小学数学六年级上册知识点总结

合集下载

小学数学六年级上册40个重要知识点归纳

小学数学六年级上册40个重要知识点归纳

1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零。

3.分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。

6.分数的倒数:找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/3。

3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7.整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是1/12,12是1/12的倒数。

8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/1。

9.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。

分数、整数也都使用这种规律。

10.分数除法:分数除法是分数乘法的逆运算。

11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13.分数除法应用题:先找单位1。

单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

六年级上册数学知识点(15篇)

六年级上册数学知识点(15篇)

六年级上册数学知识点(15篇)六年级上册数学知识点1扇形统计图的意义:1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。

2、常用统计图的优点:(1)条形统计图直观显示每个数量的多少。

(2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。

(3)扇形统计图直观显示部分和总量的关系。

数学广角——数与形:2+4+6+8+10+12+14+16+18+20=(110)规律:从2开始的n个连续偶数的和等于n×(n+1)。

10×(10+1)=10×11=110从1开始的连续奇数的和正好是这串数个数的平方。

位置与方向:1、什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右为列数和行数,即“先列后行”。

数对的作用:确定一个点的位置。

经度和纬度就是这个原理。

2、确定物体位置的方法:(1)、先找观测点;(2)、再定方向(看方向夹角的度数);(3)、最后确定距离(看比例尺)。

描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。

位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。

相对位置:东——西;南——北;南偏东——北偏西。

数学梯形面积与周长公式:梯形的面积公式:(上底+下底)×高÷2。

用字母表示:(a+b)×h÷2梯形的面积公式2:中位线×高用字母表示:l·h(l表示中位线长度)另外对角线互相垂直的梯形:对角线×对角线÷2梯形的周长公式:上底+下底+腰+腰,用字母表示:L=a+b+c+d等腰梯形的周长公式:上底+下底+2腰,用字母表示:a+c+2b。

数学分数的加减法知识点:1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。

小学六年级上数学重点知识点归纳

小学六年级上数学重点知识点归纳

一、整数运算
1.整数的概念和表示法
2.整数的相反数和绝对值
3.整数的加减法运算
4.整数的乘法运算
5.整数的除法运算
二、小数和分数
1.小数的概念和表示法
2.小数的加减法运算
3.小数的乘法运算
4.小数的除法运算
5.分数的概念和表示法
6.分数的加减法运算
7.分数的乘法运算
8.分数的除法运算
三、平方根
1.平方根的概念
2.平方根的求法和性质
四、面积与体积
1.平面图形的面积计算(矩形、正方形、三角形、梯形)
2.立体图形的体积计算(长方体、正方体、棱柱)
五、比和比例
1.比的概念和表示法
2.比的相等性质和比的大小性质
3.比例的概念和表示法
4.比例的等比性质和比例的大小性质
5.解比例问题的方法
六、图形的相似
1.相似图形的概念和性质
2.相似三角形的性质
3.两个图形是否相似的判断方法
七、统计与概率
1.数据的收集和整理方法
2.数据的图表表示
3.数据的统计指标(平均数、中位数、众数)
4.概率的概念和计算方法
总结:以上是小学六年级上数学重点知识点的归纳。

掌握这些知识点可以帮助学生在数学学习中打下坚实的基础,并为进一步学习中学阶段的数学知识做好准备。

数学六年级上册知识点总结

数学六年级上册知识点总结

数学六年级上册知识点总结全文共四篇示例,供读者参考第一篇示例:六年级上册数学知识点总结六年级上册数学主要内容包括数的认识、四则运算、约数和倍数、小数、分数和比例、图形和空间等内容。

