘放10g 砝码,右盘放一块饼干和一颗糖果,结果天平平衡;第三次,左盘放一颗糖果,右盘放一块饼干,下列哪一种方法可使天平再次平衡( )A .在糖果的秤盘上加2g 砝码B .在饼干的秤盘上加2g 砝码C .在糖果的秤盘上加5g 砝码D .在饼干的秤盘上加5g 砝码4.小明在解关于x 、y 的二元一次方程组{x +y =△2x −3y =5时解得{x =4y =⊗,则△和△代表的数分别是( ) A .△=1,△=5 B .△=5,△=1 C .△=﹣1,△=3D .△=3,△=﹣15.已知 △ABC 三边为 abc ,满足 (a −17)2+√b −15+c 2−16c +64=0 ,则△ABC 是( )A .以a 为斜边的直角三角形B .以b 为斜边的直角三角形以C .以c 为斜边的直角三角形D .不是直角三角形6.已知关于x ,y 的二元一次方程组{ax −by =−2cx +dy =4的解为{x =3y =2,则方程组{ax −by +2a +b =−2cx +dy −d =4−2c的解为( )A .{x =1y =2B .{x =1y =3C .{x =2y =2D .{x =2y =37.方程组 {3x +y =3,−4x −y =3 的解是( )A .{x =0,y =3B .{x =0,y =−3 C .{x =6,y =−15D .{x =−6,y =218.已知关于x ,y 的方程组{x +2y =5−2ax −y =4a −1给出下列结论:①当a =1时方程组的解也是x +y =2a +1的解; ②无论a 取何值x ,y 的值不可能是互为相反数; ③x ,y 都为自然数的解有4对; ④若2x +y =8,则a =2. 正确的有几个( ) A .1B .2C .3D .49.对于实数,规定新运算:x△y=ax+by ﹣xy ,其中a 、b 是常数,等式右边是通常的加减乘除运算.已知: √2 △1=﹣ √2 ,(﹣3)△ √2 =8 √2 ,则a△b 的值为( ) A .6﹣2 √2B .6+2 √2C .4+ √2D .4﹣3√210.△ABC 中|sinA −√32|+(cosB −12)2=0,则△ABC 是( )A .等腰但不等边三角形B .等边三角形C .直角三角形D .等腰直角三角形11.已知方程组 {ax −by =4ax +by =2 的解为 {x =2y =1 则 2a −5b 的立方根是( )A .-2B .2C .√53D .−√2312.若满足方程组 {3x +y =m +32x −y =2m −1 的x 与y 互为相反数,则m 的值为( )A .1B .-1C .11D .-11二、填空题13.已知方程组{ax +by =4bx +ay =5的解是{x =2y =1,则a −b 的值为 .14.若|2x-3y-7|+ √x −2y −3 =0,则x-y=15.若3x 2m ﹣3﹣y 2n ﹣1=5是二元一次方程,则m= ,n= . 16.已如等腰 ΔABC 的两边长 a , b 满足 |a −4|+√b −2=0 ,则第三边长 c的值为17.若实数m 、n 满足 (m −3)2+√n +2=0 ,则m n = .18.关于x ,y 的二元一次方程组 {x +y =1−mx −3y =5+3m 中 m 与 方程组的解中的或相等,则m 的值为 .三、综合题19.一批机器零件共558个,甲先做3天后,乙再加入,两人共同再做6天刚好完成.设甲每天做x 个,乙每天做y 个. (1)列出关于x ,y 的二元一次方程.(2)用含x 的代数式表示y ,并求当x =32时y 的值是多少? (3)若乙每天做48个,则甲每天做多少个?20.已知关于x 、y 的方程组 {2x +y =m +12x −y =3m −9 的解都不小于1(1)求m 的取值范围; (2)化简|2m ﹣6|﹣|m ﹣4|.21.解下列方程组:(1){2x +3y =7x =−2y +3 (2){2s +3t =−14s −9t =822.如图,在数轴上点A 表示的数是a ,点C 表示的数是c ,且 |a +10|+(c −20)2=0 .(点A 与点C 之间的距离记作AC )(1)求a 和c 的值(2)若数轴上有一点D ,满足CD =2AD ,则点D 表示的数是 ; (3)动点B 从数1对应的点以每秒1个单位长度的速度开始向右匀速运动,同时点A ,C 分别以每秒2个单位长度、每秒3个单位长度的速度在数轴上匀速运动.设运动时间为t 秒.若点A 向右运动,点C 向左运动,当AB =BC 时求t 的值;23.在平面直角坐标系中已知点A(0,m),点B(n ,0),且m ,n 满足(m −n)2+√n −4=0.(1)求点A ,B 的坐标;(2)若点E(x ,4)为第二象限内一点,且满足S 三角形AOE =13S 三角形AOB ,求点E 的坐标;(3)把线段AB 向左平移a(a >0)个单位长度得到线段A 1B 1. ①直接写出点B 1的坐标: ▲ (用含a 的式子表示) ②若S 四边形ABB 1A 1=3S 三角形AOB ,求a 的值.24.已知代数式 A =x 2−xy B =2x 2+3xy +2y −1 .(1)(x +1)2+|y −2|=0 求 2A −B 的值. (2)若 2A −B 的值与 y 的取值无关,求 x 的值.参考答案1.【答案】D 2.【答案】D 3.【答案】A 4.【答案】B 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】D 9.【答案】B 10.【答案】B 11.【答案】B 12.【答案】C 13.【答案】-1 14.【答案】4 15.【答案】2;1 16.【答案】4 17.【答案】1918.【答案】2或 −1219.【答案】(1)解:由题意可得(3+6)x +6y =558(2)解:由(1)可得y =−32x +93,当x =32时y =−32×32+93=45.(3)解:当y =48时(3+6)x +6×48=558,x =30.答:若乙每天做48个,则甲每天做30个.20.【答案】(1)解:解:(1)解原方程组可得: {x =m −2y =−m +5 因为方程组的解为一对正数所以有 {m −2≥1−m +5≥1 解得:3≤m≤4即a 的取值范围为:3≤m≤4;(2)解:由(1)可知:2m ﹣6>0,m ﹣4<0 所以|2m ﹣6|﹣|m ﹣4|. =(2m ﹣6)﹣(m ﹣4) =m ﹣2.21.【答案】(1){2x +3y =7(1)x =−2y +3(2)将(2)代入(1)中得2(-2y+3)+3y=7,去括号得-4y+6+3y=7,解得y=-1,将y=-1代入(2)得x=-2×(-1)+3=5 则方程组的解为{x =5y =−1. (2){2s +3t =−1(1)4s −9t =8(2)由3×(1)+(2)得6s+4s=-3+8,解得s=12将s=12,代入(1)中得1+3t=-1,解得y=-23则方程组的解为{s =12t =−23. 22.【答案】(1)解:由非负性得出a+10=0;c-20=0∴a=-10;c=20; (2)-40或0(3)解:当时间为t 时 点A 表示的数为-10+2t 点B 表示的数为1+t 点C 表示的数为20-3tAB= |1+t −(−10+2t)| = |11−t| BC= |1+t −(20−3t)| = |4t −19| ∴|11−t| = |4t −19| 解得:t= 83或t=6.23.【答案】(1)解:∵(m −n)2+√n −4=0∴{m −n =0n −4=0 解得{m =4n =4∴A(0,4),B(4,0);(2)解:∵点E(x ,4)为第二象限内一点,且满足S 三角形AOE =13S 三角形AOB∴12OE ×OA =13×12OB ×OA 12|x|×4=13×12×4×4 ∵点E(x ,4)为第二象限内 ∴x<0∴x=−43∴E(−43,4)(3)①(4−a ,0);②∵S 四边形ABB 1A 1=3S 三角形AOB∴BB 1×OA =3×12×OA ×OB4a =3×12×4×4 解得a=624.【答案】(1)∵A =x 2−xy , B =2x 2+3xy +2y −1∴2A −B=2(x 2−xy)−(2x 2+3xy +2y −1) =2x 2−2xy −2x 2−3xy −2y +1=−5xy −2y +1∵(x +1)2+|y −2|=0 ∴x +1=0 ∴x =−1∴原式 =−5×(−1)×2−2×2+1=10−4+1=7(2)若 2A −B 的值与 y 的取值无关 即 −5xy −2y +1 的值与 y 的取值无关 ∴−5xy −2y =(−5x −2)y =0 ∴−5x −2=0∴x =−25。

