第一讲-坐标系

合集下载

坐标系(极坐标系)

坐标系(极坐标系)

例1 说出下图 中各点的极坐标 标出(2, π/6), (4, 3π/4), (3.5, 5π/3) 所在位置。

2

4
C
5 6

4 3
E
D O
B
A X
F
G
5 3
练习: 在图中标出点
5 H ( 3, ), P (4, ), Q(6, ) 6 2 3

2

5 6
P
C E D B A
5 7 A(5, ), B (8, ), C (3, ) 2 6 6

判断ΔABC的形状. 9 在极坐标系中,已知 A(2,

6 ), B(4, 5 ), 求A,B两点的距离 6
极坐标与直角坐标的区别:
平面直角坐系 定位 方式 点与 坐标 要素 本质 横坐标、纵坐标 极坐标系 角度和距离
点与坐标 点与极坐标不 一一对应 一一对应 原点,x,y 极点,极轴,长 轴长度单位和正 度单位;角度单位和 方向 正方向 两直线相交定点 圆与射线相交定点
练习
四个坐标中能表示点M的坐标是( )
1 2 5 即( x 1) ( y ) 2 4
2
1 5 这是以点(1, )为圆心,半径为 的圆。 2 2
5 极坐标方程 sin 2 2 cos 0 表示的曲线是___
抛物线
6 极坐标方程 4 sin2 3 所表示的曲线是( B )
A.两条射线 B.两条相交直线 C.圆 D.抛物线
在同一极坐标系中, 有如下极坐标:
5 11 7 (6, ), (6, ), (6, ), (6, ) 3 3 3 3

这些极坐标之间有何异同?
极径相同,极角不同。 这些极角有何关系? 极角的始边相同,终边也相同, 即:它们是终边相同的角。 这些极坐标所表示的点有什么关系? 它们表示同一个点。

第一讲.极坐标

第一讲.极坐标

第一讲:坐标系 1.坐标系的种类(直角坐标系、空间直角坐标系、极坐标系)2.直角坐标系的运用(实现了数形结合,用坐标法研究几何位置形状等问题)【例1(课本)】一炮弹在某处爆炸,在A 处听到爆炸的时间比在B 处晚2s,已知A 、B 两地相距800米,并且此时的声速为340m/s,求曲线的方程【练习】用两种以上的方法证明:三角形的三条高线交于一点。

3.平面直角坐标系中的伸缩变换定义:_____________________________________________________________.【例2(课本)】在直角坐标系中,求下列方程所对应的图形经过伸缩变换''23x x y y⎧=⎨=⎩后的图形。

(1)2x+3y=0; (2) 221x y +=【练习】 1、在同一平面坐标系中,经过伸缩变换⎩⎨⎧='='yy x x ,3后,曲线C 变为曲线9922='+'y x ,求曲线C 的方程并画出图象。

2、把圆2216x y +=变成椭圆22116y x ''+=的伸缩变换为 3、在同一坐标系中将直线321x y +=变成直线''22x y +=的伸缩变换为4.极坐标系:(1)实用背景(2)极坐标系定义__________________________________________(3)相关概念:__________________叫极径_______________极角____________极坐标考点一:由点的位置确定极坐标例1 写出下图中各点的极坐标(见教材14页)A (4,0)B (2 )C ( )D ( )E ( )F ( )G ( )① 平面上一点的极坐标是否唯一?② 若不唯一,那有多少种表示方法?③坐标不唯一是由谁引起的?③ 不同的极坐标是否可以写出统一表达式约定:极点的极坐标是ρ=0,θ可以取任意角。

第一讲 坐标系 知识归纳 课件(人教A选修4-4)

第一讲 坐标系 知识归纳 课件(人教A选修4-4)
π +(y-2) =4,圆心为(0,2).将 θ= (ρ∈R)化成直角坐标方 6
2
程为 x- 3y=0,由点到直线的距离公式可知圆心到直线的 |0-2 3| 距离 d= = 3. 2
答案: 3
返回
2.(2012· 上海高考)如图,在极坐标系中, π 过点 M(2,0)的直线 l 与极轴的夹角 α= . 6 若将 l 的极坐标方程写成 ρ=f(θ)的形式, 则 f(θ)=________.
返回
解析:在直线 l 上任取点 P(ρ,θ),在△OPM 中,由正弦定 OM OP 2 ρ 理得 = ,即 = ,化简得 ρ π 5π sin∠OPM sin∠OMP sin -θ sin 6 6 1 1 = ,故 f(θ)= . π π sin -θ sin -θ 6 6
1 答案: π sin -θ 6
返回
在给定的平面上的极坐标系下,有一个二元方程F(ρ,
θ)=0 如果曲线C是由极坐标(ρ,θ)满足方程的所有点组成的, 则称此二元方程F(ρ,θ)=0为曲线C的极坐标方程. 由于平面上点的极坐标的表示形式不唯一,因此曲线 的极坐标方程和直角坐标方程也有不同之处,一条曲线上 的点的极坐标有多组表示形式,有些表示形式可能不满足
(2)点 M 的直角坐标为(1, 3),直线 l 过点 M 和原点, ∴直线 l 的直角坐标方程为 y= 3x. 曲线 C 的圆心坐标为(1,1),半径 r= 2,圆心到直线 l 的 3-1 距离为 d= ,∴|AB|= 3+1. 2
返回
点击下图进入
返回
方程为ρcos θ-2ρsin θ+7=0,则圆心到直线的距离为
________.
[解析] 将 ρ=2cos θ 化为 ρ2=2ρcos θ,即有

人教A版数学【选修4-4】ppt课件:1-4第一讲-坐标系

人教A版数学【选修4-4】ppt课件:1-4第一讲-坐标系

3.点的空间坐标的互相转化公式 设空间一点 P 的直角坐标为(x,y,z),柱坐标为(ρ,θ,z),球 坐标为(r,φ,θ),则 空间直角坐标(x,y,z) x= y= z= x= y= z= 转换公式 , ,
柱坐标(ρ,θ,z)
球坐标(r,φ,θ)
, ,
1.(ρ,θ,z) 空间的点 自我 校对 2.正向 标系 逆时针 球坐标 ρsinθ z
(3)在极坐标中,方程 ρ=ρ0(ρ0 为不等于 0 的常数)表示圆心在 极点,半径为 ρ0 的圆,方程 θ=θ0(θ0 为常数)表示与极轴成 θ0 角的 射线.而在空间的柱坐标系中,方程 ρ=ρ0 表示中心轴为 z 轴,底 半径为 ρ0 的圆柱面, 它是上述圆周沿 z 轴方向平行移动而成的. 方 程 θ=θ0 表示与 Oxz 坐标面成 θ0 角的半平面.方程 z=z0 表示平行 于 Oxy 坐标面的平面. 常把上述的圆柱面、 半平面和平面称为柱坐 标系的三族坐标面.
π π 2,6,4,则点 M 的柱坐
)
π π 2,4, 6 B. 2,4, 6 π π 2,6,2 2 D. 2,6, 2
解析 因为点 M
的球坐标为2
π π π 2,6,4,即 r=2 2,φ= , 6
π θ= ,故点 M 的直角坐标为 4 π π x=rsinφcosθ=2 2sin cos =1, 6 4 π π y=rsinφsinθ=2 2sin sin =1, 6 4 π z=rcosφ=2 2cos = 6. 6
2.球坐标系与球坐标
一般地,如图所示,建立空间直角坐标系 Oxyz.设 P 是空间任 意一点,连接 OP,记|OP|=r,OP 与 Oz 轴________所夹的角为 φ. 设 P 在 Oxy 平面上的射影为 Q,Ox 轴按________方向旋转到 OQ 时所转过的 ________ 为 θ. 这样点 P 的位置就可以用有序数组 ________表示.这样空间的点与有序数组(r,φ,θ)之间建立了一种 对应关系.把建立上述对应关系的坐标系叫做 ________(或空间极 坐标系),有序数组(r,φ,θ)叫做 P 的________,记作 P(r,φ,θ), 其中 r≥0,0≤φ≤π,0≤θ<2π.

