6、与圆有关的综合问题

6、与圆有关的综合问题
6、与圆有关的综合问题

匚J 源于名校,成就所托

初中数学备课组教师班级

学生

日期月日上课时间

教学内谷:与圆有关的综合冋题

一、考查形式的综合

在有关圆的基本考题中,经常把证明题和计算题放在同一道题目中,先从位置关系出发证明一个结论,再给出数量关系,计算一个结果。这种类型的题目对推理能力和计算能力都有一定的要求,是考查形式的综合问题。

例1如图,L °是厶ABC的外接圆,AB=AC,过点A作AP // BC,交BO的延长线于点P.

(2)求证:AP是L °的切线;

(2)若L °的半径长R=5,BC=8,设BP交AC于点Q,求AQ:QC的值.

练习:

1、如图,在Rt△ ABC中,/ ACB=90°,D是AB边上一点,以BD为直径的L °与AC边相切于点E,

联结DE并延长,于BC的延长线交于点F.

(1)求证:BD=BF;

(2)若BC=6,AD=4,求L °的面积.

2、如图,AB为L °的直径,AB=AC,BC交L °于点

(1)若AE=BE,求/ EBC的度数;

(2)求证:OB CE=BD DC.

D,AC交L °于点E.

轡立方数肓g…、十丄

源于名校,成就所托

3、如图,已知矩形ABCD中,BC=6 , AB=8,延长AD到点E,使AE=15,联结BE交AC于点P. (1) 求AP的长.

(2) 若以点A为圆心、AP为半径作L A,试判断线段BE与L A的位置关系并说明理由.

(3)已知以点A为圆心、为半径的动圆L A,使点D在动圆L A的内部,点B在动圆L A的外部。

①求动圆L A的半径r1的取值范围;

②若以点C为圆心、r2为半径的动圆L C与动圆L A相切,求r2的取值范围

二、解题方法的综合:

我们经常需要运用代数的方法(尤其是列方程)来解决与圆有关的计算问题,圆的问题又经常与相似比、三角比的知识有关联。

例2如图,AB为半圆0的直径,P是AB延长线上一点,将线段PA绕点P旋转到与半圆0相切的位置

PC,这时切点为E,AC与半圆相较于D.

AD

(1)求证:sin / P=-

CD

(2)若CD=2AD,求CE: EP 的值;

(3)若E是PC的中点,求AD : DC的值。

练习:

1、如图,两个等圆的值?L 01与L °2相切于点P ,

E

QA与L °2相切于点A,与L°

1

2、如图,AB 是L °的直径,P 是BA 延长线上一点, 求

证:点A 是线段PB 的黄金分割点?

3、如图,AB 是L M 的直径L N 与L M 内切,且与AB 相切于点M ; L P 与L M 内切、与L N 外切, 且与AB 也相切?求证:PM=PN.

三、探究因素的综合:

探究型问题又称为开放型问题,是指问题的条件或结论有部分或全部不确定,需要解题者自行探究,这 类问题对知识和能力都有较高的要求。

例3如图,L °的半径长为4,圆心角/ AOB=60,点C 在AB 上,CM 丄°A , CN 丄OB ,垂足分别为 M 、 N ,联结MN.

(1)当点C 为AB 的中点时,求MN 的长.

(2)当点C 为劣弧AB 上任意一点时,MN 的长度是否发生变化?请说明理由 * (3)当点C 为优弧AB 上时,MN 的长度是否发生变化?请说明理由。

1 PD 切U ° 与点 C ,BD 丄PD 于点 D ,且 tan /DPB= 2

.

练习:

1、已知点E在直线1上,以点E为圆心的圆弧上有A、D两点,作AB丄1于点B , DC丄1于C,联结

AD、AE、DE,且/ AED=90° .

(1)如图,当A、D分别在直线1同侧,线段AB、BC、CD之间有怎样的数量关系?请写出结论并予以证

明?

⑵在第(1)小题的前提下,若AB=6 , BC=14,求AD的长.

(3) 当A、D分别在直线1两侧,而其余条件不变时,线段AB、BC、CD之间又有怎样的数量关系?请画出图形、直接写出结论,不必证明?

2、在厶ABC中,/ C=90° °在AB上,L °过点A,切BC于点D,交AC于点E?当AC、AB满足什

么数量关系时,E为AC的中点?

3、如图,两等圆' °1和' °2外切于点P,点A在' °1上,点B在' °2上,且A、B位于°1°2的同侧. 在下列关系中:

①AB=O1°2:②AB//。1。2:③AB丄BP,以其中任何一个作为条件,另外两个作为结论,所得的命题是

否均为真命题?试说明理由?

..

四、函数型综合题:

几何函数问题是在变动的图形背景下研究几何量之间的函数关系。在与圆有关的几何函数问题中,如果圆的大小是变量,那么常以圆的半径长为自变量X ,其他线段的长度或图形的面积为函数,在建立函数解

析式以后,还常常对图形的形状进行讨论,求函数定义域经常是解题时的难点。

例 4 如图,在△ ABC 中,AB=AC=6,/ B=30°,点O l、°2在BC 上,L O l、L。2 外切于p. L °与AB

相切于点D,与AC相离;L °2与AC相切于点E,与AB相离.

(1)求证:DP// AC.

(2)设L °的半径长为x, L °2的半径长为y,求y与x之间的函数解析式,并写出定义域.

(3) A ADP能否为直角三角形?如果能够,请求出L °2的半径长;如果不能,请说明理由?

练习:

1、如图,在△ ABC中,/ BAC=90°, AB=AC= 2 2,圆A的半径长为1?若点°在BC边上运动(与点B、C不重合),设B°= x,△ A°C的面积为y.

(1) 求y关于x的函数解析式,并写出函数的定义域;

(2) 以点°为圆心、B°为半径作圆°,求当圆°与圆A相切时,△ A°C的面积?

B 0

源于名校,成就所托2、如图,L °的半径0A二吋5,弦AB=4,点C在弦AB上,以点C为圆心,CO为半径的圆与线段

OA相较于点E.

⑴求cos. A的值?