中考数学专题练习 二元一次方程组(含解析)-人教版初中九年级全册数学试题

中考数学专题练习 二元一次方程组(含解析)-人教版初中九年级全册数学试题

二元一次方程组一、选择题1.已知|x+y|+(x﹣y+5)2=0,那么x和y的值分别是()A.﹣,B.,﹣C.,D.﹣,﹣2.如果是二元一次方程组的解,那么a,b的值是()A.B.C.D.3.如果,其中xyz≠0,那么x:y:z=()A.1:2:3 B.2:3:4 C.2:3:1 D.3:2:14.直线kx﹣3y=8,2x+5y=﹣4交点的纵坐标为0,则k的值为()A.4 B.﹣4 C.2 D.﹣25.如果方程组的解中的x与y的值相等,那么a的值是()A.1 B.2 C.3 D.46.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.B.C.D.7.如果是方程组的解,则一次函数y=mx+n的解析式为(()A.y=﹣x+2 B.y=x﹣2 C.y=﹣x﹣2 D.y=x+28.已知是二元一次方程组的解,则2m﹣n的算术平方根为()A.±2 B.C.2 D.49.无论m为何实数,直线y=2x+m与y=﹣x+4的交点不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为()A.B.C.D.二、填空题11.若关于x,y的二元一次方程组的解满足x+y=1,则k=.12.若直线y=ax+7经过一次函数y=4﹣3x和y=2x﹣1的交点,则a的值是.13.已知2x﹣3y=1,用含x的代数式表示y,则y=,当x=0时,y=.14.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为.15.已知x=2a+4,y=2a+3,如果用x表示y,则y=.三、解答题16.解方程组.17.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.18.甲对乙说:“当我的岁数是你现在的岁数时,你才4岁”.乙对甲说:“当我的岁数是你现在的岁数时,你将61岁”.请你算一算,甲、乙现在各多少岁.19.有甲乙两种铜和银的合金,甲种合金含银25%,乙种合金含银37.5%,现在要熔制含银30%的合金100千克,甲、乙两种合金各应取多少?20.甲乙两地相距160千米,一辆汽车和一辆拖拉机从两地同时出发相向而行,1小时20分后相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1小时后原速返回,在汽车再次出发半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米?21.如图,某化工厂与A,B两地有公路和铁路相连,这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),这两次运输共支出公路运费15 000元,铁路运费97 200元,请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:乙:根据甲,乙两名同学所列方程组,请你分别指出未知数x,y表示的意义,然后在等式右边的方框内补全甲、乙两名同学所列方程组.甲:x表示,y表示乙:x表示,y表示(2)甲同学根据他所列方程组解得x=300,请你帮他解出y的值,并解决该实际问题.二元一次方程组参考答案与试题解析一、选择题1.已知|x+y|+(x﹣y+5)2=0,那么x和y的值分别是()A.﹣,B.,﹣C.,D.﹣,﹣【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据绝对值和偶次方得出关于x、y的方程组,求出方程组的解即可.【解答】解:∵|x+y|+(x﹣y+5)2=0,∴x+y=0,x﹣y+5=0,即,①+②得:2x=﹣5,解得:x=﹣,把x=﹣代入①得:y=,即方程组的解为,故选A.【点评】本题考查了解二元一次方程组和解一元一次方程的应用,关键是能得出关于x、y的方程组.2.如果是二元一次方程组的解,那么a,b的值是()A.B.C.D.【考点】二元一次方程组的解.【专题】计算题.【分析】将x=1,y=2代入方程组得到关于a与b的方程组,即可求出a与b的值.【解答】解:将x=1,y=2代入方程组得:,①×2﹣②得:3b=3,即b=0,将b=1代入①得:a=1,则.故选B.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.3.如果,其中xyz≠0,那么x:y:z=()A.1:2:3 B.2:3:4 C.2:3:1 D.3:2:1【考点】解三元一次方程组.【分析】理解清楚题意,运用三元一次方程组的知识,把x,y用z表示出来,代入代数式求值.【解答】解:已知,①×2﹣②得,7y﹣21z=0,∴y=3z,代入①得,x=8z﹣6z=2z,∴x:y:z=2z:3z:z=2:3:1.故选C.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.4.直线kx﹣3y=8,2x+5y=﹣4交点的纵坐标为0,则k的值为()A.4 B.﹣4 C.2 D.﹣2【考点】两条直线相交或平行问题.【专题】计算题.【分析】本题可先根据函数2x+5y=﹣4求出交点的坐标,然后将交点坐标代入直线kx﹣3y=8中,即可求出k的值.【解答】解:在直线2x+5y=﹣4中,当y=0时,2x=﹣4,∴x=﹣2.∴这两条直线的交点坐标为(﹣2,0).将(﹣2,0)代入kx﹣3y=8中,得:﹣2k=8,∴k=﹣4.故选B.【点评】解答此题应根据两直线相交时,函数图象的交点应同时满足两个函数的解析式.5.如果方程组的解中的x与y的值相等,那么a的值是()A.1 B.2 C.3 D.4【考点】解三元一次方程组.【分析】理解清楚题意,运用三元一次方程组的知识,解出a的数值【解答】解:根据题意得,把(3)代入(1)得:3y+7y=10,解得:y=1,x=1,代入(2)得:a+(a﹣1)=5,解得:a=3.故选C.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.6.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】计算题.【分析】根据两角互余和题目所给的关系,列出方程组.【解答】解:设∠ABD和∠DBC的度数分别为x°、y°,由题意得,.故选B.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是根据题意找出合适的等量关系列方程组.7.如果是方程组的解,则一次函数y=mx+n的解析式为(()A.y=﹣x+2 B.y=x﹣2 C.y=﹣x﹣2 D.y=x+2【考点】一次函数与二元一次方程(组).【分析】把方程组的解代入方程组得到关于m、n的方程组,然后求出m、n的值,再代入函数解析式即可得解.【解答】解:根据题意,将代入方程组,得,即,①×2得,6m﹣2n=2…③,②﹣③得,3m=3,∴m=1,把m=1代入①,得,3﹣n=1,∴n=2,∴一次函数解析式为y=x+2.【点评】本题考查了一次函数与二元一次方程组,根据方程组的解的定义得到关于m、n的方程组并求出m、n的值是解题的关键.8.已知是二元一次方程组的解,则2m﹣n的算术平方根为()A.±2 B.C.2 D.4【考点】二元一次方程组的解;算术平方根.【分析】由是二元一次方程组的解,根据二元一次方程根的定义,可得,即可求得m与n的值,继而求得2m﹣n的算术平方根.【解答】解:∵是二元一次方程组的解,∴,解得:,∴2m﹣n=4,∴2m﹣n的算术平方根为2.故选C.【点评】此题考查了二元一次方程组的解、二元一次方程组的解法以及算术平方根的定义.此题难度不大,注意理解方程组的解的定义.9.无论m为何实数,直线y=2x+m与y=﹣x+4的交点不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】两条直线相交或平行问题.【专题】计算题.【分析】直线y=﹣x+4经过第一,二,四象限,一定不经过第三象限,因而直线y=2x+m与直线y=﹣x+4的交点不可能在第三象限.【解答】解:由于直线y=﹣x+4的图象不经过第三象限.因此无论m取何值,直线y=2x+m与直线y=﹣x+3的交点不可能在第三象限.【点评】本题考查了两条直线相交的问题,需注意应找到完整的函数,进而找到它不经过的象限,那么交点就一定不在那个象限.10.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;余角和补角.【分析】此题中的等量关系有:①三角板中最大的角是90°,从图中可看出∠1+∠2+90°=180°;②∠1比∠2的度数大50°,则∠1=∠2+50°.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠1比∠2的度数大50°,得方程x=y+50.可列方程组为,故选:C.【点评】此题考查了学生对二元一次方程组的灵活运用,学生应该重视培养对应用题的理解能力,准确地列出二元一次方程组.二、填空题11.若关于x,y的二元一次方程组的解满足x+y=1,则k= 2 .【考点】二元一次方程组的解.【分析】直接将方程组中两方程相加得出3x+3y=3k﹣3,进而求出k的值.【解答】解:∵关于x,y的二元一次方程组的解满足x+y=1,∴3x+3y=3k﹣3,∴x+y=k﹣1=1,解得:k=2.故答案为:2.【点评】此题主要考查了二元一次方程组的解,将两方程相加得出k的值是解题关键.12.若直线y=ax+7经过一次函数y=4﹣3x和y=2x﹣1的交点,则a的值是﹣6 .【考点】两条直线相交或平行问题;待定系数法求一次函数解析式.【分析】首先联立解方程组,求得直线y=4﹣3x和y=2x﹣1的交点,再进一步代入y=ax+7中求解.【解答】解:根据题意,得4﹣3x=2x﹣1,解得x=1,∴y=1.把(1,1)代入y=ax+7,得a+7=1,解得a=﹣6.故答案为:﹣6.【点评】此题考查了两条直线的交点的求法,即联立解方程组求解即可.13.已知2x﹣3y=1,用含x的代数式表示y,则y=,当x=0时,y= ﹣.【考点】解二元一次方程.【专题】计算题.【分析】将x看做已知数,求出y即可;将x=0代入计算即可求出y的值.【解答】解:2x﹣3y=1,变形得:y=,将x=0代入,得:y=﹣.故答案为:;﹣【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数,y看做未知数.14.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为35 .【考点】二元一次方程组的应用.【分析】设这个两位数的十位数字为x,个位数字为y,等量关系为:十位数字与个位数字的和为8,两位数加上18=这个两位数的十位数字与个位数字对调后所组成的新两位数,列方程组求解.【解答】解:设这个两位数的十位数字为x,个位数字为y,由题意得,,解得:,则这个两位数为:35.故答案为:35.【点评】本题考查了二元一次方程组的应用,解答本题的关键是找出等量关系,根据等量关系列方程组求解.15.已知x=2a+4,y=2a+3,如果用x表示y,则y= x﹣1 .【考点】解二元一次方程.【专题】计算题.【分析】由x=2a+4,y=2a+3,两式相减,即可得出关于x与y的关系式,然后移项即可得出答案.【解答】解:由x=2a+4,y=2a+3,两式相减得:x﹣y=1,移项得:y=x﹣1.故答案为:x﹣1.【点评】本题考查了解二元一次方程,难度不大,关键是两式相减后建立关于x与y的关系式.三、解答题16.解方程组.【考点】解二元一次方程组.【专题】计算题.【分析】方程组整理后两方程相减消去y求出x的值,进而求出y的值,即可确定出方程组的解.【解答】解:方程组整理得:,①﹣②得:2x=﹣6,即x=﹣3,将x=﹣3代入①,得:y=﹣,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.17.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.【考点】二元一次方程组的应用.【分析】(1)根据题意可知本题的等量关系有,1个大餐厅容纳的学生人数+2个小餐厅容纳的学生人数=1680,2个大餐厅容纳的学生人数+1个小餐厅容纳的学生人数=2280.根据这两个等量关系,可列出方程组.(2)根据题(1)得到1个大餐厅和1个小餐厅分别可容纳学生的人数,可以求出5个大餐厅和2个小餐厅一共可容纳学生的人数,再和5300比较.【解答】解:(1)设1个大餐厅可供x名学生就餐,1个小餐厅可供y名学生就餐,根据题意,得解这个方程组,得答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐.(2)因为960×5+360×2=5520>5300,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.【点评】本题考查二元一次方程的应用,属于比较基本的应用问题.注意根据题目给出的已知条件,找出合适的等量关系,列出方程组,再求解.18.甲对乙说:“当我的岁数是你现在的岁数时,你才4岁”.乙对甲说:“当我的岁数是你现在的岁数时,你将61岁”.请你算一算,甲、乙现在各多少岁.【考点】二元一次方程组的应用.【专题】年龄问题.【分析】根据题意,有“当我的岁数是你现在的岁数时,你才4岁”可得出:乙的年龄﹣两人的年龄差=4,由“当我的岁数是你现在的岁数时,你将61岁”,可得出:甲的年龄+两人的年龄差=61.由此列出方程组求解.【解答】解:设甲现在年龄x岁,乙现在年龄y岁,则,整理得①+②×2得3y=69,即y=23,把y=23代入②得x=42.∴原方程的解为.答:甲现在42岁,乙现在23岁.【点评】解题关键是弄清题意,合适的等量关系,直接设未知数,列出二元一次方程组求解.19.有甲乙两种铜和银的合金,甲种合金含银25%,乙种合金含银37.5%,现在要熔制含银30%的合金100千克,甲、乙两种合金各应取多少?【考点】二元一次方程组的应用.【专题】应用题.【分析】先设甲、乙两种合金各应取x千克和y千克,再根据混合物中某物质的质量=混合物的质量×混合物中该物质的质量分数进行求解即可得出答案.【解答】解:设需甲合金的质量为x千克,乙合金的质量为y千克,由题意得:,解得:.答:甲合金应取60千克,乙合金应取40千克.【点评】本题主要考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题用到的等量关系是混合物中某物质的质量=混合物的质量×混合物中该物质的质量分数.20.甲乙两地相距160千米,一辆汽车和一辆拖拉机从两地同时出发相向而行,1小时20分后相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1小时后原速返回,在汽车再次出发半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米?【考点】二元一次方程组的应用.【分析】设汽车的速度是x千米每小时,拖拉机速度y千米每小时,根据甲乙两地相距160千米1小时20分后相遇和拖拉机继续前进,汽车在相遇处停留1小时后原速返回,在汽车再次出发半小时后追上了拖拉机,列出方程,求出x,y的值,再根据路程=速度×时间即可得出答案.【解答】解:设汽车的速度是x千米每小时,拖拉机速度y千米每小时,根据题意得:,解得:,则汽车汽车行驶的路程是:( +)×90=165(千米),拖拉机行驶的路程是:( +)×30=85(千米).答:汽车、拖拉机从开始到现在各自行驶了165千米和85千米.【点评】本题主要考查了二元一次方程组的应用的知识点,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键;本题用到的知识点是路程=速度×时间.21.如图,某化工厂与A,B两地有公路和铁路相连,这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),这两次运输共支出公路运费15 000元,铁路运费97 200元,请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:乙:根据甲,乙两名同学所列方程组,请你分别指出未知数x,y表示的意义,然后在等式右边的方框内补全甲、乙两名同学所列方程组.甲:x表示产品的重量,y表示原料的重量乙:x表示产品销售额,y表示原料费(2)甲同学根据他所列方程组解得x=300,请你帮他解出y的值,并解决该实际问题.【考点】二元一次方程组的应用.【分析】(1)仔细分析题意根据题目中的两个方程表示出x,y的值并补全方程组即可;(2)将x的值代入方程组即可得到结论.【解答】解:(1)甲:x表示产品的重量,y表示原料的重量,乙:x表示产品销售额,y表示原料费,甲方程组右边方框内的数分别为:15000,97200,乙同甲;则,.(2)将x=300代入原方程组解得y=400∴产品销售额为300×8000=2400000元原料费为400×1000=400000元∴运费为15000+97200=112200元,∴2400000﹣(400000+112200)=1887800(元)答:这批产品的销售额比原料费和运费的和多1887800元.【点评】本题考查了二元一次方程组的应用,解题的关键是从题目中找到等量关系并写出表示出x、y所表示的实际意义.。