人教版高中数学选修4-4--第一讲-坐标系-1.4--柱坐标系与球坐标系简介ppt课件

人教版高中数学选修4-4--第一讲-坐标系-1.4--柱坐标系与球坐标系简介ppt课件
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
空间点 P 的直角坐标(x,y,z)与球坐标(r,φ 之间的变换关系为:____x_2_+__y2_+__z_2=__r_2,___.
x=rsin φcos θ , y=rsin φsin θ , z=rcos φ
预习 思考
(1,1,1)
1.设
P







2,π4,1 . 则 它 的 直 角 坐 标 为
____________.
2.设点 M 的球坐标为2,34π,34π,它的直角坐标为 ____ቤተ መጻሕፍቲ ባይዱ_______.
(-1,1,- 2)
题型1 柱坐标、球坐标的确定
例1 如图所示,已知长方体 ABCD-A1B1C1D1 的边长 AB 6 3,AD=6,AA1=12,以这个长方体的顶点 A 为坐标原点 以射线 AB、AD、AA1 分别为 x 轴、y 轴、z 轴的正半轴, 立空间直角坐标系,求长方体顶点 C1 的空间直角坐标、柱 标、球坐标.
变式 训练
1.建立如下图所示的柱坐标系,写出棱长为 1 的正方
各顶点的柱坐标.
变式 训练
变式 训练
题型2 柱、球坐标与直角坐标的互化
例2
已知点
M




第1讲坐标系种类及坐标转换

第1讲坐标系种类及坐标转换

第1讲坐标系种类及坐标转换在数学和物理学中,坐标系是用于表示和定位点的一组数学规则。

它可以帮助我们在平面或空间中精确地描述和测量位置、方向和距离。

坐标系通常由坐标轴和原点组成,坐标轴是一条直线,它们与原点形成直角。

有多种类型的坐标系,每一种都有特定的用途和应用。

以下是常见的几种坐标系:1.直角坐标系:直角坐标系也称为笛卡尔坐标系,是最常见的坐标系。

它由两条垂直的坐标轴和一个原点组成。

坐标轴可以是水平的x轴和垂直的y轴,或者在三维空间中可以加上一个垂直的z轴。

直角坐标系使用(x,y,z)来表示点的坐标,其中x表示点在x轴上的位置,y表示点在y轴上的位置,z表示点在z轴上的位置。

2.极坐标系:极坐标系用于描述平面上的点,它由一个原点和一个角度和距离组成。

极坐标系以原点为中心,用一个角度(通常用弧度表示)表示点与参考线(通常是x轴)之间的角度,用一个距离表示点与原点之间的距离。

极坐标系使用(r,θ)来表示点的坐标,其中r表示点与原点的距离,θ表示点与参考线之间的角度。

3.柱坐标系:柱坐标系是三维空间中的一种坐标系,它由一个原点、一个角度、一个距离和一个高度组成。

柱坐标系类似于极坐标系,但增加了一个垂直的z轴来表示高度。

柱坐标系使用(r,θ,z)来表示点的坐标,其中r表示点与原点的水平距离,θ表示点与参考线(通常是x轴)之间的角度,z表示点的高度。

4.球坐标系:球坐标系也是三维空间中的一种坐标系,它由一个原点、一个纬度、一个经度和一个距离组成。

球坐标系使用(r,θ,φ)来表示点的坐标,其中r表示点与原点的距离,θ表示点与参考线(通常是z轴)之间的纬度,φ表示点在参考平面上的经度。

在不同的坐标系之间进行转换时,我们需要使用特定的转换公式。

以直角坐标系和极坐标系为例,我们可以使用以下公式进行转换:x = r * cos(θ)y = r * sin(θ)r = sqrt(x^2 + y^2)θ = atan2(y, x)这些公式使我们能够在不同坐标系之间相互转换,并确保保持位置的准确性。

人教版高中数学选修4-4课件:第一讲二极坐标

人教版高中数学选修4-4课件:第一讲二极坐标

4.写出下图中各点的极坐标:
A________,B________,C________. 答案:(4,0) 2,π4 3,π2
5.极坐标系中,与点3,-π3关于极轴所在直线对 称的点的极坐标是________.
答案:3,π3
类型 1 极坐标系与点的极坐标(自主研析) [典例 1] (1)写出下图中各点的极坐标(ρ>0,0≤ θ<2π,且各线之间间距相等).
法二 将点 A 化为直角坐标为( 3,1),点 B 化为直 角坐标为( 3,-1).所以 A、B 两点间的距离
d= ( 3- 3)2+[1-(-1)]2=2. (2)如下图所示:
关于极轴的对称点为 B2,-π3. 关于直线 l 的对称点为 C2,23π. 关于极点 O 的对称点为 D2,-23π.
归纳升华 1.点(ρ,θ)关于极轴的对称点是(ρ,-θ)或(ρ,2π- θ),关于极点的对称点是(ρ,π+θ),关于过极点且垂直 于极轴的直线的对称点是(ρ,π-θ).
2.求极坐标系中两点间的距离应通过由这两点和极 点 O 构成的三角形求解,也可以运用两点间距离公式|AB| = ρ21+ρ22-2ρ1ρ2cos(θ1-θ2)求解,其中 A(ρ1,θ1), B(ρ2,θ2).注意当 θ1+θ2=2kπ(k∈Z)时,|AB|=|ρ1-ρ2|; 当 θ1+θ2=2kπ+π(k∈Z)时,|AB|=|ρ1+ρ2|.
2.点的极坐标
一般地,极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)表示同一 个点.特别地,极点 O 的坐标为(0,θ)(θ∈R).和直角坐 标不同,平面内一个点的极坐标有无数种表示方法.
如果规定 ρ>0,0≤θ<2π,那么除极点外,平面内的 点可用唯一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表 示的点也是唯一确定的.

