第10章简单线性回归分析思考与练习参考答案

合集下载

第10章 回归分析..

第10章  回归分析..
第10章 回归分析
介绍: 1、回归分析的概念和模型 2、回归分析的过程
回归分析的概念
寻求有关联(相关)的变量之间的关系 主要内容:



从一组样本数据出发,确定这些变量间的定 量关系式 对这些关系式的可信度进行各种统计检验 从影响某一变量的诸多变量中,判断哪些变 量的影响显著,哪些不显著 利用求得的关系式进行预测和控制
补充:回归分析
以下的讲义是吴喜之教授有 关回归分析的讲义,很简单, 但很实用
定量变量的线性回归分析
对例1(highschoo.sav)的两个变量的数据进行线性回归, 就是要找到一条直线来最好地代表散点图中的那些点。
100
y 0 1 x
S1 60 70 80 90
y 26.44 0.65 x

2.
Graphs ->Scatter->Simple X Axis: Salbegin Y Axis: Salary Analyze->Regression->Linear Dependent: Salary Independents: Salbegin,prevexp,jobtime,jobcat,edcu等变量 Method: Stepwise
我们只讲前面3个简单的(一般教科书的讲法)
10.1 线性回归(Liner)
一元线性回归方程: y=a+bx


a称为截距 b为回归直线的斜率 用R2判定系数判定一个线性回归直线的拟合程度:用来说明用自变 量解释因变量变异的程度(所占比例)
b0为常数项 b1、b2、…、bn称为y对应于x1、x2、…、xn的偏回归系数 用Adjusted R2调整判定系数判定一个多元线性回归方程的拟合程度: 用来说明用自变量解释因变量变异的程度(所占比例)

回归思考与练习参考答案

回归思考与练习参考答案

第18章Logistic回归思考与练习参考答案一、最佳选择题1. Logistic回归与多重线性回归比较,( A )。

A.logistic回归的因变量为二分类变量B.多重线性回归的因变量为二分类变量C.logistic回归和多重线性回归的因变量都可为二分类变量D.logistic回归的自变量必须是二分类变量E.多重线性回归的自变量必须是二分类变量2. Logistic回归适用于因变量为( E )。

A.二分类变量B.多分类有序变量C.多分类无序变量D.连续型定量变量E.A、B、C均可3. Logistic回归系数与优势比OR的关系为( E )。

A.0等价于OR>1 B.0等价于OR<1 C.=0等价于OR=1 D.<0等价于OR<1 E.A、C、D均正确4. Logistic回归可用于( E )。

A.影响因素分析B.校正混杂因素C.预测D.仅有A和C E.A、B、C均可5. Logistic回归中自变量如为多分类变量,宜将其按哑变量处理,与其他变量进行变量筛选时可用( D )。

A.软件自动筛选的前进法B.软件自动筛选的后退法C.软件自动筛选的逐步法D.应将几个哑变量作为一个因素,整体进出回归方程E.A、B、C均可二、思考题1. 为研究低龄青少年吸烟的外在因素,研究者采用整群抽样,在某中心城区和远城区的初中学校,各选择初一年级一个班的全部学生进行调查,并用logistic回归方程筛选影响因素。

试问上述问题采用logistic回归是否妥当?答:上述问题采用logistic回归不妥当,因为logistic回归中参数的极大似然估计要求样本结局事件相互独立,而研究的问题中低龄青少年吸烟行为不独立。

2. 分类变量赋值不同对logistic回归有何影响? 分析结果一致吗?答:(1)若因变量交换赋值,两个logistic回归方程的参数估计绝对值相等,符号相反;优势比互为倒数,含义有所区别,实质意义一样;模型拟合检验与回归系数的假设检验结果相同。

回归分析的基本知识点及习题

回归分析的基本知识点及习题
值。
模型评估:线性 回归模型的评估 通常使用R方值、 调整R方值、残 差图等指标进行
评估。
参数估计与求解
最小二乘法:通过最小化误差的平 方和来估计线性回归模型的参数
梯度下降法:通过迭代更新参数, 使得损失函数最小化,从而得到最 优解
添加标题
添加标题
添加标题
添加标题
最大似然估计法:基于似然函数的 最大值来估计参数,使得观测到的 数据出现的概率最大
原理:通过引入 一个小的正则化 项来改进最小二 乘法的估计,以 减少过拟合和增 加模型的稳定性。
目的:在回归分析 中,岭回归分析用 于处理自变量之间 高度相关的情况, 通过加入正则化项 来减少过拟合,提 高模型的预测精度。
应用场景:岭回 归分析广泛应用 于统计学、机器 学习和数据分析 等领域,尤其在 处理共线性数据 问题时表现出色。
感谢您的观看
汇报人:
梯度下降法:通过 迭代更新参数来最 小化损失函数
牛顿-拉夫森方法 :利用泰勒级数展 开来求解参数
模型评估与优化
模型的准确性评估:通过比较实际值与预测值来评估模型的预测能力。
模型的可靠性评估:检查模型是否具有足够的稳定性和可靠性。
模型的优化方法:通过调整模型参数或改变模型结构来提高模型的预测能力和可 靠性。
假设:满足线性关系、误差项独立同分布、误差项无偏、误差项无自相关等假设。 模型建立:基于历史数据,通过最小二乘法等估计方法确定自变量和因变量的关系。 模型评估:通过残差分析、决定系数、调整决定系数等方法评估模型的拟合优度。
参数估计与求解
最小二乘法:通过 最小化误差的平方 和来估计参数
最大似然估计法: 基于似然函数的最 大值来估计参数
模型的适用性:确定模型是否适用于特定的数据集和问题类型。