初三数学二元一次方程组试题答案及解析

初三数学二元一次方程组试题答案及解析

初三数学二元一次方程组试题答案及解析1.小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,那么中性笔能买支.【答案】1或2或3【解析】∵小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,∴当买中性笔1只,则可以买橡皮5只,当买中性笔2只,则可以买橡皮3只,当买中性笔3只,则可以买橡皮1只,【考点】二元一次方程的应用2.为了节省空间,家里的饭碗一般是摞起来存放的.如果6只饭碗摞起来的高度为15cm,9只饭碗摞起来的高度为20cm,那么11只饭碗摞起来的高度更接近()A.21cm B.22cm C.23cm D.24cm【答案】C.【解析】设碗的个数为x个,碗的高度为ycm,由题意可知碗的高度和碗的个数的关系式为y=kx+b,由题意得,,解得:,则11只饭碗摞起来的高度为: ×11+5=(cm).更接近23cm.故选C.【考点】二元一次方程组的应用.3.方程组的解是()A.B.C.D.【答案】D.【解析】解:,(1)+(2)得,3x=6,x=2,把x=2代入(1)得,y=﹣1,∴原方程组的解.故选D.【考点】解二元一次方程组4.解方程组:.【答案】【解析】由加减消元法即可求出方程组的解试题解析:,①+②得:3x=9,即x=3,将x=3代入②得:y=﹣1,则方程组的解为【考点】二元一次方程组的解法5.解方程组:【答案】或.【解析】将①左边因式分解,化为两个二元一次方程,分别与②联立构成两个二元一次方程组求解即可.由①得,即或,∴原方程组可化为或.解得;解得.∴原方程组的解为或.【考点】解二元二次方程组.6.(1)计算:(2)A、B两人共解方程组,由于A看错了方程(1)中的a,得到的解是,而B 看错了方程(2)中的b, 得到的解是,试求的值.【答案】(1)9;(2)2.【解析】(1)根据负整数指数幂、零次幂、特殊角的三角函数值及二次根式的意义进行计算即可求出答案.(2)把A解得的方程组的解代入方程组第2个方程,求出b的值,再把B求得的方程组的解代入方程组第一个方程求出a的值,然后把a、b的值代入所给的代数式中,利用乘方的意义进行计算即可.试题解析:(1)原式=9+2+1-3=9.(2)由题意有-12-b=-2,5a+20=15解得a=-1 , b=-10则有=1+1=2.考点: 1.实数的混合运算;2.二元一次方程组的解.7.已知是二元一次方程组的解,则a-b的值为()A.-1B.1C.2D.3【答案】A【解析】∵是二元一次方程组的解,∴解得∴a-b=-1.8.二元一次方程组的解是()A.B.C.D.【答案】D【解析】①+②得,3x=9,解得x=3,把x=3代入①得,3+y=3,解得y=0,所以,原方程组的解是9.甲、乙、丙三人在A、B两块地植树,其中甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地.已知甲、乙、丙每小时分别能植树8棵,6棵,10棵.若乙在A地植树10小时后立即转到B地,则两块地同时开始同时结束;若要两块地同时开始,但A地比B地早9小时完成,则乙应在A地植树小时后立即转到B地。