下面将对这些知识点进行总结。

一、数的认识1. 整数的概念:整数包括自然数、零和负整数,用负整数表示亏损,如-2表示亏损2元。

2. 整数的比较:在数轴上,数值较小的整数在数轴左侧,数值较大的整数在数轴右侧,绝对值较小的整数靠近原点。

3. 整数的加减法:整数的加减法要根据正负数的规则进行计算。

二、四则运算1. 加法的运算法则:加法是求两个数的和,可以遵循交换律和结合律,即a+b=b+a,(a+b)+c=a+(b+c)。

2. 减法的运算法则:减法是求两个数的差,可以通过加法来计算,即a-b=a+(-b)。

3. 乘法的运算法则:乘法是求两个数的积,可以遵循交换律和结合律,即a×b=b×a,(a×b)×c=a×(b×c)。

4. 除法的运算法则:除法是求两个数的商,要注意除数不能为零,除法可以化为乘法,即a÷b=a×(1/b)。

三、约数和倍数1. 约数:一个数能被另一个数整除,这个数就是另一个数的约数,如6的约数有1、2、3、6。

2. 倍数:一个数乘以另一个数,得到的结果就是这个数的倍数,如6的倍数有6、12、18、24。

四、小数1. 小数的读法和写法:小数点的右边表示小数部分,如0.25读作零点二五,写作0.25。

2. 小数和分数的关系:小数和分数都是表示有限小数、无限循环小数的一种形式,分数和小数可以相互转化。

五、分数和比例1. 分数的概念:分数是一种表示部分与整体之间关系的数学形式,由分子和分母组成,如1/2表示整体的一半。

2. 比例的概念:比例是两个量直接的等比关系,可以表示成a:b或a/b的形式。

3. 分数的加减乘除:分数的加减乘除要根据分数的性质进行计算,如乘法是分子乘以分子、分母乘以分母。

小学六年级上册数学知识点总结

小学六年级上册数学知识点总结

小学六年级上册数学知识点总结一、整数运算1. 整数的认识和表示整数包括正整数、负整数及零,用数轴表示可以很直观地理解整数。

正整数向右延伸,负整数向左延伸,零位于中间。

2. 整数的加法和减法整数的加法和减法遵循以下规则:- 正数加正数,结果为正数;- 负数加负数,结果为负数; - 正数加负数,结果的符号取决于数的绝对值,绝对值较大的数的符号为结果的符号。

3. 整数的乘法和除法整数的乘法和除法遵循以下规则: - 两个正数相乘或相除,结果为正数; - 两个负数相乘或相除,结果为正数; - 正数和负数相乘或相除,结果为负数; - 零乘以任何数都得零; - 非零数除以零是没有意义的。

4. 混合运算整数的加减乘除可以进行混合运算,按照运算顺序先乘除后加减,也可以使用括号改变运算顺序。

二、分数运算1. 分数的认识和表示分数由分子和分母组成,分子表示被分割成的份数,分母表示总份数。

通过分数,可以表示整数之间的数。

分数可以转换为小数,相应地,小数也可以转换为分数。

2. 分数的加法和减法分数的加法和减法需要先找到两个分数的公共分母,然后按照公共分母进行计算。

3. 分数的乘法和除法分数的乘法只需将两个分数的分子相乘,分母相乘;分数的除法只需将除数的分子乘以被除数的分母,分母乘以除数的分子。

在进行乘法和除法计算时,可以先约分,然后进行运算。

三、三角形和四边形1. 三角形三角形是由三条边组成的图形,常见的三角形有等边三角形、等腰三角形和普通三角形。

根据三角形的性质,可以求解三角形的周长和面积。

2. 四边形四边形是由四条边组成的图形,常见的四边形有正方形、长方形、平行四边形和梯形。

根据四边形的性质,可以求解四边形的周长和面积。

四、数据统计1. 数据的收集和整理收集数据时要关注数据的来源和真实性,并使用表格或图表对数据进行整理和展示。

2. 数据的分析和描述对收集到的数据进行分析和描述,比如计算均值、中位数、众数等。

3. 数据的预测和推断根据已有数据的趋势和规律,对未来的数据进行预测和推断。

六年级上册数学知识点总结

六年级上册数学知识点总结

六年级上册数学知识点总结小学六年级上册数学知识点总结篇一1、理解比例的意义和基本性质,会解比例。

2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4、解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

7、比例的意义:表示两个比相等的式子叫做比例。

如:2:1=6:8、组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

9、比例的性质:在比例里,两个外项的积等于两个两个内向的积。

这叫做比例的基本性质。

例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。

10、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。

11、正比例和反比例:(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示y/x=k(一定)例如:①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。

③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。

④y=5x,y和x成正比例,因为:y÷x=5(一定)。

小学六年级上册数学(整理知识点)

小学六年级上册数学(整理知识点)

小学六年级上册数学(整理知识点)整数- 正整数和负整数是整数的两个主要概念。

- 整数可以用于表示负债、温度、海拔等概念。

- 整数的加法和减法遵循相反数和绝对值的规则。

- 整数的乘法遵循正负数相乘的规则。

分数- 分数是由整数和分母组成的有理数。

- 分子表示分数的部分,分母表示总分的部分。

- 分数可以用于表示部分或比例的概念。

- 分数的加法和减法需要找到相同的分母,然后进行运算。

- 分数的乘法遵循分子相乘,分母相乘的规则。

- 分数的除法可以转化为乘以倒数的形式来计算。

小数- 小数是由整数和小数部分组成的有理数。

- 小数可以用于表示度量单位、货币等。

- 小数可以转化为分数形式进行计算。

- 小数的加法和减法直接在小数点对齐后进行计算。

- 小数的乘法和除法可以先转化为简单的整数计算。

数据统计- 数据统计是对收集到的数据进行整理和分析的方法。

- 常用的数据统计方法有平均数、中位数和众数。

- 平均数是所有数据之和除以数据个数的结果。

- 中位数是将数据按大小排列后,找到中间位置的数。

- 众数是数据中出现次数最多的数。

图形的认识- 图形是由点、线、面组成的。

- 常见的图形有点、线、线段、射线、角、三角形、四边形等。

- 图形有不同的属性,如边的长度和角的大小。

- 图形可以通过平移、翻转和旋转进行变换。

- 图形的相似性可以通过拓扑和形状相似进行判断。

运算符- 四则运算是基本的数学运算。

- 运算符有加法、减法、乘法和除法。

- 运算符遵循先乘除后加减的优先级规则。

- 括号可用于改变运算的顺序。

- 运算符可以组合使用,如加减乘除的混合运算。

位置与方向- 位置和方向是描述物体相对位置和移动方向的概念。

- 按照坐标轴的正方向,可以确定物体的位置。

- 方位词用来描述物体在空间中的位置关系,如前、后、左、右。

- 方向可以通过角度和朝向来表示,如直角、钝角、锐角等。

- 位置和方向的概念可以应用于图形的平移和旋转等操作。

时间- 时间是用来标记事件发生顺序的概念。

小学六年级上册数学知识点总结归纳(绝对经典)