--坐标系ppt(共38张PPT)

--坐标系ppt(共38张PPT)
角.
高考总复习·数学理科(RJ)
第十四章 系列4选讲
(2)极坐标与直角坐标的互化
设 M 为平面内的一点,它的直角坐标为(x,y),极坐标为
(ρ,θ).由图可知下面关系式成立:
x=ρcos
y=ρsin
θ, ρ2=x2+y2,
θ
或 tan
θ=yx(x≠0).
高考总复习·数学理科(RJ)
第十四章 系列4选讲 这就是极坐标与直角坐标的互化公式.
即 ρ=4sin
3
θ-2cos
θ.
高考总复习·数学理科(RJ)
第十四章 系列4选讲
【思维升华】 求曲线的极坐标方程的步骤:(1)建立适
当的极坐标系,设P(ρ, θ )是曲线上任意一点;(2)由曲线
上的点所适合的条件,列出曲线上任意一点的极径 ρ 和极角 θ
之间的关系式;(3)将列出的关系式进行整理、化简,得出曲 线的极坐标方程.
高考总复习·数学理科(RJ)
第十四章 系列4选讲
【解析】 (1)设(x1,y1)为圆上的点,在已知变换下变 为曲线 C 上的点(x,y),依题意,得xy==x21y,1.
由 x21+y21=1 得 x2+2y2=1, 即曲线 C 的方程为 x2+y42=1.
高考总复习·数学理科(RJ)
第十四章 系列4选讲
第十四章 系列4选讲
高考总复习·数学理科(RJ)
第十四章 系列4选讲
坐标系与参数方程 第1课时 坐标系
1.平面直角坐标系
设点 P(x,y)是平面直角坐标系中的任意一点,在变换 φ:
x′=λ·x y′=μ·y
(λ>0), (μ>0) 的作用下,点 P(x,y)对应到点 P( ′ x′,

高中数学第1讲坐标系第2节极坐标系第4课时圆的极坐标

高中数学第1讲坐标系第2节极坐标系第4课时圆的极坐标
3π 即ρ=2rcos 2 -θ,
故ρ=-2rsin θ.
3π 经验证,点O(0,0),A2r, 2 的坐标皆满足上式,
所以满足条件的圆的极坐标方程为ρ=-2rsin θ.
[规律方法]
求曲线的极坐标方程与直角坐标系里的情况
一样,就是找出动点M的坐标ρ与θ之间的关系,然后列出方程
圆x2+y2=r2还有他的表示形式吗?
1.曲线与方程的关系 在平面直角坐标系中,平面曲线C可以用方程f(x,y)=0表 示.曲线与方程满足如下关系: 点的坐标 都是方程f(x,y)=0的解; (1)曲线C上__________ 坐标的点 都在曲线C上. (2)以方程f(x,y)=0的解为__________
曲线 圆心在极点,半径 为r的圆 圆心为C(r,0),半径 为r的圆
π 圆心为Cr,2,半
圆形
极坐标方程
ρ=r __________
(0≤θ<2π) ρ=2rcos θ
π π - ≤θ< 2 2
ρ =2rsinθ __________
(0≤θ<π)
径为r的圆
1.将曲线ρ2(1+sin2θ)=2化为直角坐标方程是( 2 2 y x A.x2+ 2 =1 B. 2 +y2=1 C.2x2+y2=1 D.x2+2y2=1
2.曲线的极坐标方程 一般地,在极坐标系中,如果平面曲线C上任意一点的极 f(ρ,θ)=0 坐标中至少有一个满足方程 __________________ ,并且坐标 f(ρ,θ)=0 适 合 方 程 ________________ 的点都在曲线C上,那么方程 f(ρ,θ)=0 __________________ 叫做曲线C的极坐标方程.
f(ρ,θ)=0,再化简并检验特殊点.

第1讲-平面直角坐标系

第1讲-平面直角坐标系

平面直角坐标系定义:平面直角坐标系是由两条互相垂直的数轴组成,且两轴的交点是原点,同一数轴上的单位长度是一样的,一般情况下两轴上的单位长度也相同.注意数轴有三个要素——原点、正方向和单位长度.我们规定水平的数轴叫做横轴,取向右为正方向;另一数轴叫纵轴,取向上为正方向.点的坐标:如右图,由点P 分别向x 轴和y 轴作垂线,垂足A 在x 轴上的坐标是a ,垂足B 在y 轴上的坐标是b ,则点P 的坐标为()a b ,.点的坐标是一对有序数对,横坐标写在纵坐标前面,中间用“,”号隔开,再用小括号括起来象限和轴:横轴(x 轴)上的点()x y ,的坐标满足:0y =;纵轴(y 轴)上的点()x y ,的坐标满足:0x =;第一象限内的点()x y ,的坐标满足:00x y >⎧⎨>⎩; 第二象限内的点()x y ,的坐标满足:00x y <⎧⎨>⎩; 第三象限内的点()x y ,的坐标满足:00x y <⎧⎨<⎩;第四象限内的点()x y ,的坐标满足:00x y >⎧⎨<⎩【引例】已知()32A -,、()32B --,、()32C -,为长方形的三个顶点,⑴ 建立平面直角坐标系,在坐标系内描出A 、B 、C 三点;⑵ 根据这三个点的坐标描出第四个顶点D ,并写出它的坐标;⑶ 描点后并进一步判断点A 、B 、C 、D 分别在哪一象限?⑷ 观察A 、B 两点,它们的坐标有何特点?B 与C 呢?A 与C 呢?【解析】 ⑴ 如右图所示;⑴ ()32D ,;⑴ A :第二象限;B :第三象限;C :第四象限;D :第一象限 ⑴ A 、B 坐标特点:横坐标相同,纵坐标互为相反数,位置特点:关于x 轴对称. B 、C 坐标特点:纵坐标相同,横坐标互为相反数, 位置特点:关于y 轴对称.A 、C 坐标特点:横、纵坐标均互为相反数,位置特点:关于原点对称.【例1】 ⑴ 如图,如果“士”所在位置的坐标为()12--,,“相”所在位置的坐标为()22-,,那么“炮”所在位置的坐标为 . ⑴ 由坐标平面内的三点()()()113113A B C -,,,,,构成的ABC △是( ) A .钝角三角形B .直角三角形C .锐角三角形D .等腰直角三角形⑶ 若规定向北方向为y 轴正方向,向东方向为x 轴正方向,小明家的坐标为()12,,小丽家的坐标为()21--,,则小明家在小丽家的( )A .东南方向B .东北方向C .西南方向D .西北方向⑷ 已知点M ()34a a +-,在y 轴上,则点M 的坐标为 . ⑸ 方格纸上A B 、两点,若以B 点为原点,建立平面直角坐标系,则A 点坐标为()34,,若以A 点为原点建立平面直角坐标系,则B 点坐标为( )A .()34--,B .()34-,C .()34-,D .()34,【解析】 ⑴()31-,; ⑴B ; ⑴ B ; ⑴ ()07,;⑴ A .【例2】 ⑴ 如果点()12P m m -,在第四象限,那么m 的取值范围是( )A .102m <<B .102m -<<C .0m <D .12m >(人大附中期中)⑵ 已知点()391M a a --,在第三象限,且它的坐标都是整数,则a =( ) A .1B .2C .3D .0 (一五六中学期中)⑶ 已知点()23A a b -,在第一象限,点()43B a b --,在第四象限,若a b ,都为整数,则2a b += .(人大附中期中)⑷ 已知点()381P a a --,,若点P 在y 轴上,则点P 的坐标为 ;若点P 在第二象限,并且a 为整数,则P 点坐标为 .(四中期中)⑸ 如果点()A a b ,在第二象限,则点()221B a b -++,在( ) A .第一象限 B .第二象限C .第三象限D .第四象限⑴ 设()3,a ab 在第三象限,则:① (),a b 在第 象限;② ,a a b b ⎛⎫- ⎪⎝⎭在第 象限; ③ ()3,b a b -在第 象限.【解析】 ⑴D ; ⑵ B ; ⑶ 7或8; ⑷ 503⎛⎫ ⎪⎝⎭,,()21-,; ⑸A ; ⑹由题意知0,0a b <>,答案依次为:一;三;一.【例3】 ⑴ 对任意实数x ,点()22P x x x -,一定不在..( ) A .第一象限B .第二象限C .第三象限D .第四象限⑵ 点()11P x x -+,,当x 变化时,点P 不可能在第( )象限.A .一B .二C .三D .四(四中期中) ⑶ 证明:①点()22m n ,不在第三、四象限;②点()2122m m ++,不在第四象限.【解析】 ⑴ C ;⑵ D ;⑶ ①∵20n ≥,∴点()22m n ,不在第三、四象限;② 若210220m m +>⎧⎨+<⎩,不等式组无解, ∴点()2122m m ++,不在第四象限. 【点评】 “不存在类问题”需要对点坐标进行正负分析.【变式】平面直角坐标系内,点(),1A n n -一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】 C【点评】 本题主要考查平面直角坐标系中各象限内点的坐标的符号,把符号问题转化为解不等式组的问题.。

