命题、定理、证明教案设计
人教版数学七年级下册5.3.2-1《命题、定理、证明1》教案2
人教版数学七年级下册5.3.2-1《命题、定理、证明1》教案2一. 教材分析《命题、定理、证明1》是人教版数学七年级下册第五章第三节的一部分,这部分内容是学生学习数学证明的基础。
通过这部分的学习,学生将理解命题与定理的概念,学会如何阅读和理解数学证明,并初步掌握证明的方法。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力,能够理解和运用基本的数学概念和运算。
但是,对于数学证明这一概念,学生可能还比较陌生,需要通过具体的例子和实践活动来逐渐理解和掌握。
三. 教学目标1.了解命题和定理的概念,能够区分它们。
2.学会阅读和理解数学证明,能够初步进行简单的证明。
3.培养学生的逻辑思维能力和数学表达能力。
四. 教学重难点1.命题与定理的概念。
2.数学证明的方法和步骤。
五. 教学方法采用问题驱动法和案例教学法,通过具体的例子和实践活动,引导学生理解和掌握命题、定理和证明的概念和方法。
六. 教学准备1.PPT课件。
2.相关例题和练习题。
七. 教学过程1.导入(5分钟)通过一个具体的数学问题,引出命题、定理和证明的概念。
2.呈现(15分钟)讲解命题和定理的概念,通过具体的例子让学生理解它们的区别。
然后讲解数学证明的方法和步骤,引导学生学会阅读和理解数学证明。
3.操练(15分钟)让学生分组讨论,尝试解决一些简单的证明问题,教师巡回指导。
4.巩固(5分钟)对学生的解答进行点评,指出其中的错误和不足,引导学生正确理解和掌握证明的方法。
5.拓展(5分钟)给出一些思考题,让学生进一步深入理解和掌握命题、定理和证明的知识。
6.小结(5分钟)对本节课的主要内容进行总结,强调命题、定理和证明的概念和方法。
7.家庭作业(5分钟)布置一些相关的练习题,让学生巩固所学知识。
8.板书(5分钟)将本节课的主要内容进行板书,方便学生复习和记忆。
教学过程每个环节所用的时间:导入5分钟,呈现15分钟,操练15分钟,巩固5分钟,拓展5分钟,小结5分钟,家庭作业5分钟,板书5分钟。
《命题+定理与证明》教案
《命题、定理与证明》教案第一章:命题的概念与分类1.1 命题的定义1.2 命题的分类1.2.1 真命题与假命题1.2.2 简单命题与复合命题1.2.3 陈述句与疑问句第二章:定理与证明2.1 定理的定义2.2 定理的性质2.3 证明的类型2.3.1 直接证明2.3.2 间接证明2.3.3 综合证明第三章:几何图形的性质与判定3.1 线段的性质3.2 直线的性质3.3 三角形的性质3.4 四边形的性质3.5 圆的性质第四章:三角形的判定与性质4.1 三角形的判定条件4.2 三角形的内角和定理4.3 三角形的边长关系4.4 三角形的判定与性质的综合应用第五章:平行线的判定与性质5.1 平行线的判定条件5.2 平行线的性质5.3 平行线的判定与性质的综合应用第六章:全等三角形的判定与性质6.1 全等三角形的定义6.2 全等三角形的判定条件6.3 全等三角形的性质6.4 全等三角形的判定与性质的综合应用第七章:相似三角形的判定与性质7.1 相似三角形的定义7.2 相似三角形的判定条件7.3 相似三角形的性质7.4 相似三角形的判定与性质的综合应用第八章:比例线段的性质与判定8.1 比例线段的定义8.2 比例线段的性质8.3 比例线段的判定条件8.4 比例线段的性质与判定的综合应用第九章:圆的性质与判定9.1 圆的定义与性质9.2 圆的判定条件9.3 圆的性质与判定的综合应用9.4 圆周角定理9.5 圆的内接四边形的性质第十章:数学归纳法与不等式的证明10.1 数学归纳法的定义与步骤10.2 数学归纳法的应用实例10.3 不等式的证明方法10.3.1 直接证明法10.3.2 综合法10.3.3 反证法10.4 不等式的证明与数学归纳法的综合应用重点和难点解析重点一:命题的分类与性质学生容易混淆真命题与假命题,以及简单命题与复合命题的区别。
需要重点讲解命题的分类,并通过实例帮助学生理解。
重点二:定理与证明的方法学生可能对证明的方法和类型不够熟悉,难以选择合适的证明方法。
《命题+定理与证明》教案
《命题、定理与证明》教案第一章:命题的概念与分类1.1 命题的定义引入命题的概念,让学生理解命题是由题设和结论组成的陈述句。
举例说明命题的正确性和错误性。
1.2 命题的分类分类介绍简单命题和复合命题,包括并列命题、蕴含命题和条件命题。
引导学生理解命题的逻辑关系,如且、或、非等。
第二章:定理与证明2.1 定理的定义与特点解释定理的概念,强调定理是经过证明的命题。
引导学生了解定理的重要性和应用价值。
2.2 证明的方法与要求介绍直接证明、反证法、归纳法等常见的证明方法。
强调证明的逻辑严密性和步骤完整性。
第三章:几何定理与证明3.1 几何定理的分类分类介绍几何定理,如三角形的性质定理、四边形的性质定理等。
强调几何定理在几何学中的基础性作用。
3.2 几何证明的基本步骤与技巧引导学生掌握几何证明的基本步骤,包括命题的引入、证明的假设、证明的逻辑推理和结论的得出。
介绍几何证明中常用的技巧,如相似三角形的性质、平行线的性质等。
第四章:代数定理与证明4.1 代数定理的分类分类介绍代数定理,如多项式的性质定理、方程的解的定理等。
强调代数定理在代数学中的基础性作用。
4.2 代数证明的基本步骤与技巧引导学生掌握代数证明的基本步骤,包括命题的引入、证明的假设、证明的逻辑推理和结论的得出。
介绍代数证明中常用的技巧,如因式分解、恒等式的性质等。
第五章:命题、定理与证明的应用5.1 命题、定理与证明在数学中的应用通过实际问题引入命题、定理与证明的应用,让学生理解其在数学问题解决中的重要性。
引导学生运用命题、定理与证明的方法解决实际问题。
5.2 命题、定理与证明在其他学科中的应用引导学生思考命题、定理与证明在其他学科中的应用,如物理学、化学等。
鼓励学生探索命题、定理与证明在生活中的应用。
第六章:逻辑推理与命题、定理6.1 逻辑推理的基本概念引入逻辑推理的概念,让学生理解逻辑推理是推理的一种,是思维的基本形式。
解释演绎推理、归纳推理和类比推理等逻辑推理的基本类型。
《命题+定理与证明》教案
《命题、定理与证明》教案一、教学目标:1. 理解命题的概念,能够判断一个句子是否是命题。
2. 掌握定理的定义,了解定理的重要性和应用。
3. 学会如何阅读和理解证明,能够运用证明的方法解决问题。
二、教学内容:1. 命题的概念和分类。
2. 定理的定义和特点。
3. 证明的方法和技巧。
三、教学重点与难点:1. 重点:命题的概念,定理的定义,证明的方法。
2. 难点:证明的构思和推理过程。
四、教学方法:1. 采用问题驱动法,引导学生主动探索和发现。
2. 通过案例分析和讨论,培养学生的逻辑思维和推理能力。
3. 利用多媒体辅助教学,提供丰富的学习资源。
五、教学准备:1. 教材或教学资源:《命题、定理与证明》相关章节。
2. 多媒体设备:投影仪、电脑等。
3. 教学工具:黑板、粉笔、PPT等。
教案示例:一、导入(5分钟)1. 引入命题的概念,让学生思考日常生活中遇到的命题。
2. 引导学生判断一个句子是否是命题。
二、命题的分类(10分钟)1. 讲解命题的分类,包括陈述句、疑问句、命令句等。
2. 举例说明不同类型的命题。
三、定理的定义(10分钟)1. 引入定理的概念,解释定理的定义和特点。
2. 给出几个经典的数学定理,如勾股定理、Pythagorean theorem等。
四、证明的方法(15分钟)1. 介绍直接证明、反证法、归纳法等常见的证明方法。
2. 通过示例讲解每种证明方法的步骤和应用。
五、课堂练习(10分钟)1. 给出一些练习题,让学生运用所学的知识进行证明。
2. 引导学生分组讨论,互相交流解题思路。
六、总结与反思(5分钟)1. 回顾本节课所学的内容,让学生总结命题、定理和证明的概念和方法。
2. 鼓励学生提出问题,解答学生的疑惑。
教学反思:本节课通过问题驱动法和案例分析,引导学生理解和掌握命题、定理和证明的概念和方法。
在教学过程中,注意关注学生的学习情况,及时给予指导和帮助。
通过课堂练习和讨论,培养学生的逻辑思维和推理能力。
命题定理与证明教案
命题定理与证明教案命题定理与证明教案一、教学目标1.了解命题定理的概念;2.掌握常见的命题定理;3.掌握命题证明的基本方法;4.培养学生的逻辑思维和推理能力。
二、教学重难点1.命题定理的概念和基本性质;2.命题证明的基本方法。
三、教学过程1.引入通过一个简单的例子引入命题定理的概念和证明方法。