⑵设AC= X,°E= y,求y与X之间的函数解析式,并写出定义域

Lc是否可能与L °相切?如果可能,请求出当

(3) 当点C在AB上运动时,

长;如果不可能,请说明理由

1

3、如图,已知s" - ABC = 3,L °的半径长为2,圆心°在射线BC上移动.

(1)当B°=6时,试判断L °与射线BA的位置关系,并证明你的结论;

⑵设L °与射线BA相交于E、F两点,B°的长为x,EF长为y,求y关于x的函数解析式,并写出定义域;

⑶在第⑵小题中,若EF=2'3,点P在射线BC上,以P为圆心作圆,使得L P同时与L °和射线BA

都相切,写所有满足条件的L P的半径长.

相似三角形与圆综合题

相似三角形与圆综合 第一部分:例题分析 例1、已知:如图,BC为半圆O的直径,AD⊥BC,垂足为D,过点B作弦BF交AD于点E,交半圆O于点F,弦A C与BF交于点H,且AE=BE.求证:(1)错误!=错误!;(2)AH·BC=2AB·BE. 例2、如图,PA为圆的切线,A为切点,PBC为割线,∠APC的平分线交AB于点D,交AC于点E,求证:(1)AD=A E;(2)AB·AE=AC·DB. 例3、AB是⊙O的直径,点C在⊙O上,∠BAC=60°,P是OB上一点,过P作AB的垂线与AC的延长线交于点Q,连结OC,过点C作CD⊥OC交PQ于点D. (1)求证:△CDQ是等腰三角形; (2)如果△CDQ≌△COB,求BP∶PO的值. 例4、△ABC内接于圆O,∠BAC的平分线交⊙O于D点,交⊙O的切线BE于F,连结BD,CD. 求证:(1)BD平分∠CBE;(2)AB·BF=AF·DC. 例3、⊙O内两弦AB,CD的延长线相交于圆外一点E,由E引AD的平行线与直线BC交于F,作切线FG,G为切点,求证:EF=FG. 第二部分:当堂练习 1.如图,AB是⊙O直径,ED⊥AB于D,交⊙O于G,EA交⊙O于C,CB交ED于F,求证:DG2=DE?DF 2.如图,弦EF⊥直径MN于H,弦MC延长线交EF的反向延长线于A,求证:MA?MC=MB?MD

D C B A O M N E H 3.如图,AB 、AC 分别是⊙O的直径和弦,点D为劣弧AC 上一点,弦E D分别交⊙O于点E ,交A B于点H,交AC 于点F ,过点C的切线交ED 的延长线于点P. (1)若PC =P F,求证:AB ⊥ED ; (2)点D 在劣弧AC 的什么位置时,才能使AD 2 =D E·DF ,为什么? 4.如图(1),AD 是△ABC 的高,AE 是△ABC 的外接圆直径,则有结论:AB · AC =AE · A D成立,请证明.如果把图(1)中的∠ABC 变为钝角,其它条件不变,如图(2),则上述结论是否仍然成立? 5.如图,AD 是△A BC的角平分线,延长AD 交△A BC 的外接圆O 于点E ,过点C 、D 、E 三点的⊙O 1与AC 的延长线交于点F ,连结E F、DF . (1)求证:△A EF ∽△F ED ; (2)若AD =8,DE =4,求EF 的长. 6.如图,PC 与⊙O 交于B ,点A 在⊙O 上,且∠PCA =∠B AP. (1)求证:P A 是⊙O 的切线. (2)△ABP 和△CAP 相似吗?为什么? (3)若PB :BC =2:3,且P C=20,求PA 的长. D C B A O E 7.已知:如图, AD 是⊙O 的弦,OB ⊥A D于点E,交⊙O 于点C ,OE =1,BE =8,A E:A B=1:3. (1)求证:AB 是⊙O 的切线; (2)点F 是A CD 上的一点,当∠AOF =2∠B时,求AF 的长. 8.如图,⊿AB C内接于⊙O ,且BC 是⊙O 的直径,AD ⊥B C于D ,F是弧BC 中点,且AF 交BC 于E ,A B=6,AC =8,求CD ,DE ,及EF 的长. 9. 已知:如图,在Rt ABC △中,90ACB ∠=,4AC =,43BC =,以AC 为直径的O 交AB 于点D ,点E 是BC 的中点,连结OD ,OB 、DE 交于点F. A C P E D H F O

圆切线、相似和锐角三角函数综合题中考专题复习(无答案)

圆切线、相似和锐角三角函数综合题专题复习 复习目标:巩固圆的切线和相似三角形的性质和判定、锐角三角函数求法和特殊锐角三角函数值,熟练应用它们解决相应的问题。 复习过程 一、热身练习 二、实战演练

三、巩固提高 2.如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA的延长线相交于点E,G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P. (1)求证:BF=EF; (2)求证:PA是⊙O的切线; 3,求BD和FG的长度. (3)若FG=BF,且⊙O的半径长为2 3.如图,△ABC中,AD平分∠BAC交△ABC的外接圆⊙O于点H,过点H作EF∥BC交AC、AB的延长线于点E、F. (1)求证:EF是⊙O的切线; (2)若AH=8,DH=2,求CH的长; (3)若∠CAB=60°,在(2)的条件下,求弧BHC的长.

4.如图,AB 是⊙O 的直径,点P 在BA 的延长线上,弦CD ⊥AB 于点E ,∠POC=∠PCE . (1)求证:PC 是⊙O 的切线; (2)若OE :EA=1:2,PA=6,求⊙O 的半径; (3)求sin ∠PCA 的值. 5.如图,在△ABC 中,∠ABC=90°,AB=6,BC=8.以AB 为直径的⊙O 交AC 于D ,E 是 BC 的中点,连接ED 并延长交BA 的延长线于点F . (1)求证:DE 是⊙O 的切线; (2)求DB 的长; (3)求S △FAD :S △FDB 的值. 6.如图i ,半圆O 为△ABC 的外接半圆,AC 为直径,D 为劣弧BC 上的一动点,P 在CB 的延长线上,且有∠BAP=∠BDA . (1)求证:AP 是半圆O 的切线; (2)当其它条件不变时,问添加一个什么条件后,有BD 2=BE?BC 成立?说明理由; (3)如图ii ,在满足(2)问的前提下,若OD ⊥BC 与H ,BE=2,EC=4,连接PD ,请探究四边形ABDO 是什么特殊的四边形,并求tan ∠DPC 的值.

