【精选】八年级数学上册分式解答题专题练习(word版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这里的2即为[﹣4+(﹣6)]﹣[﹣7+(﹣5)];
所以可总结出规律:方程解的分子为右边两个分中的常数项的积减去左边两个分母中的常数项的积,解的分母为左边两个分母中的常数项的差减去右边两个分母中常数项的差.
(1)先把方程分为两边差的形式:方程 ﹣ = ﹣ ,
由所总结的规律可知方程解的分子为:(﹣1)×(﹣6)﹣(﹣7)×(﹣2)=﹣8,
【解析】
【分析】
(1)设甲工厂每天加工x件新品,乙工厂每天加工1.5x件新品,根据题意找出等量关系:甲厂单独加工这批产品所需天数﹣乙工厂单独加工完这批产品所需天数=20,由等量关系列出方程求解.
(2)分别计算出甲单独加工完成、乙单独加工完成、甲、乙合作完成需要的时间和费用,比较大小,选择既省时又省钱的加工方案即可.
先算出前一半的时间所行的路程,后一半的时间所行的路程相加,速度=路程÷时间求出V乙;
【答案】(1)见解析;(2)①1;②4或3或1
【解析】
【分析】
(1)作差后,根据分式方程的加减法法则计算即可;
(2)①把M、N代入整理得到y,解分式方程即可;
②把y变形为: ,由于x为整数,y为整数,则 可以取±1,±2,然后一一检验即可.
【详解】
(1)当 时,M-N≥0.理由如下:
M-N= .
∵ >0,∴(x-1)2≥0,2(x+1)>0,∴ ,∴M-N≥0.
4.符号 称为二阶行列式,规定它的运算法则为: ,请根据这一法则解答下列问题:
(1)计算: ;
(2)若 ,求 的值.
【答案】(1) (2)5
【解析】
【分析】
(1)根据新定义列出代数式,再进行减法计算;
(2)根据定义列式后得到关于x的分式方程,正确求解即可.
【详解】
(1)原式

(2)根据题意得:
解之得:
【点睛】
本题考查了分式的加减法及解方式方程.确定x+1的取值是解答(2)②的关键.
3.某开发公司生产的960件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用20天,而甲工厂每天加工的数量是乙工厂每天加工的数量的 ,公司需付甲工厂加工费用为每天80元,乙工厂加工费用为每天120元.
经检验: 是原分式方程的解
所以 的值为5.
【点睛】
此题考察分式的计算,分式方程的求解,依据题意正确列式是解此题的关键.
5.为了迎接运动会,某校八年级学生开展了“短跑比赛”。甲、乙两人同时从A地出发,沿同一条道路去B地,途中都使用两种不同的速度 与 。
甲前一半的路程使用速度 ,另一半的路程使用速度 ;乙前一半的时间用速度 ,另一半的时间用速度 。
(1)甲、乙两个工厂每天各能加工多少件新产品?
(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天15元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.
【答案】(1)甲工厂每天加工16件产品,乙工厂每天加工24件产品.(2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.
(2)依题意,得: .
①当 ,即 时,解得: .经检验, 是原分式方程的解,∴当y=3时,x的值是1.
② .
∵ 是整数,∴ 是整数,∴ 可以取±1,±2.
当x+1=1,即 时, ;
当x+1=﹣1时,即 时, (舍去);
当x+1=2时,即 时, ;
当x+1=-2时,即 时, ;
综上所述:当 为整数时, 的正整Biblioteka Baidu值是4或3或1.
分母为[﹣7+(﹣2)]﹣[﹣6+(﹣1)]=﹣2,
所以方程的解为x= =4;
(2)由所总结的规律可知方程解的分子为:cd﹣ab,分母为(a+b)﹣(c+d),
所以方程的解为x= .
2.已知: , .
(1)当 >0时,判断 与0的关系,并说明理由;
(2)设 .
①当 时,求 的值;
②若 是整数,求 的正整数值.
(1)甲、乙二人从A地到达B地的平均速度分别为 ;则 ___________, ____________
(2)通过计算说明甲、乙谁先到达B地?为什么?
【答案】(1) ;(2)乙先到达B地.
【解析】
【分析】
(1)设AB两地的路程为s,乙从A地到B地的总时间为a.
先算出前一半的路程所用的时间,后一半的路程所用的时间相加,速度=路程÷时间求出V甲;
一、八年级数学分式解答题压轴题(难)
1.已知:方程 ﹣ = ﹣ 的解是x= ,方程 ﹣ = ﹣ 的解是x= ,试猜想:
(1)方程 + = + 的解;
(2)方程 ﹣ = ﹣ 的解(a、b、c、d表示不同的数).
【答案】(1)x=4;(2)x= .
【解析】
通过解题目中已知的两个方程的过程可以归纳出方程的解与方程中的常数之间的关系,利用这个关系可得出两个方程的解.
解:解方程 ﹣ = ﹣ ,先左右两边分别通分可得: ,
化简可得: ,
整理可得:2x=15﹣8,
解得:x= ,
这里的7即为(﹣3)×(﹣5)﹣(﹣2)×(﹣4),
这里的2即为[﹣2+(﹣4)]﹣[﹣3+(﹣5)];
解方程 ﹣ = ﹣ ,先左右两边分别为通分可得:

化简可得: ,
解得:x= ,
这里的11即为(﹣7)×(﹣5)﹣(﹣4)×(﹣6),
需要的时间为:960÷24=40天
需要的总费用为:40×(120+15)=5400元
方案三:甲、乙两工厂合作完成此项任务,设共需要a天完成任务,则
16a+24a=960
∴a=24
∴需要的总费用为:24×(80+120+15)=5 160元
综上所述:甲、乙两工厂合作完成此项任务既省时又省钱.
【点睛】
本题主要考查分式方程的应用,解题的关键在于理解清楚题意,找出等量关系,列出方程求解.需要注意:①分式方程求解后,应注意检验其结果是否符合题意;②选择最优方案时,需将求各个方案所需时间和所需费用,经过比较后选择最优的那个方案.
【详解】
(1)设甲工厂每天加工x件新品,乙工厂每天加工1.5x件新品,
则: 解得:x=16
经检验,x=16是原分式方程的解
∴甲工厂每天加工16件产品,乙工厂每天加工24件产品
(2)方案一:甲工厂单独完成此项任务,则需要的时间为:960÷16=60天
需要的总费用为:60×(80+15)=5700元
方案二:乙工厂单独完成此项任务,则
相关文档
最新文档