假设有一个命题:“对于任意两个正整数a和b,如果a和b都是偶数,则它们的和也是偶数。
”请同学们讨论这个命题的真假以及如何证明它。
2.概念讲解命题定理的概念:命题定理是对于某个命题的推理,通过逻辑演绎规则和已知条件,推出某个命题的结论。
常见的命题定理:1)条件定理:如果一个命题中含有一个条件,那么可以通过假设这个条件为真,然后推导出其他结论。
2)直接证明法:通过运用已有的数学理论和定理来证明命题的真假。
3)间接证明法:假设命题的否定是真的,然后通过逻辑推理推出矛盾,从而证明命题的真实性。
4)数学归纳法:通过证明当命题对某个数成立时,也对其紧随其后的数成立,从而推导出命题对所有自然数成立。
3.案例分析通过几个经典的数学命题定理,引导学生理解命题的证明方法。
1)费马大定理:对于任何大于2的整数n,不存在正整数x、y和z使得xⁿ + yⁿ = zⁿ成立。
2)勾股定理:直角三角形的斜边的平方等于两腰长的平方和。
3)平均值不等式:对于任意n个正数,它们的算数平均数大于等于它们的几何平均数。
4.讲解方法通过具体的例子,教学命题的证明方法。
1)条件定理的证明方法:假设条件为真,然后推导出命题的结论。
2)直接证明法的证明方法:根据已经存在的数学理论和定理,逐步推导出命题的结论。
3)间接证明法的证明方法:假设命题的否定是真的,然后通过逻辑推理推导出矛盾,从而证明命题的真实性。
4)数学归纳法的证明方法:证明命题对某个数成立,然后证明当命题对某个数成立时,也对其紧随其后的数成立。
5.课堂练习设立一些练习题,让学生灵活运用所学的命题证明方法进行练习。
人教版初中数学七年级下册5.3.2《命题、定理、证明》教案
今天在教授《命题、定理、证明》这一章节时,我发现学生们对命题的概念接受得比较快,但是在理解定理和证明方法上遇到了一些困难。这让我意识到,虽然定理和证明在数学中非常重要,但它们的概念对学生来说可能比较抽象,需要更多的实际例证和练习来加深理解。
在讲解定理时,我尝试通过具体的例子来展示定理的形成和应用,但感觉效果并不如预期。我意识到,可能需要更多的生活实例或者图形辅助,让学生能够直观地感受到定理在解决问题时的作用。接下来,我会在准备教案时加入更多直观的教学素材,比如动画或者实物模型,以提高学生的兴趣和参与度。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解命题的基本概念。命题是可以判断真假的陈述句,它是数学逻辑推理的基础。定理则是经过严格证明的真命题,它在数学体系中扮演着重要的角色。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何通过已知的定理来证明一个新的命题,以及这个过程如何帮助我们解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调命题的结构和定理的应用这两个重点。对于难点部分,如证明方法的选择和使用,我会通过具体的例题和逐步解析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与命题、定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的证明练习。这个练习将演示如何运用所学的证明方法来证实一个命题的正确性。
人教版初中数学七年级下册5.3.2《命题、定理、证明》教案
一、教学内容
人教版初中数学七年级下册5.3.2《命题、定理、证明》教案:
1.理解命题的概念,能识别简单命题的结构。
2.学习定理的定义,了解定理在数学证明中的作用。
(完整版)命题、定理、证明教案设计
13.1.1命题、定理、证明(1)(一)教学目标1、了解命题的概念。
2、能区分命题的题设和结论。
3、经历判断命题真假的过程,对命题的真假有一个初步的了解。
(二)教学重难点重点:命题的概念和区分命题的题设与结论.难点:区分命题的题设和结论。
(三)学情分析:七年级学生对语句有一定的理解和判断能力。
(四)课前预习预习教材第20页至21页,并尝试完成课本随堂练习。
(五)教学过程一、情境引入教师与学生们打招呼,说出以下四句话:(1)七(3)的同学们你们好吗?(2)大家今天都能认真听课吗?(3)七(3)班的所有学生都是好学生。
(4)有时间我请大家吃饭。
问题1:下列四句话中,哪一句是对一件事情作出判断的语句?(1)七(3)的同学们你们好吗? ( )(2)大家今天都能认真听课吗?()(3)七(3)班的所有学生都是好学生。
()(4)有时间我请大家吃饭。
( )问题2 下列语句在表述形式上,哪些是对事情作了判断?(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行( )(2)画一个角等于已知角 ( )(3)对顶角相等;()(4)若a2=b2,则a=b。
( )(5)两条平行线被第三条直线所截,同旁内角互补;( )(6)若a2=4,求a的值; ( )二、新知探究,合作交流教师点评:象上题中的(1)、(3)、(4)、(5)这样判断一件事情的语句叫做命题.注意:1、只要对一件事情作出了判断,不管正确与否,都是命题。
如:相等的角是对顶角.2、如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.如:画线段AB=CD.问题3 判断下列语句是不是命题?(1)两点之间,线段最短;()(2)请画出两条互相平行的直线;()(3)过直线外一点作已知直线的垂线; ( )(4)如果两个角的和是90º,那么这两个角互余.()提问几位学生,从而检查学生们是否真正理解命题的概念。
问题4 你能举出一些命题的例子吗?(教师这时让几名学生发言)问题5 请同学们观察一组命题,并思考命题是由几部分组成的?(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两直线平行,同位角相等;(3)如果两个角的和是90º,那么这两个角互余;教师点评:命题是由题设(或条件)和结论两部分组成。
命题 定理与证明教案
命题定理与证明教案教案标题:命题、定理与证明教学目标:1. 理解命题、定理及其证明的概念和意义;2. 掌握常见的命题和定理,并能够正确运用它们;3. 培养学生的逻辑思维和证明能力;4. 培养学生的合作学习和批判性思维。
教学内容:1. 命题的定义和特点;2. 定理的定义和特点;3. 证明的基本方法和步骤;4. 常见的数学命题和定理。
教学步骤:一、导入(5分钟)1. 引入命题的概念,通过简单的例子让学生理解命题的定义和特点。
二、讲解命题和定理(15分钟)1. 介绍定理的概念和特点,并与命题进行比较,强调定理的重要性和应用价值。
2. 通过实际生活中的例子,引导学生理解定理的意义和作用。
三、讲解证明的基本方法和步骤(15分钟)1. 介绍证明的基本方法,如直接证明、间接证明、反证法等,并解释其应用场景。
2. 分步骤讲解证明的基本步骤,如假设、推理、总结等。
四、引导学生进行命题和定理的证明(20分钟)1. 给出一个简单的命题或定理,引导学生进行证明,鼓励学生积极参与讨论和思考。
2. 引导学生运用已学的证明方法和步骤,逐步完成证明过程。
五、总结与拓展(5分钟)1. 总结本节课所学的内容,强调命题、定理和证明的重要性。
2. 提出一些拓展问题,激发学生的思维和求解问题的能力。
教学辅助手段:1. 教学投影仪和幻灯片,用于展示相关概念和例子;2. 板书,用于记录学生的思路和解题过程。
教学评估:1. 课堂参与度评估:观察学生的积极性和主动性;2. 个人作业评估:布置相关命题和定理的证明作业,评估学生的独立思考和解题能力;3. 小组合作评估:组织学生进行小组合作,解决复杂的命题和定理证明问题,评估学生的团队合作和批判性思维能力。
教学建议:1. 鼓励学生多思考、多讨论,培养他们的逻辑思维能力;2. 引导学生运用已学的证明方法和步骤进行证明,提醒他们注意证明的逻辑严谨性;3. 鼓励学生多参与合作学习,培养他们的团队合作和批判性思维能力;4. 提供更多的练习题和拓展问题,帮助学生巩固所学知识和拓展思维能力。
人教版数学七年级下册5.3.2《命题、定理、证明》教学设计4
人教版数学七年级下册5.3.2《命题、定理、证明》教学设计4一. 教材分析《人教版数学七年级下册5.3.2命题、定理、证明》这一节主要介绍命题、定理和证明的概念。
通过本节课的学习,学生能够理解命题、定理和证明的定义,掌握判断命题真假的方法,了解证明的两种方法——演绎法和归纳法,并能够运用这些知识解决实际问题。
二. 学情分析七年级的学生已经掌握了基本的数学运算能力和逻辑思维能力,但对命题、定理和证明的概念接触较少。