中考数学圆与相似综合练习题含详细答案.docx

中考数学圆与相似综合练习题含详细答案 一、相似 1.已知如图 1,抛物线 y=﹣ x2﹣ x+3 与 x 轴交于 A 和 B 两点(点 A 在点 B 的左侧),与 y 轴相 交于点 C,点 D 的坐标是( 0,﹣ 1),连接 BC、 AC (1)求出直线AD 的解析式; (2)如图2,若在直线AC 上方的抛物线上有一点F,当△ ADF 的面积最大时,有一线段 MN=(点 M 在点 N 的左侧)在直线BD 上移动,首尾顺次连接点A、 M、 N、 F 构成四边形 AMNF,请求出四边形AMNF 的周长最小时点N 的横坐标; ( 3 )如图3,将△ DBC 绕点 D 逆时针旋转α°(0<α°<180°),记旋转中的△ DBC为 △DB′,C′若直线 B′与C′直线 AC 交于点 P,直线 B′与C′直线 DC 交于点 Q,当△ CPQ是等腰三角形时,求 CP 的值. 【答案】(1)解:∵抛物线 y=﹣x2﹣x+3 与 x 轴交于 A 和 B 两点, ∴0=﹣ x2﹣ x+3, ∴x=2 或 x=﹣4, ∴A(﹣ 4, 0), B( 2, 0), ∵D( 0,﹣ 1), ∴直线 AD 解析式为y=﹣x﹣ 1 (2)解:如图1,

过点 F 作 FH⊥ x 轴,交 AD 于 H, 设 F(m,﹣m2﹣m+3), H( m,﹣m﹣ 1), ∴FH=﹣m2﹣m+3﹣(﹣m﹣ 1) =﹣m2﹣m+4, △ADF △AFH △DFH DA (﹣m 2﹣ m+4) =﹣m2﹣ m+8=﹣( m+ ∴S=S+S=FH × |x﹣ x |=2FH=2 )2+ , 当 m=﹣时, S△ADF最大, ∴F(﹣,) 如图 2,作点 A 关于直线 BD 的对称点 A1,把 A1沿平行直线 BD 方向平移到 A2,且A A =, 12 连接 A2F,交直线 BD 于点 N,把点 N 沿直线 BD 向左平移得点 M,此时四边形AMNF 的周长最小.. ∵O B=2, OD=1, ∴t an ∠ OBD= , ∵AB=6,

《圆的有关概念》练习题

《圆的有关概念》练习题 一.选择题(共7小题) 1.下列各图形中,各个顶点一定在同一个圆上的是() A.正方形B.菱形C.平行四边形D.梯形 2.下列说法:(1)直径是弦;(2)弦是直径;(3)半圆是弧,但弧不一定是半圆;(4)半径相等的两个圆是等圆;(5)长度相等的两条弧是等弧.其中错误的个数是()A.1个B.2个C.3个D.4个 3.下列说法中,(1)长度相等的两条弧一定是等弧;(2)半径相等的两个半圆是等弧;(3)同一条弦所对的两条弧一定是等弧;(4)直径是圆中最大的弦,也就是过圆心的直线.其中正确说法的个数是() A.1个B.2个C.3个D.4个 4.如图,AB是⊙O的直径,D、C在⊙O上,AD∥OC,∠DAB=60°,连接AC,则 ∠DAC等于() A.15°B.30°C.45°D.60° 5.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42°B.28°C.21°D.20° 第4题图第5题图第6题图 6.如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连结AD、OD、OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为() A.70°B.60°C.50°D.40° 7.点A、O、D与点B、O、C分别在同一直线上,图中弦的条数为()A.2 B.3 C.4 D.5 二.填空题(共3小题) 8.如图,△ABC中,∠ACB=90°,∠A=40°,以C为圆心、CB为半径的圆交 AB于点D,则∠ACD=度. 第8题图第9题图第0题图 9.如图,AB为⊙O的直径,AD∥OC,∠AOD=84°,则∠BOC=. 10.如图,点A、D、G、M在半圆O上,四边形ABOC、DEOF、HMNO均为矩形,设BC=a,EF=b,NH=c,则a、b、c的大小是. 三.解答题(共6小题)

中考数学压轴题专题圆与相似的经典综合题及答案.doc

中考数学压轴题专题圆与相似的经典综合题及答案 一、相似 1.如图所示,△ ABC 中, AB=AC,∠ BAC=90°, AD⊥ BC, DE⊥ AC,△ CDE 沿直线 BC 翻折到△ CDF,连结 AF 交 BE、 DE、 DC分别于点 G、 H、I. (1)求证: AF⊥ BE; (2)求证: AD=3DI. 【答案】(1)证明:∵在△ ABC中, AB=AC,∠ BAC=90°, D 是 BC 的中点, ∴AD=BD=CD,∠ ACB=45 ,° ∵在△ ADC中, AD=DC,DE⊥ AC, ∴A E=CE, ∵△ CDE沿直线 BC 翻折到△ CDF, ∴△ CDE≌ △CDF, ∴C F=CE,∠ DCF=∠ACB=45 ,° ∴C F=AE,∠ ACF=∠DCF+∠ACB=90 ,° 在△ ABE 与△ ACF中, , ∴△ ABE≌ △ ACF(SAS), ∴∠ ABE=∠ FAC, ∵∠ BAG+∠ CAF=90 ,° ∴∠ BAG+∠ ABE=90 ,° ∴∠ AGB=90 ,° ∴AF⊥BE (2)证明:作IC 的中点 M,连接 EM,由( 1)∠ DEC=∠ECF=∠ CFD=90°