小学六年级上册数学知识点总结归纳(绝对经典)

小学六年级上册数学知识点总结归纳第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。

2、数对可以表示物体的位置,也可以确定物体的位置。

3、数对表示位置的方法:先表示列,再表示行。

用括号把代表列和行的数字或字母括起来,再用逗号隔开。

例如:(7,9)表示第七列第九行。

4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。

如:(2,4)和(2,7)都在第2列上。

5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。

如:(3,6)和(1,6)都在第6行上。

6、物体向左、右平移,行数不变,列数减去或加上平移的各数。

物体向上、下平移,列数不变,行数减去或加上平移的各数。

第二单元分数乘法(一)、分数乘法的意义。

1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。

2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

例如:6×512,表示:6的512是多少。

2 7×512,表示:27的512是多少。

(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3、注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数,所得的积大于它本身。

2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

(四)、解决实际问题。

1分数应用题一般解题步行骤。

(1)找出含有分率的关键句。

小学六年级数学全册知识点归纳

小学六年级数学全册知识点归纳

一、数与代数1.数的读法:百分数、小数、分数、整数2.数的大小比较:大小关系、用大小符号表示大小关系3.数的进位与退位:百位、千位、万位4.数的四则运算:加法、减法、乘法、除法5.数的倍数和约数:倍数的概念、约数的概念6.乘法的应用:乘法与加法、乘法与减法、乘法与除法7.除法的应用:商的概念、余数的概念、数的整除性质8.分数的认识与比大小:分数的概念、分数的大小比较、分数的简化与扩展9.分数的四则运算:分数的加法、分数的减法、分数的乘法、分数的除法10.整数的认识:正整数、负整数、零、整数的大小比较11.纸带图与有向数线:纸带图的绘制、有向数线的绘制、正负数坐标轴上数的位置表示二、空间与图形1.点、线、面:点的认识、线的认识、面的认识2.平面图形:三角形、四边形、多边形、圆形、椭圆形、正方形、长方形、平行四边形、直角三角形、等腰三角形、等边三角形3.立体图形:长方体、正方体、棱柱、棱锥、棱台、球、圆柱、圆锥、圆台4.图形的名称和性质:平行四边形、矩形、正方形、菱形、三角形、四边形等5.平面镜像与空间镜像:平面图形的镜像、立体图形的镜像6.位置与方向:方向的认识、位置的认识、位置关系的认识三、量的认识与运用1.长度的换算:米与厘米的换算、分米与厘米的换算、运用换算计算长度2.长度和重量的比较:比较长度的大小、比较重量的大小3.时间的认识与计算:时、分、秒的认识、时间段的计算、时钟的读法4.面积的认识与计算:长方形的面积计算、正方形的面积计算5.体积的认识与计算:长方体的体积计算、正方体的体积计算6.资料的收集和整理:资料的收集方法、用表格整理资料四、数据的收集与处理2.数据的处理与分析:数据的整理、数据的比较、数据的运算3.数据的表示与解释:数据的图表表示、图表的读取与解读五、解决问题的策略与方法1.数学问题求解:分析问题、选择适当的计算方法、验证和总结解答结果2.解决实际问题:问题与计算、问题与图形3.数学建模:抽象、分析、解决。

新课标小学六年级数学上册知识点总结及复习要点

新课标小学六年级数学上册知识点总结及复习要点

新课标小学六年级数学上册知识点总结及复习要点一、数与代数(一)分数与百分数1分数的性质定义:分数表示部分与整体的关系,其值由分子和分母共同决定。

性质:分子相同时,分母越大,分数越小;分母相同时,分子越大,分数越大。

此外,分数还有等值性质,即分子、分母可以同时乘以或除以同一个非零数,分数值不变。

例子:比较分数3/4和6/8。

虽然它们的分子和分母都不同,但通过等值性质,我们可以发现3/4=6/8,因为它们都可以简化为3/4。

2分数的运算加减法则:同分母的分数相加减,分母不变,分子相加减;异分母的分数相加减,先通分,再按同分母分数相加减的法则进行计算。

乘除法则:分数乘以整数,分母不变,分子乘以整数;分数乘分数,用分子乘分子,分母乘分母;分数除以整数(0除外),等于分数乘以这个整数的倒数;分数除以分数,等于被除数乘以除数的倒数。