因此,在教学过程中,需要引导学生从实际问题中抽象出命题、定理和证明的概念,并通过实例让学生理解和掌握这些概念。
三. 教学目标1.了解命题、定理和证明的概念。
2.掌握判断命题真假的方法。
3.掌握证明的两种方法——演绎法和归纳法。
4.能够运用命题、定理和证明的知识解决实际问题。
四. 教学重难点1.重点:命题、定理和证明的概念,判断命题真假的方法,证明的两种方法。
2.难点:证明的两种方法——演绎法和归纳法的理解和运用。
五. 教学方法1.情境教学法:通过实际问题引入命题、定理和证明的概念。
2.实例教学法:通过具体的实例让学生理解和掌握命题、定理和证明的概念。
3.小组讨论法:引导学生分组讨论,培养学生的合作能力和解决问题的能力。
4.教学反馈法:通过提问、练习等方式及时了解学生的学习情况,调整教学进度和方法。
六. 教学准备1.教学PPT:制作含有命题、定理和证明的实例的PPT。
2.练习题:准备一些判断命题真假和运用证明方法的练习题。
3.教学素材:准备一些实际问题作为教学素材。
七. 教学过程1.导入(5分钟)通过一个实际问题引入命题、定理和证明的概念。
例如:在三角形中,如果一个角是直角,那么它的两条边分别是斜边。
这个命题是如何判断真假的?如何用数学语言来表达这个命题?2.呈现(10分钟)介绍命题、定理和证明的定义。
命题是判断某个陈述真假的语句,定理是被证明为真的命题,证明是用逻辑推理的方法来证明定理的过程。
七年级命题定理证明教学设计5篇
七年级命题定理证明教学设计5篇定理是经过受逻辑限制的证明为真的陈述.一般来说,在数学中,只有重要或有趣的陈述才叫定理.证明定理是数学的中心活动.一个定理陈述一个给定类的所有(全称)元素一种不变的关系,这些元素可以是无穷多,它们在任何时刻都无区别地成立,而没有一个例外.下面是小编为大家整理的七年级命题定理证明教学设计5篇,希望大家能有所收获!七年级命题定理证明教学设计1学习目标:(1)了解命题的概念以及命题的构成(如果……那么……的形式).(2)知道什么是真命题和假命题.(3)理解什么是定理和证明.(4)知道如何判断一个命题的真假.学习重点:对命题结构的认识.理解证明要步步有据一.自学基础:(看书20页---_页)1.对一件事情___________________的语句,叫做命题.2.命题由______和________组成.__________是已知事项,__________是由已知事项推出的事项.3.命题常可以写成__________________的形式.〝_______〞后接的部分是题设,〝________〞后面接的部分是结论.4. _________________叫真命题, _______________叫假命题.二.探究新知问题1 什么叫做命题?像这样判断一件事情的语句,叫做命题(proposition). 问题2思考命题是由几部分组成的?命题是由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.问题3 下列语句是命题吗?如果是,请将它们改写成〝如果??,那么??〞的形式.问题4 什么样的命题叫做真命题?什么样的命题叫做假命题? 真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题.假命题:如果题设成立时,不能保证结论一定成立,这样的命题叫做假命题.问题请同学们举例说出一些真命题和假命题. 问题5公理定理有些命题的正确性是人们在长期实践中总结出来的, 这样的真命题叫做公理.有些命题的正确性是经过推理证实的,这样的真命题叫做定理. 问题6证明三.课堂小结四.当堂检测五.布置作业七年级命题定理证明教学设计2重点:命题.定理.证明的概念难点:命题.定理.证明的概念一.板书课题 ,揭示目标同学们,到现在为止,我们已经学习了一些简单的性质.判定.定义,这些命题都是真命题,那什么是命题呢?我们今天就来学习5.3.2命题.定理.本节课的学习目标是:(请看投影)二.学习目标1.理解命题.定理.证明的概念.2.会判断一个命题是真命题还是假命题.三.指导自学认真看课本(P_-_练习前).1结合例子理解命题的定义,会把一个命题写成〝如果??那么??〞的形式; ○2理解真命题.假命题的概念并会判断一个命题的真假.○如有疑问,可以小声问同学或举手问老师. 6分钟后,比谁能正确地做出检测题.三.先学1.教师巡视,督促学生认真紧张地自学2.学生练习:检测题 P_ 练习补充题:1.下列是命题的是() 1对顶角相等. ○2答案A是正确的.③若a=b,则a+c=b+c.④画射○线BC.⑤这条边长等于多少?2.下列命题是真命题的是() 1同角的补角相等. ○2相等的角是对顶角. ○③互补的角是邻补角.④若∠1=∠2,∠2=∠3,则∠1=∠3 分别让两位同学上堂板演,其余同学在位上做.四.更正.讨论.归纳.总结1.自由更正请同学们认真看堂上板演的内容,如果有错误或不同解法的请上来更正或补充.2.讨论.归纳评讲2(1):命题假设的对吗?为什么?怎样找一个命题的假设?引导学生回答:〝如果〞后接的部分是假设(师板书)(2)命题的题设正确吗?为什么?他没有〝如果??那么??〞的形式该怎么办呢?如何把命题写成〝如果??那么??〞的形式,引导学生回答:题设——已知事项;结论——是由已知事项推出来的事项.评补充题:1. 答案正确吗?为什么?引导学生回答:命题的条件是什么? (1)命题必须是一个完整的句子.(2)对某件事做出了判断.2. 〝同位角相等〝是真命题吗?为什么?引导学生画图说明:五.课堂作业 (见测试题)六.教学反思七年级命题定理证明教学设计3教学内容:命题教学目标:了解命题.定义的含义;对命题的概念有正确的理解.会区分命题的题设和结论.知道判断一个命题是假命题的方法.教学重点:找出命题的题设和结论. 教学难点:命题概念的理解. 教学过程:一.复习引入:我们已经学过一些图形的特性,如〝三角形的内角和等于_0°〞.〝等腰三角形的两个底角相等〞等.根据我们学过的图形特性,试判断下列句子是否正确. (1)如果两个角是对顶角,那么这两个角相等; (2) 两直线平行,同位角相等; (3) 同旁内角相等,两直线平行; (4) 平行四边形的对角线相等; (5)直角都相等.二.探究新知(一)命题.真命题和假命题学生回答后给出答案:句子(1).(2).(5)是正确的,句子(3).(4)是错误的.引出概念:可以判断它是正确的或是错误的句子叫做命题(proposition).正确的命题称为真命题,错误的命题称为假命题.在数学中,许多命题是由题设(或已知条件).结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项.这样的命题常可写成〝如果??,那么??〞的形式.用〝如果〞开始的部分就是题设,而用〝那么〞开始的部分就是结论.例如,在命题(1)中,〝两个角是对顶角〞是题设,〝这两个角相等〞是结论.有的命题的题设与结论不十分明显,将它写成〝如果??,那么??〞的形式,也可分清它的题设与结论.例如,命题(5)可写成〝如果两个角是直角,那么这两个角相等〞.(二)例题选讲例1:把命题〝三个角都相等的三角形是等边三角形〞改写成〝如果??,那么??〞的形式,并分别指出命题的题设与结论.解:这个命题可以写成〝如果一个三角形的三个角都相等,那么这个三角形是等边三角形〞.这个命题的题设是〝一个三角形的三个角都相等〞,结论是〝这个三角形是等边三角形〞.例2:指出下列命题的题设和结论,并把它改写成〝如果??那么??〞的形式,它们是真命题还是假命题?(1)对顶角相等;(2)如果a b,b c,那么a=c;(3)两角和其中一个角的对边对应相等的两个三角形全等; (4)菱形的四条边都相等; (5)全等三角形的面积相等.(三)假命题的证明要判断一个命题是真命题,可以用逻辑推理的方法加以论证;而要判断一个命题是假命题,只要举出一个例子,说明该命题不成立,即只要举出一个符合该命题题设而不符合该命题结论的例子就可以了.在数学中,这种方法称为〝举反例〞.例如,要证明命题〝一个锐角与一个钝角的和等于一个平角〞是假命题,只需举出一个反例〝某一锐角与某一钝角的和不是_0°〞即可.三.课堂练习P65第1.2题四.总结1.命题.真命题和假命题的含义;2.区分命题题设.结论的方法;3.判断假命题的方法.五.作业P67 习题 _.1第1.2题教学后记:七年级命题定理证明教学设计4教学目标:1.了解命题.公理.定理的含义;理解证明的必要性.2.结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识.3.初步感受公理化方法对数学发展和人类文明的价值.教学重点:知道什么是公理,什么是定理. 