∴四边形 DECF是正方形, ∴EC∥ DF, EC=DF, ∴∠ EAH=∠ HFD, AE=DF, 在△ AEH 与△FDH 中 , ∴△ AEH≌ △FDH( AAS), ∴EH=DH, ∵∠ BAG+∠ CAF=90 ,° ∴∠ BAG+∠ ABE=90 ,° ∴∠ AGB=90 ,° ∴AF⊥BE, ∵M 是 IC 的中点, E 是 AC 的中点, ∴EM∥AI, ∴, ∴DI=IM , ∴CD=DI+IM+MC=3DI, ∴AD=3DI 【解析】【分析】( 1)根据翻折的性质和SAS 证明△ ABE≌ △ ACF,利用全等三角形的性 质得出∠ ABE=∠ FAC,再证明∠ AGB=90°,可证得结论。 (2)作IC 的中点M ,结合正方形的性质,可证得∠ EAH=∠HFD,AE=DF,利用AAS 证明△AEH 与△ FDH全等,再利用全等三角形的性质和中位线的性质解答即可。 2.已知:如图,在△ABC 中, AB=BC=10,以 AB 为直径作⊙ O 分别交 AC, BC 于点 D,E,连接 DE 和 DB,过点 E 作 EF⊥ AB,垂足为 F,交 BD 于点 P.

中考数学与圆的综合有关的压轴题含详细答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于F,求证:EH=FH. (3)在(2)的条件下求AF的长. 【答案】(1)4;(2)见解析;(3)4. 【解析】 【分析】 (1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=1 2 3 ∴124 ; (2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB, ∴∠HBC+∠BCH=90° 在△COF中, ∵∠OFC+∠OCF=90°, ∴∠HBC=∠OFC=∠AFH, 在△AEH和△AFH中,

∵ AFH AEH AHF AHE AH AH ∠=∠ ? ? ∠=∠ ? ?= ? , ∴△AEH≌△AFH(AAS), ∴EH=FH; (3)由(1)易知,∠BMT=∠BAC=60°, 作直径BG,连CG,则∠BGC=∠BAC=60°, ∵⊙O的半径为4, ∴CG=4, 连AG, ∵∠BCG=90°, ∴CG⊥x轴, ∴CG∥AF, ∵∠BAG=90°, ∴AG⊥AB, ∵CE⊥AB, ∴AG∥CE, ∴四边形AFCG为平行四边形, ∴AF=CG=4. 【点睛】 本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键. 2.图1和图2,半圆O的直径AB=2,点P(不与点A,B重合)为半圆上一点,将图形延BP折叠,分别得到点A,O的对称点A′,O′,设∠ABP=α.

中考数学压轴题专题圆与相似的经典综合题附答案解析

中考数学压轴题专题圆与相似的经典综合题附答案解析 一、相似 1.如图,在等腰Rt△ABC中,O为斜边AC的中点,连接BO,以AB为斜边向三角内部作Rt△ABE,且∠AEB=90°,连接EO.求证: (1)∠OAE=∠OBE; (2)AE=BE+ OE. 【答案】(1)证明:在等腰Rt△ABC中,O为斜边AC的中点, ∴OB⊥AC, ∴∠AOB=90°, ∵∠AEB=90°, ∴A,B,E,O四点共圆, ∴∠OAE=∠OBE (2)证明:在AE上截取EF=BE, 则△EFB是等腰直角三角形, ∴,∠FBE=45°, ∵在等腰Rt△ABC中,O为斜边AC的中点, ∴∠ABO=45°, ∴∠ABF=∠OBE, ∵, ∴, ∴△ABF∽△BOE,

∴ = , ∴AF= OE, ∵AE=AF+EF, ∴AE=BE+ OE. 【解析】【分析】(1)利用等腰直角三角形的性质,可证得∠AOB=∠AEB=90°,可得出A,B,E,O四点共圆,再利用同弧所对的圆周角相等,可证得结论。 (2)在AE上截取EF=BE,易证△EFB是等腰直角三角形,可得出BF与BE的比值为,再证明∠ABF=∠OBE,AB与BO的比值为,就可证得AB、BO、BF、BE四条线段成比例,然后利用两组对应边成比例且夹角相等的两三角形相似,可证得△ABF∽△BOE,可证得AF= OE,由AE=AF+EF,可证得结论。 2.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题: (1)求证:△BEF∽△DCB; (2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值; (3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由; (4)当t为何值时,△PQF为等腰三角形?试说明理由. 【答案】(1)解:证明:∵四边形是矩形, 在中, 分别是的中点,

完整版相似三角形与圆综合题

AB 于点D,交AC 于点E ,求证:(1)AD=AE ; C 在O O 上,/ BAC= 60°, P 是OB 上一点,过 P 作AB 的垂线与 AC 的延长线交于点 Q 连结OC 过点C 作CD L OC 交PQ 于点D. (1)求证:△ CDQi 等腰三角形; (2) 如果△ CDQ^A COB 求BP : PO 的值. 第一部分:例题分析 相似三角形与圆综合 △ ABC 内接于圆O, / BAC 勺平分线交O O 于D 点,交O O 的切线BE 于F ,连结 BD CD 求证:(1) BD 平分/ 例4、 例3、 O O 内两弦 E E AB CD 的延长线相交于圆外一点 E ,由E 引AD 的平行线与直线 BC 交于F ,作切线FG G 为切点, 求证: EF = FG 例3、AB 是O O 的直径,点 (2)AB ? AE=AC ? DB. BE. 例1、已知:如图,BC 为半圆O 的直径,ADI BC,垂足为D,过点B 作弦BF 交AD 于点E ,交半圆O 于点F ,弦AC

第二部分:当堂练习 1.如图,AB是O O直径,ED丄AB于D,交O O于G , EA交O O于C, CB交ED于F,求证:DG2= DE?DF

(1)若 PC=PF ,求证:AB 丄 ED ; ⑵点D 在劣弧AC 的什么位置时,才能使 AD 2 =DE DF ,为什么? 2 . 3. 如图,AB 、AC 分别是O O 的直径和弦,点 D 为劣弧AC 上一点, 弦ED 分别交O O 于点 E ,交AB 于点H ,交 AC 于点F ,过点C 的切线交ED 的延长线于点 P . 如图,弦EF 丄直径

圆的相似综合题

相似与圆综合题目练习 2.(2013?湛江)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC. (1)求证:PA为⊙O的切线; (2)若OB=5,OP=,求AC的长. 3.(2013?营口)如图,点C是以AB为直径的⊙O上的一点,AD与过点C的切线互相垂直,垂足为点D.(1)求证:AC平分∠BAD; (2)若CD=1,AC=,求⊙O的半径长.

