离散数学习题三参考答案

合集下载

离散数学课后习题答案(第三章)

离散数学课后习题答案(第三章)
a)(A×A)-R1;
b)R1-R2;
c)R12;
d) r(R1-R2)(即R1-R2的自反闭包)。
解a)(A×A)-R1不是A上等价关系。例如:
A={a,b},R1={<a,a>,<b,b>}
A×A={<a,a>,<a,b>,<b,a>,<b,b>}
(A×A)-R1={<a,b>,<b,a>}
所以(A×A)-R1不是A上等价关系。
c)若R1是A上等价关系,则
<a,a>∈R1<a,a>∈R1○R1
所以R12是A上自反的。
若<a,b>∈R12则存在c,使得<a, c>∈R1∧<c,b>∈R1。因R1对称,故有
<b, c>∈R1∧<c,a>∈R1<b, a>∈R12
即R12是对称的。
若<a,b>∈R12∧<b, c>∈R12,则有
若c<0,则a<0u<0au>0
所以(a+bi)R(u+vi),即R在C*上是传递的。
关系R的等价类,就是复数平面上第一、四象限上的点,或第二、三象限上的点,因为在这两种情况下,任意两个点(a,b),(c,d),其横坐标乘积ac>0。
3-10.9设Π和Π是非空集合A上的划分,并设R和R分别为由Π和Π诱导的等价关系,那么Π细分Π的充要条件是RR。
证明:若Π细分Π。由假设aRb,则在Π中有某个块S,使得a,b∈S,因Π细分Π,故在Π中,必有某个块S,使SS,即a,b∈S,于是有aRb,即RR。
反之,若RR,令S为H的一个分块,且a∈S,则S=[a]R={x|xRa}
但对每一个x,若xRa,因RR,故xRa,因此{x|xRa}{x|xRa}即[a]R[a]R
<<x,y>,<u,v>>∈R∧<<u,v>,<w,s>>∈R

离散数学第3版习题答案

离散数学第3版习题答案

离散数学第3版习题答案【篇一:华东师范大学离散数学章炯民课后习题第3章答案】xt>(1)2是正数吗?(2)x2+x+1=0。

(3)我要上学。

(4)明年2月1日下雨。

(5)如果股票涨了,那么我就赚钱。

解:(1) 不是(2) 不是(3) 不是(4) 是(5) 是2. 判断下列命题的真值:(1)若1+1=3,则2+2=4(2)若鸟会飞,则 1+1=3解:(1) 1(2) 011. 将下列两个命题符号化,并分别用真值表和等值演算的方法证明所得到的那两个命题公式是等值的。

(1)你不会休息所以就不会工作,你没有丰富的知识所以你就不会工作;(2)你会工作所以一定会休息并具有丰富的知识。

解:设p:你会休息,q:你会工作,r:你有丰富的知识。

原命题符号化为(1) (?p??q) ?(?r??q)(2) q?(p?r)12.(1)用等值演算的方法证明命题恒等式p?(q?p)=?p?(p??q)。

13. 构造一个只含命题变量p、q和r的命题公式a,满足:p、q和r的任意一个赋值是a的成真赋值当且仅当p、q和r中恰有两个为真。

解:(p?q??r)?( p??q?r)?(?p?q?r)14. 通过等值演算求p?(p?(q?p))的主析取范式和主合取范式。

解:主析取范式:(?p?q)?(?p??q)?(p??q)?(p?q )主合取范式不存在15. 一教师要从3名学生a、b和c中选派1~2人参加市级科技竞赛,需满足以下条件:(1)若a去,则c同去;(2)若b去,则c不能去;(3)若c不去,则a或b可以去。

问该如何选派?解:为此问题建立数学模型。

有三个方案:仅c去,仅b去,仅a和c去16. 证明{?,?}是功能完备集。

17. (1)证明p?(q?s),q,p??r?r?s。

证明:① p??r 前提引入② r 附加前提引入③ p ①②析取三段④ p?(q?s) 前提引入⑤ q?s ③④假言推理⑥ q 前提引入⑦ s ⑤⑥假言推理19. 构造下列推理的形式证明:“今天下午没有出太阳并且今天比昨天冷。