初三数学二元一次方程组试题答案及解析

初三数学二元一次方程组试题答案及解析

初三数学二元一次方程组试题答案及解析1.某班组织班团活动,班委会准备用15元钱全部用来购买笔记本和中性笔两种奖品,已知笔记本2元/本,中性笔1元/支,且每种奖品至少买1件.(1)若设购买笔记本x本,中性笔y支,写出y与x之间的关系式;(2)有多少种购买方案?请列举所有可能的结果;(3)从上述方案中任选一种方案购买,求买到的中性笔与笔记本数量相等的概率.【答案】(1)y=15﹣2x.;(2)共有7种购买方案:x=1,y=13;x=2,y=11;x=3,y=9;x=4,y=7;x=5,y=5;x=6,y=3,x=7,y=1;(3).【解析】(1)首先由题意可得:2x+y=15,继而求得y与x之间的关系式.(2)根据每种奖品至少买1件,即可求得所有可能的结果.(3)由买到的中性笔与笔记本数量相等的只有1种情况,直接利用概率公式求解即可求得答案.试题解析:解:(1)根据题意得:2x+y=15,∴y与x之间的关系式为y=15﹣2x.(2)购买方案:x=1,y=13;x=2,y=11;x=3,y=9;x=4,y=7;x=5,y=5;x=6,y=3,x=7,y=1;∴共有7种购买方案.(3)∵买到的中性笔与笔记本数量相等的只有1种情况,∴买到的中性笔与笔记本数量相等的概率为:.【考点】1.一次函数的应用;2.概率.2.方程组的解是()A.B.C.D.【答案】C.【解析】利用加减消元法求出方程组的解即可作出判断:,①﹣②得:3y=30,即y=10,将y=10代入①得:x+10=60,即x=50,则方程组的解为.故选C.【考点】解二元一次方程组.3.如果单项式与是同类项,那么的值为.【答案】-4.【解析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程组,求出x,y的值,再代入代数式计算即可.根据题意得:解得:∴.【考点】同类项.4.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A.5种B.4种C.3种D.2种【答案】C【解析】设住3人间的需要有x间,住2人间的需要有y间,3x+2y=17,因为,2y是偶数,17是奇数,所以,3x只能是奇数,即x必须是奇数,当x=1时,y=7,当x=3时,y=4,当x=5时,y=1,综合以上得知,第一种是:1间住3人的,7间住2人的,第二种是:3间住3人的,4间住2人的,第三种是:5间住3人的,1间住2人的,答:有3种不同的安排.【考点】二元一次方程的应用.5.列方程或方程组解应用题某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:利润=售价-进价)若商店计划销售完这批商品后能使利润达到1100元,问甲、乙两种商品应分别购进多少件?【答案】100,60.【解析】方程(组)的应用解题关键是找出等量关系,列出方程(组)求解.本题等量关系为:进甲、乙两种商品共160件;销售完这批商品后能使利润达到1100元.设甲种商品应购进x件,乙种商品应购进y件.根据题意,得,解得.答:甲种商品购进100件,乙种商品购进60件.【考点】二元一次方程组的应用(销售问题).6.阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2=.根据该材料填空:已知x1,x2是方程x2+6x+3=0的两实数根,则的值为.【答案】10【解析】根据一元二次方程根与系数的关系,可以求得两根之积或两根之和,根据=,代入数值计算即可.解:由题意知,x1+x2=﹣=﹣6,x1x2=3,所以===10.7.由方程组可得出x与y的关系是()A.2x+y=4B.2x﹣y=4C.2x+y=﹣4D.2x﹣y=﹣4【答案】A【解析】本题考查的是解二元一次方程组,熟知解二元一次方程组的代入消元法是解答此题的关键.把②中m的值代入①即可求出x与y的关系式.解:,把(2)代入(1)得2x+y﹣3=1,即2x+y=4.故选A.8.已知是二元一次方程组的解,则a-b的值为()A.-1B.1C.2D.3【答案】A【解析】∵是二元一次方程组的解,∴解得∴a-b=-1.9.已知(x-y+3)2+=0.则x+y=________.【答案】1【解析】由题意,得解得∴x+y=-1+2=1.10.已知是二元一次方程组的解,则2m-n的算术平方根为 ()A.4B.2C.D.±2【答案】B【解析】把代入方程组,得解得∴==2,故选B.11.若关于x、y的二元一次方程组的解满足x+y>1,则k的取值范围是________.【答案】k>2【解析】①+②,得3x+3y=3k-3,x+y=k-1∵x+y>1,∴k-1>1,k>2.∴k的取值范围是k>2.12.把下图折成正方体后,如果相对面所对应的值相等,那么xy的值为_________。

初三数学二元一次方程组试题答案及解析

初三数学二元一次方程组试题答案及解析

初三数学二元一次方程组试题答案及解析1.解方程组.【答案】.【解析】利用加减消元法解方程组求出解即可.试题解析:解:,①+②得:5x=10,即x=2,将x=2代入①得:y=1.∴则方程组的解为.【考点】解二元一次方程组.2.解方程组.【答案】.【解析】先用加减消元法求出x的值,再用代入消元法求出y的值即可.试题解析:解:,①+②得:7x=14,解得:x=2,把x=2代入①得6+y=3,解得:y=﹣3,∴原方程组的解是.【考点】解二元一次方程组.3.小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,那么中性笔能买支.【答案】1或2或3【解析】∵小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,∴当买中性笔1只,则可以买橡皮5只,当买中性笔2只,则可以买橡皮3只,当买中性笔3只,则可以买橡皮1只,【考点】二元一次方程的应用4.某地要在规定的时间内安置一批居民,若每个月安置12户居民,则在规定时间内只能安置90%的居民户;若每个月安置16户居民,则可提前一个月完成安置任务,问要安置多少户居民?规定时间为多少个月?(列方程(组)求解)【答案】需要安置80户居民,规定时间为6个月.【解析】设安置x户居民,规定时间为y个月.等量关系为:每个月安置12户居民,在规定时间内只能安置90%的居民户;每个月安置16户居民,可提前一个月完成安置任务.试题解析:设安置x户居民,规定时间为y个月.则:,解得:.答:需要安置80户居民,规定时间为6个月.【考点】二元一次方程组的应用5.二元一次方程组的解是.【答案】.【解析】利用加减消元法即可求出方程组的解.试题解析:∵∴①-②得:3y=-3,解得:y=-1把y=-1代入②得:x=5所以:方程组的解为.【考点】解二元一次方程组.6.足球比赛中,胜一场可以积3分,平一场可以积1分,负一场得0分,某足球队最后的积分是17分,他获胜的场次最多是A.3场B.4场C.5场D.6场【答案】C.【解析】设获胜的场次是x,平y场,负z场.3x+y+0•z=17因为x,y都是整数,所以x最大可取到5.故选C.【考点】二元一次方程的应用.7.方程组的解是.【答案】【解析】由两式相加得2x="2" ∴ x="1" ;将x=1代入x+y=3得y=2 ∴【考点】二元一次方程组的解法.8.列方程或方程组解应用题:某酒店有三人间、双人间的客房,三人间每天每间150元,双人间每人每天140元,为了吸引游客, 实行团体入住五折优惠措施,一个50人的旅游团优惠期间到该酒店入住,住了一些三人间和双人间客房,若每间客房正好住满且一天共花去住宿费1510元,则该旅行团住了三人间和双人间客房各多少间?【答案】8,12.【解析】方程的应用解题关键是找出等量关系,列出方程求解.本题等量关系为:三人间所住人数+二人间所住人数=50人;三人间费用×0.5+二人间费用×0.5=1510.设三人间和双人间客房各x间、y间,根据题意得,解得.答:三人普间和双人间客房各8间、13间.【考点】二元一次方程组的应用.9.关于x、y的方程组中,.【答案】9.【解析】把关于x、y的方程组两式相加,得.【考点】1.求代数式的值;2.整体思想的应用.10.甲种电影票每张20元,乙种电影票每张15元,若购买甲、乙两种电影票共40张,恰好用去700元,则两种电影票各买了________张.【答案】20【解析】设购买甲电影票x张,乙电影票y张解得,故填20.11.方程组的解是 ()A.B.C.D.【答案】D【解析】由②得x=2把x=2代入①,得2+y=3,y=1∴方程组的解是故选D.12.已知二元一次方程:①x+y=4;②2x-y=2;③x-2y=1.请从这三个方程中选择你喜欢的两个方程,组成一个方程组,并求出这个方程组的解.【答案】【解析】解:由①②组成的方程组①+②,得3x=6.∴x=2把x=2代入①,得2+y=4,∴y=2.∴方程组的解为.13.关于的方程组,______.【答案】9.【解析】两个方程直接相加,整理即可得解.试题解析:,①+②得,x+m+y-3=6+m,所以,x+y=9.考点: 解二元一次方程组.14.H7N9本是一种只在飞禽之间传播的禽流感,但最近已严重威胁到广大人民群众的生命安全.现在我市有一组检疫工作人员,需对甲、乙两个养殖场的所有养鸡逐一检疫.已知,甲养殖场的养鸡比乙养殖场的养鸡多一倍.上午全部工作人员在甲厂检疫,下午一半的工作人员仍留在甲厂(上、下午的工作时间相等),到下班前刚好把甲厂的养鸡检疫完毕,另一半工作人员去乙厂检疫,到下班前还剩下一小部分养鸡未检疫,最后由一人再用两整天的工作时间刚好检疫完.如果这组工作人员每人每天检疫的效率是相等的,则这组工作人员共有人.【答案】16.【解析】设每人每天可检疫只鸡,这组工作人员有人,根据题意得:,解得:,∴这组工作人员共有16人.故答案为:16.【考点】二元一次方程组的应用.15.某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居民15年的用水量.(1)问:年降水量为多少万m3?每人年平均用水量多少m3?(2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m3水才能实现目标?【答案】解:(1)设年降水量为x万m3,每人年平均用水量为ym3,由题意得,,解得:。

中考数学专题复习 专题09 二元一次方程组及其应用(教师版含解析)