4.(2013?西宁)如图,⊙O是△ABC的外接圆,BC为⊙O直径,作∠CAD=∠B,且点D在BC的延长线上,CE⊥AD 于点E. (1)求证:AD是⊙O的切线; (2)若⊙O的半径为8,CE=2,求CD的长. 6.(2013?宁夏)在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O交AC于点E,连结DE并延长,与BC的延长线交于点F.且BD=BF. (1)求证:AC与⊙O相切. (2)若BC=6,AB=12,求⊙O的面积.

7.(2013?黄冈)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB. (1)求证:DC为⊙O的切线; (2)若⊙O的半径为3,AD=4,求AC的长. 9.(2013?朝阳)如图,直线AB与⊙O相切于点A,直径DC的延长线交AB于点B,AB=8,OB=10 (1)求⊙O的半径. (2)点E在⊙O上,连接AE,AC,EC,并且AE=AC,判断直线EC与AB有怎样的位置关系?并证明你的结论.(3)求弦EC的长.

11.(2013?巴中)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B (1)求证:△ADF∽△DEC; (2)若AB=8,AD=6,AF=4,求AE的长. 12.(2012?岳阳)如图所示,在⊙O中,=,弦AB与弦AC交于点A,弦CD与AB交于点F,连接BC. (1)求证:AC2=AB?AF; (2)若⊙O的半径长为2cm,∠B=60°,求图中阴影部分面积. 14.(2012?陕西)如图,正三角形ABC的边长为3+. (1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法); (2)求(1)中作出的正方形E′F′P′N′的边长; (3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

2015中考数学专题与圆有关的综合题

与圆有关的综合题 知识考点?对应精练 【知识考点】 (1)圆与三角函数; (2)圆与函数; (3)圆与点、线、三角形; (4)圆与多边形. 【方法总结】 (1)看到求圆的切线,想到:有交点,连半径,证垂直;无交点,作垂直,证半径;(2)看到圆中的三角函数,想到三角函数一般在直角三角形中使用,直径所对的圆周角是直角; (3)看到过圆外的同一点的两条切线,想到切线长定理; (4)看到垂直于弦的直径,想到垂径定理. 【失分盲点】 (1)易忽视圆中的两条半径构成等腰三角形这个条件; (2)在证明一条直线是圆的切线时,若直线与圆的公共点未确定时,易犯证明直线与半径垂直的错误; (3)在圆中的三角形,易犯不说明其为直角三角形就应用三角函数解决问题的错误. 【对应精练】 例.如图,PA为⊙O的切线,A为切点,直线PO交⊙O与点E,F过点A作PO的垂线AB 垂足为D,交⊙O与点B,延长BO与⊙O交与点C,连接AC,BF. (1)求证:PB与⊙O相切; (2)试探究线段EF,OD,OP之间的数量关系,并加以证明; (3)若AC=12,tan∠F=,求cos∠ACB的值 、

真题演练?层层推进 1.如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C. (1)求证:AB与⊙O相切; (2)若∠AOB=120°,AB= ,求⊙O的面积. 2.如题24图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC 交DC的延长线于点E. (1)求证:∠BCA=∠BAD; (2)求DE的长; (3)求证:BE是⊙O的切线. 3.(2014广东)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF. (1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π) (2)求证:OD=OE; (3)PF是⊙O的切线。

2018年中考数学综合能力提升 相似三角形在圆中的应用专题练习卷(无答案)

相似三角形在圆中的应用专题练习卷 1.如图,菱形ABCD 的边AB=20,面积为320,∠BAD <90°,⊙O 与边AB ,AD 都相切,AO=10,则⊙O 的半径长等于( ) A .5 B .6 C .25 D .32 2.(2017浙江衢州第19题)如图,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆O 于点D 。连结OD ,作BE ⊥CD 于点E ,交半圆O 于点F 。已知CE=12,BE=9 (1)求证:△COD ∽△CBE ; (2)求半圆O 的半径r 的长 3.如图,已知BC 是O ⊙的直径,点D 为BC 延长线上的一点,点A 为圆上一点,且AB AD =,AC CD =. (1)求证:ACD BAD △∽△; (2)求证:AD 是O ⊙的切线. 4.如图,以原点O 为圆心,3为半径的圆与x 轴分别交于A ,B 两点(点B 在点A 的右边),P 是半径OB 上一点,过P 且垂直于AB 的直线与⊙O 分别交于C ,D 两点(点C 在点D 的上方),直线AC ,DB 交于点E .若AC :CE=1:2. (1)求点P 的坐标; (2)求过点A 和点E ,且顶点在直线CD 上的抛物线的函数表达式.

5.如图,ABC △内接于O ⊙,BC 是O ⊙的直径,弦AF 交BC 于点E ,延长BC 到点D ,连接OA ,AD ,使得FAC AOD =∠∠,D BAF =∠∠. (1)求证:AD 是O ⊙的切线; (2)若O ⊙的半径为5,2CE =,求EF 的长. 6.如图,已知直线PT 与⊙O 相切于点T ,直线PO 与⊙O 相交于A ,B 两点. (1)求证:PT 2=PA?P B ; (2)若PT=TB=3,求图中阴影部分的面积. 7.如图,AB 是⊙O 的直径,AB =43E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB . (1)求证:CB 是∠ECP 的平分线; (2)求证:CF =CE ; (3)当 34 CF CP 时,求劣弧?BC 的长度(结果保留π)

专题3 圆与相似综合压轴题解析

专题三圆压轴题 一、核心讲练 1.如图,在⊙O的内接四边形ACDB中,AB为直径,AC:BC=1:2,点D为弧AB的中点,BE⊥CD垂足为E. (1)求∠BCE的度数; (2)求证:D为CE的中点; (3)连接OE交BC于点F,若AB OE的长度.