回归分析练习题及参考答案

回归分析练习题及参考答案

求:(1)人均GDP 作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。

(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。

(3)求出估计的回归方程,并解释回归系数的实际意义。

(4)计算判定系数,并解释其意义。

(5)检验回归方程线性关系的显著性(0.05α=)。

(6)如果某地区的人均GDP 为5000元,预测其人均消费水平。

(7)求人均GDP 为5000元时,人均消费水平95%的置信区间和预测区间。

解:(1)可能存在线性关系。

(2)相关系数:(3)回归方程:734.6930.309y x=+回归系数的含义:人均GDP没增加1元,人均消费增加0.309元。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

系数(a)模型非标准化系数标准化系数t 显著性B 标准误Beta1 (常量)734.693 139.540 5.265 0.003人均GDP(元)0.309 0.008 0.998 36.492 0.000 a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%人均GDP对人均消费的影响达到99.6%。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

模型摘要模型R R 方调整的R 方估计的标准差1 .998(a) 0.996 0.996 247.303a. 预测变量:(常量), 人均GDP(元)。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(5)F 检验:回归系数的检验:t 检验注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

系数(a)模型 非标准化系数标准化系数t 显著性B 标准误 Beta1(常量) 734.693 139.540 5.2650.003 人均GDP (元)0.3090.0080.99836.4920.000a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(6)某地区的人均GDP 为5000元,预测其人均消费水平为 734.6930.30950002278.693y =+⨯=(元)。

应用回归分析课后习题参考答案_全部版__何晓群_刘文卿

应用回归分析课后习题参考答案_全部版__何晓群_刘文卿

第一章回归分析概述1.2 回归分析与相关分析的联系与区别是什么?答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。

区别有 a.在回归分析中,变量y称为因变量,处在被解释的特殊地位。

在相关分析中,变量x和变量y处于平等的地位,即研究变量y与变量x的密切程度与研究变量x与变量y的密切程度是一回事。

b.相关分析中所涉及的变量y与变量x全是随机变量。

而在回归分析中,因变量y是随机变量,自变量x可以是随机变量也可以是非随机的确定变量。

C.相关分析的研究主要是为了刻画两类变量间线性相关的密切程度。

而回归分析不仅可以揭示变量x对变量y的影响大小,还可以由回归方程进行预测和控制。

1.3回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。

1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。

2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。

4.样本容量的个数要多于解释变量的个数,即n>p.第二章一元线性回归分析思考与练习参考答案2.1一元线性回归有哪些基本假定?答:假设1、解释变量X是确定性变量,Y是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(εi)=0 i=1,2, …,nVar (εi)=σ2i=1,2, …,nCov(εi,εj)=0 i≠j i,j= 1,2, …,n假设3、随机误差项ε与解释变量X之间不相关:Cov(X i, εi)=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布εi~N(0, σ2) i=1,2, …,n2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。

庞皓计量经济学练习题及参考解答第四版

庞皓计量经济学练习题及参考解答第四版

庞皓计量经济学练习题及参考解答第四版目录1.简介2.练习题及解答–第一章:引言–第二章:回归分析的基本步骤–第三章:多元回归分析–第四章:假设检验和检定–第五章:函数形式选择和非线性回归–第六章:虚拟变量和联合假设检验–第七章:时间序列回归分析–第八章:面板数据回归分析–第九章:工具变量法–第十章:极大似然估计3.总结1. 简介《庞皓计量经济学练习题及参考解答第四版》是一本与《庞皓计量经济学》教材配套的习题集,旨在帮助读者巩固和加深对计量经济学理论和方法的理解。