离散数学第3版习题答案

离散数学第3版习题答案

离散数学第3版习题答案离散数学是一门重要的数学学科,它研究的是离散对象和离散结构的数学理论。

离散数学的应用广泛,涉及到计算机科学、信息技术、通信工程等领域。

在学习离散数学的过程中,习题是不可或缺的一部分,通过解答习题可以加深对知识的理解和掌握。

本文将为大家提供《离散数学第3版》习题的答案,希望能对学习者有所帮助。

第一章:命题逻辑1.1 习题答案:1. (a) 真值表如下:p | q | p ∧ qT | T | TT | F | FF | T | FF | F | F(b) 命题“p ∧ q”的真值表如下:p | q | p ∧ qT | T | TT | F | FF | T | FF | F | F(c) 命题“p ∨ q”的真值表如下:p | q | p ∨ qT | T | TT | F | TF | T | TF | F | F(d) 命题“p → q”的真值表如下:p | q | p → qT | T | TT | F | FF | T | TF | F | T1.2 习题答案:1. (a) 命题“¬(p ∧ q)”等价于“¬p ∨ ¬q”。

(b) 命题“¬(p ∨ q)”等价于“¬p ∧ ¬q”。

(c) 命题“¬(p → q)”等价于“p ∧ ¬q”。

(d) 命题“¬(p ↔ q)”等价于“(p ∧ ¬q) ∨ (¬p ∧ q)”。

1.3 习题答案:1. (a) 命题“p → q”的否定是“p ∧ ¬q”。

(b) 命题“p ∧ q”的否定是“¬p ∨ ¬q”。

(c) 命题“p ↔ q”的否定是“(p ∧ ¬q) ∨ (¬p ∧ q)”。

(d) 命题“p ∨ q”的否定是“¬p ∧ ¬q”。

1.4 习题答案:1. (a) 命题“p → q”与命题“¬p ∨ q”等价。

(完整版)离散数学课后习题答案(第三章)

(完整版)离散数学课后习题答案(第三章)

a t a t i m e an dA l lt h i ng si nt h ei r be i ng ar eg oo df o r so me t hi n 3-5.1 列出所有从X={a,b,c}到Y={s}的关系。

解:Z 1={<a,s>}Z 2={<b,s>} Z 3={<c,s>}Z 4={<a,s>,<b,s>} Z 5={<a,s>,<c,s>} Z 6={<b,s>,<c,s>}Z 7={<a,s>,<b,s>,<c,s>}3-5.2 在一个有n 个元素的集合上,可以有多少种不同的关系。

解 因为在X 中的任何二元关系都是X ×X 的子集,而X ×X=X 2中共有n 2个元素,取0个到n 2个元素,共可组成22n 个子集,即22|)(|n X X =⨯℘。

3-5.3 设A ={6:00,6:30,7:30,…, 9:30,10:30}表示在晚上每隔半小时的九个时刻的集合,设B={3,12,15,17}表示本地四个电视频道的集合,设R 1和R 2是从A 到B 的两个二元关系,对于二无关系R 1,R 2,R 1∪R 2,R 1∩R 2,R 1⊕R 2和R 1-R 2可分别得出怎样的解释。

解:A ×B 表示在晚上九个时刻和四个电视频道所组成的电视节目表。

R 1和R 2分别是A ×B 的两个子集,例如R 1表示音乐节目播出的时间表,R 2是戏曲节日的播出时间表,则R 1∪R 2表示音乐或戏曲节目的播出时间表,R 1∩R 2表示音乐和戏曲一起播出的时间表,R 1⊕R 2表示音乐节目表以及戏曲节目表,但不是音乐和戏曲一起的节日表,R 1-R 2表示不是戏曲时间的音乐节目时间麦。

3-5.4 设L 表示关系“小于或等于”,D 表示‘整除”关系,L 和D 刀均定义于解:L={<1,2>,<1,3>,<1,6>,<2,3>,<2,6>, <3,6>,<1,1>,<2,2>,<3,3>,<6,6>}D={<1,2>,<1,3>,<1,6>,<2,6>,<3,6>,<1,1>,<2,2>,<3,3>,<6,6>} L ∩D={<1,2>,<1,3>,<1,6>,<2,6>,<3,6>,<1,1>,<2,2>,<3,3>,<6,6>}3-5.5对下列每一式,给出A 上的二元关系,试给出关系图:a){<x,y>|0≤x ∧y ≤3},这里A={1,2,3,4};b){<x,y>|2≤x,y ≤7且x 除尽y ,这里A ={n|n ∈N ∧n ≤10}c) {<x,y>|0≤x-y<3},这里A={0,1,2,3,4};d){<x,y>|x,y 是互质的},这里A={2,3,4,5,6}解:a) R={<0,0>,<0,1>,<0,2>,<0,3>, <1,0>,<1,1>,<1,2>,<1,3>, <2,0>,<2,1>,<2,2>,<2,3>, <3,0>,<3,1>,<3,2>,<3,3>,} 其关系图b) R={<2,0>,<2,2>,<2,4>,<2,6>,<3,0>,<3,3>,<3,6>, <4,0>,<4,4>, <5,0>,<5,5>,i m e an dA l lt h in gs in th ei r be i ng ar eg oo df o rsa)若R1和R2是自反的,则R1○R2也是自反的;b)若R1和R2是反自反的,则R1○R2也是反自反的;c)若R1和R2是对称的,则R1○R2也是对称的;d)若R1和R2是传递的,则R1○R2也是传递的。