例子:计算1/2 + 1/3。

首先通分,得到3/6 + 2/6 = 5/6。

3百分数的理解与应用定义:百分数是表示一个数是另一个数的百分之几的数,也叫百分率或百分比。

性质:百分数可以方便地用于比较不同量纲的数据,如比较不同产品的合格率、增长率等。

转换:百分数可以方便地转换为小数和分数,反之亦然。

例如,25%等于0.25或1/4。

例子:某班有50名学生,其中40名通过了数学考试。

求该班的通过率。

根据百分数的定义,通过率= (通过的学生数/ 总学生数) ×100% = (40 / 50) ×100% = 80%。

(二)整数与小数1整数的性质定义:整数是包括正整数、零和负整数的数集。

运算:整数可以进行加、减、乘、除等基本运算,遵循相应的运算法则。

例子:计算3 + 5 - 2 = 6。

2小数的性质定义:小数是表示分数的一种形式,由整数部分和小数部分组成。

性质:小数可以表示分数和非整数的有理数,具有十进制的特点。

运算:小数可以进行加、减、乘、除等基本运算,需要注意小数点对齐和进位或退位。

六年级数学上册知识点归纳

六年级数学上册知识点归纳

六年级数学上册知识点归纳小学六年级数学学问点1.1整数和整除的意义1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,??,叫做负整数3.零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b,假如除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。

1.2因数和倍数1.假如整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4.一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.在正整数中(除1外),与奇数相邻的两个数是偶数3.在正整数中,与偶数相邻的两个数是奇数4.个位数字是0,5的数都能被5整除5.0是偶数1.4素数、合数与分解素因数1.只含有因数1及本身的整数叫做素数或质数2.除了1及本身还有别的因数,这样的数叫做合数3.1既不是素数也不是合数4.奇数和偶数统称为正整数,素数、合数和1统称为正整数5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。

7.通常用什么方法分解素因数:树枝分解法,短除法1.5公因数与最大公因数1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数4.假如两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数5.假如两个数是互素数,那么这两个数的最大公因数是小学六年级数学复习方法一、要明确复习的目的、任务, 从实际启程复习绝不能搞成简洁的机械重复。

应通过复习系统整理小学阶段所学的数学根底学问,理清学问的重点和关键, 搞清学问间的内在联系, 使学生的四那么计算实力、初步的逻辑思维实力和空间观念在原有的根底上得到进一步的提高。

小学六年级上册数学各单元知识点

小学六年级上册数学各单元知识点

小学六年级上册数学各单元知识点小学六年级上册数学共有十一个单元,每个单元的知识点如下:1. 第一单元:数与代数- 数的认识:数的读法、数的大小比较- 数的加法和减法:竖式计算、交换律和结合律- 乘法口诀表:认识并背诵乘法口诀表2. 第二单元:整数- 正数、负数:了解正数和负数的概念- 整数的加法和减法:正数相加、正数和负数相加、负数相加- 整数的乘法:相乘的规律3. 第三单元:图形与坐标- 点、线、面:了解图形的基本概念- 线段的长度:如何测量线段的长度- 坐标系:认识平面直角坐标系4. 第四单元:图形的变换- 平移、翻转、旋转:了解图形的基本变换操作- 关于对称轴的对称:认识图形的对称性5. 第五单元:小数- 小数的认识:了解小数的概念和读法- 小数的加法和减法:竖式计算- 小数的乘法和除法:带小数点的乘法和除法计算6. 第六单元:百分数- 百分数的认识:了解百分数的概念和读法- 百分数的表示和转化:将百分数转化为小数、将小数转化为百分数- 百分数的加法和减法:竖式计算7. 第七单元:平方与平方根- 平方数:认识平方数和平方根的概念- 计算平方:计算一个数的平方- 开平方:计算一个数的平方根8. 第八单元:长方体的面积和体积- 长方体的面积:计算长方体各个面的面积、计算总面积- 长方体的体积:计算长方体的体积9. 第九单元:圆- 圆的认识:了解圆的概念和相关术语- 圆的面积和周长:计算圆的面积和周长10. 第十单元:时间- 时钟的认识:了解时、分、秒的概念- 时钟的读法:读时、读分、读秒- 时钟的计算:计算时间差、计算时间段11. 第十一单元:数据的处理- 统计图表:了解柱状图和折线图的制作和分析- 数据的整理和处理:收集数据、整理数据、分析数据以上是小学六年级上册数学各单元的知识点,希望对你有帮助!。

小学六年级上册数学知识点总结归纳(绝对经典)

小学六年级上册数学知识点总结归纳(绝对经典)