本书第四版相比前三版进行了全面的修订和更新,更加贴近实际应用环境,同时也增加了一些新的内容。

本文档为《庞皓计量经济学练习题及参考解答第四版》的摘要,包含了各章节的练习题及参考解答。

2. 练习题及解答第一章:引言1.什么是计量经济学?计量经济学的研究范围是什么?–答案:计量经济学是运用统计学方法研究经济理论及实证问题的学科。

它主要研究经济学中的理论模型和假设是否能得到实证支持,对经济变量之间的关系进行定量分析和预测。

2.计量经济学中常用的方法有哪些?–答案:常用的计量经济学方法包括线性回归分析、假设检验、面板数据分析、时间序列分析等。

这些方法能够帮助研究者解决实际经济问题,预测经济变量,评估政策效果等。

第二章:回归分析的基本步骤1.请解释什么是回归分析?–答案:回归分析是一种研究因变量和自变量之间关系的统计方法。

通过建立一个数学模型来描述二者之间的函数关系,并利用样本数据对该函数关系进行估计和推断。

回归分析的基本思想是找到自变量对因变量的解释能力,并进行统计推断。

2.利用最小二乘法进行回归分析的基本思想是什么?–答案:基本思想是通过最小化预测值与实际观测值之间的差异,来确定最佳的参数估计值。

也就是说,最小二乘法通过选择一组参数,使得预测值与实际观测值之间的平方差最小化。

3.如何判断回归模型的拟合优度?–答案:拟合优度可以通过判断回归方程的决定系数R2来评估。

第10章 简单线性回归分析案例辨析及参考答案

第10章 简单线性回归分析案例辨析及参考答案
正确做法 两样本合并后,总例数为=20。进行直线回归分析,结 果如下:
,=0.698。经检验,贫血患者治疗后的血红蛋白增加量与治疗有 关。
正常人均数:=20.21+7.78×0=20.21 患 者均数:=20.21+7.78×1=27.99 截距与两样本均数的差值相等。分别进行回归方程的方差分析与回 归系数的t检验,得F=17.112,t=4.137。回归系数的t检验结果与两样 本均数的t检验结果完全一致。以上结果说明,t检验的结果可以转化为
Quadratic .9941206.902 2 14.000 60.78810.805-.292
Cubic
.9982575.942 3 13.000 81.857 3.490 .447-.023
Growth .924 182.200 1 15.000 4.539 .034
The independent variable is 年龄。
上述曲线类型依次为线性、二次、三次多项式曲线和生长曲线,由 拟合结果可知,曲线拟合效果较好,进一步得到曲线图(案例图101):
(3)选择合理的模型,列出回归方程。以女孩身高二次曲线为
例,方程如下: 多项式曲线: (4)统计预测:预测19岁女孩身高为60.788+10.805×18-
0.292×182=160.7,与实际趋势相符。其他预测方法相同。
案例10-2 贫血患者的血清转铁蛋白研究。第6章例6-1中,为研究 某种新药治疗贫血患者的效果,将20名贫血患者随机分成两组,一组用 新药,另一组用常规药物治疗,测得血红蛋白增加量(g/L)见表6-1。 问新药与常规药治疗贫血患者后的血红蛋白增加量有无差别?
张医生用检验比较新药与常规药治疗贫血患者后的血红蛋白增加 量,计算得:

第11章 多重线性回归分析思考与练习参考答案

第11章 多重线性回归分析思考与练习参考答案

第11章多重线性回归分析思考与练习参考答案一、最佳选择题1.逐步回归分析中,若增加自变量的个数,则(D)。

A.回归平方和与残差平方和均增大B.回归平方和与残差平方和均减小C.总平方和与回归平方和均增大D.回归平方和增大,残差平方和减小E.总平方和与回归平方和均减小2.下面关于自变量筛选的统计学标准中错误的是(E)。

A.残差平方和(SS残差)缩小B.确定系数(R)增大2C.残差的均方(MS残差)缩小D.调整确定系数(Rad)增大2E.Cp统计量增大3.多重线性回归分析中,能直接反映自变量解释因变量变异百分比的指标为(C)。

A.复相关系数B.简单相关系数C.确定系数D.偏回归系数E.偏相关系数4.多重线性回归分析中的共线性是指(E)。

A.Y关于各个自变量的回归系数相同B.Y关于各个自变量的回归系数与截距都相同C.Y变量与各个自变量的相关系数相同D.Y与自变量间有较高的复相关E.自变量间有较高的相关性5.多重线性回归分析中,若对某一自变量的值加上一个不为零的常数K,则有(D)。

A.截距和该偏回归系数值均不变B.该偏回归系数值为原有偏回归系数值的K 倍C.该偏回归系数值会改变,但无规律D.截距改变,但所有偏回归系数值均不改变E.所有偏回归系数值均不会改变二、思考题1.多重线性回归分析的用途有哪些?答:多重线性回归在生物医学研究中有广泛的应用,归纳起来,可以包括以下几个方面:定量地建立一个反应变量与多个解释变量之间的线性关系,筛选危险因素,通过较易测量的变量估计不易测量的变量,通过解释变量预测反应变量,通过反应变量控制解释变量。

2.多重线性回归模型中偏回归系数的含义是什么?答:偏回归系数的含义是:在控制其他自变量的水平不变的情况下,该自变量每改变一个单位,反应变量平均改变的单位数。

3.请解释用于多重线性回归参数估计的最小二乘法的含义。

答:最小二乘法的含义是:残差的平方和达到最小。

4.如何判断和处理多重共线性?答:如果自变量之间存在较强的相关,则存在多重共线性。

第十章 线性相关与回归

第十章 线性相关与回归

相关与回归
28
直线回归就是用来研究两个连续性变量x 直线回归就是用来研究两个连续性变量 之间的数量依存关系。 和y之间的数量依存关系。其中 为自变 之间的数量依存关系 其中x为自变 y为因变量 它依赖于x。 为因变量, 量,y为因变量,它依赖于x。 直线回归适用于单变量正态分布资料, 直线回归适用于单变量正态分布资料,即 y为随机正态变量,x为可以精确测量的 为随机正态变量, 为可以精确测量的 为随机正态变量 值。
31
根据上例的数据,求男青年身高与前臂长之间的回归 方程。 从相关系数的计算中,已经求得:
• • • • • • ∑X=1891 ∑Y=500 ∑ X2=89599 ∑ Y2=22810 ∑XY=86185 N=11
相关与回归 12
例 10.1
• 从男青年总体中随机抽取11名男青年的身 高和前臂长,身高和前臂长均以cm为单位, 测量结果如表10-1所示,试计算身高与前 臂长之间的相关系数?是正相关还是负相 关?
相关与回归
13
表10-1 11例男青年身高与前臂长的测量结果 例男青年身高与前臂长的测量结果
编号 1 2 3 4 5 6 7 8 9 10 11 身高(cm) 170 173 160 155 173 188 178 183 180 165 166 前臂长(cm) 47 42 44 41 47 50 47 46 46 43 44
X、Y 变化趋势相同---变化趋势相同---完全正相关; 完全正相关; 反向变化----完全负相关。 反向变化----完全负相关。 ----完全负相关
图12-3 12相关系数示意图
相关与回归
9
X、Y 变化互不影响----零 变化互不影响-------零
相关(zero 相关(zero correlation)