离散数学第3章答案

离散数学第3章答案

习题3.11.(1) {0,1,2,3,4,5,6,7,8,9}(2) {aa , ab , ba , bb }(3) {-1,1}(4) {11,13,17,19,23,29}(5) {1,2,3, (79)(6) {2}2. 用描述法表示下列集合:(1) 不超过200的自然数的集合;{|N 200}x x x ∈∧≤(2) 被5除余1的正整数的集合;+{|I (N 51)}x x y y x y ∈∧∃∈∧=+(3) 函数y =sin x 的值域;{|R 11}y y y ∈∧-≤≤(4) 72的质因子的集合;{|N |72(N 2|)}x x x y y y x y x ∈∧∧∀∈∧≤<→/(5) 不等式031>-x 的解集; {|R 3}x x x ∈∧>(6) 函数2312+-=x x y 的定义域集. {|R 12}x x x x ∈∧≠∧≠3. 用归纳定义法描述下列集合:(1) 允许有前0的十进制无符号整数的集合;① {0,1,2,3,4,5,6,7,8,9}A ⊆② 如果x A ∈,则{0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9}x x x x x x x x x x x x x x x x x x x x A ⊆(2) 不允许有前0的十进制无符号整数的集合;① {1,2,3,4,5,6,7,8,9}A ⊆② 如果x A ∈,则{0,1,2,3,4,5,6,7,8,9}x x x x x x x x x x A ⊆(3) 不允许有前0的二进制无符号偶数的集合;① 1A ∈② 如果x A ∈,则{0,1}x x A ⊆(4) 5的正整数倍的集合.① 5A ∈② 如果x A ∈,则5x A +∈4. 判断下列命题中,哪些是真的,哪些是假的(A 是任意集合):(1) ;A ∈∅(2) ;A ⊆∅ (3) };{A A ∈ (4) ;A A ⊆ (5) ;A A ∈ (6) };{A A = (7) }.{∅=∅答:(2),(3),(4)为真,(1),(5),(6),(7)为假。

离散数学概论习题答案第3章

离散数学概论习题答案第3章

第二部分集合、矩阵、关系和函数集合论是处理集合,函数和关系的数学理论。

集合包括最基本的数学概念,例如集合,元素和成员关系。

在大多数现代数学公式中,集合论提供了一种描述数学对象的语言。

集合可用来表示数及其运算,还可表示和处理非数值计算,如数据间关系的描述等。

集合论,逻辑和一阶逻辑构成了数学公理化的基础。

同时,函数和关系是基于集合的映射,它们是满足某些属性的特殊集合。

接下来,我们将在两个单独的章节中介绍它们。

集和矩阵将在第3章中介绍,而关系和函数将在第4章中介绍。

第三章集合和矩阵3.1 集合3.1.1 集合概念集合没有确定的概念。

一般地,我们把研究的对象统称为元素;把一些元素组成的总体叫做集合,也简称集。

通常用大写英文字母表示集合。

例如,N代表是自然数集合,Z代表是整数集合,R代表是实数集合。

用小写英文字母表示集合内元素。

若元素a是集合A的一个元素,则表示为a A∈,读作元素a属于集合A;若元素a不是集合A的一个元素,则表示为a A∉,读作a不属于集合A。

集合分为有限集合和无限集合两种,下面给出定义。

表示集合方法有列举法和描述法两种方式,下面分别介绍。

1. 列举法当集合是有限集合时,可以列出集合的所有元素,用逗号隔开各元素,并用花括号把所有元素括起来。

这种表述方式为列举法。

例如:S1={a, b, c, d, e, f},S2={a, b, b, c, d, e, f},S3={ d, e, a, b, c, f}上述三个集合S1、S2和S3是相同集合,尽管有重复元素。