第一讲 坐标系

第一讲 坐标系

第一讲 坐标系1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′= (λ>0),y ′= (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称__________. 2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个______O ,叫做极点;自极点O 引一条______Ox ,叫做极轴;再选定一个______单位、一个______单位(通常取______)及其正方向(通常取________方向),这样就建立了一个极坐标系. (2)极坐标设M 是平面内一点,极点O 与点M 的______叫做点M 的极径,记为____;以极轴Ox 为始边,射线OM 为终边的角______叫做点M 的极角,记为____.有序数对______叫做点M 的极坐标,记为______.一般地,不作特殊说明时,我们认为ρ____0,θ可取__________. (3)点与极坐标的关系一般地,极坐标(ρ,θ)与______________表示同一个点.特别地,极点O 的坐标为______________.和直角坐标不同,平面内一个点的极坐标有______种表示.如果规定ρ>0,________,那么除______外,平面内的点可用______的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表示的点也是______确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为______,x 轴的正半轴作为______,并在两种坐标系中取相同的__________.(2)互化公式:如图所示,设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ)(ρ≥0),于是极坐标与直角坐标的互化公式如下表:4.1.在极坐标系中,若点A ,B 的坐标分别是(3,π3),(4,-π6),则△AOB 为________三角形.2.在极坐标系中,直线ρsin(θ+π4)=2被圆ρ=4截得的弦长为________.3.(课本习题改编)极坐标方程ρ=sin θ+2cos θ能表示的曲线的直角坐标方程为________. 4.曲线ρ=4sin θ与ρ=2的交点坐标是________.题型一 平面直角坐标系中的伸缩变换例1 在同一平面直角坐标系中,已知伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,(1)求点A (13,-2)经过φ变换所得的点A ′的坐标;(2)求直线l :y =6x 经过φ变换后所得的直线l ′的方程;(3)求双曲线C :x 2-y 264=1经过φ变换后所得到的曲线C ′的焦点坐标.椭圆x 24+y 2=1经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=y后的曲线方程为________.题型二 极坐标与直角坐标的互化例2 (2012·湖南)在极坐标系中,曲线C 1:ρ(2cos θ+sin θ)=1与曲线C 2:ρ=a (a >0)的一个交点在极轴上,则a =________.(2013·北京)在极坐标系中,点⎝⎛⎭⎫2,π6到直线ρsin θ=2的距离等于________. 题型三 求曲线的极坐标方程例3 已知P ,Q 分别在∠AOB 的两边OA ,OB 上,∠AOB =π3,△POQ 的面积为8,则PQ 中点M 的极坐标方程为________.(1)(2012·上海)如图,在极坐标系中,过点M (2,0)的直线l 与极轴的夹角α=π6.若将l 的极坐标方程写成ρ=f (θ)的形式,则f (θ)=________.(2)(2012·江苏改编)在极坐标系中,已知圆C 经过点P ⎝⎛⎭⎫2,π4,圆心为直线ρsin ⎝⎛⎭⎫θ-π3=-32与极轴的交点,则圆C的极坐标方程为________.转化与化归思想在坐标系中的应用典例:(5分)(2012·安徽)在极坐标系中,圆ρ=4sin θ的圆心到直线θ=π6(ρ∈R )的距离是________.方法与技巧1.我们在使用伸缩变换时,要分清新旧坐标:P ′(x ′,y ′)是变换图形后的点的坐标,P (x ,y )是变换前图形的点的坐标.注意从三角函数的图象变换来理解抽象的坐标伸缩变换公式,以加深理解和记忆.2.曲线的极坐标方程与直角坐标系的互化思路:对于简单的我们可以直接代入公式ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,但有时需要作适当的变化,如将式子的两边同时平方,两边同时乘以ρ等.3.如果要判断曲线的形状,我们可以将方程化为直角坐标方程再进行判断,这时我们直接应用x =ρcos θ,y =ρsin θ即可. 失误与防范极径ρ是一个距离,所以ρ≥0,但有时ρ可以小于零.极角θ规定逆时针方向为正,极坐标与平面直角坐标不同,极坐标与P 点之间不是一一对应的,所以我们又规定ρ≥0,0≤θ<2π,来使平面上的点与它的极坐标之间是一一对应的,但仍然不包括极点.A 组 专项基础训练1.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是________. 2.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是________.3.在平面直角坐标系中,经伸缩变换后曲线x 2+y 2=16变换为椭圆x ′2+y ′216=1,此伸缩变换公式是________.4.在极坐标系中,点⎝⎛⎭⎫2,π3到圆ρ=2cos θ的圆心的距离为________. 5.已知点M 的极坐标为(6,11π6),则点M 关于y 轴对称的点的直角坐标为________.6.直线ρcos θ=2关于直线θ=π4对称的直线极坐标方程为________.7.在极坐标系中,曲线ρ=a sin θ与ρ=a cos θ(a >0,ρ>0,0≤θ<π)的交点的极坐标为________. 8.在极坐标系中,直线ρsin ⎝⎛⎭⎫θ-π4=22与圆ρ=2cos θ的位置关系是________. 9.(2012·陕西)直线2ρcos θ=1与圆ρ=2cos θ相交的弦长为________.10.在极坐标系中,射线θ=π3(ρ≥0)与曲线C 1:ρ=4sin θ的异于极点的交点为A ,与曲线C 2:ρ=8sin θ的异于极点的交点为B ,则|AB |=________.B 组 专项能力提升1.在极坐标系中,已知圆ρ=2cos θ与直线3ρcos θ+4ρsin θ+a =0相切,则实数a 的值为________.2.在极坐标系中,过圆ρ=6cos θ的圆心,且垂直于极轴的直线的极坐标方程为________. 3.在极坐标系中,曲线ρ=4cos(θ-π3)与直线ρsin(θ+π6)=1的两个交点之间的距离为________.4.在极坐标系中,P 是曲线ρ=12sin θ上的动点,Q 是曲线ρ=12cos ⎝⎛⎭⎫θ-π6上的动点,则|PQ |的最大值为________.5.圆心为C ⎝⎛⎭⎫3,π6,半径为3的圆的极坐标方程为______________________. 6.已知曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为θ=π6(ρ∈R ),曲线C 1,C 2相交于点M ,N .则线段MN 的长为________.7.已知极坐标系中,极点为O ,将点A ⎝⎛⎭⎫4,π6绕极点逆时针旋转π4得到点B ,且OA =OB ,则点B 的直角坐标为________.答案基础知识自主学习 要点梳理1.λ·x μ·y 伸缩变换2.(1)定点 射线 长度 角度 弧度 逆时针 (2)距离|OM | ρ xOM θ (ρ,θ) M (ρ,θ) ≥ 任意实数(3)(ρ,θ+2k π)(k ∈Z ) (0,θ)(θ∈R ) 无数 0≤θ<2π 极点 惟一 惟一3.(1)极点 极轴 长度单位 (2)ρcos θ ρsin θ x 2+y 2 yx(x ≠0) 4.ρ=r (0≤θ<2π) ρ=2r cos θ(-π2≤θ<π2) ρ=2r sin θ(0≤θ<π) θ=α(ρ∈R ) θ=π+α(ρ∈R )(2)θ=π+αρcos θ=a (-π2<θ<π2) ρsin θ=a (0<θ<π)夯基释疑1.直角 2.43 3.x 2+y 2-2x -y =0 4.