中考数学专题复习 专题09 二元一次方程组及其应用(教师版含解析)

中考专题09 二元一次方程组及其应用1.二元一次方程:含有两个未知数,并且未知数的指数都是1的方程整式方程叫做二元一次方程.一般形式是ax+by=c(a≠0,b≠0)。

2.二元一次方程组:把两个二元一次方程合在一起,就组成一个二元一次方程组。

3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组的解。

5.解二元一次方程组的方法将未知数的个数由多化少,逐一解决的想法,叫做消元思想。

(1)代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。

(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。

6.列方程(组)解应用题的一般步骤(1)审:有什么,求什么,干什么;(2)设:设未知数,并注意单位;(3)找:等量关系;(4)列:用数学语言表达出来;(5)解:解方程(组).(6)验:检验方程(组)的解是否符合实际题意.(7)答:完整写出标准答案(包括单位).注意:找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等【经典例题1】(2020年•嘉兴)用加减消元法解二元一次方程组{x +3y =4,①2x −y =1ㅤ②时,下列方法中无法消元的是( )A .①×2﹣②B .②×(﹣3)﹣①C .①×(﹣2)+②D .①﹣②×3【标准答案】D【分析】方程组利用加减消元法变形即可.【答案剖析】 A.①×2﹣②可以消元x ,不符合题意;B.②×(﹣3)﹣①可以消元y ,不符合题意;C.①×(﹣2)+②可以消元x ,不符合题意;D.①﹣②×3无法消元,符合题意.【知识点练习】(2020年年广州模拟)解方程组:.【标准答案】见答案剖析。

2024届中考数学高频考点专项练习:专题四 考点10 二元一次方程(组)及其应用(A)及答案

2024届中考数学高频考点专项练习:专题四 考点10 二元一次方程(组)及其应用(A)及答案

2024届中考数学高频考点专项练习:专题四考点10 二元一次方程(组)及其应用(A)1.已知是二元一次方程组的解,则( )A.6B.8C.10D.112.对于题目:“小丽同学带11元钱去买钢笔和笔记本(两种文具都买),钢笔每支3元,笔记本每本1元,那么钢笔能买多少支?”,甲同学的答案是1支,乙同学的答案是2支,丙同学的答案是3支,则正确的是( )A.只有甲的答案对B.甲、乙答案合在一起才完整C.甲、乙、丙答案合在一起才完整D.甲、乙、丙答案合在一起也不完整3.若方程组的解满足,则k的值为( )A. B.1 C.0 D.不能确定4.用加减消元法解二元一次方程组时,下列方法中无法消元的是( )A.①×2-②B.②×(-3)-①C.①×(-2)+②D.①﹣②×35.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有三人共车,二车空;二人共车,九人步,问:人与车各几何?其大意是:若3人坐一辆车,则两辆车是空的;若2人坐一辆车,则9人需要步行,问:人与车各多少?小明根据题意列出方程组,小亮根据题意列出一元一次方程,则下列说法正确的是( )A.小明正确,小亮错误B.小明错误,小亮正确C.小明,小亮都正确D.小明,小亮都错误6.若是方程组的解,则的值为( )A. B.0 C.2 D.87.茶叶作为浙江省农业十大主导产业之一,是助力乡村振兴的民生产业.某村有土地60公顷,计划将其中的土地种植蔬菜,其余的土地开辟为茶园和种植粮食,已知茶园的面积比种粮食面积的2倍少3公顷,问茶园和种粮食的面积各多少公顷?设茶园的面积为x公顷,种粮食的面积为y公顷,可列方程组为( )A. B. C. D.8.小明到水果店买樱桃和苹果,已知买2斤樱桃和3斤苹果共需58元,买3斤樱桃和2斤苹果共需72元,则小明购买3斤樱桃和3斤苹果共需( )元.A.26B.68C.76D.789.有若干片相同的拼图,其形状如图1所示,且拼图沿水平方向排列时可紧密拼成一行,此时底部可与直线贴齐.当4片拼图紧密拼成一行时长度为,如图2所示.当10片拼图紧密拼成一行时长度为,如图3所示.设图1中的两部分的长度分别为,,则正确的是( )A.依题意,B.1片拼图的长度为C.将拼图紧密拼成一行时,每增加一片拼图,总长度增加D.将n片拼图紧密拼成一行时,总长度为10.小良用32元买了甲、乙两种水果,已知甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果多买了2kg,求小良两种水果各买了多少千克?如果,设小良买甲种水果x kg,乙种水果y kg,根据题意,可列方程组___________.11.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★和●这两个数,___________,___________.12.解方程组的结果为_____.13.若关于x,y的二元一次方程组的解为,则关于a,b的二元一次方程组的解为_______.14.解方程组:(1);(2).15.某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.答案以及解析1.答案:B解析:将代入原方程组得:,①+②得:.故选:B.2.答案:C解析:设买钢笔x支,笔记本y本,依题意,,x,y是正整数,当时,,当时,,当时,,故选:C.3.答案:B解析:①+②,得,由,得,解得,故选:B.4.答案:D解析:方程组利用加减消元法变形即可.A、①×2﹣②可以消元x,不符合题意;B、②×(﹣3)﹣①可以消元y,不符合题意;C、①×(﹣2)+②可以消元x,不符合题意;D、①﹣②×3无法消元,符合题意.故选:D.5.答案:C解析:设人数量为y个,车的辆数为x辆,若3人坐一辆车,则两辆车是空的,;若2人坐一辆车,则9人需要步行,,,根据意可列出方程组为,即小明,小亮所列的方程都正确.故选:C.6.答案:C解析:是方程组的解,,①得,②+③得,,将代入①得,,故选:C.7.答案:B解析:设茶园的面积为x公顷,种粮食的面积为y公顷,由题意,得:,即:故选:B.8.答案:D解析:设小明购买1斤樱桃和1斤苹果分别需要x元与y元,由题意得:,两式相加得:,,,即小明购买3斤樱桃和3斤苹果共需元;故选:D.9.答案:D解析:当4片拼图紧密拼成一行时长度为,①,故A错误,不符合题意;当10片拼图紧密拼成一行时长度为,②,由①②可得,,片拼图的长度为,故B错误,不符合题意;将拼图紧密拼成一行时,每增加一片拼图,总长度增加,故C错误,不符合题意;将n片拼图紧密拼成一行时,总长度为,故D正确,符合题意.故选:D.10.答案:解析:由题意可得:.故答案为:.11.答案:,解析:设●表示的数为a,把代入方程组得:,解得:,即,则a这个数为.即:.12.答案:,解析:,且,,可得方程组,解得:.故答案为:.13.答案:解析:关于x,y的二元一次方程组的解为,且方程组和方程组形式相同,,,故答案为.14.答案:(1);(2);解析:(1),①代入②,得:,解得:,则,所以方程组的解为;(2)方程组整理可得,②-①,得:,解得:,将代入①,得:,解得:,所以方程组的解为.15.答案:(1)学校购进黑文化衫160件,白文化衫40件(2)该校这次义卖活动共获得3800元利润解析:(1)设学校购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:学校购进黑文化衫160件,白文化衫40件.(2)(元).答:该校这次义卖活动共获得3800元利润.。

中考数学总复习《二元一次方程组》专项提升练习题(附答案)

中考数学总复习《二元一次方程组》专项提升练习题(附答案)