生物统计学:第10章 多元线性回归分析及一元非线性回归分析

生物统计学:第10章 多元线性回归分析及一元非线性回归分析
的检验。在多元线性回归模拟中,随机误差是服从正 态分布的随即变量。因此,Y亦为独立正态随机变量。 在多元线性回归中,关于回归显著性检验的假设是:
H0 : 1 2 k 0 H A : 至少有一个i 0
拒绝H0意味着至少有一个自变量对因变量是有影 响的。
检验的程序与一元的情况基本相同,即用方差
胸围X2 186.0 186.0 193.0 193.0 172.0 188.0 187.0 175.0 175.0 185.0
体重Y 462.0 496.0 458.0 463.0 388.0 485.0 455.0 392.0 398.0 437.0
序号 体长X1 胸围X2 体重Y 11 138.0 172.0 378.0 12 142.5 192.0 446.0 13 141.5 180.0 396.0 14 149.0 183.0 426.0 15 154.2 193.0 506.0 16 152.0 187.0 457.0 17 158.0 190.0 506.0 18 146.8 189.0 455.0 19 147.3 183.0 478.0 20 151.3 191.0 454.0
R r Y•1,2,,k
yp yˆ p
,
p 1,2,, n
对复相关系数的显著性检验,相当于对整个回 归的方差分析。在做过方差分析之后,就不必再检 验复相关系数的显著性,也可以不做方差分析。
例10.1的RY·1,2为:
RY •1,2
24327 .8 0.9088 29457 .2
从附表(相关系数检验表)中查出,当独立
表示。同样在多元回归问题中,可以用复相关系数表 示。对于一个多元回归问题,Y与X1,X2,… ,Xk 的线性关系密切程度,可以用多元回归平方和与总平 方和的比来表示。因此复相关系数由下式给出,

统计学一元线性回归课后习题答案 ppt课件

统计学一元线性回归课后习题答案 ppt课件

2)=2.2281由于t=7.435453>t(12-2)=2.2281,
拒绝H0,产量与生产费用之间存在着显著的正线性
相关关系
统计学一元线性回归课后习题答案
11.2 学生在期末考试之前用于复习的时间(单位:小时)和考 试分数(单位:分)之间是否有关系?为研究这一问题,一位 研究者抽取了由8名学生构成的一个随机样本,取得的数据如 下:
81444968681133169213057950372ssr提出假设提出假设人均消费水平不人均人均消费水平不人均gdpgdp乊间的线性关系丌显著线性关系丌显著计算检验统计量计算检验统计量f确定显著性水平确定显著性水平005005并根据分子自由度并根据分子自由度11和分母自和分母自由度7722找出临界值找出临界值ff661661作出决策
人均GDP为5 000元时,人均消费水平95%的
置信区间为[1990.7491统5计,学一2元5线6性5回.4归6课3后9习9题]答案
解:根据前面的计算结果,已知n=7,t(7-2)=2.5706
n
se
yiy ˆi2
i 1
SSE305795.034361159.007
n2 n2
5
预测区间为
2 2 7 8 .1 0 7 8 2 .5 7 0 6 * 6 1 1 5 9 .0 0 71 + 1 5 0 0 0 4 5 1 5 .5 7 1 4 2
复习 时间X
考试 分数Y
20 16 34 23 27 32 18 22 64 61 84 70 88 92 72 77
统计学一元线性回归课后习题答案
要求:(1)绘制复习时间和考试分数的散点图,判断二者之 间的关系形态。
分数
100 90 80 70 60 50 40 30 20 10 0

回归因素试题解析及答案

回归因素试题解析及答案

回归因素试题解析及答案一、单项选择题1. 回归分析中,自变量X对因变量Y的影响程度是通过()来衡量的。

A. 相关系数B. 回归系数C. 标准差D. 方差答案:B2. 在简单线性回归模型中,回归系数β1表示()。

A. 自变量X每增加一个单位,因变量Y平均增加β1个单位B. 自变量X每增加一个单位,因变量Y平均减少β1个单位C. 自变量X每减少一个单位,因变量Y平均增加β1个单位D. 自变量X每减少一个单位,因变量Y平均减少β1个单位答案:A3. 多元线性回归模型中,如果某个自变量的系数不显著,可能的原因是()。

A. 该自变量与因变量无关B. 该自变量与其他自变量高度相关C. 样本量太小D. 所有上述情况都可能答案:D4. 回归分析中,残差平方和(SSE)是用来衡量()的。

A. 模型的拟合优度B. 模型的预测能力C. 模型的解释能力D. 模型的预测误差答案:D5. 回归分析中,决定系数(R²)的值范围是()。

A. 0到1之间B. 负无穷到正无穷之间C. 0到正无穷之间D. 负无穷到1之间答案:A二、多项选择题6. 在回归分析中,以下哪些因素可能导致自变量和因变量之间的相关性被高估()。

A. 样本选择偏差B. 测量误差C. 多重共线性D. 异方差性答案:A|B|C|D7. 多元回归分析中,以下哪些方法可以用来诊断多重共线性问题()。

A. 方差膨胀因子(VIF)B. 相关系数矩阵C. 标准化回归系数D. 残差图答案:A|B8. 以下哪些因素可能影响回归模型的稳定性()。

A. 异常值B. 杠杆值C. 模型设定误差D. 自变量的多重共线性答案:A|B|C|D9. 回归分析中,以下哪些指标可以用来衡量模型的拟合优度()。

A. R²B. 调整R²C. AICD. BIC答案:A|B|C|D10. 在回归分析中,以下哪些方法可以用来处理异方差性()。

A. 加权最小二乘法B. 稳健标准误C. 变换因变量D. 增加样本量答案:A|B|C三、判断题11. 回归系数的符号和大小完全决定了自变量对因变量的影响方向和强度。

第10章-简单线性回归分析思考与练习参考答案

第10章-简单线性回归分析思考与练习参考答案

第10章 简单线性回归分析思考与练习参考答案一、最佳选择题1.如果两样本的相关系数21r r =,样本量21n n =,那么( D )。

A. 回归系数21b b = B .回归系数12b b < C. 回归系数21b b > D .t 统计量11r b t t = E. 以上均错2.如果相关系数r =1,则一定有( C )。

A .总SS =残差SSB .残差SS =回归SSC .总SS =回归SSD .总SS >回归SS E.回归MS =残差MS3.记ρ为总体相关系数,r 为样本相关系数,b 为样本回归系数,下列( D )正确。