(2,π6),(2,5π6)题型分类深度剖析例1 解 (1)设A ′(x ′,y ′),由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 得到⎩⎪⎨⎪⎧x ′=3x ,y ′=12y ,由于A (x ,y )为(13,-2),∴x ′=3×13=1,y ′=12×(-2)=-1,∴A ′的坐标为(1,-1).(2)设直线l ′上任意一点P ′(x ′,y ′),则 ⎩⎪⎨⎪⎧ x =13x ′,y =2y ′,将⎩⎪⎨⎪⎧x =13x ′y =2y ′代入y =6x 得2y ′=6×(13x ′),即y ′=x ′,∴直线l ′的方程为y =x .(3)设曲线C ′上任意一点P ′(x ′,y ′),则⎩⎪⎨⎪⎧x =13x ′,y =2y ′,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入x 2-y 264=1,得x ′29-4y ′264=1,化简得x ′29-y ′216=1,∴曲线C ′的方程为x 29-y 216=1.可见曲线C ′仍为双曲线,且焦点坐标为F 1(-5,0)、F 2(5,0).跟踪训练1 x 2+y 2=1解析 由⎩⎪⎨⎪⎧x ′=12x ,y ′=y得到⎩⎪⎨⎪⎧x =2x ′,y =y ′.①将①代入x 24+y 2=1得4x ′24+y ′2=1,即x ′2+y ′2=1.因此椭圆x 24+y 2=1经伸缩变换后得到的曲线方程是x 2+y 2=1.例222解析 将极坐标方程化为普通方程求解.ρ(2cos θ+sin θ)=1,即2ρcos θ+ρsin θ=1对应的普通方程为2x +y -1=0, ρ=a (a >0)对应的普通方程为x 2+y 2=a 2. 在2x +y -1=0中,令y =0,得x =22. 将⎝⎛⎭⎫22,0代入x 2+y 2=a 2得a =22. 跟踪训练2 1解析 极坐标系中点⎝⎛⎭⎫2,π6对应直角坐标系中坐标为(3,1),极坐标系直线ρsin θ=2对应直角坐标系中直线方程为y =2,∴点到直线y =2的距离为d =1. 例3 ρ2=23sin θsin (π3-θ)(0<θ<π3)解析 建立如图所示极坐标系,设动点M 坐标为(ρ,θ)(0<θ<π3).P 、Q 两点坐标分别为(ρ1,0),(ρ2,π3).则有12ρ1ρ2sin π3=8,①12ρρ1sin θ=4,② 12ρρ2sin(π3-θ)=4,③ ②×③得:14ρ2ρ1ρ2sin θsin(π3-θ)=16,④由①得ρ1ρ2=323代入④得 ρ2=23sin θsin (π3-θ)(0<θ<π3),即为所求极坐标方程.跟踪训练3 (1)1sin ⎝⎛⎭⎫π6-θ解析 如图,设P (ρ,θ)为直线上任一点, 在△OPM 中,|OM |sin ⎝⎛⎭⎫π6-θ=ρsin 56π,∴2sin ⎝⎛⎭⎫π6-θ=ρ12.∴ρ=1sin ⎝⎛⎭⎫π6-θ,即f (θ)=1sin ⎝⎛⎭⎫π6-θ.(2)ρ=2cos θ解析 在ρsin ⎝⎛⎭⎫θ-π3=-32中令θ=0,得ρ=1, 所以圆C 的圆心坐标为(1,0). 因为圆C 经过点P ⎝⎛⎭⎫2,π4, 所以圆C 的半径PC =(2)2+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ. 练出高分 A 组 1.⎝⎛⎭⎫1,-π2 解析 由ρ=-2sin θ得ρ2=-2ρsin θ,化成直角坐标方程为x 2+y 2=-2y ,化成标准方程为x 2+(y +1)2=1,圆心坐标为(0,-1),其对应的极坐标为⎝⎛⎭⎫1,-π2. 2.ρcos θ=1解析 过点(1,0)且与极轴垂直的直线,在直角坐标系中的方程为x =1,其极坐标方程为ρcos θ=1.3.⎩⎪⎨⎪⎧x ′=14xy ′=y解析 设此伸缩变换为⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (λ>0)代入x ′2+y ′216=1,得(λx )2+(μy )216=1,即16λ2x 2+μ2x 2=16.与x 2+y 2=16比较得⎩⎪⎨⎪⎧16λ2=1(λ>0),μ2=1(μ>0),故⎩⎪⎨⎪⎧ λ=14,μ=1,即所求变换为⎩⎪⎨⎪⎧x ′=14x ,y ′=y . 4. 3解析 极坐标系中的点⎝⎛⎭⎫2,π3化为平面直角坐标系中的点为(1,3);极坐标系中的圆ρ=2cos θ化为平面直角坐标系中的一般方程为x 2+y 2=2x ,即(x -1)2+y 2=1,其圆心为(1,0). ∴所求两点间的距离为(1-1)2+(3-0)2= 3. 5.(-33,-3)解析 点M 的直角坐标为x =ρcos θ=6cos116π=33,y =ρsin θ=6sin 116π=-3.即M (33,-3),所以它关于y 轴对称的点为(-33,-3). 6.ρsin θ=2解析 直线ρcos θ=2的直角坐标方程为x =2, 直线θ=π4的直角坐标方程为y =x ,所以所求的直线方程为y =2. 其极坐标方程为ρsin θ=2. 7.(2a 2,π4) 解析 两式相除得tan θ=1⇒θ=π4⇒ρ=a sin π4=2a 2.8.相离解析 直线的直角坐标方程为x -y +1=0,圆的直角坐标方程为(x -1)2+y 2=1,圆心为C (1,0),半径为r =1,圆心到直线的距离d =22=2>1.故直线与圆相离. 9. 3解析 直线2ρcos θ=1可化为2x =1,即x =12;圆ρ=2cos θ两边同乘ρ得ρ2=2ρcos θ,化为直角坐标方程是x 2+y 2=2x .将x =12代入x 2+y 2=2x 得y 2=34,∴y =±32. ∴弦长为2×32= 3. 10.2 3解析 将射线与曲线C 1的方程联立,得⎩⎪⎨⎪⎧ θ=π3,ρ=4sin θ,解得⎩⎪⎨⎪⎧ θ=π3,ρ=23,故点A 的极坐标为(23,π3), 同理由⎩⎪⎨⎪⎧ θ=π3,ρ=8sin θ,得⎩⎪⎨⎪⎧θ=π3,ρ=43,可得点B 的极坐标为⎝⎛⎭⎫43,π3, 所以|AB |=43-23=2 3.B 组1.-8或2解析 将极坐标方程化为直角坐标方程,得圆的方程为x 2+y 2=2x ,即(x -1)2+y 2=1,直线的方程为3x +4y +a =0.由题设知,圆心(1,0)到直线的距离为1, 即有|3×1+4×0+a |32+42=1, 解得a =-8或a =2.故a 的值为-8或2.2.ρcos θ=3解析 由ρ=6cos θ得,ρ2=6ρcos θ,又ρ2=x 2+y 2,x =ρcos θ,∴x 2+y 2=6x ,即(x -3)2+y 2=9,圆心为(3,0),故所求直线的极坐标方程为ρcos θ=3.3.2 3解析 由极坐标系与直角坐标系的互化关系可知曲线ρ=4cos(θ-π3)对应的直角坐标方程为x 2+y 2-2x -23y =0,即(x -1)2+(y -3)2=4,直线ρsin(θ+π6)=1对应的直角坐标方程为x +3y -2=0,所以两交点间的距离即为直线被圆截得的弦长的大小,由垂径定理可求得弦长为23,即两交点之间的距离为2 3.4.18解析 ∵ρ=12sin θ,∴ρ2=12ρsin θ,∴x 2+y 2-12y =0,即x 2+(y -6)2=36.又∵ρ=12cos ⎝⎛⎭⎫θ-π6,∴ρ2=12ρ⎝⎛⎭⎫cos θcos π6+sin θsin π6,∴x 2+y 2-63x -6y =0,∴(x -33)2+(y -3)2=36,∴|PQ |max =6+6+(33)2+32=18.5.ρ=6cos ⎝⎛⎭⎫θ-π6解析 如图,设圆上任一点为P (ρ,θ),则|OP |=ρ,∠POA =θ-π6,|OA |=2×3=6,在Rt △OAP 中,|OP |=|OA |×cos ∠POA ,∴ρ=6cos ⎝⎛⎭⎫θ-π6.∴圆的极坐标方程为ρ=6cos ⎝⎛⎭⎫θ-π6.6.2解析 由ρ=4sin θ,得ρ2=4ρsin θ,即曲线C 1的直角坐标方程为x 2+y 2-4y =0,由θ=π6(ρ∈R )得,曲线C 2的直角坐标方程为y =33x .把y =33x 代入x 2+y 2-4y =0,得x 2+13x 2-433x =0,即43x 2-433x =0,解得x 1=0,x 2=3,∴y 1=0,y 2=1.∴|MN |=(3)2+1=2.即线段MN 的长为2.7.(6-2,6+2)解析 依题意,点B 的极坐标为⎝⎛⎭⎫4,5π12, ∵cos 5π12=cos ⎝⎛⎭⎫π4+π6 =cos π4cos π6-sin π4sin π6=22×32-22×12=6-24, sin5π12=sin ⎝⎛⎭⎫π4+π6 =sin π4cos π6+cos π4sin π6=22×32+22×12=6+24, ∴x =ρcos θ=4×6-24=6-2, y =ρsin θ=4×6+24=6+ 2.。