教学难点:理解证明的必要性. 教学过程:一.复习引入:?上节课我们研究了要证明一个命题是假命题,只要举出一个符合该命题题设而不符合该命题结论的反例就可以了,这节课,我们将研究怎样证明一个命题是真命题.二.探究新知(一)公理数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理(a_ioms).我们已经知道下列命题是真命题:一条直线截两条平行直线所得的同位角相等;两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行; 全等三角形的对应边.对应角分别相等. 我们将这些真命题均作为公理.(二)定理判断下列命题是否正确: (1) 当n=1时,(n2-5n+1)2=1;当n=2时,(n2-5n+1)2=1_当n=3时,(n2-5n+1)=1是否是对于任意的正整数n,(n2-5n+1) 都等于1呢?(n=5时,(n2-5n+1)2=25)(2)如果a=b,那么a2=b2.于是猜想:当a b时a2 b2这个命题正确吗?数学中有些命题可以从公理或其他真命题出发,用逻辑推理的方法证明它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理(theorem).(三)证明过程例如,有了〝三角形的内角和等于_0°〞这条定理后,我们还可以证明刻画直角三角形的两个锐角之间的数量关系的命题:直角三角形的两个锐角互余.已知: 如图_.1.1,在Rt△ABC中,∠C=90°. 求证: ∠A+∠B=90°. 证明∵∠A+∠B+∠C=_0°(三角形的内角和等于_0°),又∠C=90°,∴ ∠A+∠B=90°.图_.1.1 此命题可以用来作为判断其他命题真假的依据,因此我们把它也作为定理.定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.三.课堂练习四.总结:公理.定理的含义五.作业: 教学后记:七年级命题定理证明教学设计5教学目标1.知识与技能:(1)了解命题的含义;(2)对命题的概念有正确的理解(3)会区分命题的条件和结论,并会对命题进行改写(4)知道判断一个命题是假命题的方法(5)了解公理,定理的含义2.过程与方法: 结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识.3.情感.态度与价值观: 初步感受公理化方法对数学发展和人类文明的价值. 重点与难点1.重点: 找出命题的条件(题设)和结论,会进行改写2.难点: 命题概念的理解. 教学过程:一.复习引入我们已经学过一些图形的特性,如〝三角形的内角和等于_0度〞,〝等腰三角形两底角相等〞等.根据我们已学过的图形特性,试判断下列句子是否正确.1.如果两个角是对顶角,那么这两个角相等;2.两直线平行,同位角相等;3.同旁内角相等,两直线平行;4.平行四边形的对角线相等;5.直角都相等.二,自主学习,探究新知(一)命题.真命题与假命题学生思考回答后,教师给出答案:根据已有的知识可以判断出句子1.2.5是正确的,句子3.4是错误的.像这样可以判断出它是正确的还是错误的句子叫做命题,正确的命题称为真命题,错误的命题称为假命题.强调:命题是一个表判断的句子,是一个陈述句.命题有真假之分.(二)命题的组成和改写在数学中,许多命题是由题设(或已知条件).结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项,这样的命题常可写成〝如果.......,那么.......〞的形式.用〝如果〞开始的部分就是题设,而用〝那么〞开始的部分就是结论.例如,在命题1中,〝两个角是对顶角〞是题设,〝这两个角相等〞就是结论.有的命题的题设与结论不十分明显,可以将它写成〝如果.........,那么...........〞的形式,就可以分清它的题设和结论了.例如,命题5可写成〝如果两个角是直角,那么这两个角相等.〞实例探究(小组间交流合作,解决问题)问题1(例1):把命题〝三个角都相等的三角形是等边三角形〞改写成〝如果.......,那么.......〞的形式,并分别指出命题的题设和结论.学生回答后,教师总结:这个命题可以写成〝如果一个三角形的三个角都相等,那么这个三角形是等边三角形〞.这个命题的题设是〝一个三角形的三个角都相等〞,结论是〝这个三角形是等边三角形〞.问题2:把下列命题写成〝如果.....,那么......〞的形式,并说出它们的条件和结论,再判断它是真命题,还是假命题. (1)对顶角相等;(2)如果a b,b c, 那么a=c;设计者:重庆西藏中学聂志(3)菱形的四条边都相等; (4)全等三角形的面积相等.学生小组交流后回答,学生回答后,师生互评(1)条件:如果两个角是对顶角;结论:那么这两个角相等,这是真命题. (2)条件:如果a b,bc;结论:那么a=c;这是假命题.(3)条件:如果一个四边形是菱形;结论:那么这个四边形的四条边相等.这是真命题.(4)条件:如果两个三角形全等;结论:那么它们的面积相等,这是真命题.(三)假命题的证明教师讲解:要判断一个命题是真命题,可以用逻辑推理的方法加以论证;而要判断一个命题是假命题,只要举出一个例子,说明该命题不成立,即只要举出一个符合该命题题设而不符合该命题结论的例子就可以了,在数学中,这种方法称为〝举反例〞.例如,要证明命题〝一个锐角与一个钝角的和等于一个平角〞是假命题,只要举出一个反例:60度角是锐角,100度角是钝角,但它们的和不是_0度即可.(四)公理数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.我们已经知道下列命题是真命题:一条直线截两条平行直线所得的同位角相等;两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行; 全等三角形的对应边.对应角相等. 在本书中我们将这些真命题均作为公理.(五)定理教师引导学生通过举反例来说明下面两题中归纳出的结论是错误的.从而说明证明的重要性.1.教师讲解:请大家看下面的例子: 当n=1时,(n2-5n+5)2=1; 当n=2时,(n2-5n+5)2=1;当n=3时,(n2-5n+5)2=1.我们能不能就此下这样的结论:对于任意的正整数(n2-5n+5)2的值都是1呢?实际上我们的猜测是错误的,因为当n=5时,(n2-5n+5)2=25.2.教师再提出一个问题让学生回答:如果a=b,那么a2=b2.由此我们猜想:当a b 时,a2 b2.这个命题是真命题吗?[答案:不正确,因为3 -5,但3 2 (-5)2]教师总结:在前面的学习过程中,我们用观察.验证.归纳.类比等方法,发现了很多几何图形的性质.但由前面两题我们又知道,这些方法得到的结论有时不具有一般性.也就是说,由这些方法得到的命题可能是真命题,也可能是假命题.教师讲解:数学中有些命题可以从公理出发用逻辑推理的方法证明它们是正确的,并且可以进一步作为推断其他命题真假的依据,这样的真命题叫做定理.例如,有了〝三角形的内角和等于_0°〞这条定理后,我们还可以证明刻画直角三角形的两个锐角之间的数量关系的命题:直角三角形的两个锐角互余.教师板书证明过程.教师讲解:此命题可以用来作为判断其他命题真假的依据,因此我们把它也作为定理.定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.设计者:重庆西藏中学聂志强调:公理不需要证明,定理需要证明,定理由公理推出,它们都是真命题,都可以作为其他命题证明的依据三,展示提升,巩固新知(学生先做,师生互评)1. 课本P65练习第1.2题.2.课本P66练习第1.2题.四.归纳小结(学生总结,补充)1.什么叫命题?什么叫真命题?什么叫假命题?2.命题都可以写成〝如果.....,那么.......〞的形式.3.要判断一个命题是假命题,只要举出一个反例就行了.4. 在长期实践中总结出来为真命题的命题叫做公理.5. 用逻辑推理的方法证明它们是正确的命题叫做定理.6.本节课你还有哪些疑惑?五.检测反馈小组间交流本节课还存在的问题,相互解决,老师巡视点拨六.作业布置训练案P_5七年级命题定理证明教学设计。
人教版七年级数学下册5.3.2命题、定理、证明教学设计
a.证明:三角形的内角和等于180度。
b.证明:对角线相等的平行四边形是矩形。
c.证明:圆的任意直径垂直于圆的切线。
3.结合生活实际,自行设计一个包含命题、定理和证明的数学问题,并用所学的知识进行解答。要求问题具有一定的挑战性,能够体现学生对几何知识的综合运用。