2.如图,半圆O中,将一块含60°的直角三角板的60°角顶点与圆心O重合,角的两条边分别与半圆圆弧交于C,D两点(点C在∠AOD内部),AD与BC交于点E,AD与OC交于点F. (1)求∠CED的度数; (2)若C是弧AD的中点,求AF:ED的值; (3)若AF=2,DE=4,求EF的长.

3.如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC.延长AD到E,使得∠EBD=∠CAB. (1)如图1,若BD AC=6.①求证:BE是⊙O的切线;②求DE的长; (2)如图2,连结CD,交AB于点F,若BD CF=3,求⊙O的半径.

4.如图,在Rt△ABC中,∠A=30°,AC=8,以C为圆心,4为半径作⊙C. (1)试判断⊙C与AB的位置关系,并说明理由; (2)点F是⊙C上一动点,点D在AC上且CD=2,试说明△FCD~△ACF; (3)点E是AB边上任意一点,在(2)的情况下,试求出EF+1 2 F A的最小值.

二、满分突破 5.如图,已知△ABC 内接于⊙O ,点E 在弧BC 上,AE 交BC 于点D ,EB 2=ED ?EA 经过B 、C 两点的圆弧交AE 于I . (1)求证:△ABE ∽△BDE ; (2)如果BI 平分∠ABC ,求证=AB AE BD EI ; (3)设O 的半径为5,BC =8,∠BDE =45°,求AD 的长.

专题3.4 以解析几何中与圆相关的综合问题为解答题 高考数学压轴题分项讲义(解析版)

专题三压轴解答题 第四关以解析几何中与圆相关的综合问题 【名师综述】纵观近三年的高考题,解析几何题目是每年必考题型,主要体现在解析几何知识内的综合及与其它知识之间的综合,圆不会单独出大题,一般是结合椭圆、抛物线一起考查,预计在15年高考中解答题仍会重点考查圆与椭圆、抛物线相结合的综合问题,同时可能与平面向量、导数相交汇,每个题一般设置了两个问,第(1)问一般考查曲线方程的求法,主要利用定义法与待定系数法求解,而第(2)问主要涉及最值问题、定值问题、对称问题、轨迹问题、探索性问题、参数范围问题等.这类问题综合性大,解题时需根据具体问题,灵活运用解析几何、平面几何、函数、不等式、三角知识,正确构造不等式,体现了解析几何与其他数学知识的密切联系.这体现了考试中心提出的“应更多地从知识网络的交汇点上设计题目,从的整体意义、思想含义上考虑问题”的思想. 类型一以圆的切线为背景的相关问题 典例1【浙江省台州市2019届高三上学期期末质量评估】设点为抛物线外一点,过点作抛物线 的两条切线,,切点分别为,. (Ⅰ)若点为,求直线的方程; (Ⅱ)若点为圆上的点,记两切线,的斜率分别为,,求的取值范围.【解析】(Ⅰ)设直线方程为,直线方程为. 由可得. 因为与抛物线相切,所以,取,则,. 即. 同理可得.所以:. (Ⅱ)设,则直线方程为, 直线方程为.

由可得. 因为直线与抛物线相切,所以 . 同理可得 ,所以,时方程 的两根. 所以,. 则 . 又因为,则, 所以 .学_ 【名师指点】圆的切线的应用,往往从两个方面进行考查,一是设切线方程,利用圆心到切线的距离等于半径列方程求解;二是结合切线长定理与勾股定理求解. 【举一反三】已知椭圆C :2 2 24x y +=. (1)求椭圆C 的离心率; (2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,试判断直线AB 与圆2 2 2x y +=的位置关系,并证明你的结论. 【解析】(1)由题意椭圆C 的标准方程为12 422=+y x , 所以42 =a ,22 =b ,从而2242 2 2 =-=-=b a c , 所以2 2 == a c e . (2)直线AB 与圆22 2 =+y x 相切,证明如下: 设点),(00y x A ,)2,(t B ,其中00≠x , 因为OB OA ⊥,所以0=?,即0200=+y tx ,解得0 2x y t - =,

中考数学压轴题专题圆与相似的经典综合题及详细答案

中考数学压轴题专题圆与相似的经典综合题及详细答案 一、相似 1.如图,正方形ABCD、等腰Rt△BPQ的顶点P在对角线AC上(点P与A、C不重合),QP与BC交于E,QP延长线与AD交于点F,连接CQ. (1)①求证:AP=CQ;②求证:PA2=AF?AD; (2)若AP:PC=1:3,求tan∠CBQ. 【答案】(1)证明:①∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABP+∠PBC=90°, ∵△BPQ是等腰直角三角形,∴BP=BQ,∠PBQ=90°,∴∠PBC+∠CBQ=90° ∴∠ABP=∠CBQ,∴△ABP≌△CBQ,∴AP=CQ; ②∵四边形ABCD是正方形,∴∠DAC=∠BAC=∠ACB=45°, ∵∠PQB=45°,∠CEP=∠QEB,∴∠CBQ=∠CPQ, 由①得△ABP≌△CBQ,∠ABP=∠CBQ ∵∠CPQ=∠APF,∴∠APF=∠ABP,∴△APF∽△ABP, (本题也可以连接PD,证△APF∽△ADP) (2)证明:由①得△ABP≌△CBQ,∴∠BCQ=∠BAC=45°, ∵∠ACB=45°,∴∠PCQ=45°+45°=90° ∴tan∠CPQ= , 由①得AP=CQ, 又AP:PC=1:3,∴tan∠CPQ= , 由②得∠CBQ=∠CPQ, ∴tan∠CBQ=tan∠CPQ= . 【解析】【分析】(1)①利用正方形的性质和等腰直角三角形的性质易证△ABP≌△CBQ,可得AP=CQ;②利用正方形的性质可证得∠CBQ=∠CPQ,再由△ABP≌△CBQ可证得∠APF=∠ABP,从而证出△APF∽△ABP,由相似三角形的性质得证;(2)由△ABP≌△CBQ可得∠BCQ=∠BAC=45°,可得∠PCQ=45°+45°=90°,再由三角函数可 得tan∠CPQ=,由AP:PC=1:3,AP=CQ,可得tan∠CPQ=,再由∠CBQ=∠CPQ可求出答