A .ρ=0时,r =0B .|r |>0时,b >0C .r >0时,b <0D .r <0时,b <0 E. |r |=1时,b =14.如果相关系数r =0,则一定有( D )。

A .简单线性回归的截距等于0B .简单线性回归的截距等于Y 或XC .简单线性回归的残差SS 等于0D .简单线性回归的残差SS 等于SS 总E .简单线性回归的总SS 等于05.用最小二乘法确定直线回归方程的含义是( B )。

A .各观测点距直线的纵向距离相等B .各观测点距直线的纵向距离平方和最小C .各观测点距直线的垂直距离相等D .各观测点距直线的垂直距离平方和最小E .各观测点距直线的纵向距离等于零二、思考题1.简述简单线性回归分析的基本步骤。

答:① 绘制散点图,考察是否有线性趋势及可疑的异常点;② 估计回归系数;③ 对总体回归系数或回归方程进行假设检验;④ 列出回归方程,绘制回归直线;⑤ 统计应用。

2.简述线性回归分析与线性相关的区别与联系。

答:区别:(1)资料要求上,进行直线回归分析的两变量,若X 为可精确测量和严格控制的变量,则对应于每个X 的Y 值要求服从正态分布;若X 、Y 都是随机变量,则要求X 、Y 服从双变量正态分布。

直线相关分析只适用于双变量正态分布资料。

回归分析练习题(有答案)

回归分析练习题(有答案)

回归分析的基本思想及其初步应用一、选择题 1. 某同学由x 与y 之间的一组数据求得两个变量间的线性回归方程为y bx a =+,已知:数据x 的平均值为2,数据y 的平均值为3,则 ( )A .回归直线必过点(2,3)B .回归直线一定不过点(2,3)C .点(2,3)在回归直线上方D .点(2,3)在回归直线下方2. 在一次试验中,测得(x,y)的四组值分别是A(1,2),B(2,3),C(3,4),D(4,5),则Y 与X 之间的回归直线方程为( )A .yx 1=+ B .y x 2=+ C .y 2x 1=+ D.y x 1=-3. 在对两个变量x ,y 进行线性回归分析时,有下列步骤:①对所求出的回归直线方程作出解释; ②收集数据(i x 、i y ),1,2i =,…,n ;③求线性回归方程; ④求未知参数; ⑤根据所搜集的数据绘制散点图如果根据可行性要求能够作出变量,x y 具有线性相关结论,则在下列操作中正确的是( ) A .①②⑤③④ B .③②④⑤① C .②④③①⑤ D .②⑤④③①4. 下列说法中正确的是( )A .任何两个变量都具有相关关系B .人的知识与其年龄具有相关关系C .散点图中的各点是分散的没有规律D .根据散点图求得的回归直线方程都是有意义的5. 给出下列结论:(1)在回归分析中,可用指数系数2R 的值判断模型的拟合效果,2R 越大,模型的拟合效果越好; (2)在回归分析中,可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好; (3)在回归分析中,可用相关系数r 的值判断模型的拟合效果,r 越小,模型的拟合效果越好; (4)在回归分析中,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高. 以上结论中,正确的有( )个.A .1B .2C .3D .4 6. 已知直线回归方程为2 1.5y x =-,则变量x 增加一个单位时()A.y 平均增加1.5个单位B.y 平均增加2个单位C.y 平均减少1.5个单位D.y 平均减少2个单位7. 下面的各图中,散点图与相关系数r 不符合的是( )8. 一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归直线方程为ˆ7.1973.93yx =+,据此可以预测这个孩子10岁时的身高,则正确的叙述是( )A .身高一定是145.83cmB .身高超过146.00cmC .身高低于145.00cmD .身高在145.83cm 左右9. 在画两个变量的散点图时,下面哪个叙述是正确的( ) (A)预报变量在x 轴上,解释变量在y 轴上 (B)解释变量在x 轴上,预报变量在y 轴上(C)可以选择两个变量中任意一个变量在x 轴上 (D)可以选择两个变量中任意一个变量在y 轴上10. 两个变量y 与x 的回归模型中,通常用2R 来刻画回归的效果,则正确的叙述是( )A. 2R 越小,残差平方和小B. 2R 越大,残差平方和大C. 2R 于残差平方和无关 D. 2R 越小,残差平方和大 11. 两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下 ,其中拟合效果最好的模型是( )A.模型1的相关指数2R 为B.模型2的相关指数2R 为C.模型3的相关指数2R 为 D.模型4的相关指数2R 为12. 在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是( ) A.总偏差平方和 B.残差平方和 C.回归平方和 D.相关指数R 213.工人月工资(元)依劳动生产率(千元)变化的回归直线方程为ˆ6090y x =+,下列判断正确的是( ) A.劳动生产率为1000元时,工资为50元 B.劳动生产率提高1000元时,工资提高150元 C.劳动生产率提高1000元时,工资提高90元 D.劳动生产率为1000元时,工资为90元14. 下列结论正确的是( )①函数关系是一种确定性关系;②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法;④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法. A.①② B.①②③ C.①②④ D.①②③④15. 已知回归直线的斜率的估计值为,样本点的中心为(4,5),则回归直线方程为( ) A. 1.234y x =+ B. 1.235y x =+ C. 1.230.08y x =+ D.0.08 1.23y x =+二、填空题16. 在比较两个模型的拟合效果时,甲、乙两个模型的相关指数2R 的值分别约为和,则拟合效果好的模型是 .17. 在回归分析中残差的计算公式为 .18. 线性回归模型y bx a e =++(a 和b 为模型的未知参数)中,e 称为 .19. 若一组观测值(x 1,y 1)(x 2,y 2)…(x n ,y n )之间满足y i =bx i +a+e i (i=1、2.…n)若e i 恒为0,则R 2为_____三、解答题20. 调查某市出租车使用年限x 和该年支出维修费用y (万元),得到数据如下:(2)由(1)中结论预测第10年所支出的维修费用.(121()()()ni i i ni i x x y y b x x a y bx==⎧-⋅-⎪⎪=⎨-⎪⎪=-⎪⎩∑∑)21. 以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线;150m时的销售价格.(3)据(2)的结果估计当房屋面积为2(4)求第2个点的残差。