且集合元素之间没有次序关系。

一个集合可以作为另个集合的元素。

例如,S1={a, b,{ c, d, e, f }}集合S1包含元素a, b和{ c, d, e, f }。

因为{ c, d, e, f }是集合S1中的元素,故可记为:{}∈。

,,,c d e f A以上给出的集合实例都是有限集合。

当集合是无限集合时,无法列出集合的所有元素,可先列出一部分元素,若剩余元素与已给出元素存在一定规律,那剩余元素的一般形式很明显可用省略号表示。

离散数学答案3

离散数学答案3

第一章集合论基础1.设S = {2,a,{3},4},R ={{a},3,4,1},指出下面的写法哪些是对的,哪些是错的?{a}∈S,{a}∈R,{a,4,{3}}⊆S,{{a},1,3,4}⊂R,R=S,{a}⊆S,{a}⊆R,φ⊆R,φ⊆{{a}}⊆R⊆E,{φ}⊆S,φ∈R,φ⊆{{3},4}。

解:{a}∈S ,{a}∈R ,{a,4,{3}} ⊆ S ,{{a},1,3,4 } ⊂ R ,R = S ,{a}⊆S ,{a}⊆ R ,φ⊆ R ,φ⊆ {{a}} ⊆ R ⊆ E ,{φ} ⊆ S ,φ∈R ,φ⊆ {{3},4 } 2写出下面集合的幂集合{a,{b}},{1,φ},{X,Y,Z}解:设A={a,{b}},则ρ(A)={ φ,{a},{{b}},{a,{b}}};设B={1,φ},则ρ(B)= { φ,{1},{φ},{1,φ}};设C={X,Y,Z},则ρ(C)= { φ,{X},{Y},{Z},{X,Y },{X,Z },{ Y,Z },{X,Y,Z}};3对任意集合A,B,证明:(1)A⊆B当且仅当ρ(A)⊆ρ(B);(2)ρ(A)⋃ρ(B)⊆ρ(A⋃B);(3)ρ(A)⋂ρ(B)=ρ(A⋂B);(4)ρ(A-B) ⊆(ρ(A)-ρ(B)) ⋃{φ}。

举例说明:ρ(A)∪ρ(B)≠ρ( A∪B)证明:(1)证明:必要性,任取x∈ρ(A),则x⊆A。

由于A⊆B,故x⊆B,从而x∈ρ(B),于是ρ(A)⊆ρ(B)。

充分性,任取x∈A,知{x}⊆A,于是有{x}∈ρ(A)。

由于ρ(A)⊆ρ(B),故{x}∈ρ(B),由此知x∈B,也就是A⊆B。

(2)证明:任取X∈ρ(A)∪ρ(B),则X∈ρ(A)或X∈ρ(B)∴X⊆A或X⊆B∴X⊆(A∪B)∴X∈ρ(A∪B)所以ρ(A)∪ρ(B) ⊆ρ( A∪B)(3)证明:先证ρ(A)∩ρ(B) ⊆ρ( A∩B)任取X∈ρ(A)∩ρ(B),则X∈ρ(A)且X∈ρ(B)∴X⊆A且X⊆B∴X⊆ A∩B∴X∈ρ( A∩B)所以ρ(A)∩ρ(B) ⊆ρ( A∩B)再证ρ( A∩B) ⊆ρ(A)∩ρ(B)任取Y∈ρ(A∩B),则Y⊆ A∩B∴Y⊆A且Y⊆B∴Y∈ρ(A)且Y∈ρ(B)∴Y∈ρ(A)∩ρ(B)所以ρ( A∩B) ⊆ρ(A)∩ρ(B)故ρ(A)∩ρ(B) = ρ( A∩B)得证。

离散数学(屈婉玲版)第三章部分答案

离散数学(屈婉玲版)第三章部分答案

3.6从1到300的整数中(1)同时能被3、5、和7这3个数整除的数有A个。

(2)不能被3、5,也不能被7整除的数有B个。

(3)可以被3整除,但不能被5和7整除的数有C个。

(4)可被3或5整除,但不能被7整除的数有D个。

(5)只能被3、5和7之中的一个数整除的数有E个。

供选择的答案A、B、C、D、E:①2;②6;③56;④68;⑤80;⑥102;⑦120;⑧124;⑨138;⑩162。

解:设1到300之间的整数构成全集E,A、B、C分别表示其中可被3、5或7整除的数的集合。

文氏图如下图:在A∩B∩C中的数一定可以被3、5和7的最小公倍数105整除,即∣A∩B∩C∣=⎣300/105⎦=2,同样可得∣A∩B∣=⎣300/15⎦=20,∣A∩C∣=⎣300/21⎦=14,∣B∩C∣=⎣300/35⎦=8.然后将20-2=18,14-2=12,8-2=6分别填入邻近的3块区域.再计算∣A∣=⎣300/3⎦=100,∣B∣=⎣300/5⎦=60,∣C∣=⎣300/7⎦=42.所以∣A∪B∪C∣=162.所以本题的答案是:A=①2;B=⑨138;C=④68;D=⑦120;E=⑧124.3.10列元素法表示下列集合。