与圆有关的综合问题

与圆有关的综合问题 题型一:与圆有关的轨迹问题 [典例] 已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程; (2)若∠PB Q =90°,求线段P Q 中点的轨迹方程. [解] (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设P Q 的中点为N (x ,y ). 在Rt △PB Q 中,|PN |=|BN |. 设O 为坐标原点,连接ON ,则ON ⊥P Q ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4. 故线段P Q 中点的轨迹方程为x 2+y 2-x -y -1=0. [方法技巧] 求与圆有关的轨迹问题的4种方法 [针对训练] 1.(2019·厦门双十中学月考)点P (4,-2)与圆x 2+y 2=4上任意一点连接的线段的中点的轨迹方程为( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1 解析:选A 设中点为A (x ,y ),圆上任意一点为B (x ′,y ′), 由题意得,????? x ′+4=2x ,y ′-2=2y ,则? ???? x ′=2x -4,y ′=2y +2, 故(2x -4)2+(2y +2)2=4,化简得,(x -2)2+(y +1)2=1,故选A. 2.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程; (2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 解:(1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4. 设M (x ,y ),则CM ―→=(x ,y -4),MP ―→ =(2-x,2-y ). 由题设知CM ―→·MP ―→ =0, 故x (2-x )+(y -4)(2-y )=0,

圆与相似三角形综合训练题

圆与相似三角形专题训练 例1.如图,PD切⊙O于D,PC = PD,B为⊙O上一点,PB交⊙O于A,连结AC、BC. 求证:AC·PB = PC·BC 证明: 训练1. 如图,⊙O是弦AB∥CD,延长DC到E,EB延长线交⊙O于F,连结DF. 求证:AD·ED = BE·DF 证明:连结CB 2. 如图,CD切⊙O于P,PE⊥AB于E,AC⊥CD,BD⊥CD. 求证:① PE:AC = PB:PA;② PE 2 = AC·BD

例2.如图,△ABC内接于⊙O,⊙O的直径BD交AC于E,AF⊥BD于F,延长AF 交BC于G. 求证:AB 2 = BG·BC 证明:连结AD 训练1. 如图,AB是⊙O的直径,弦CD垂直AB于M,P是CD延长线上一点,PE 切⊙O于E,BE交CD于F. 求证:PF 2 = PD·PC 证明:连结AE 2. 如图,△ABC中,AB = AC,O是BC上一点,以O为圆心,OB长为半径的圆与AC相切于点A,过点C作CD⊥BA,垂足为D. 求证:①∠DAC = 2∠B;② CA 2 = CD·CO

例3.如图,⊙O 1和⊙O 2 相交于点A和点B,且O 1 在⊙O 2 上;过点A的直线 CD分别与⊙O 1、⊙O 2 交于点C、D,过点B的直线EF分别与⊙O 1 、⊙O 2 交于 点E、F,⊙O 2的弦O 1 D 交AB于P. 求证:① CE∥DF;② O 1 A 2 = O 1 P·O 1 D 证明: 训练1. 如图,圆内接四边形ABCD的对角线AC平分∠BCD,BD交AC于点F,过点A作圆的切线AE交CB的延长线于E. 求证:①AE∥BD;②AD 2 = DF·AE 证明: 2. 已知:,过点D作直线交AC于E,交BC于F,交AB的延长线于G,经过B、G、F三点作⊙O,过E作⊙O的切线ET,T为切点. 求证:ET = ED 证明:

中考数学圆与相似综合题汇编含答案

中考数学圆与相似综合题汇编含答案 一、相似 1.如图,在□ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD. 连结BE、BF。使它们分别与AO相交于点G、H (1)求EG :BG的值 (2)求证:AG=OG (3)设AG =a ,GH =b,HO =c,求a : b : c的值 【答案】(1)解:∵四边形ABCD是平行四边形, ∴AO= AC,AD=BC,AD∥BC, ∴△AEG∽△CBG, ∴ = = . ∵AE=EF=FD, ∴BC=AD=3AE, ∴GC=3AG,GB=3EG, ∴EG:BG=1:3 (2)解:∵GC=3AG(已证), ∴AC=4AG, ∴AO= AC=2AG, ∴GO=AO﹣AG=AG (3)解:∵AE=EF=FD, ∴BC=AD=3AE,AF=2AE. ∵AD∥BC, ∴△AFH∽△CBH, ∴ = = = , ∴ = ,即AH= AC. ∵AC=4AG, ∴a=AG= AC,

b=AH﹣AG= AC﹣ AC= AC, c=AO﹣AH= AC﹣ AC= AC, ∴a:b:c= :: =5:3:2 【解析】【分析】(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可证得△AEG∽△CBG,得出对应边成比例,由AE=EF=FD可得BC=3AE,就可证得GB=3EG,即可求出EG:BG的值。 (2)根据相似三角形的性质可得GC=3AG,就可证得AC=4AG,从而可得AO=2AG,即可证得结论。 (3)根据平行可证得三角形相似,再根据相似三角形的性质可得AG=AC,AH=AC,结合 AO=AC,即可得到用含AC的代数式分别表示出a、b、c,就可得到a:b:c的值。2.如图,在平面直角坐标系中,直线y=﹣ x+ 与x轴、y轴分别交于点B、A,与直线 y= 相交于点C.动点P从O出发在x轴上以每秒5个单位长度的速度向B匀速运动,点Q从C出发在OC上以每秒4个单位长度的速度,向O匀速运动,运动时间为t秒(0<t<2). (1)直接写出点C坐标及OC、BC长; (2)连接PQ,若△OPQ与△OBC相似,求t的值; (3)连接CP、BQ,若CP⊥BQ,直接写出点P坐标. 【答案】(1)解:对于直线y=﹣ x+ ,令x=0,得到y= ,

几何综合题(与圆相关)