小学六年级上册数学知识点总结归纳(绝对经典)第一单元:位置在数学中,我们经常需要描述物体的位置。

为了方便,我们引入了行和列的概念。

竖排叫做列,横排叫做行。

数对可以表示物体的位置,先表示列,再表示行。

例如,(7,9)表示第七列第九行。

如果两个数对前一个数相同,说明它们所表示物体位置在同一列上;如果后一个数相同,说明它们所表示物体位置在同一行上。

物体向左、右平移,行数不变,列数减去或加上平移的各数。

物体向上、下平移,列数不变,行数减去或加上平移的各数。

第二单元:分数乘法分数乘法可以分为分数乘整数和分数乘分数两种情况。

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

例如,6×1/2,表示:6个1/2相加是多少,还表示的6倍是多少。

一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

例如,6×2/5,表示:6的2/5是多少。

分数乘法的计算法则:整数和分数相乘,整数和分子相乘的积作分子,分母不变。

分数和分数相乘,分子相乘的积作分子,分母相乘的积作分母。

能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

分数大小的比较:一个数(除外)乘以一个真分数,所得的积小于它本身。

一个数(除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(除外)乘以一个带分数,所得的积大于它本身。

在解决实际问题时,我们可以先找出含有分率的关键句,然后找出单位“1”的量,根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。