中考数学总复习《二元一次方程组》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列方程中,是二元一次方程的是( )A.3x +2y =4B.12xy =5C.12x 2﹣14y =3 D.8x ﹣2x =12.已知方程3x+2y=4,用含x 的式子表示y ,则 ( ) A.y=- 32x+2 B.2y=3x -4 C.y=32x -2 D.y=32x -43.若⎩⎨⎧x =1,y =2是关于x ,y 的二元一次方程ax -3y =1的解,则a 的值为( )A.-5B.-1C.2D.74.已知方程组()⎩⎨⎧=-=--13221m yx x m 是二元一次方程组,则m =( ) A.1或﹣1 B.2或﹣2 C.﹣2 D.2 5.二元一次方程组⎩⎨⎧3x +2y =7,6x -2y =11的解是( )A.⎩⎨⎧x =-1,y =5B.⎩⎨⎧x =1,y =2C.⎩⎨⎧x =3,y =-1D.⎩⎨⎧x =2,y =126.若-2a m b 4与5a n+2b 2m+n 可以合并成一项,则m n 的值是( ) A.2 B.0 C.-1 D.17.某出租车起步价所包含的路程为0~2 km ,超过2 km 的部分按每千米另收费.津津乘坐这种出租车走了7 km ,付了16元;盼盼乘坐这种出租车走了13 km ,付了28元.设这种出租车的起步价为x 元,超过2 km 后超过部分每千米收费y 元,则下列方程组正确的是( ) A.⎩⎨⎧x +7y =16,x +13y =28B.⎩⎨⎧ x +(7-2)y =16,x +13y =28C.⎩⎨⎧x +7y =16,x +(13-2)y =28D.⎩⎨⎧x +(7-2)y =16,x +(13-2)y =288.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( ) A.B.C.D.9.四个形状、大小相同的长方形,如图,拼成一个大的长方形,如果大长方形的周长为280厘米,那么,每块小长方形的面积是( )A.900平方厘米B.1200平方厘米C.1600平方厘米D.1800平方厘米 10.已知关于x 、y 的方程组,给出下列结论:①是方程组的解;②无论a 取何值,x ,y 的值都不可能互为相反数; ③当a=1时,方程组的解也是方程x +y=4﹣a 的解; ④x ,y 的都为自然数的解有4对. 其中正确的个数为( )A.1个B.2个C.3个D.4个 二、填空题11.若关于x 、y 的二元一次方程3x -ay =1有一个解是⎩⎨⎧x =3y =2,则a =______.12.写出2x ﹣3y =0的一组整数解 .13.已知(x -3)2+│2x -3y+6│=0,则x=________,y=_________. 14.小亮解方程组的解为,由于不小心,滴上了两滴墨水, 刚好遮住了两个数●和★,请你帮他找回★这个数★=15.已知一个两位数,它的十位上的数字与个位上的数字的和为12,若对调个位与十位上的数字,得到的新数比原数小18.设原数的个位数字为x,十位数字为y,可列方程组为.16.《九章算术》有个题目,大意是:“五只雀、六只燕,共重16两,雀重燕轻,互换其中一只,恰好一样重.”设每只雀、燕的重量分别为x两,y两,可得方程组是.三、解答题17.解方程组:18.解方程组:19.在解方程组时,由于粗心,甲看错了方程组中的a,而得到方程组的解为,乙看错了方程组中的b,而得到方程组的解为(1)甲把a看成了什么?乙把b看成了什么?(2)求出原方程组的正确解.20.已知关于x、y的方程组的解满足x+y=-10,求式子m2-2m+1的值.21.打折前,买10件A商品和5件B商品共用了400元,买5件A商品和10件B商品共用了350元.(1)求打折前A商品、B商品每件分别多少钱?(2)打折后,买100件A商品和100件B商品共用了3800元.比不打折少花多少钱?22.某学校现有甲种材料35㎏,乙种材料29㎏,制作A、B两种型号的工艺品,用料情况如下表:需甲种材料需乙种材料1件A型工艺品0.9㎏0.3㎏1件B型工艺品0.4㎏1㎏(1)利用这些材料能制作A、B两种工艺品各多少件?(2)若每公斤甲、乙种材料分别为8元和10元,问制作A、B两种型号的工艺品各需材料多少钱?23.我国古代数学著作《九章算术》的“方程”一章里,一次方程组是由算筹布置完成的.如图①,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项,把图①所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是⎩⎨⎧x +4y =10,6x +11y =34.请你根据图②所示的算筹图,列出方程组,并求解.参考答案1.A.2.A3.D.4.C.5.D6.D7.D8.A9.B. 10.C. 11.答案为:4 12.答案不唯一,如.13.答案为:x=3,y=4. 14.答案为:-2 15.答案为: 16.答案为:.17.解:x=-6.2,y=-4.4; 18.解:x =1;y =0.19.解:(1)甲把a 看成了4,乙把b 看成了23; (2)x=3,y=4.20.解:关于x 、y 的方程组得(2m -6)+(-m+4)=-10.解得m=-8. ∴m 2-2m+1=(-8)2-2×(-8)+1=81.21.解:(1)设打折前A 商品每件x 元、B 商品每件y 元,根据题意,得 由题意得解之得答:打折前A 商品每件30元、B 商品每件20元. (2)打折前,买100件A 商品和100件B 商品共用: 100×30+100×20=5000 (元) 比不打折少花:5000﹣3800=1200 (元)答:打折后,买100件A 商品和100件B 商品比不打折少花1200元. 22.解:(1)设利用这些材料能制作A 工艺品x 件,B 工艺品y 件 由题意得,,解得:答:利用这些材料能制作A 工艺品30件,B 工艺品20件;(2)制作一件A 型工艺品需要的钱数为:0.9×8+0.3×10=10.2(元) 则制作A 型号的工艺品需材料的钱数为:10.2×30=306(元) 制作一件B 型工艺品需要的钱数为:0.4×8+1×10=13.2(元) 则制作A 型号的工艺品需材料的钱数为:13.2×20=264(元) 答:制作A 、B 两种型号的工艺品各需材料306元,264元. 23.解: 依题意,得⎩⎨⎧2x +y =7, ①x +3y =11. ②由①,得y =7-2x.③把③代入②,得x +3(7-2x)=11.解方程,得x =2. 把x =2代入①,得y =3. ∴方程组的解是⎩⎨⎧x =2y =3.。

初三数学二元一次方程组试题答案及解析

初三数学二元一次方程组试题答案及解析

初三数学二元一次方程组试题答案及解析1.解方程组。

【答案】【解析】先用加减消元法,再用代入消元法即可求出方程组的解。

试题解析:,①+②得,4x=14,解得x=,把x=代入①得,+2y=9,解得y=。

故原方程组的解为:【考点】解二元一次方程组。

2.方程组的解是()A.B.C.D.【答案】C.【解析】利用加减消元法求出方程组的解即可作出判断:,①﹣②得:3y=30,即y=10,将y=10代入①得:x+10=60,即x=50,则方程组的解为.故选C.【考点】解二元一次方程组.3.在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数,则称点P为格点,若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.(1)求出图中格点四边形DEFG对应的S,N,L.(2)已知格点多边形的面积可表示为S=N+aL+b,其中a,b为常数,若某格点多边形对应的N=82,L=38,求S的值.【答案】(1)S=3,N=1,L=6;(2)S=100.【解析】(1)理解题意,观察图形,即可求得结论;(2)根据格点多边形的面积S=N+aL+b,结合图中的格点三角形ABC及格点四边形DEFG,建立方程组,求出a,b即可求得S.试题解析:(1)根据图形可得:S=3,N=1,L=6;(2)根据格点三角形ABC及格点四边形DEFG中的S、N、L的值可得,,解得a,∴S=N+L﹣1,将N=82,L=38代入可得S=82+×38﹣1=100.【考点】1.图形的变化规律2.三元一次方程组的应用.4.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.(1)求每台A种、B种设备各多少万元?(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?【答案】(1)0.5万元、1.5万元;(2)15.【解析】(1)根据题意结合“购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元”,得出等量关系求出即可;(2)利用(1)中所求得出不等关系求出即可.试题解析:(1)设每台A种、B种设备各x万元、y万元,根据题意得出:,解得:,答:每台A种、B种设备各0.5万元、1.5万元;(2)设购买A种设备z台,根据题意得出:0.5z+1.5(30-z)≤30,解得:z≥15,答:至少购买A种设备15台.【考点】1.一元一次不等式的应用;2.二元一次方程组的应用.5.某项球类比赛,每场比赛必须分出胜负,其中胜1场得2分,负1场得1分.某队在全部16场比赛中得到25分,求这个队胜、负场数分别是多少?【答案】这个队胜9场,负7场.【解析】设该队胜x场,负y场,就有x+y=16,2x+y=25两个方程,联立方程组求解即可.试题解析:设该队胜x场,负y场,则解得.答:这个队胜9场,负7场.【考点】二元一次方程的应用.6.已知∠1与∠2互补,并且∠1比∠2的3倍还大20°,若设∠1=x°,∠2=y°,则x、y满足的方程组为A.B.C.D.【答案】C.【解析】设∠1=x°,∠2=y°,由题意得:.故选C.【考点】由实际问题抽象出二元一次方程组.7.方程组的解是.【答案】【解析】由两式相加得2x="2" ∴ x="1" ;将x=1代入x+y=3得y=2 ∴【考点】二元一次方程组的解法.8.楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是()A.B.C.D.【答案】B【解析】根据“小明买20张门票”可得方程:x+y=20;根据“成人票每张70元,儿童票每张35元,共花了1225元”可得方程:70x+35y=1225,把两个方程组合即可.设其中有x张成人票,y张儿童票,根据题意得.【考点】由实际问题抽象出二元一次方程组.9.若关于x、y的二元一次方程组的解满足x+y<2,则a的取值范围是()A.a>2B.a<2C.a>4D.a<4【答案】D【解析】将方程组中两方程相加,表示出x+y,代入x+y<2中,即可求出a的范围.解:,(1)+(2)得:4x+4y=a+4,即x+y=,∵x+y=<2,∴a<4.故选D10.以方程组的解为坐标的点在平面直角坐标系中的位置是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A.【解析】①+②得,2y=1,解得,y=.把y=代入①得,=-x+2,解得x=.∵>0,>0,根据各象限内点的坐标特点可知,点(x,y)在平面直角坐标系中的第一象限.故选A.考点: 1.解二元一次方程组;2.点的坐标.11.若是方程2x+y=0的一个解,则6a+3b+2=________.【答案】2【解析】把代入方程,得2a+b=03(2a+b)=06a+3b=0∴6a+3b+2=0+2=2.12.二元一次方程组的解是()A.B.C.D.【答案】D【解析】①+②得,3x=9,解得x=3,把x=3代入①得,3+y=3,解得y=0,所以,原方程组的解是13.关于的方程组,______.【答案】9.【解析】两个方程直接相加,整理即可得解.试题解析:①+②得,x+m+y-3=6+m,所以,x+y=9.考点: 解二元一次方程组.14.解方程组.【答案】解:,①-2×②得,-7y=7,解得y=-1;把y=-1代入②得,x+2×(-1)=-2,解得x=0。