应用回归分析第四版课后习题答案_全_何晓群_刘文卿

应用回归分析第四版课后习题答案_全_何晓群_刘文卿

实用回归分析第四版第一章回归分析概述1.3回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。

1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。

2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。

4.样本容量的个数要多于解释变量的个数,即n>p.第二章一元线性回归分析思考与练习参考答案2.1一元线性回归有哪些基本假定?答:假设1、解释变量X是确定性变量,Y是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(εi)=0 i=1,2, …,nVar (εi)=σ2i=1,2, …,nCov(εi,εj)=0 i≠j i,j= 1,2, …,n假设3、随机误差项ε与解释变量X之间不相关:Cov(X i, εi)=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布εi~N(0, σ2) i=1,2, …,n2.3 证明(2.27式),∑e i =0 ,∑e i X i=0 。

证明:∑∑+-=-=niiiniXYYYQ12121))ˆˆ(()ˆ(ββ其中:即: ∑e i =0 ,∑e i X i =02.5 证明0ˆβ是β0的无偏估计。

证明:)1[)ˆ()ˆ(1110∑∑==--=-=ni i xxi n i i Y L X X X Y n E X Y E E ββ )] )(1([])1([1011i i xx i n i i xx i ni X L X X X n E Y L X X X n E εββ++--=--=∑∑==1010)()1(])1([βεβεβ=--+=--+=∑∑==i xx i ni i xx i ni E L X X X nL X X X n E 2.6 证明 证明:)] ()1([])1([)ˆ(102110i i xxi ni ixx i ni X Var L X X X n Y L X X X n Var Var εβββ++--=--=∑∑== 222212]1[])(2)1[(σσxx xx i xx i ni L X n L X X X nL X X X n +=-+--=∑=2.7 证明平方和分解公式:SST=SSE+SSR证明:2.8 验证三种检验的关系,即验证: (1)21)2(r r n t --=;(2)2221ˆˆ)2/(1/t L n SSE SSR F xx ==-=σβ 01ˆˆˆˆi i i i iY X e Y Y ββ=+=-())1()1()ˆ(222122xx ni iL X n X XX nVar +=-+=∑=σσβ()()∑∑==-+-=-=n i ii i n i i Y Y Y Y Y Y SST 1212]ˆ()ˆ[()()()∑∑∑===-+--+-=ni ii ni i i i ni iY Y Y Y Y Y Y Y 12112)ˆˆ)(ˆ2ˆ()()SSESSR )Y ˆY Y Y ˆn1i 2ii n1i 2i +=-+-=∑∑==0100ˆˆQQββ∂∂==∂∂证明:(1)ˆt======(2)2222201111 1111ˆˆˆˆˆˆ()()(())(()) n n n ni i i i xxi i i iSSR y y x y y x x y x x Lβββββ=====-=+-=+--=-=∑∑∑∑2212ˆ/1ˆ/(2)xxLSSRF tSSE nβσ∴===-2.9 验证(2.63)式:2211σ)L)xx(n()e(Varxxii---=证明:0112222222ˆˆˆvar()var()var()var()2cov(,)ˆˆˆvar()var()2cov(,())()()11[]2[]()1[1]i i i i i i ii i i ii ixx xxixxe y y y y y yy x y y x xx x x xn L n Lx xn Lβββσσσσ=-=+-=++-+---=++-+-=--其中:222221111))(1()(1))(,()()1,())(ˆ,(),())(ˆ,(σσσββxxixxiniixxiiiniiiiiiiiLxxnLxxnyLxxyCovxxynyCovxxyCovyyCovxxyyCov-+=-+=--+=-+=-+∑∑==2.10 用第9题证明是σ2的无偏估计量证明:2221122112211ˆˆ()()()22()111var()[1]221(2)2n ni ii in niii i xxE E y y E en nx xen n n Lnnσσσσ=====-=---==----=-=-∑∑∑∑第三章2ˆ22-=∑neiσ1.一个回归方程的复相关系数R=0.99,样本决定系数R 2=0.9801,我们能判断这个回归方程就很理想吗? 答:不能断定这个回归方程理想。

一元线性回归模型(习题与解答)