第一讲--坐标系-平面直角坐标系

第一讲--坐标系-平面直角坐标系

x
上述变换实质上就是一个坐标的伸长变换
即:设P(x,y)是平面直角坐标系中任意一点,
设P(x, y)是平面直角坐标系中任意一点,保持横坐标
x不变,将纵坐标y伸长为原来的3倍,得到点P ′(x ′,y ′)坐
标对应关系为:
x x
y
3
y

我们把②式叫做平面直角坐标系中的一个坐标伸长变换.
怎样由正弦曲线y=sinx得到曲线y=3sin2x?
E
设A(m, 0), B(n, 0), C(0,p) 求出CF、BE的斜率即可
A
FO B x
坐标法 建系时,根据几何特点选择适当的直角坐标系,
注意以下原则:
(1)如果图形有对称中心,可以选对称中心为坐标原点;
(2)如果图形有对称轴,可以选择对称轴为坐标轴;
(3)使图形上的特殊点尽可能多的在坐标轴上。
③在伸缩变换下,平面直角坐标系不变,在同一直 角坐标系下进行伸缩变换。
例1 在直角坐标系中,求下列方程所对应的图形
经过伸缩变换:
x 2x
y
3
y
后的图形。
(1) 2x+3y=0;
(2) x2+y2=1
x 2x
解:(1)由伸缩变换
y

3
y
x
得到
y
1 x 2 1 y
代入
2x+3y=0;
3
得到经过伸缩变换后的图形的方程是 x y 0
练习:CA、CO为半径为1的圆C上 y
互相垂直的两条半径,A、O为定
点,P是以O为端点的动弦的中点,
求A、P间的最短距离
O
分析:以O为原点,OC所在直线为x轴 建立坐标系