中考数学 二元一次方程组易错压轴解答题专题练习(及答案)

中考数学 二元一次方程组易错压轴解答题专题练习(及答案)

中考数学二元一次方程组易错压轴解答题专题练习(及答案)一、二元一次方程组易错压轴解答题1.阅读下列材料,然后解答后面的问题.我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需求出其正整数解.例:由2x+3y=12得y==4﹣ x(x,y为正整数).∴则有0<x<6,又∵y=4﹣ x为正整数,∴ x为正整数.由2与3互质,可知x为3的倍数,从而x=3,代入y=4﹣ x=2.∴2x+3y=12的正整数解为 .问题:(1)请你写出方程3x+y=7的一组正整数解:________.(2)若为自然数,则满足条件的x值有 .A.2个B.3个C.4个D.5个(3)为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品至少购买1件),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去180元,问有几种购买方案.2.已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和辆B型车装满货物一次可运货11吨某公司现有31吨货物,计划同时租用A型车a辆,B型车b 辆,一次运完,且每辆车恰好装满货物.根据以上信息解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该公司设计共有几种租车方案?3.仔细阅读下面解方程组的方法,然后解决有关问题:解方程组时,如果直接消元,那将会很繁琐,若采用下面的解法,则会简单很多.解:①-②,得:2x+2y=2,即x+y=1③③×16,得:16x+16y=16④②-④,得:x=-1将x=-1代入③得:y=2∴原方程组的解为:(1)请你采用上述方法解方程组:(2)请你采用上述方法解关于x,y的方程组,其中.4.为了防治“新型冠状病毒”,我市某小区准备用5400元购买医用口罩和洗手液发放给本小区住户.若医用口罩买800个,洗手液买120瓶,则钱还缺200元;若医用口罩买1200个,洗手液买80瓶,则钱恰好用完.(1)求医用口罩和洗手液的单价;(2)由于实际需要,除购买医用口罩和洗手液外,还需增加购买单价为6元的N95口罩.若需购买医用口罩,N95口罩共1200个,其中N95口罩不超过200个,钱恰好全部用完,则有几种购买方案,请列方程计算.5.某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费6200元;如果购买2台A型电脑,1台B型打印机,一共需要花费7900元。

《二元一次方程组解答题部分2(解析版)》2022年中考数学分类专练

《二元一次方程组解答题部分2(解析版)》2022年中考数学分类专练
A
B
本钱〔单位:万元/件〕
2
4
售价〔单位:万元/件〕
5
7
问该公司这两种产品的销售件数分别是多少?
【分析】设A,B两种产品的销售件数分别为x件、y件;由题意列出方程组,解方程组即可.
反思归纳
解:∵每根竹签串c个山楂,还剩余d个山楂,
那么ac+d=b,
故答案为:〔2〕.
【点评】此题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.
8.〔2021年江苏省淮安市〕某公司用火车和汽车运输两批物资,具体运输情况如下表所示:
所用火车车皮数量〔节〕
所用汽车数量〔辆〕
【分析】设“红土〞百香果每千克x元,“黄金〞百香果每千克y元,由题意列出方程组,解方程组即可.
【解答】解:设“红土〞百香果每千克x元,“黄金〞百香果每千克y元,
由题意得: ,
解得: ;
答:“红土〞百香果每千克25元,“黄金〞百香果每千克30元.
【点评】此题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.
解得:z≥640;
答:稻谷的亩产量至少会到达640千克.
【点评】此题考查了二元一次方程组的应用、一元一次不等式的应用;根据题意列出方程组或不等式是解题的关键.
13〔2021年山东省淄博市〕“一带一路〞促进了中欧贸易的开展,我市某机电公司生产的A,B两种产品在欧洲市场热销.今年第一季度这两种产品的销售总额为2060万元,总利润为1020万元〔利润=售价﹣本钱〕.其每件产品的本钱和售价信息如下表:
【分析】〔1〕设跳绳的单价为x元/条,毽子的单件为y元/个,根据:购置30根跳绳和60个毽子共用720元,购置10根跳绳和50个毽子共用360元,列方程组求解即可;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019中考数学专题练习-二元一次方程组的解(含解析)一、单选题1.已知是关于x,y的方程组的解,则a+b的值为()A. 14B. 12C. ﹣12D. 22.已知方程组的解为,则2a﹣3b的值为()A. 4B. 6C. ﹣6D. ﹣43.下列各组数是二元一次方程组的解的是()A. B. C. D.4.已知是二元一次方程组的解,则m+3n的算术平方根为()A. ±3B. 3C.D. ±25.解为的方程组是()A. B. C. D.6.已知是二元一次方程组的解,则的值是()A. 1B. 2C. 3D. 47.方程组的解与与的值相等,则等于()A. 2B. 1C. 6D. 48.若是方程组的解,则a、b值为()A. B. C. D.9.小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为()A. B. C. D.10.已知方程组的解中x与y之和为1,则k的值是()A. ﹣1B. 2C. ﹣2D. 111.方程组的解是()A. B. C. D.12.已知方程组的解为,则a+b的值为()A. 1B. 2C. 3D. 413.已知是方程的一个解,那么的值是()A. 1B. 3C. -3D. -114.已知方程组的解满足x+y=2,则k的算术平方根为()A. 4B. ﹣2C. ﹣4D. 2二、填空题15.若一个二元一次方程组的解为则这个方程组可以是________.16.写出一个解为的二元一次方程组________.17.方程组的解是________.18.已知关于x,y的方程组的解适合x+y=2,则m的值为________.19.如果方程组解中的x与y的互为相反数,那么a的值是________.20.若方程组与方程组的解相同,则m+n的值为________.21.已知方程组,当m________时,x+y>0.22.二元一次方程组的解x,y的值相等,则k=________.三、计算题23.已知二元一次方程组的解,也是二元一次方程6x+y=8的解,求a的值.24.已知二元一次方程组的解为,求a与b的值.25.已知二元一次方程组的解为,求a与b的值.26.m为正整数,已知二元一次方程组有整数解,求m的值.27.方程组的解x、y满足x是y的2倍,求a的值.28.已知关于x,y的二元一次方程组的解是,求(a+b)2019的值.四、解答题29.已知关于x、y的二元一次方程组的解都大于1,试求m的取值范围.30.已知关于x,y的方程组与有相同的解,求a,b的值.五、综合题31.(1)阅读下列材料并填空:对于二元一次方程组我们可以将x,y的系数和相应的常数项排成一个数表,求得的一次方程组的解用数表可表示为.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为(2)仿照(1)中数表的书写格式写出解方程组的过程.答案解析部分一、单选题1.已知是关于x,y的方程组的解,则a+b的值为()A. 14B. 12C. ﹣12D. 2【答案】A【考点】二元一次方程组的解【解析】【解答】解:把代入方程组得:,解得:a=1,b=13,则a+b=14,故选A.【分析】将x与y的值代入方程组求出a与b的值,即可确定出a+b的值.2.已知方程组的解为,则2a﹣3b的值为()A. 4B. 6C. ﹣6D. ﹣4【答案】B【考点】二元一次方程组的解【解析】【解答】解:把代入原方程组,得,解得.2a﹣3b=2× ﹣3×(﹣1)=6.故答案为:B.【分析】把x=2,y=1代入原方程组,得到2 a − b = 4, 2 a + b = 2,得到a=,b = − 1,得到2a﹣3b=2× 3 2 ﹣3×(﹣1)=6.3.下列各组数是二元一次方程组的解的是()A. B. C. D.【答案】A【考点】二元一次方程组的解【解析】【解答】解:∵y﹣x=1,∴y=1+x.代入方程x+3y=7,得x+3(1+x)=7,即4x=4,∴x=1.∴y=1+x=1+1=2.解为x=1,y=2.故选A.【分析】所谓“方程组”的解,指的是该数值满足方程组中的每一方程.此题直接解方程组或运用代入排除法作出选择.4.已知是二元一次方程组的解,则m+3n的算术平方根为()A. ±3B. 3C.D. ±2【答案】B【考点】二元一次方程组的解【解析】【解答】解:把代入方程组得,解得:,则m+3n=3+6=9.则m+3n的算术平方根为3.故选B.【分析】由于已知二元一次方程的解,可将其代入方程组中,即可求出m、n的值,进而利用算术平方根定义可求出m+3n的算术平方根.5.解为的方程组是()A. B. C.D.【答案】D【考点】二元一次方程组的解【解析】【解答】解:将分别代入A、B、C、D四个选项进行检验,能使每个方程的左右两边相等的x、y的值即是方程的解.A、B、C均不符合,只有D满足.故选:D.【分析】所谓方程组的解,指的是该数值满足方程组中的每一方程.将分别代入A、B、C、D四个选项进行检验,或直接解方程组.6.已知是二元一次方程组的解,则的值是()A. 1B. 2C. 3D. 4【答案】D【考点】二元一次方程组的解【解析】【解答】解:把x=1,y=2分别代入方程组的两个方程可得m=7,n=3,所以m-n=7-3=4,故选D.7.方程组的解与与的值相等,则等于()A. 2B. 1C. 6D. 4【答案】B【考点】二元一次方程组的解【解析】【解答】因为x与y的值相等,所以我们可以将方程组中的所有y都换成x即,那么,所以k=1,故答案为:B.【分析】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.8.若是方程组的解,则a、b值为()A. B. C. D.【答案】A【考点】二元一次方程组的解【解析】【解答】解:把代入方程组得:,解得:,故选A【分析】把x与y的值代入方程组求出a与b的值即可.9.小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为()A. B. C.D.【答案】D【考点】二元一次方程组的解【解析】【解答】解:∵方程组的解为,∴将x=5代入2x﹣y=12,得y=﹣2,将x=5,y=﹣2代入2x+y得,2x+y=2×5+(﹣2)=8,∴●=8,★=﹣2,故选D.【分析】根据题意可以分别求出●与★的值,本题得以解决.10.已知方程组的解中x与y之和为1,则k的值是()A. ﹣1B. 2C. ﹣2D. 1【答案】B【考点】二元一次方程组的解【解析】【解答】解:根据题意联立得:,解得:,把代入得:4﹣k=2k﹣2,解得:k=2,故选B【分析】方程组中第一个方程与x+y=1联立求出x与y的值,代入第二个方程计算即可求出k的值.11.方程组的解是()A. B. C. D.【答案】D【考点】二元一次方程组的解【解析】【解答】解:,①+②得:2x=4,即x=2,把x=2代入①得:y=1,则方程组的解为,故选D【分析】利用加减消元法求出方程组的解,即可作出判断.12.已知方程组的解为,则a+b的值为()A. 1B. 2C. 3D. 4【答案】B【考点】二元一次方程组的解【解析】【解答】解:将代入方程组,得:,①+②,得:3a+3b=6,即a+b=2,故选:B.【分析】根据方程组的解的概念,将x、y的值代入原方程组从而得到关于a、b的二元一次方程组,观察到a、b系数特点,将两方程相加后除以3即可得答案.13.已知是方程的一个解,那么的值是()A. 1B. 3C. -3D. -1【答案】A【考点】二元一次方程组的解【解析】【解答】将代入方程得,解得.故答案为:1.【分析】本题考查二元一次方程解的逆向应用,已知方程的解求解原方程的未知数,将解带入即可.14.已知方程组的解满足x+y=2,则k的算术平方根为()A. 4B. ﹣2C. ﹣4D. 2【答案】D【解析】【解答】,解方程组得x+y=,代入x+y=2中得:k+2=6,解得:k=4,则4的算术平方根为2,故答案为:D.【分析】方程组中两方程相加表示出x+y,代入x+y=2中计算即可得出k的值.二、填空题15.若一个二元一次方程组的解为则这个方程组可以是________.【答案】【考点】二元一次方程组的解【解析】【解答】解:根据题意得:,故答案为:【分析】以18和﹣10列出两个算式,即可确定出所求方程组.16.写出一个解为的二元一次方程组________.【答案】(答案不唯一)【考点】二元一次方程组的解【解析】【解答】先围绕为列一组算式如1+2=3,1-2=-1 然后用x,y代换得等.【分析】根据列出一组算式,然后用x、y代换即可列出方程组,或列出含x、y的代数式,将代入求值即可得出方程组。