4.强调证明过程中需要注意的问题,如逻辑严密、步骤清晰等。
(三)学生小组讨论
1.将学生分成若干小组,每组分配一个几何问题,要求学生运用所学的定理和证明方法解决问题。
2.学生在小组内展开讨论,共同探讨解决问题的方法,教师巡回指导,给予提示和帮助。
3.各小组汇报讨论成果,分享解题过程和经验,其他小组进行评价和补充。
(三)情感态度与价值观
1.培养学生严谨、细致的学习态度,使学生认识到数学的严密性和逻辑性。
2.增强学生对数学美的感知,激发学生对数学学科的兴趣和热爱。
3.培养学生勇于探索、善于思考的品质,使学生体验到数学探究的乐趣。
4.引导学生将所学知识应用于实际生活,认识到数学在现实生活中的重要性,增强学生的社会责任感。
5.创设轻松愉快的学习氛围,鼓励学生提问、表达,激发学生的学习兴趣和积极性。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握命题的概念,能够正确判断命题的真假。
2.熟悉基本的几何定理,并能运用定理解决实际问题。
3.学会运用逻辑推理进行证明,提高学生的逻辑思维能力。
4.能够将所学知识综合运用,解决复杂的几何问题。
(二)教学设想
1.创设情境,引入命题概念
-利用生活实例,如“两点之间线段最短”,引导学生理解命题的概念,并学会判断命题的真假。
人教版七年级数学(下)—教案:5.3.2命题、定理、证明优秀教学案例
4.针对学生的学习情况,调整教学策略,为下一节课的教学做好准备。
五、案例亮点
1.情境创设:本节课通过生活实例和多媒体展示,有效地激发了学生的学习兴趣,使他们能够主动参与到课堂学习中。情境创设不仅增强了学生对数学知识的理解,还提高了他们的学习积极性。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和好奇心,激发他们学习数学的内在动力。
2.培养学生的自信心和自尊心,让他们感受到自己在数学学习中的进步和成就。
3.引导学生认识到数学的严谨性和逻辑性,培养他们的思维品质和道德素养。
4.通过对命题、定理和证明的学习,使学生感受到数学的美丽和力量,提高他们对数学价值观的认识。
2.问题导向:教师在教学中提出了具有挑战性和引导性的问题,引导学生进行深入思考和探索。问题导向的教学策略使得学生在解决问题的过程中,能够不断提高自己的数学思维水平和解决问题的能力。
3.小组合作:教师组织学生进行小组讨论和合作,培养了他们的团队协作能力和沟通能力。小组合作使得每个学生都能在课堂上发挥自己的特长,提高了他们的自主学习能力和合作意识。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,培养他们的自我评价和自我调节能力。
2.组织学生进行互评和小组评价,让他们学会倾听他人的意见,提高他们的批判性思维。
3.教师对学生的学习成果进行肯定和鼓励,增强他们的自信心和自尊心。
4.结合学生的学习情况,调整教学策略,为下一节课的教学做好准备。
四、教学内容与过程
(二)问题导向
1.提出具有挑战性和引导性的问题,激发学生的思维活力,培养他们的解决问题的能力。
2.引导学生通过讨论和思考,逐步解决问题,让他们体验到解决问题的过程和成就感。
人教版七年级数学下册教案 5-3-2 命题、定理、证明
5.3.2 命题、定理、证明一、教学目标【知识与技能】1.理解命题,定理及证明的概念,会区分命题的题设和结论.2.会判断真假命题,知道证明的意义及必要性,了解反例的作用.3.理解证明要步步有据,培养学生养成科学严谨的学习态度. 【过程与方法】经历判断命题真假的过程,对命题的真假有一个初步的了解. 【情感态度与价值观】初步培养学生不同几何语言相互转化的能力.二、课型新授课三、课时1课时四、教学重难点【教学重点】命题的概念和区分命题的题设与结论.【教学难点】区分命题的题设和结论.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)让学生阅读课件中的两个例子,讨论句子含义。
(二)探索新知1.出示课件4-5,探究命题的概念教师出示问题:完成下列问题:请同学读出下列语句:(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边都加同一个数,结果仍是等式.这些句子有何特点?学生答:都对事情做出了判定.教师问:这样的句子叫做命题.什么叫做命题?学生答:像这样判断一件事情的语句,叫做命题.总结点拨:(出示课件5)教师强调:1.只要对一件事情作出了判断,不管正确与否,都是命题.如:相等的角是对顶角.2.如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.如:画线段AB=CD.考点1:命题的识别判断下列四个语句中,哪个是命题,哪个不是命题?并说明理由:(1)对顶角相等吗?(2)画一条线段AB=2cm;(3)两条直线平行,同位角相等;(4)相等的两个角,一定是对顶角.(出示课件6)师生共同讨论解答如下:解:(3)(4)是命题,(1)(2)不是命题.理由如下:(1)是问句,故不是命题;(2)是做一件事情,也不是命题.总结点拨:①命题必须是一个完整的句子,而且必须做出肯定或否定的判断.疑问句、感叹句、作图过程的叙述都不是命题;②命题常见的关键词有“是”“不是”“相等”“不相等”“如果……那么……”.出示课件7,学生自主练习后口答,教师订正.2.出示课件8-10,命题的构成教师问:观察下列命题,你能发现这些命题有什么共同的结构特征?与同伴交流.(1)如果两个三角形的三条边相等,那么这两个三角形的周长相等;(2)如果两个数的绝对值相等,那么这两个数也相等;(3)如果一个数的平方等于9,那么这个数是3.学生答:都是“如果……那么……”的形式.教师问:命题一般都可以写成“如果……那么……”的形式.1.“如果”后接的部分是题设,2.“那么”后接的部分是结论.如命题:熊猫没有翅膀.改写为:“如果……那么……”的形式.学生答:如果这个动物是熊猫,那么它就没有翅膀.师生一起总结:添加“如果”“那么”后,命题的意义不能改变,改写的句子要完整,语句要通顺,使命题的题设和结论更明朗,易于分辨,改写过程中,要适当增加词语,切不可生搬硬套.总结点拨:(出示课件10)命题的组成:题设——已知事项命题结论——由已知事项推出的事项两直线平行,同位角相等题设(条件)考点2:命题表述形式的变换分别把下列命题写成“如果……那么……”的形式.(1)两点确定一条直线;(2)等角的补角相等;(3)内错角相等. (出示课件11)学生独立思考后,师生共同分析解答.教师依次展示学生解答过程:学生1解:(1)如果有两个定点,那么过这两点有且只有一条直线;学生2解:(2)如果两个角分别是两个等角的补角,那么这两个角相等;学生3解:(3)如果两个角是内错角,那么这两个角相等.总结点拨:把命题写成“如果……那么……”的形式时,应添加适当的词语,使语句通顺.出示课件12,学生自主练习后口答,教师订正.3.出示课件13,探究真假命题的概念.教师问:有些命题如果题设成立,那么结论一定成立;而有些命题题设成立时,结论不一定成立. 如命题:“如果一个数能被4整除,那么它也能被2整除”是条件也成立,结论也成立吗?学生答:如命题:“如果一个数能被4整除,那么它也能被2整除”是条件也成立,结论也成立.教师问:上面的命题:条件也成立,结论也成立.这样的命题是正确命题. 如命题:“如果一个数能被4整除,那么它也能被2整除”是一个正确的命题吗?学生答:是一个正确的命题.教师问:有些命题题设成立时,结论不一定成立.这样的命题是错误的命题.如命题:“如果两个角互补,那么它们是邻补角”就是一个怎样的命题呢?学生答:“如果两个角互补,那么它们是邻补角”就是一个错误的命题.教师问:正确的命题叫真命题,错误的命题叫假命题.则命题“内错角相等,两直线平行”是真命题还是假命题?学生答:是真命题.教师问:怎样确定定一个命题真假呢?师生一起解答:确定一个命题真假的方法:利用已有的知识,通过观察、验证、推理、举反例等方法.考点3:真假命题的识别下列命题哪些命题是正确的,哪些命题是错误的?(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.学生独立思考后,师生共同解答.解:真命题有(2)、(3)、(5);假命题有(1)、(4).总结点拨:判断一个命题是真命题还是假命题,就是判断一个命题是否正确,即由条件能否得出结论.如果命题正确,就是真命题;如果命题不正确,就是假命题.出示课件15,学生自主练习后口答,教师订正.4.出示课件16-19,探究证明和反证法(举反例)教师出示问题:一天早上,张老汉来到公安局里告状说:王五刚刚在他地里偷了一袋子苹果.