第一讲 坐标系 本讲优化总结

第一讲 坐标系 本讲优化总结

第一讲
坐标系
高考真题选萃
栏目 导引
第一讲
坐标系
讲末综合检测
栏目 导引
第一讲
坐标系
本部分内容讲解结束
按ESC键退出全屏播放
栏目 导引
设半圆半径为 r,P 点坐标为 (ρ,θ), ∵OQ-OP=PR 且 PR= OP· sin θ, r ∴r- ρ=ρsin θ,∴ ρ= (0≤θ≤π). 1+ sin θ
栏目 导引
第一讲
坐标系
【名师点评】
利用极坐标求动点的轨迹方程时 ,首先
应选择好极点与极轴,使问题尽量简化.
栏目 导引
第一讲
→ →
【解】 椭圆方程化为极坐标方程得 2 2 ρ2cos2θ ρ2sin2θ a b 2 + = 1, 即 ρ = 2 2 2 2 2 , a b a - c cos θ ab ∴ ρ= 2 2 2 . a - c cos θ π 设 A(ρ1,θ),B(ρ2,θ+ ), 2 1 ∴ S△ AOB= ρ1ρ2 2
a2b2 = 2 2 . b sin θ+ a2cos2θ 在 Rt△ AOB 中 ,|OH|· |AB|= |OA|· |OB|, |AB|2= |OA|2+ |OB|2, 2 2 2 2 | OA | · | OB | ρ ρ2 1 1· 2 因此 |OH| = = 2 = 1 1 |AB|2 ρ2+ ρ2 1 2+ 2 ρ1 ρ2
遇到不太熟悉的极坐标方程的曲线的
位置关系问题,可化为常见的直角坐标方程来解决.因此, 要正确进行点和方程的极坐标和直角坐标的互化.
栏目 导引
第一讲
坐标系
专题五
利用极坐标求轨迹方程
例5 已知半圆O,求所有与半圆直径AB相切,且和半圆 内切的动圆圆心P的轨迹方程.

第1讲-极坐标系

第1讲-极坐标系
课 前 自 主 导 学
,x 轴的
当 堂 双 基 达 标
正半轴作为 极轴 , 并在两种坐标系中取相同的 长度单位 , 如图 1-2-1 所示.
课 堂 互 动 探 究
课 时 作 业
图 1-2-1


新课标 ·数学 选修4-4
(2)互化公式:设 M 是平面内任意一点,它的直角坐标是
课 前 自 主 导 学
课 时 作 业


新课标 ·数学 选修4-4
课 前 自 主 导 学
1.点的极坐标与直角坐标的互化公式的三个前提条件: ①极点与直角坐标系的原点重合;②极轴与直角坐标系的 x 轴的正半轴重合;③两种坐标系的长度单位相同.
当 堂 双 基 达 标
课 堂 互 动 探 究
2.将点的极坐标(ρ,θ)化为点的直角坐标(x,y)时,运用 到求角 θ 的正弦值和余弦值, 熟练掌握特殊角的三角函数值, 灵活运用三角恒等变换公式是关键.
欲写出点的极坐标,首先应确定 ρ 和 θ
课 时 作 业


新课标 ·数学 选修4-4
π 【自主解答】 如图所示, 关于极轴的对称点为 B(2, -3).
课 前 自 主 导 学 当 堂 双 基 达 标
课 堂 互 动 探 究
2 关于直线 l 的对称点为 C(2,3π). 2 关于极点 O 的对称点为 D(2,- π). 3 四个点 A,B,C,D 都在以极点为圆心,2 为半径的圆 上.
(x,y),极坐标是(ρ,θ),于是极坐标与直角坐标的互化公式 如表: 点M 直角坐标(x,y) 极坐标(ρ,θ) ρ2= x2+y2 y tan θ= (x≠0) x
当 堂 双 基 达 标
课 堂 互 动 探 究

第1讲 第1节平面直角坐标系

第1讲 第1节平面直角坐标系

P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简 伸缩变换 . 称__________
3.三角函数的伸缩变换 由函数 y=sin x 的图象通过变换得到 y=Asin(ωx+φ)的图 象,方法一(先平移后伸缩): 向左φ>0或向右φ<0 y=sin(x+φ) y = sin x 的图象 ―――――→ ________________ 平移|φ|个单位长度 1 横坐标变为原来的 倍 ω y=sin(ωx+φ) 的图象 ―――――→ _________________ 的图象 纵坐标不变 纵坐标变为原来的A倍 ――→ y=Asin(ωx+φ)的图象. 横坐标不变
[思路点拨]
(1)建立适当坐标系;
(2)用坐标和方程表示出|PM|= 2|PN|; (3)代入坐标,求出(x,y)关系式.
• [解题过程] 如下图,以直线O1O2为x轴,线 段O1O2的垂直平分线为y轴,建立平面直角坐 标系,则两圆心的坐标分别为O1(-2,0), O2(2,0).
[变式训练]
2.在平面直角坐标系中,求下列方程所对应 后的图形,
x′=2x 的图形经过伸缩变换 y′=4y
(1)2x+4y=a; (2)x2+y2=r2(r≠0).
解析:
1 x=2x′ x ′ = 2 x (1)由伸缩变换 ,得到 y′=4y y=1y′ 4
第一 讲
坐标系
•第一节 平面直角坐标系
• 某村庄P处有一堆肥料,现要把这堆肥料沿 道路PA或PB送到成矩形的一块田地ABCD中 去,已知PA=100米,PB=150米,BC=60 米,∠APB=60°. • 能否在田中确定一条界线,使位于界线左侧 的点沿道路PA送肥料较近,而右侧的点沿PB 送肥料较近?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因为 x y c BE ( c, ), CF ( x, y ), 2 2 2 2 x c y 所以BE CF ( c)( x) 0. 2 2 2
所以2x2+2y2+2c2-5cx=0.
=-(2x2+2y2+2c2-5cx)/4=0
因此,BE与CF互相垂直.
4

4 3
HO
G
X
F
5 Q3
一般地,不作特别说明,我们认为≥0,可以取 任意实数。 约定:极点的极坐标是=0,可以取任意角。
0, R
建立了极坐标后,给定ρ、,就可以在平面内惟一 确定点M, 反过来,给定平面内任意一点,也可以找到它的 极坐标(,)。
点与它的极坐标是否一一对应?
x' x 1 D y' y 1
2 2 x y 2 x 0 变成曲线 x'2 16 y'2 4 x' 0 4 曲线
的伸缩变换是
.
x' 2 x x' 2 x 与伸缩变换 y' 2 y 的作用下, 5 在伸缩变换 y' y
同理,PN = ( x 2) y 1
2 2
2 2 2 2 ( x 2 ) 则PM =PO1 -MO1 = 2 2 2
y2 1
( x 2)2 y 2 1 2[( x 2)2 y 2 1]
x 12x y 3 0, ( x 6) y 33,
第一讲 坐标系
一 平面直角坐标系
观测点
声响定位问题
某中心接到其正东、 正西、正北方向三个观测 观测点 信息中心 点的报告:正西、正北两 y 个观测点同时听到一声巨 响,正东观测点听到巨响 C 的时间比其他两个观测点 晚4s,已知各观测点到中 P 心的距离都是1020m,试 确定该巨响的位置。(假定 当时声音传播的速度为 O 340m/s,各相关点均在同 B 一平面上). 观测点
分析上面这句话,他告诉了问路人什么?
从教学楼向北偏西400走50米! 出发点
方向 (角度)
距离
在生活中人们经常用一个基点、参照方向和距离 来表示一点的位置
——它直观、方便
这种用一个基点、参照方向和距离表示平面上一点 的位置的思想,就是极坐标的基本思想。
极坐标系的概念: 在平面内取一个定点O,叫做极点。 自极点引一条射线OX,叫做极轴。 再选定一个长度单位和角度单位(一般用弧度制) 及它的正方向(通常取逆时针方向)。
x
即在正弦曲线y=sinx上任取一点P(x,y),若设点P(x,y) 经变换得到点为P’(x’, y’),坐标对应关系为: 1 x x 2 ③ y 3 y 把这样的变换叫做平面直角坐标系中的一个坐标伸缩变换
定义: 设P(x, y)是平面直角坐标系中任意一点,在变换:
2 2
二 平面直角坐标系 中的伸缩变换
思考: 怎样由正弦曲线y=sinx得到曲线y=sin2x?
y
O