图3 N M F E B C A B A C E F M N P 图2图1 A 图3 D A 图2图1几何综合题:与圆相关 1.已知Rt △ABC 中,∠ACB =90°,CA =CB ,有一圆心角为45°半径长等于CA 的扇形CEF 绕点C 旋转,直线CE 、CF 分别与直线AB 交于M 、N 。 (1)如图1,当AM =BN 时,将△ACM 沿CM 折叠,点A 落在EF 的中点P 处,再将△BCN 沿CN 折叠,点B 也恰好落在点P 处,此时,PM =AM ,PN =BN ,△PMN 的形状是 ,线段AM 、BN 、MN 之间的数量关系是 。 (2)如图2,当扇形CEF 绕点C 在∠ACB 内部旋转时,线段AM 、MN 、BN 之间的数量关系是 ,试证明你的结论。 (3)当扇形CEF 绕点C 旋转到图3的位置时,线段MN 、AM 、BN 之间的数量关系是 ,试证明你的结论。 2.李明同学在学习正多边形和圆时,发现了以下一些有趣的结论:若P 是正多边形外接圆上一点,将P 与正多边形相邻三个顶点连结,这三条线段之间有一些特殊的数量关系。 (1)如图1,若P 是正△ABC 外接圆的弧BC 上一点,连PA 、PB 、PC ,则PB +PC 与PA 之间的数量关系是 ; (2)如图2,若P 是正方形ABCD 的外接圆的弧BC 上一点,连PA 、PB 、PD ,则PB +PD 与PA 之间的数量关系是 ,试证明你的结论; (3)如图3,若点P 是正六边形ABCDEF 外接圆的弧BC 上一点,连PA 、PB 、PF ,则PB +PF 与PA 之间的数量关系是 。 3.小明学习了垂径定理后,作了下面的探究,请你根据题目要求帮小明完成探

热点与圆有关的计算问题含答案

热点18 与圆有关的计算问题 (时间:100分钟总分:100分) 一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的) 1.已知圆心角为120°,所对的弧长为5 cm,则该弧所在圆的半径R=() A.7.5cm B.8.5cm C.9.5cm D.10.5cm 2.一条弦分圆周为5:4两部分,则这条弦所对的圆周角的度数为() A.80° B.100° C.80°或100° D.以上均不正确 3.⊙O的半径R=3cm,直线L与圆有公共点,且直线L和点O的距离为d,则() A.d=3cm B.d≤3cm C.d>3cm D.d<3cm 4.如图1,AB是⊙O的直径,CD是弦,若AB=10cm,CD=8cm,那么A,?B?两点到直线CD 的距离之和为() A.12cm B.10cm C.8cm D.6cm (1)(2)(3)(4) 5.如图2,同心圆中,大圆的弦AB交小圆于C、D,AB=4,CD=2,AB?的弦心距等于1,那么两个同心圆的半径之比为() A.3:2 B5 2 C52.5:4 6.正三角形的外接圆的半径为R,则三角形边长为() A3R B. 3 2 R C.2R D. 1 2 R 7.已知如图3,圆内一条弦CD与直径AB相交成30°角,且分直径成1cm和5cm两部分,则这条弦的弦心距是() A.1 2 cm B.1cm C.2cm D.2.5cm 8.∠AOB=30°,P为OA上一点,且OP=5cm,若以P为圆心,r为半径的圆与OB相切,则半径r为() A.5cm B 5 3 2 . 5 2 cm D 5 3 3 cm 9.如图4,∠BAC=50°,则∠D+∠E=() A.220° B.230° C.240° D.250° 10.秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡该秋千时,秋千在最高处踩板离地面高2米(左右对称),则该秋千所荡过的圆弧长为()

圆与三角函数及相似三角形综合训练题

圆与三角函数及相似三角形综合训练题 1.如图,R t△ABC中,∠ACB=90 ,AC=4,BC=2,以AB上的一点O为圆心作⊙O分别与AC、 BC相切于D、E。⑴求⊙O的半径。⑵求sin∠BOC的值。 2.如图,如图,R t△ABC中,已知∠ACB=90 ,BC=6,AB=10,以BC为直径作⊙O交AB于 D,AC、DO的延长线交于E,点M为线段AC上一点,且CM=4. ⑴求证:直线DM是⊙O的切线。⑵求tan∠E的值。

3.﹙河南中考题﹚已知,如图,在半径为4的⊙O 中,AB 、CD 是两条直径,M 为OB 的中点,CM 的延长线交⊙O 于点E,且EM ﹥MC.连结DE ,DE=15.⑴求EM 的长;⑵求sin ∠EOB 的值。 4.﹙河南中考题﹚已知:如图,点DC 是以AB 为直径的半圆上的两点,O 为圆心,DB 与AC 相交于点E,OC ∥AD,AB=5,cos ∠CAB=5 4.求CE 和DE 的长。

5. ﹙河南中考题﹚已知:如图,AB是⊙O的直径,O为圆心,AB=20,DP与⊙O相切于点D,DP ⊥PB,垂足为P,PB与⊙O交于点C,PD=8. ⑴求BC的长;⑵连结DC,求tan∠PCD的值;⑶以A为原点,直线AB为x轴建立平面直角坐标系,求直线BD的解析式。 6. ﹙北京中考题﹚已知:在△ABC中,AD为∠BAC的平分线,以C为圆心,CD为半径的半圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE, FE:FD=4:3. ⑴求证:AF=DF;⑵求∠AED的余弦值;⑶如果BD=10,求△ABC的面积。

7. ﹙北京海淀区中考题﹚已知:以R t△ABC的直角边AB为直径作⊙O,与斜边AC交于点D,E为BC边上的中点,连结DE. ⑴如图,求证:DE是⊙O的切线;⑵连结OE、AE.当∠CAB为何值时,四边形AOED是平行四边形,并在此条件下求sin∠CAE的值。 8.﹙天津中考题﹚如图,R t△ABC中,∠C=90 ,AC=3,BC=4,以点C为圆心、CA为半径 的圆与AB、BC分别交于点D、E.求AB、AD的长。

相关文档
最新文档