公安局长立即派干警将王五传唤到公安局审讯:公安局长问张老汉:“你怎知是王五偷了你的苹果?”“因为早上我发现王五从苹果园那边过来,把一袋东西背回家,还发现我果园的苹果被人偷了,我知道王五家没有苹果树.所以我家苹果肯定是王五偷的.”张老汉想证明什么?他是怎么证明的?学生答:张老汉想证明偷了他的苹果,王五从他家的苹果园那边经过,把一袋东西背回家.教师问:根据张老汉的证明,你能断定苹果是王五偷的吗?你觉得有疑点吗?学生答:根据张老汉的证明,不能断定苹果是王五偷的,有疑点:因为只是经过,张老汉的推断太牵强.总结点拨:(出示课件16)这种从已知条件出发(列出理由),推断出结论的证明方法,叫综合法.综合法是最常用的证明方法.教师出示问题:公安局长一时拿不定主意,就问旁边的梁副局长:“梁局长,你怎么看?”梁局长会如何回答呢?学生答:梁局长说“这事要证明是王五干的,还得弄清那袋子里装的是不是刚摘的苹果,还要看看地里的脚印是不是王五的才行.如果袋子里装的是刚摘的苹果,且地里的脚印是王五的,那就一定是他偷的.”总结点拨:(出示课件17)从结论出发,逆着寻找所需要的条件的思考过程,叫分析.在分析的过程中,如果发现所需要的条件,都已具备或可从已知条件中推得.那么证明就很容易了.总结点拨:(出示课件18)证明的概念在很多情况下,一个命题的正确性需要经过推理才能作出判断,这个推理过程叫作证明.教师强调:证明的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是学过的定义、基本事实、定理等.教师问:如何判定一个命题是假命题呢?学生答:举一个反例即可.教师问:例如,要判定命题“相等的角是对顶角”是假命题如何证明?师生一起解答:可以举出如下反例:如图,OC是∠AOB的平分线,∠1=∠2,但它们不是对顶角.总结点拨:(出示课件19)确定一个命题是假命题的方法:只要举出一个例子(反例):它符合命题的题设,但不满足结论即可.考点4:利用证明推理解决问题如图,∠1=∠2,试说明直线AB,CD平行.(出示课件20)师生共同分析:要证明AB,CD平行,就需要同位角相等的条件,图中∠1与∠3就是同位角.我们只要找到:能说明它们相等的条件就行了.从图中,我们可以发现:∠2与∠3是对顶角,所以∠3=∠2.这样我们就找到了∠1与∠3相等的确切条件了.学生独立思考后,师生共同解答.证明:∵∠2与∠3是对顶角,∴∠3=∠2.又∵∠1=∠2,∴∠1=∠3.∴AB∥CD.出示课件21,学生自主练习,教师给出答案。
命题 定理 证明教案
命题定理证明教案标题:命题定理证明教案教案目标:1. 理解命题、定理和证明的概念及其在数学中的重要性。
2. 学会运用逻辑思维和数学推理方法,独立完成命题的证明过程。
3. 培养学生的数学思维能力、逻辑思维能力和问题解决能力。
教学准备:1. 教师准备:教材、教具、黑板、彩色粉笔、多媒体设备等。
2. 学生准备:课本、笔记本、铅笔、尺子等。
教学过程:一、导入(5分钟)1. 教师通过提问引导学生思考:你们对命题、定理和证明有什么了解?它们在数学中的作用是什么?2. 学生回答并教师进行点评和补充说明。
二、概念讲解(10分钟)1. 教师向学生介绍命题的概念:命题是陈述性的句子,其真假可以被判断。
2. 教师向学生介绍定理的概念:定理是经过证明后被接受的命题,它在数学中具有重要的意义。
3. 教师向学生介绍证明的概念:证明是通过逻辑推理和数学方法,以严密的推理过程来验证命题的真实性。
三、案例分析(15分钟)1. 教师给出一个具体的数学命题,并与学生一起分析该命题的证明过程。
2. 教师引导学生思考如何从已知条件出发,运用已学的数学知识和推理方法,逐步推导出结论。
3. 学生积极参与,提出自己的思考和解决方案。
四、小组讨论(10分钟)1. 学生分成小组,每个小组选取一个命题进行讨论和证明。
2. 小组成员共同合作,提出自己的证明思路和方法,进行讨论和交流。
3. 教师巡回指导,解答学生的问题,引导学生进行有效的讨论。
五、展示与总结(10分钟)1. 各小组派代表上台,展示他们的证明过程和结果。
2. 教师对每个小组的证明进行点评和总结,指出优点和不足之处。
3. 教师对整个教学内容进行总结,强调命题、定理和证明在数学中的重要性和应用。
六、作业布置(5分钟)1. 要求学生根据课堂学习的内容,选择一个自己感兴趣的命题进行证明。
2. 布置作业后,教师对学生的提问进行答疑,解决学生的困惑。
教学反思:通过本节课的教学,学生对命题、定理和证明的概念有了更深入的理解,能够运用逻辑思维和数学推理方法进行证明。
初中命题定理证明教案
教案:初中命题定理证明教学目标:1. 理解命题定理的概念和意义;2. 学会使用命题定理进行证明;3. 培养逻辑思维能力和证明能力。
教学重点:1. 命题定理的概念和意义;2. 命题定理的证明方法。
教学难点:1. 理解命题定理的证明过程;2. 灵活运用命题定理进行证明。
教学准备:1. 教材或教学资源;2. 黑板或投影仪。
教学过程:一、导入(5分钟)1. 引入话题:介绍数学中的证明和定理;2. 提问:什么是命题?什么是定理?它们之间有什么关系?二、新课讲解(15分钟)1. 讲解命题定理的概念和意义;2. 通过示例介绍命题定理的证明方法;3. 引导学生理解命题定理的证明过程。
三、课堂练习(15分钟)1. 提供几个简单的命题定理,让学生尝试证明;2. 引导学生运用命题定理解决实际问题。
四、巩固练习(15分钟)1. 提供一些练习题,让学生独立完成;2. 引导学生运用命题定理进行证明。
五、课堂小结(5分钟)1. 回顾本节课所学内容;2. 强调命题定理的概念和证明方法。
教学延伸:1. 进一步学习其他类型的定理和证明方法;2. 参加数学竞赛或研究数学问题。
教学反思:本节课通过引入命题定理的概念和意义,让学生了解数学中的证明过程。
通过课堂练习和巩固练习,学生能够学会运用命题定理进行证明。
在教学过程中,要注意引导学生理解命题定理的证明过程,培养他们的逻辑思维能力和证明能力。
同时,也要注重学生的个别差异,给予不同的学生不同的指导和帮助,提高他们的学习效果。
人教版七年级数学下册5.3.2《命题、定理、证明》教学设计
人教版七年级数学下册5.3.2《命题、定理、证明》教学设计一. 教材分析《命题、定理、证明》是人教版七年级数学下册第五章第三节的内容,主要介绍了命题、定理和证明的概念。
这部分内容是学生学习几何证明的基础,对于培养学生的逻辑思维能力和空间想象能力具有重要意义。
本节课的内容主要包括命题的定义、分类及定理的概念,以及证明的方法。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于基本的几何概念和性质有一定的了解。
但是,学生在证明方面的知识和能力还有待提高,因此,在教学过程中需要注重引导学生理解和掌握证明的方法和技巧。
三. 教学目标1.理解命题、定理和证明的概念,能够区分它们之间的联系和区别。
2.学会用几何语言表达命题和定理。
3.掌握证明的方法和技巧,能够运用所学的知识解决一些简单的几何问题。
四. 教学重难点1.重点:命题、定理和证明的概念及它们之间的联系和区别。
2.难点:证明的方法和技巧,以及如何运用所学的知识解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主学习、合作探究的方式掌握命题、定理和证明的概念。
2.利用几何图形和实例,帮助学生直观地理解命题、定理和证明的联系和区别。
3.通过练习和案例分析,培养学生的证明能力和解决实际问题的能力。
六. 教学准备1.准备相关的几何图形和实例,用于讲解和展示。
2.准备一些练习题和案例,用于巩固和拓展所学知识。
七. 教学过程1.导入(5分钟)利用一个简单的几何问题引入命题、定理和证明的概念,激发学生的兴趣。
2.呈现(10分钟)讲解命题、定理和证明的定义及它们之间的联系和区别。
通过几何图形和实例,让学生直观地理解这些概念。
3.操练(10分钟)让学生分组讨论,分析一些给定的几何问题,尝试运用所学的命题、定理和证明方法解决问题。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生独立完成一些相关的练习题,巩固对命题、定理和证明的理解。
人教版七年级下册5.3.2命题、定理、证明教学设计
人教版七年级下册5.3.2命题、定理、证明教学设计一、教学目标1.理解命题、定理、证明的定义与本质;2.掌握命题、定理、证明的基本方法;3.培养学生正确的逻辑思维方式;4.提高学生的实际问题解决能力。