一元线性回归模型(习题与解答)
年份 1990 1991 1992 1993 1994 1995 1996 CPI 130.7 136.2 140.3 144.5 148.2 152.4 159.6 S&P500 指数 334.59 376.18 415.74 451.41 460.33 541.64 670.83
资料来源:总统经济报告,1997,CPI 指数见表 B-60,第 380 页;S&P 指数见表 B-93,第 406 页。
$x +μ $ +β ⑶ yt = α t t $x +μ $+β $t = α ⑷ y t t $x $+β ⑸ yt = α t $x $+β $t = α ⑹ y t $x +μ $+β $t ⑺ yt = α t $x +μ $+β $t $t = α ⑻ y t t = 1,2, L , n t = 1,2, L , n t = 1,2, L , n t = 1,2, L , n t = 1,2, L , n t = 1,2, L , n
(二)基本证明与问答类题型
2
2-4.对于一元线性回归模型,试证明: (1) E ( y i ) = α + β xi (2) D( y i ) = σ
2
(3) Cov( y i , y j ) = 0
i≠ j
2-5.参数估计量的无偏性和有效性的含义是什么?从参数估计量的无偏性和有效性证明过 程说明, 为什么说满足基本假设的计量经济学模型的普通最小二乘参数估计量才具有无偏性 和有效性? 2-6.对于过原点回归模型 Yi =
3
或债券的收益率;rm 表示有价证券的收益率(用市场指数表示,如标准普尔 500 指数) ;t 表示时间。在投资分析中,β1 被称为债券的安全系数β,是用来度量市场的风险程度的, 即市场的发展对公司的财产有何影响。依据 1956~1976 年间 240 个月的数据,Fogler 和 Ganpathy 得到 IBM 股票的回归方程;市场指数是在芝加哥大学建立的市场有价证券指数:

第10章 线性相关与回归

第10章 线性相关与回归
r = rXY =
∑( X X)(Y Y) ∑( X X) ∑(Y Y)
2 i i
=
LXY LXX.LYY
2
相关系数r没有测量单位,其数值为-1≤≤+1 没有测量单位,其数值为-
相关系数的计算方法
计算时分别可用下面公式带入相关系数r 计算时分别可用下面公式带入相关系数r的 计算公式中
∑ (X ∑ (Y ∑ (X
四,进行线性相关分析的注意事项
⒊ 依据公式计算出的相关系数仅是样本相关系
数,它是总体相关系数的一个估计值,与总体 它是总体相关系数的一个估计值, 相关系数之间存在着抽样误差,要判断两个事 相关系数之间存在着抽样误差, 物之间有无相关及相关的密切程度, 物之间有无相关及相关的密切程度,必须作假 设检验. 设检验.
蛙蛙蛙 蛙蛙蛙
20
10
0 0 10 20 30
温度
2.计算回归系数与常数项 2.计算回归系数与常数项
在本例中:
∑ X = 132
∑ Y = 246
∑X ∑Y
2
= 2024
= 6610
X = 12
2
Y = 22.363
∑ XY = 3622
l b = XY = l XX

XY

( ∑ X )( ∑ Y ) (132)(246) 3622 670 n 11 = = = 1.523 2 2 (∑ X ) 132 440 2 2024 X 11 n
X2
4 16 36 64 100 144 196 256 324 400 484 2024
Y2
25 121 121 196 484 529 1024 841 1024 1156 1089 6610

统计学一元线性回归课后习题答案

统计学一元线性回归课后习题答案

分数
系列1
25
30
35
40
复习时间和考试分数存在正的线性相关关系
(2)计算相关系数,说明两个变量之间的关系强度。
r n x x
2
n xy x y
2

n y y
2
2
r
8(20*64 16*61 ... 22*77) (20 16 ... 22) *(64 61 ... 77)
ˆ 10 0.5x ˆ y
1)表示在没有自变量X的影响时其他各种因素对因变 量Y的影响为10 2)斜率的意义在于:自变量X变化对Y影响程度。回 归方程中,当x增加一个单位时,y将减少0.5个单位。 3)x=6时,代入方程,则,y=10-0.5 6=7
11.4 设SSR=36,SSE=4,n=18 要求:1)计算判定系数R^2并解释其意义
根据图表显示,二者可能存在正线性相关关系
(2)计算线性相关系数,说明两个变量之间的关系强度
运送距离x 运送距离x 1
运送时间y
运送时间y
0.94894
1
x与y的简单相关系数是0.9489,两 变量之间呈现高度正相关关系
(3)利用最小二乘法求出估计的回归方程,并解释回归系数的实际意义 ^ ^ ^ 最小二乘估计:y = 0+ 1 x
将表中数据代入公式得:

=0.003585 =0.118129
∴y=0.118129 + 0.003585x
y关于x的回归方程为y=0.118129 + 0.003585x表示运输距离每增加1公里, 运送时间平均增加 0.003585天。
• 11.6 下面是7个地区2000年的人均国内生产总值 (GDP)和人均消费水平的统计数据:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10章 简单线性回归分析
思考与练习参考答案
一、最佳选择题
1.如果两样本的相关系数21r r =,样本量21n n =,那么( D )。

A. 回归系数21b b = B .回归系数12b b < C. 回归系数21b b > D .t 统计量11r b t t = E. 以上均错
2.如果相关系数r =1,则一定有( C )。

A .总SS =残差SS
B .残差SS =回归
SS
C .总SS =回归SS
D .总SS >回归SS E.
回归MS =残差MS
3.记ρ为总体相关系数,r 为样本相关系数,b 为样本回归系数,下列( D )正确。

A .ρ=0时,r =0
B .|r |>0时,b >0
C .r >0时,b <0
D .r <0时,b <0 E. |r |=1时,b =1
4.如果相关系数r =0,则一定有( D )。

A .简单线性回归的截距等于0
B .简单线性回归的截距等于Y 或X
C .简单线性回归的残差SS 等于0
D .简单线性回归的残差SS 等于SS 总
E .简单线性回归的总SS 等于0
5.用最小二乘法确定直线回归方程的含义是( B )。