2
x
在正弦曲线y=sinx上任取一点P(x, y),保持纵坐标不 变,将横坐标x缩为原来的1/2,就得到正弦曲线y=sin2x。 上述变换实质上就是一个坐标的压缩变换 即:设P(x,y)是平面直角坐标系中任意一点, 保持纵坐标y不变,将横坐标x缩为原来1/2,得到点 P’(x’, y’),坐标对应关系为: 1 我们把①式叫做平面直角坐 x x 2 ① 标系中的一个坐标压缩变换。 y y
x2 y2 1( x 0) 所以双曲线的方程为: 2 2 680 5 340
用y=-x代入上式,得 x 680 5 , y 680 5 ,
坐标法
建系时,根据几何特点选择适当的直角坐标系, 注意以下原则: (1)如果图形有对称中心,可以选对称中心为坐标原点; (2)如果图形有对称轴,可以选择对称轴为坐标轴; (3)使图形上的特殊点尽可能多的在坐标轴上。
x' x : y' y ( 0) ( 0)
的作用下,点P(x, y) 对应P’(x’, y’). 称 为平面直角坐标系中的伸缩变换。 上述①②③都是坐标伸缩变换,在它们的作用下, 可以实现平面图形的伸缩。
① 0, 0 ②把图形看成点的运动轨迹,平面图形的伸缩变换 可以用坐标伸缩变换得到; ③在伸缩变换下,平面直角坐标系不变,在同一直 角坐标系下进行伸缩变换。
例3 在直角坐标系中,求下列方程所对应的图形 经过伸缩变换: x 2 x y 3 y 后的图形。 (2) x2+y2=1 (1) 2x+3y=0;
x x 2 x 解:(1)由伸缩变换 得到 y 3y y;
1 x x 2 (2)将 1 y y 3
在同一极坐标系中, 有如下极坐标:
5 11 7 (6, ), (6, ), (6, ), (6, ) 3 3 3 3

这些极坐标之间有何异同?
极径相同,极角不同。 这些极角有何关系? 极角的始边相同,终边也相同, 即:它们是终边相同的角。 这些极坐标所表示的点有什么关系? 它们表示同一个点。
例1.已知△ABC的三边a, b, c满足b2+c2=5a2,BE,CF 分别为边AC, CF上的中线,建立适当的平面直角坐标系 y 探究BE与CF的位置关系。 C 解:以△ABC的顶点A为原 点O,边AB所在的直线x轴,建立 E 直角坐标系,由已知,点A、B、 F的坐标分别为 A(0, 0) , B(c, 0) , F(c/2, 0). O (A) F Bx 设C点坐标为(x,y),则点E的坐标为(x/2,y/2), 由b2+c2=5a2,|AC|2+|AB|2=5|BC|2, 即x2+y2+c2=5[(x-c)2+y2],
后的曲线方程是 . )
4 x'2 9 y'2 36 则曲线C的方程是
3 将点(2,3)变成点(3,2)的伸缩变换是(
x' A y' 2 x 3 3 y 2
x' B y' 3 x 2 2 y 3
x' y C y' x
例1 说出下图 中各点的极坐标 标出(2, π/6), (4, 3π/4), (3.5, 5π/3) 所在位置。

2

4
C
5 6

4 3
E
D O
B
A X
F
G
5 3
练习: 在图中标出点
5 H ( 3, ), P (4, ), Q(6, ) 6 2 3

2

5 6
P
C E D B A
点的极坐标的统一表达式: 一般地: 极坐标 , 与 , 2k k Z 表示同一个点。 平面内点的极坐标有无数种表示。 点的直角坐标呢? 当极角的取值范围 是[0,2π)时,
M
O
X
平面上的点(除去极点)就与极坐标(,)建立 一一对应的关系.我们约定,极点的极坐标是极径 =0,极角是任意角。
极坐标与直角坐标的区别:
平面直角坐系 定位 方式 点与 坐标 要素 本质 横坐标、纵坐标 极坐标系 角度和距离
点与坐标 点与极坐标不 一一对应 一一对应 原点,x,y 极点,极轴,长 轴长度单位和正 度单位;角度单位和 方向 正方向 两直线相交定点 圆与射线相交定点
练习
四个坐标中能表示点M的坐标是( )
由|PA|=|PB|得 x 6 y 5 0
2
第一讲 坐标系
极坐标系
如图为某校园的平面示意图,假设某同学在教学楼处。 (1)他向东偏600方向走 (2)如果有人打听体 120m后到达什么位置?该 育馆和办公楼的位置,他 位置惟一确定吗? 应如何描述?
实验楼
图书馆
120m 办公楼 40度 60度 50m 教学楼 60m 体育馆
单位圆x 2 y 2 1 分别变成什么图形?
6. 已知点A为定点,线段BC在定直线 l 上滑动,已知 |BC|=4,点A到直线 l 的距离为3,求∆ABC的外心的 轨迹方程。
以 l 为X轴,过定点A垂直于X轴的直线为Y轴建 立直角坐标系, 设∆ABC外心为P(x,y), 则A(0,3)B(x-2, 0)C(x+2, 0),
直线仍然变成直线, 而圆可以变成椭圆, 那么椭圆可以变成圆吗? 抛物线、双曲线变成什么曲线?
练习:
x' 2 x 1 求下列点经过伸缩变换 后的点的坐标: y' 3 y
①(1,2); ②(-2,-1).
2 曲线C经过伸缩变换
x' y'
1 x 3 1 y 2
1 已知点M的极坐标为 5, ,下列所给出的 3
A. C.
5, 3
2 5, 3
B.
D.
4 5, 3 5 5, 3
2 在极坐标系中,已知三点 M ( 2, ), N (1,0), P ( 2 3 , ) 3 6 判断M, N, P三点是否在一条直线x轴,建立直角 坐标系.设A、B、C分别是西、东、北观测点, 则 A(1020, 0), B(-1020, 0), C(0, 1020) 设P(x, y)为巨响声点, y 由B、C同时听到巨响声,得|PC|=|PB|, C P 故P在BC的垂直平分线PO上, PO 的方程为 - x5 , 即P (680 5y= ,680 ), 故PO 680 10 B 因 A点比B点晚4s听到爆炸声,450, 距中心 680 o A m x 10 答: 巨响发生在信息中心的西偏北 故|PA|- |PB|=340×4=1360 x2 y2 由双曲线定义P点在以A, B为焦点的双曲线 2 2 1 上 a b a=680, c=1020, b2=c2-a2=10202-6802=5×3402.
相关文档
最新文档