二、教学重点和难点1.命题、定理、证明的区别;2.掌握证明的基本方法和要素;3.发现并利用生活中的具体例子。
三、教学过程1.导入环节1.老师与学生对话,引导学生探讨“世界上有哪些真理?”;2.引出知识点——命题、定理、证明。
2.讲授环节(1)命题1.定义:能够判断真假的陈述句;2.给出多个例子,使学生彻底领悟命题的概念。
(2)定理1.定义:在一定条件下成立的命题;2.给出具体定理的例子,并与学生一起探讨它的证明方法。
(3)证明1.定义:利用已知的命题或定理,通过演绎推理来证明给定命题的正确性;2.讲解证明的基本方法和注意事项:–观察分析,找出已知条件、所求结论以及中间步骤;–运用基本运算法则和逻辑法则进行推理;–从已知条件出发,按照逻辑关系,步步深入推理,直至得到所求结论;–在证明中,要小心使用某些特殊的词句,比如“一定”、“必然”、“当且仅当”等。
3.实践环节1.老师出一些具体的例子,让学生按照证明的方法,证明其正确性;2.或者让学生先猜测一些规律,再通过证明来验证其是否成立。
4.总结环节1.结合今天的学习内容,带领学生发现:命题、定理、证明有哪些联系和区别;2.老师总结本节课的内容,帮助学生理顺知识脉络;3.常见错题集讲解,总结容易犯的错误。
四、教学评估1.课堂上通过观察和听取学生的解答来了解他们掌握的程度;2.布置课后作业,检验学生学习效果;3.半个月后,再对此知识点进行检测,检查学习效果是否稳定。
人教版数学七年级下册教案5.3.2《 命题、定理、证明》
人教版数学七年级下册教案5.3.2《命题、定理、证明》一. 教材分析《命题、定理、证明》是人教版数学七年级下册的教学内容,这部分内容是学生学习几何初步知识的重要环节。
通过学习命题、定理和证明,使学生了解几何学的基本概念和逻辑推理方法,培养学生空间想象能力和思维能力。
本节课的内容在教材中起到了承前启后的作用,为后续几何知识的学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本概念,具备了一定的逻辑推理能力。
但部分学生对抽象的命题、定理和证明的概念理解起来较为困难,需要通过具体例子来帮助学生理解和掌握。
三. 教学目标1.了解命题、定理、证明的概念,理解它们之间的关系。
2.学会用逻辑推理的方法证明几何命题。
3.培养学生的空间想象能力和思维能力。
四. 教学重难点1.教学重点:命题、定理、证明的概念及逻辑推理方法。
2.教学难点:理解命题、定理、证明之间的关系,运用逻辑推理证明几何命题。
五. 教学方法采用情境教学法、启发式教学法和小组合作学习法。
通过具体例子引入概念,引导学生主动探究、合作交流,培养学生的逻辑推理能力。
六. 教学准备1.教学PPT课件。
2.相关例题及练习题。
3.几何画图工具。
七. 教学过程1.导入(5分钟)利用PPT课件展示生活中的一些几何现象,引导学生思考这些现象背后的几何规律。
通过观察和讨论,让学生感受到几何学的魅力,激发学生的学习兴趣。
2.呈现(10分钟)介绍命题、定理、证明的概念,并通过PPT课件展示相关例题。
让学生直观地了解命题、定理、证明之间的关系,帮助学生建立基本概念。
3.操练(15分钟)让学生分组讨论,选取一些简单的几何命题,尝试用逻辑推理的方法进行证明。
教师巡回指导,解答学生疑问,帮助学生掌握证明的方法。
4.巩固(10分钟)出示一些有关命题、定理、证明的练习题,让学生独立完成。
教师及时批改、讲解,巩固学生所学知识。
5.拓展(10分钟)引导学生思考:如何判断一个命题是真命题还是假命题?让学生通过举例、分析,掌握判断命题真假的方法。
华师大版数学八年级上册13.1《命题、定理与证明》教学设计
华师大版数学八年级上册13.1《命题、定理与证明》教学设计一. 教材分析《命题、定理与证明》是华师大版数学八年级上册第13.1节的内容。
本节内容是学生学习数学证明的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。
本节内容主要包括命题、定理与证明的定义,以及如何写出完整的证明过程。
二. 学情分析八年级的学生已经具备了一定的数学基础,对数学概念和运算规则有一定的了解。
但学生在逻辑思维和证明方面可能还存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,引导学生逐步理解和掌握证明的方法。
三. 教学目标1.了解命题、定理与证明的定义,理解它们之间的关系。
2.学会写出完整的证明过程,培养学生的逻辑思维能力。
3.通过对本节内容的学习,使学生能够运用证明的方法解决实际问题。
四. 教学重难点1.重点:命题、定理与证明的定义,证明过程的写法。
2.难点:理解命题的假设和结论,掌握证明的方法。
五. 教学方法1.采用问题驱动法,引导学生主动探究命题、定理与证明的关系。
2.通过实例分析,让学生了解证明的过程和方法。
3.利用小组合作学习,培养学生团队合作精神,提高学生的逻辑思维能力。
六. 教学准备1.准备相关的教学PPT,内容包括命题、定理与证明的定义及示例。
2.准备一些实际的数学问题,用于引导学生进行证明练习。
3.准备黑板,用于板书重要的概念和证明过程。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际的数学问题,引导学生思考如何用数学语言来描述这些问题,从而引入命题的概念。
2.呈现(10分钟)通过PPT讲解命题、定理与证明的定义,让学生理解它们之间的关系。
同时,给出一些简单的命题和定理,让学生初步了解证明的过程。
3.操练(10分钟)让学生分组讨论,尝试对给出的命题进行证明。
教师巡回指导,解答学生的问题,并引导学生写出完整的证明过程。
4.巩固(10分钟)让学生自主完成一些证明练习题,检验学生对证明方法的掌握程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.1.1命题、定理、证明(1)(一)教学目标1、了解命题的概念。
2、能区分命题的题设和结论。
3、经历判断命题真假的过程,对命题的真假有一个初步的了解。
(二)教学重难点重点:命题的概念和区分命题的题设与结论。
难点:区分命题的题设和结论。
(三)学情分析:七年级学生对语句有一定的理解和判断能力。
(四)课前预习预习教材第20页至21页,并尝试完成课本随堂练习。
(五)教学过程一、情境引入教师与学生们打招呼,说出以下四句话:(1)七(3)的同学们你们好吗?(2)大家今天都能认真听课吗?(3)七(3)班的所有学生都是好学生。
(4)有时间我请大家吃饭。
问题1:下列四句话中,哪一句是对一件事情作出判断的语句?(1)七(3)的同学们你们好吗?()(2)大家今天都能认真听课吗?()(3)七(3)班的所有学生都是好学生。
()(4)有时间我请大家吃饭。
()问题2 下列语句在表述形式上,哪些是对事情作了判断?(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行()(2)画一个角等于已知角()(3)对顶角相等;()(4)若a2=b2,则a=b。
()(5)两条平行线被第三条直线所截,同旁内角互补;()(6)若a2=4,求a的值;()二、新知探究,合作交流教师点评:象上题中的(1)、(3)、(4)、(5)这样判断一件事情的语句叫做命题。
注意:1、只要对一件事情作出了判断,不管正确与否,都是命题。
如:相等的角是对顶角。
2、如果一个句子没有对某一件事情作出任何判断,那么它就不是命题。
如:画线段AB=CD。
问题3 判断下列语句是不是命题?(1)两点之间,线段最短;()(2)请画出两条互相平行的直线;()(3)过直线外一点作已知直线的垂线;()(4)如果两个角的和是90º,那么这两个角互余.()提问几位学生,从而检查学生们是否真正理解命题的概念。
问题4 你能举出一些命题的例子吗?(教师这时让几名学生发言)问题5 请同学们观察一组命题,并思考命题是由几部分组成的?(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两直线平行,同位角相等;(3)如果两个角的和是90º,那么这两个角互余;教师点评:命题是由题设(或条件)和结论两部分组成。
题设是已知事项,结论是由已知事项推出的事项。
例如:两直线平行,同位角相等。
结论前面的命题都能看得出它的题设与结论两部分很明显,但我们有些命题这两部分是不明显的,这时我们该如何很好的把握题设与结论呢?如:对顶角相等。
这个命题我们怎么正确指出它的题设与结论呢?教师点评:命题一般都能写成“如果…,那么…”的形式。
“如果”后接的部分是题设,“那么”后接的部分是结论。