最后根据已知条件和问题列式解答。

在乘法应用题中,我们需要注意概念,找到含有分数的关键句中的单位“1”,并注意“的”前“比”后的规则。

3.表示甲比乙多几分之几,是指甲比乙多的数占乙的几分之几,而甲比乙少几分之几,则是指甲比乙少的数占乙的几分之几。

在应用题中,比如小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,我们要求增产几分之几。

六年级上册数学知识点总结3篇

六年级上册数学知识点总结3篇

六年级上册数学知识点总结一、整数和运算整数的概念:正整数、负整数和零。

相反数:在数轴上,与数a距离相等、方向相反的数叫数a的相反数,用- a表示。

绝对值:一个数a,它的绝对值是它离0的距离(即|a|=a或|a|=-a)。

相加减法:同号两数相加,数的绝对值加,符号不变;异号两数相加,数的绝对值相减,结果的符号与绝对值大的数的符号相同。

公式:两数的和或差的绝对值等于这两数的绝对值的和与差的绝对值的和。

积的概念:积是乘法中的结果。

积的特点:0与任何数的积等于0;任何数与1的积等于这个数本身。

相乘运算规律:交换律、结合律。

除法的概念:分母不等于0的数a除以分母不等于0的数b是指找到一个数c,使得b × c等于a。

除法的特点:0不能作为除数;一个数除以1等于这个数本身。

二、小数的加减小数的概念:数轴上有限小数是指小数部分有限的数。

小数加减:补小数法、列竖式进行计算。

小数乘法:记一位数的积,将乘数、被乘数中的小数点向右移动相应位数,再把小数点省略,使它们构成一位数,再相乘。

练习计算百分数、比例、倍数、化简分数的例题。

三、多位数的乘法与除法(一)多位数的乘法:横式竖式相结合,运用积当数、配合计算能力。

多位数除法:初步掌握除法的基本思想,即被除数分为等份,以逐步缩小被除数的范围,进而求出商和余数的方法。

多余位的小数商,只需计算到所要的小数位数,最后四舍五入。

四、多位数的乘法与除法(二)多位数的乘法计算:分解、合成,利用数的运算规律,配合复习小学三年级到六年级的乘法口诀,提高计算效率,达到快算准算的目的。

多位数的除法计算:练习累加商法,学习竖式计算。

五、分数与单位换算分数:分数的意义、分数的形式与特点、紧凑的分数形式。

分数与小数的转换:分数化小数、小数化分数。

单位换算:长度、面积、体积和质量等。

在计算过程中注意单位的统一,运用常数比的思想。

六、图形的分类和特征平面图形的分类:点、线段、射线、直线、角,平行四边形、矩形、正方形、三角形、梯形、圆、圆心角、圆的周长和弧长。

人教版小学六年级上册数学知识点总结

人教版小学六年级上册数学知识点总结

人教版小学六年级上册数学知识点总结一、数与代数(一)分数的运算1.分数的加减法•同分母分数:分母保持不变,分子进行加减运算。

例如:2/5 + 3/5 = 5/5 或1;4/7 - 2/7 = 2/7。

•异分母分数:首先找到两个分母的最小公倍数,然后进行通分,使两个分数具有相同的分母,接着进行加减运算。

例如:1/2 + 1/3 = 3/6 + 2/6 =5/6;3/4 - 1/5 = 15/20 - 4/20 = 11/20。

2.分数的乘法•分子乘分子,分母乘分母。

例如:2/3 × 4/5 = 8/15。

•分数与整数相乘,整数可以看作是分母为1的分数,然后与另一个分数相乘。

例如:2 × 3/4 = 6/4 = 3/2。

3.分数的除法•将除数颠倒后与被除数相乘。

例如:4/5 ÷ 2/3 = 4/5 × 3/2 = 12/10 = 6/5。

4.带分数与假分数的互化•带分数转化为假分数:分母不变,分子为整数部分与分母的乘积加上原分数的分子。

例如:2(1/2) = 2 × 2 + 1 = 5/2。

•假分数转化为带分数:分母不变,分子除以分母得到的商为整数部分,余数作为新分数的分子。

例如:7/3 = 2...1,所以7/3 = 2(1/3)。

5.分数与小数的互化•分数转化为小数:直接进行除法运算,得到的结果即为小数形式。

例如:1/2 = 0.5;3/4 = 0.75。

•小数转化为分数:将小数表示为分数形式,能简化的要简化。

例如:0.5 = 1/2;0.75 = 3/4。

(二)百分数1.百分数的概念•百分数是表示一个数是另一个数的百分之几的数,也叫百分率或百分比。

百分数通常不会写成分数的形式,而采用符号“%”(百分号)来表示。

2.百分数与小数、分数的互化•百分数转化为小数:去掉百分号,小数点左移两位。

例如:75% = 0.75。

•小数转化为百分数:加上百分号,小数点右移两位。

小学六年级数学上册知识点总结

小学六年级数学上册知识点总结

小学六年级数学上册知识点总结一、数与运算1. 整数- 大数的读写与比较- 整数的四则运算- 整数的倍数与因数- 质数与合数- 奇数与偶数- 整数的性质和运算规律2. 分数- 分数的意义和性质- 真分数与假分数- 分数的四则运算- 分数与整数的互化- 分数的比较和排序- 混合数和带分数3. 小数- 小数的意义和性质- 小数的四则运算- 小数与整数、分数的互化- 用小数表示实际问题4. 比例与百分数- 比例的概念和基本性质- 比例式的解法- 百分数的意义和应用- 百分数与分数、小数的互化- 利率和利息的计算二、几何1. 平面图形- 平行线和垂线的性质- 角的概念和分类- 三角形的性质和分类- 四边形的性质和分类- 圆的性质和圆周角2. 图形的变换- 平移、旋转和翻转的概念- 对称图形的识别和绘制3. 图形的测量- 周长和面积的计算(正方形、长方形、三角形、平行四边形、梯形、圆)- 体积的计算(长方体和立方体)三、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 条形图、折线图和饼图的绘制和解读2. 概率- 可能性的认识- 简单事件的概率计算四、解决问题1. 应用题- 解决与生活实际相关的数学问题- 分析问题和找出等量关系- 利用方程和不等式解决问题2. 数学思维- 逻辑推理和证明- 数学问题的多种解法五、综合实践1. 数学活动- 参与数学游戏和竞赛- 数学知识的综合运用2. 数学探究- 发现生活中的数学问题- 进行小组合作探究以上总结了小学六年级数学上册的主要知识点。

学生应通过练习和复习,确保对每个知识点都有深刻的理解和掌握。

教师和家长可以根据这份总结来辅导和检查学生的学习情况。

小学六年级数学上册知识点归纳

小学六年级数学上册知识点归纳

小学六年级数学上册知识点归纳一、数的认识与运算1. 自然数:表示物体个数的数,如0、1、2、3等。

2. 整数:包括正整数、负整数和零,如-3、-2、-1、0、1、2等。

3. 分数:表示部分的数,如1/2、3/4、5/6等。

4. 小数:表示十分之几、百分之几的数,如0.1、0.25、0.5等。

5. 百分数:表示百分之几的数,如20%、50%、80%等。

6. 四则运算:加法、减法、乘法、除法。

7. 混合运算:将四则运算按照一定的顺序进行计算。

二、数的大小比较1. 比较整数的大小:从左到右依次比较每一位上的数字,直到找到不同的位或者比较完所有位。

2. 比较分数的大小:先比较分母,如果分母相同,再比较分子。

3. 比较小数的大小:先比较小数点后第一位,如果相同,再比较小数点后第二位,以此类推。

三、数的应用1. 长度:表示物体的长度,单位有厘米、米、千米等。

2. 重量:表示物体的重量,单位有克、千克、吨等。

3. 容量:表示物体的容积,单位有毫升、升、立方米等。

4. 时间:表示时间的长短,单位有秒、分钟、小时、天等。

5. 货币:表示货币的价值,单位有元、角、分等。

四、几何图形1. 点:没有大小和形状的物体。

2. 线:没有宽度和厚度的物体,可以无限延伸。

3. 面:由线段围成的封闭图形。

4. 三角形:由三条边组成的图形,有三个角和三个顶点。

5. 四边形:由四条边组成的图形,有四个角和四个顶点。

6. 圆形:由一条曲线围成的图形,所有点到圆心的距离相等。

7. 正方形:四边相等且四个角都是直角的四边形。

8. 长方形:对边相等且四个角都是直角的四边形。

9. 平行四边形:对边相等且相邻两边平行的四边形。

10. 梯形:有一对边平行的四边形。

11. 菱形:四条边相等且对角线互相垂直的四边形。

12. 矩形:四个角都是直角的平行四边形。

13. 圆环:由两个同心圆组成的图形。

14. 扇形:由圆心和圆上两点组成的图形。

15. 椭圆:由两个焦点和两条准线组成的图形。

小学六年级上册数学必考知识点总结(必备4篇)

小学六年级上册数学必考知识点总结(必备4篇)

小学六年级上册数学必考知识点总结(必备4篇)小学六年级上册数学必考知识点总结第1篇分数乘法知识点(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b<1时,c一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。