A .各观测点距直线的纵向距离相等
B .各观测点距直线的纵向距离平方和最小
C .各观测点距直线的垂直距离相等
D .各观测点距直线的垂直距离平方和最小
E .各观测点距直线的纵向距离等于零
二、思考题
1.简述简单线性回归分析的基本步骤。

答:① 绘制散点图,考察是否有线性趋势及可疑的异常点;② 估计回归系数;③ 对总体回归系数或回归方程进行假设检验;④ 列出回归方程,绘制回归直线;⑤ 统计应用。

2.简述线性回归分析与线性相关的区别与联系。

答:区别:
(1)资料要求上,进行直线回归分析的两变量,若X 为可精确测量和严格控制的变量,则对应于每个X 的Y 值要求服从正态分布;若X 、Y 都是随机变量,则要求X 、Y 服从双变量正态分布。

直线相关分析只适用于双变量正态分布资料。

(2)应用上,说明两变量线性依存的数量关系用回归(定量分析),说明两变量的相关关系用相关(定性分析)。

(3)两个系数的意义不同。

r 说明具有直线关系的两变量间相互关系的方向与密切程度,b 表示X 每变化一个单位所导致Y 的平均变化量。

(4)两个系数的取值范围不同:-1≤r ≤1,∞<<∞-b 。

(5)两个系数的单位不同:r 没有单位,b 有单位。

联系:
(1)对同一双变量资料,回归系数b 与相关系数r 的正负号一致。

b >0时,r >0,均表示两变量X 、Y 同向变化;b <0时,r <0,均表示两变量X 、Y 反向变化。

(2)回归系数b 与相关系数r 的假设检验等价,即对同一双变量资料,r b t t =。

由于相关系数r 的假设检验较回归系数b 的假设检验简单,故在实际应用中常以r 的假设检验代替b 的假设检验。

(3)用回归解释相关:由于决定系数2R =SS 回 /SS 总 ,当总平方和固定时,回归平方和的大小决定了相关的密切程度。

回归平方和越接近总平方和,则2R 越接近1,说明引入相关的效果越好。

例如当r =,n =100时,可按检验水准拒绝H 0,接受H 1,认为两变量有相关关系。

但2
R =2
=,表示回归平方和在总平方和中仅占4%,说明两变量间的相关关系实际意义
不大。

3. 决定系数与相关系数的意义相同吗如果不一样,两者关系如何
答:现将相关系数、决定系数与Y 的总变异的关系阐释如下:假如在一回归分析中,回归系数的变异数回归SS =9,而Y 的总变异数总SS =13,则
决定系数2R
=回归SS / 总SS =9/14= 9/1,相关系数R = 8
即将决定系数表示为一比值关系,当总SS = l 时,则回归SS = 9,我们可以采用直角三角形的“勾股定理”图示决定系数与相关系数的关系,如练习图10-1所示。

练习图10-1 相关系数、决定系数与总变异的关系
三、计算题
1. 以例10-1中空气一氧化氮(NO)为因变量,风速(X4)为自变量,采用统计软件完成如下分析:
(1)试用简单线性回归方程来描述空气中NO浓度与风速之间的关系。

(2)对回归方程和回归系数分别进行假设检验。

(3)绘制回归直线图。

(4)根据以上的计算结果,进一步求其总体回归系数的95%置信区间。

(5)风速为1.50 m/s时,分别计算个体Y值的95%容许区间和Y的总体均数的95%置信区间,并说明两者的意义。

解:运用SPSS进行处理,主要分析结果如下:
(1)简单线性回归方程、假设检验结果及总体回归系数的95%置信区间如下:Coefficients(a)
(3)回归直线如练习图10-2。

练习图10-2 回归直线图
2. 教材表10-8为本章例10-1回归分析的部分结果,依次为X 、Y 、Y 的估计值(Y ˆ)与残差(e ),请以相关分析考察四者之间的关系,以回归分析考察Y ˆ与X 、Y 与Y ˆ、Y 与Y
Y ˆ-、Y Y ˆ-与X 之间的关系,并予以解释。

教材表10-8 案例分析中回归分析的部分结果
X Y
Y
ˆ Y
Y ˆ- X Y Y
ˆ Y
Y ˆ- X Y
Y
ˆ Y
Y ˆ- 7 7 8 2 5 5 5 5 6 4 1 1 8 8 1 1 1 1 5 5 2 8 8 2 9 1 9 9 4 6 6 6 9 9 7 3 8 8 5 5 7 7
4
6
9
9
2
8
解:主要分析结果:
(1)四者之间的相关系数 Correlations
X
Y
Y hat
Y Y -hat
X 1 Y 1 Y hat
1
** Correlation is significant at the level (2-tailed).
(2)四个变量间的回归系数 因变量
自变量
截距 回归系数
t
P
Y
ˆ X
Y Y
ˆ Y
Y
Y ˆ- Y
Y ˆ- X
014 7
010 5
Y
ˆ与X 呈完全正相关关系,回归系数t 检验结果P =,表明Y ˆ的变异可由X 完全解释。

Y 与Y
ˆ的相关系数与Y 与X 的相关系数相同,表明正是由于X 的影响引起Y 的变异,Y 与Y
ˆ关系即体现了Y 与X 的变化关系。

Y 与Y
Y ˆ-体现了扣除X 的影响后,Y 与残差仍呈正相关关系。

Y
Y ˆ-与X 呈零相关关系,表明扣除了X 的影响,回归方程的残差与X 不再有相关或回归关系。

(张岩波 郝元涛)。

相关文档
最新文档