注意:添加“如果”、“那么”后,命题的意义不能改变,改写的句子要完整,语句要通顺,使命题的题设和结论更明朗,易于分辨,改写过程中,要恰当增加词语,不能生搬硬套例如对于命题:对顶角相等。
改写:如果两个角是对顶角,那么它们相等。
题设:两个角是对顶角结论:它们相等问题6 下列语句是命题吗?如果是,请将它们改写成“如果……,那么……”的形式.(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加同一个数,结果仍是等式;(3)同旁内角互补;注:此过程以问答形式为主,让学生举手发言。
问题7 请同学们说出一个命题,并说出此命题的题设和结论.注:些问题有助于学生更好的巩固命题以及命题的题设和结论相关知识。
问题8 问题6中哪些命题是正确的,哪些命题是错误的?(1)两条直线被第三条直线所截,同旁内角互补;()(2)等式两边都加同一个数,结果仍是等式;()(3)互为相反数的两个数相加得0;()(4)内错角相等;()(5)对顶角相等.()教师点评:真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题.假命题:如果题设成立时,不能保证结论一定成立,这样的命题叫做假命题.问题8 请同学们举例说出一些真命题和假命题问题9 问题6中哪些命题是真命题,哪些命题是假命题?(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.三、归纳小结1.什么叫做命题?2.命题是由哪两部分组成的?3.什么是真命题,什么是假命题.四、布置作业题目:判断下列命题是真命题还是假命题,同时将下列命题改写成“如果……那么……”的形式,指出他们的题设和结论。
(1)两个锐角的和是锐角。
(2)邻补角是互补的角。
(3)同旁内角互补。
五、教学反思:本节课引入较自然,学生也较容易理解命题的概念。
只是一部分学生在确定题设和结论时,还是比较容易把“如果”和“那么”放在里面。
13.1.2 命题、定理、证明一、教学目标1.了解“证明”的必要性和推理过程中要步步有据.2.了解综合法证明的格式和步骤.3.通过一些简单命题的证明,初步训练学生的逻辑推理能力.4.通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语句正确画出几何图形的能力.5.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.二、学法引导1.教师教法:尝试指导,引导发现与讨论相结合.2.学生学法:在教师的指导下,积极思维,主动发现.三、重点·难点及解决办法(-)重点证明的步骤和格式是本节重点.(二)难点理解命题,分清其题设和结论,正确对照命题画出图形,写出已知、求证.(三)解决办法通过学生分组讨论,教师归纳得出证明的步骤和格式,再以练习加以巩固,解决重点、难点及疑点.四、课时安排l课时五、教具学具准备投影仪、三角板、自制胶片.六、师生互动活动设计1.通过引例创设情境,点题,引入新课.2.通过情境教学,学生分组讨论,归纳总结及练习巩固等手段完成新授.3.通过提问的形式完成小结.七、教学步骤(-)明确目标使学生严密推理过程,掌握推理格式,提高推理能力。
(二)整体感知以情境设计,引出课题,引导讨论,例题示范讲解新知,以练习巩固新知.(三)教学过程创设情境,引出课题师:上节课我们学习了定理与证明,了解了这两个概念.并以证明“两直线平行,内错角相等”来说明什么是证明.我们再看这一命题的证明(投影出示).例1 已知:如图1,,是截线,求证:.证明:∵(已知),∴(两直线平行,同位角相等).∵(对项角相等),∴(等量代换).这节课我们分析这一命题的证明过程,学习命题证明的步骤和格式.[板书]2.9 定理与证明探究新知1.命题证明步骤学生活动:由学生分组讨论以上命题的证明过程,按自己的理解说出证明一个命题都需要哪几步.【教法说明】根据上一节“两直线平行,内错角相等”这一命题的证明过程让学生讨论、分析、归纳命题证明的一般步骤,一是可以加深对命题证明的理解,二是培养学生归纳总结能力。
在总结步骤时,学生所说的层次不一定有逻辑性,或不太严密,教师要注意引导,使学生分清命题证明几个步骤的先后层次.根据学生讨论,回答结果.教师归纳小结,师生共同得出证明命题的步骤(出示投影):第一步,画出命题的图形.先根据命题的题设即已知条件,画出图形,再把命题的结论即求证的内容在图上标出.还要根据证明的需要,在图上标出必要的字母或符号,以便于叙述或推理过程的表达.第二步,结合图形写出已知、求证.把命题的题设化为几何符号的语言写在已知中,命题的结论转化为几何符号的语言写在求证中.第三步,经过分析,找出由已知推得求证的途径,写出推理的过程.学生活动:结合“两直线平行,内错角相等”这一命题的证明,理解以上命题证明的一般步骤(给学生一定时间理解记忆).【教法说明】在以上第二个步骤中,将文字语言转化为符号语言是教学中的难点,要注意在练习中加强辅导,第三步由学生独立完成有困难,要逐步培养训练,现阶段暂不要求学生独立完成.反馈练习:(1)画出证明命题“两直线平行,同旁内角互补”时的图形,写出已知、求证.(2)课本第112页A组第5题.【教法说明】由学生依照例1“两直线平行,内错角相等”这一命题的证明画出图形,写出已知、求证,巩固命题证明的第一、二步.2.命题的证明例2 证明:邻补角的平分线互相垂直.【教法说明】此例题完全放手让学生独立完成有一定困难,但教师也不能包办代替,最好通过让学生分步讨论,同桌互相磋商,分步完成的方法,使学生对命题证明的每一步都进一步理解,教师可以给学生指明思考步骤.(1)分析命题的题设与结论,画出命题证明所需要的图形.邻补角用图2表示:图2添画邻补角的平分线,见图3:图3(2)根据命题的题设与结论写出已知、求证.邻补角用几何符号语言提示:,角平分线用几何符号语言表示:,,求证邻补角平分钱互相垂直,用符号语言表示:.(3)分析由已知谁出求证途径,写出证明过程.有什么结论后可得(),由已知可以推导吗?学生讨论思考.【教法说明】以上步骤的完成教师只提供思路,具体结论的得出与操作要由学生独立完成.找一个学生到黑板上板演,其他同学在练习本上写出完成整过程.已知:如图,,,.求证:证明:∵(已知),又∵,(已知),∴.∴(垂直定义).证明完成后提醒学生注意以下几点:①要证明的是一个简单叙述的命题,题设和结论不明显,可以先根据题意画出图形.如例2,结合图形分析命题的题设和结论.②在写已知、求证的内容时,要将文字语言转化为符号语言来表示,转化时的写法也不是惟一的,要根据使用的方便来写,如:与互为邻补角,在已知中写为,角平分线有几种表示方法,如是的平分线,,,根据此题写成较好,方便于下面的推理计算.③对命题的分析、画图,如何推理的思考过程,证明时不必写出来,不属于证明内容.反馈练习:按证明命题的步骤证明:“两条直线被第三条直线所截,如果同位角相等,那么内错角相等.”【教法说明】由学生独立完成,找学生板演,发现问题教师及时纠正.3.判定一个命题是假命题的方法师:以上我们的推理是说明一个命题是真命题的判定方法.那么如何判定一个命题是假命题呢?如“相等的角是对项角”,同学们都知道这是一个假命题,如何说明它是一个假命题呢?谁能试着说明一下?【教法说明】教师先不告诉学生判定一个命题是假命题的方法,而是由很明显的“相等角是对顶角”这一假命题,让学生自己尝试着去说明,体验从反面去说明一个问题的方法,然后教师归纳小结.根据学生说明,教师小结:判定一个命题是假命题,只要举出一个反例即可,也就是说你所举命题符合命题的题设,但不满足结论.如“同位角相等”可如图,与是同位角但不相等就说明“同位角相等是假命题”.反馈练习:课本第111页习题2.3A组第4题.【教法说明】在做以上练习时一定让学生学会从反面思考问题的方法,再就是要澄清一些错误的概念.反馈练习投影出示以下练习:1.指出下列命题的题设和结论(1)两条平行线被第三条直线所截,同旁内角互补.(2)两个角的和等于直角,这两个角互为余角.(3)对项角相等.(4)同角或等角的余角相等.2.画图,写出已知,求证(不证明)(1)同垂直于一条直线的两条直线平行.(2)两条平行直线被第三条直线所截,同位角的平分线互相平行.3.抄写下题并填空已知:如图,.求证:.证明:∵(),∴().∴().【教法说明】以上练习让学生独立完成,第1题主要是训练学生分清命题的题设和结论;第2题是训练学生把命题转化为几何语言、几何图形的能力;第3题是让学生进一步体会命题证明的三个步骤.总结、扩展教学反思:13.2.1全等三角形教学目标一:知识与技能:1、了解三角形及全等三角形的概念。