小学六年级数学上册知识点归纳

小学六年级数学上册知识点归纳

小学六年级数学上册知识点归纳一、整数的概念与应用整数是由正整数、负整数和0组成的数集。

在日常生活中,整数可以用来表示温度、海拔、债务等概念。

整数的加法、减法和乘法运算遵循相应的规则,例如同号相加得正,异号相加得负,负数相乘得正等。

二、分数的概念与运算分数由分子和分母组成,表示一个整体被分成若干等分中的一部分。

分数的加法、减法和乘法运算分别遵循相应的规则。

例如,两个分数相加时需要化为相同的分母,分数与整数相乘时需要将整数转化为分数。

三、小数的概念与运算小数是指有限小数和无限循环小数,可以通过小数点的位置表达数的大小关系。

小数的加法、减法和乘法运算遵循相应的规则。

例如,两个小数相加时需要对齐小数点,小数与整数相乘时结果的小数点位置与整数的位数有关。

四、几何图形的认识与性质几何图形包括点、线、面等基本图形,如直线、射线、线段、角、三角形、四边形等。

不同几何图形有不同的性质,如平行线的性质、三角形的分类、四边形的特点等。

五、图表的理解与分析图表是将数据以图形形式展示出来,包括条形图、折线图、饼图等。

通过观察图表可以了解数据的分布和变化规律,进而做出相应的分析和判断。

六、时间与日历的计算日历是记录时间的工具,了解日历的结构可以帮助我们进行日期的计算。

在计算时间时,需要掌握年、月、日、时、分、秒等单位之间的换算关系,同时注意闰年和平年的区别。

七、长度、面积与体积的计算长度是物体的长短,可以通过直尺、卷尺等工具进行测量。

面积是指平面图形所围成的空间的大小,可以通过面积公式进行计算。

体积是指立体图形所包含的空间大小,也可以根据相应的公式进行计算。

八、数据的整理、统计与应用数据的整理和统计是对一组数据进行收集、整理、分析和表示的过程。

通过整理数据可以得到频数表、频率表等,利用统计方法可以对数据进行分析和应用,如平均数、中位数、众数等。

九、问题解决与推理能力的培养数学学习不仅仅是记住知识点,更重要的是培养问题解决和推理能力。

小学六年级上册数学知识点总结

小学六年级上册数学知识点总结

小学六年级上册数学知识点总结一、整数的认识与运算1. 整数的概念整数由正整数、负整数和0组成。

正整数前面没有正号,负整数前面有负号。

2. 整数的比较对于两个整数,可以进行大小比较。

当两个整数的绝对值相等时,正数大于负数;正数大于0;负数小于0。

3. 整数的加法和减法整数的加法规则:正数加正数等于正数;负数加负数等于负数;正数加负数等于相减,取绝对值较大的符号。

整数的减法规则:正数减正数等于相减,取绝对值较大的符号;负数减负数等于相减,取绝对值较大的符号;正数减负数等于相加。

4. 整数的乘法和除法整数的乘法法则:同号得正,异号得负。

整数的除法法则:正数除以正数等于正数;负数除以负数等于正数;正数除以负数等于负数;负数除以正数等于负数;0除以任何非零整数都等于0。

二、小数的认识与运算1. 小数的概念小数是指有小数点的数,包括有限小数和无限循环小数。

2. 小数的读法和读写小数读小数时,通常先读整数部分,然后读小数点“点”,再读小数部分。

写小数时,整数部分直接写,小数部分按相应的读法写。

3. 小数的相加和相减小数的加法和减法运算与整数的加法和减法类似,需要对齐小数点,然后按位进行计算。

4. 小数的乘法和除法小数的乘法:将小数的乘法转化为整数的乘法,然后根据小数位数确定小数点的位置。

小数的除法:将小数的除法转化为整数的除法,然后根据小数位数确定小数点的位置。

三、图形的认识与计算1. 点、线段、直线和射线点是没有长度、宽度和高度的,用大写字母表示;线段是由两个点确定的一条线段,用大写字母的两个端点表示;直线是无限延长的线段,用小写字母表示;射线是由一个起点和一个方向确定的线段,用一个大写字母的端点和小写字母表示。

2. 角的认识和分类角是由两条射线共同起点组成的,分为锐角、直角、钝角和平角。

3. 三角形的认识和分类三角形是由三条线段连接而成的图形,根据边长和角度的不同可以分为等边三角形、等腰三角形、直角三角形等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级上册数学知识要点一、目标与要求1.使学生能在方格纸上用数对确定位置。

2.使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。

3.使学生理解倒数的意义,掌握求倒数的方法。

4.理解并掌握分数除法的计算方法,会进行分数除法计算。

5.理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。

能够正确地化简比和求比值。

6.使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。

7.使学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。

二、重、难点1.能用数对表示物体的位置,正确区分列和行的顺序;2.使学生理解分数乘整数的意义,掌握分数乘整数的计算方法;3.掌握求倒数的方法;4.圆的周长和圆周率的意义,圆周长公式的推导过程;5.百分数的意义,求一个数是另一个数的百分之几的应用题;6.理解圆周率“π”;圆面积计算公式的推导以及画具有定半径或直径的圆;7. 理解比的意义。