17.方程组的解是________.【答案】【解析】【解答】解:,①+②得:3x=12,即x=4,把x=4代入①得:y=﹣2,则方程组的解为.故答案为:.【分析】方程组利用加减消元法求出解即可.18.已知关于x,y的方程组的解适合x+y=2,则m的值为________.【答案】6【考点】二元一次方程组的解【解析】【解答】解:两个方程相加,得5x+5y=2m﹣2,即5(x+y)=2m﹣2,∵x+y=2,∴5x+5y=10,即2m﹣2=10.解得:m=6;故答案为:6.【分析】方程组中的两个方程相加,即可用m表示出x+y,即可解得m的值.19.如果方程组解中的x与y的互为相反数,那么a的值是________.【答案】﹣6【考点】二元一次方程组的解【解析】【解答】解:根据题意得:,②×7﹣①得:4x=﹣4,解得:x=﹣1,把x=﹣1代入②得:y=1,将x=﹣1,y=1代入得:﹣2a+a﹣1=5,解得:a=﹣6,故答案为:﹣6【分析】根据方程组的解互为相反数得到x+y=0,与方程组中第一个方程联立求出x与y的值,再将x与y的值代入方程组第二个方程求出a的值即可.20.若方程组与方程组的解相同,则m+n的值为________.【答案】6【考点】二元一次方程组的解【解析】【解答】解:解方程组,得:,将代入方程组得:,解得:,∴m+n=6,故答案为:6.【分析】解方程组求得x、y的值,代入方程组求解得m、n的值,即知m+n.21.已知方程组,当m________时,x+y>0.【答案】>﹣2【考点】二元一次方程组的解【解析】【解答】解:,②×2﹣①得:x=﹣3③,将③代入②得:y=m+5,所以原方程组的解为,∵x+y>0,∴﹣3+m+5>0,解得m>﹣2,∴当m>﹣2时,x+y>0.故答案为>﹣2.【分析】解此题首先要把字母m看做常数,然后解得x、y的值,结合题意,列得一元一次不等式,解不等式即可.22.二元一次方程组的解x,y的值相等,则k=________.【答案】2【考点】二元一次方程组的解【解析】【解答】解:∵二元一次方程组的解x,y的值相等,∴4x+3y=7,即4x+3x=7,解得x=y=1,∴k+k﹣1=3,解得k=2.故答案为:2.【分析】根据题意解出一元一次方程,求出x,y的值,得到关于k的一元一次方程,解方程.三、计算题23.已知二元一次方程组的解,也是二元一次方程6x+y=8的解,求a的值.【答案】解:∵二元一次方程组的解,也是二元一次方程6x+y=8的解,∴解方程组得:,把x=1,y=2代入方程ax+3y=9得:a+6=9,解得:a=3【考点】二元一次方程组的解【解析】【分析】先求出组成的方程组的解,代入方程ax+3y=9,即可得出一个关于a的方程,求出方程的解即可.24.已知二元一次方程组的解为,求a与b的值.【答案】解:把代入二元一次方程组,得,解得a=4,b=0【考点】二元一次方程组的解【解析】【分析】方程组的解即未知数的值,适合每一个方程.把解代入方程组即可求出a、b的值.25.已知二元一次方程组的解为,求a与b的值.【答案】解:把代入二元一次方程组,得,解得a=4,b=0【考点】二元一次方程组的解【解析】【分析】方程组的解即未知数的值,适合每一个方程.把解代入方程组即可求出a、b的值.26.m为正整数,已知二元一次方程组有整数解,求m的值.【答案】解:关于x、y的方程组:,①+②得:(3+m)x=10,即x= ③,把③代入②得:y= ④,∵方程的解x、y均为整数,∴3+m既能整除10也能整除15,即3+m=5,解得m=2.m的值为2.【考点】二元一次方程组的解【解析】【分析】利用方程组解的意义,加减消元,用含m的代数时表示x、y,结合已知,求出m的值.27.方程组的解x、y满足x是y的2倍,求a的值.【答案】解:∵x是y的2倍,∴x=2y,代入方程组得:,∴y= = ,解得:a=﹣7【考点】二元一次方程组的解【分析】把x=2y代入方程组,把a看成已知数求出y,即可得出一个关于a的方程,【解析】求出方程的解即可.28.已知关于x,y的二元一次方程组的解是,求(a+b)2019的值.【答案】解:把x=1,y=2代入方程组得:,解得:a=﹣6,b=5,所以(a+b)2019=(﹣6+5)2019=1【考点】二元一次方程组的解【解析】【分析】把方程组的解代入方程组,得出关于a、b的方程组,求出方程组的解,再代入求出即可.四、解答题29.已知关于x、y的二元一次方程组的解都大于1,试求m的取值范围.【答案】解:,①+②×2,得5x=5m+6,解得,x=m+1.2,把x=m+1.2代入②,得y= m+0.9,∵关于x、y的二元一次方程组的解都大于1,∴,解得,m>0.2,即m的取值范围是m>0.2.【考点】二元一次方程组的解【解析】【分析】把m看做已知数,然后求出方程组的解,接下来,根据方程组的解都大于1列出关于m的不等式组,最后,解关于m的不等式可求得m的范围.30.已知关于x,y的方程组与有相同的解,求a,b的值.【答案】解:由题意可将x+y=5与2x﹣y=1组成方程组,解得:,把代入4ax+5by=﹣22,得8a+15b=﹣22①,把代入ax﹣by﹣8=0,得2a﹣3b﹣8=0②,①与②组成方程组,得,解得:【考点】二元一次方程组的解【解析】【分析】联立不含a与b的方程求出x与y的值,代入剩下的方程求出a与b的值即可.五、综合题31.(1)阅读下列材料并填空:对于二元一次方程组我们可以将x,y的系数和相应的常数项排成一个数表,求得的一次方程组的解用数表可表示为.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为(2)仿照(1)中数表的书写格式写出解方程组的过程.【答案】(1)解:,从而得到该方程组的解为(2)解:所以方程组的解为【考点】二元一次方程组的解【解析】【分析】(1)首先进行下行−上行,然后将下行除以3将y的系数化为1,就可得方程组的解;(2)类比(1)中方法通过加减法将x、y的系数化为1可得.。

相关文档
最新文档