三、知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2.分数乘法的计算法则分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零.。

3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。

6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/3。

3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是1/12 ,12是1/12的倒数。

8.小数的倒数普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/1 9.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。

分数、整数也都使用这种规律。

10.分数除法:分数除法是分数乘法的逆运算。

11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13.分数除法应用题:先找单位1。

单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。

表示两个比相等的式子叫做比例,是比的意义。

比例有4项,前项后项各2个.15.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。

比值不变。

比的性质用于化简比。

比表示两个数相除;只有两个项:比的前项和后项。

比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。

16.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。

比例的性质用于解比例。

17.比和比例的区别(1)意义、项数、各部分名称不同。

比表示两个数相除;只有两个项:比的前项和后项。

如:a:b 这是比比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。

a:b=3:4 这是比例。

(2)比的基本性质和比例的基本性质意义不同、应用不同。

比的性质:比的前项和后项都乘或除以一个不为零的数。

比值不变。

比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。

比例的性质用于解比例。

联系:比例是由两个相等的比组成。

18.比和比例的意义比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。

比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

因此,比和比例的意义也有所不同。

而且,比号没有括号的含义而另一种形式,分数有括号的含义!19.比和比例的联系:比和比例有着密切联系。

比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。

比例是由比组成的,如果没有两种量的比,比例就不会存在。

比例是比的发展,如果把比例式中右边的比看成一个数,比和比例此时又可以统一起来。

如果两个比相等,那么这两个比就可以组成比例。

成比例的两个比的比值一定相等。

20.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

21.圆心:圆任意两条对称轴的交点为圆心。

注:圆心一般符号O表示22.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。

直径一般用字母d表示。

23.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。

半径一般用字母r表示。

圆的直径和半径都有无数条。

圆是轴对称图形,每条直径所在的直线是圆的对称轴。

在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

24.圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

25.圆周率:圆的周长与直径的比值叫做圆周率。

圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。

计算时,通常取它的近似值,π≈3.14。

直径所对的圆周角是直角。

90°的圆周角所对的弦是直径。

26.圆的面积公式:圆所占平面的大小叫做圆的面积。

πr^2;,用字母S表示。

一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

27.周长计算公式(1)已知直径:C=πd(2)已知半径:C=2πr(3)已知周长:D=c/π(4)圆周长的一半:1/2周长(曲线)(5)半圆的周长:1/2周长+直径(π÷2+1)28.面积计算公式:(1)已知半径:S=πr2(2)已知直径:S=π(d/2)2(3)已知周长:S=π[c÷(2π)]229.百分数与分数的区别(1)意义不同。

百分数是“表示一个数是另一个数的百分之几的数。

”它只能表示两数之间的倍数关系,不能表示某一具体数量。

因此,百分数后面不能带单位名称。

分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。

分数还可以表示两数之间的倍数关系.(2)应用范围不同。

百分数在生产、工作和生活中,常用于调查、统计、分析与比较。

而分数常常是在测量、计算中,得不到整数结果时使用。

(3)书写形式不同。

百分数通常不写成分数形式,而采用百分号“%”来表示。

因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。

而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。

任何一个百分数都可以写成分母是100的分数,而分母是100的分数并不都具有百分数的意义. (4)百分数不能带单位名称;当分数表示具体数时可带单位名称。

30.百分数应用百分数一般有三种情况:①100%以上,如:增长率、增产率等。

②100%以下,如:发芽率、成长率等。

③刚好100%,如:正确率,合格率等。

31.百分数的意义百分数只可以表示分率,而不能表示具体量,所以不能带单位。

百分数概念的形成应以学生实际生活中的事例或工农业生产中的事例引入。

32.日常应用每天在电视里的天气预报节目中,都会报出当天晚上和明天白天的天气状况、降水概率等,提示大家提前做好准备,就像今天的夜晚的降水概率是20%,明天白天有五~六级大风,降水概率是10%,早晚应增加衣服。

20%、10%让人一目了然,既清楚又简练。

知识点扩展1.圆的定义几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

定点称为圆心,定长称为半径。

轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。

集合说:到定点的距离等于定长的点的集合叫做圆。

2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。

大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。

连接圆上任意两点的线段叫做弦。

圆中最长的弦为直径。

3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。

顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

4.内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。

5.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。

圆锥侧面展开图是一个扇形。

这个扇形的半径称为圆锥的母线。

6.圆的种类:(1)整体圆形,(2)弧形圆,(3)扁圆,(4)椭形圆,(5)缠丝圆,(6)螺旋圆,(7)圆中圆、圆外圆,(8)重圆,(9)横圆,(10)竖圆,(11)斜圆。

7.圆和其他图形的位置关系:圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,0≤PO<r。

8.百分数的由来200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。

如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。

而后,人们在分数的基础上又以100做基数,发明了百分数。

相关文档
最新文档