(1)A={ x | x ∈N ∧x2 ≤7}.(2)A={ x | x ∈N ∧|3-x|<3}.(3)A={ x | x ∈R ∧(x+1)2≤0}.(4)A={<x,y> |x,y∈N∧x+y≤4}.解:(1) A={0,1,2}.(2) A={1,2,3,4,5}.(3) A={-1}.(4) A={<0,0>,<0,1>,<0,2>,<0,3>,<0,4>,<1,0>,<2,0>,<3,0>,<4,0>,<1,1>,<1,2>,<1,3>,<2,1>,<3,1>,<2,2>}.3.11求使得以下集合等式成立时,a,b,c,d应满足的条件。

离散数学第四版课后答案(第3章)

离散数学第四版课后答案(第3章)
但对于等式(4),左边经变形后得
( A B C) ( A B) ((A B) ( A B)) (C ( A B))
= (C ( A B)) C ( A B). 易 见 , C (A B) C, 但 不 一 定 有 C (A B) C.如 令 A B C {1}.时,等式(4)不为真。类假地,等式(5)的左 边经化简后得 (A C) B ,而 (A C) B 不一定恒等于 A-C。 3.17 (1)不为真。(2),(3)和(4)都为真。对于题 (1)举反例如下:令 A {1}, A {1}, B {1,4},C {2}, D {2,3}, 则 A B 且 C B ,但 A C B D ,
这是 S T 的充公必要条件,从而结论为真. 对 于 假 命 题 都 可 以 找 到 反 例 , 如 题 (2) 中 令 S {1,2},T z{1}, M {2}即可;而对于题(5),只要 S 即可. 3.9 (2),(3)和(4)为真,其余为假. 3.10 (1) A {0,1,2}. (2) A {1,2,3,4,5} (3) A {1} (4) A { 0,0 , 0,1 1,0 , 0,2 , 1,1 , 2,0 , 0,3 ,
A B .
(4)易见,当 A=B 成立时,必有 A-B=B-A。反之,由 A-B=B-A 得
( A B) B (B A) B
化简后得 B A ,即 B A,同理,可证出 A B ,从而 得到 A=B。
3.18 由| P(B) | 64 可知|B|=6。又由| P(A B) | 256 知| A B | 8 , 代入包含排斥原理得
{,{1},{2},{1,2}}}.
(4) P( A) {,{{1}},{{1,2}},{{1}},{{1,2}} (5) P( A) {,{1},{1},{2},{1,1},{1,2}{1,2}{1,1,2}. 分析 在做集合运算前先要化简集合,然后再根据题目 要求进行计算.这里的化简指的是元素,谓词表示和集合公 式三种化简. 元素的化简——相同的元素只保留一个,去掉所有冗余 的元素。 谓词表示的化简——去掉冗余的谓词,这在前边的题解 中已经用到。 集合公工的化简——利用简单的集合公式代替相等的 复杂公式。这种化简常涉及到集合间包含或相等关系的判别。 例如,题(4)中的 A {{1,1},{2,1},{1,2,1}}化简后得 A {{1},{1,2}}, 而题(5)中的 A {x | x R x3 2x2 x 2 0} 化 简为 A {1,1,2}。 3.15

离散数学第三章习题详细答案

离散数学第三章习题详细答案

3.9解:符号化:p:a是奇数. q:a是偶数. r:a能被2整除前提:(p→¬r),(q→r)结论:(q→¬p)证明:确。

方法2(等值演算法)(p→¬r)∧(q→r) →(q→¬p)⇔(¬p∨¬r)∧(¬q∨r) →(¬q∨¬p)⇔(p∧r) ∨(q∧¬r) ∨¬q∨¬p⇔((p∧r) ∨¬p)∨((q∧¬r) ∨¬q)⇔(r∨¬p) ∨(¬r∨¬q)⇔¬p∨(r∨¬r) ∨¬q⇔1即证得该式为重言式,则原结论正确。

方法3(主析取范式法)(p→¬r)∧(q→r) →(q→¬p)⇔(¬p∨¬r)∧(¬q∨r) →(¬q∨¬p)⇔(p∧r) ∨(q∧¬r) ∨¬q∨¬p⇔m0+ m1+ m2+ m3+ m4+ m5+ m6+ m7可知该式为重言式,则结论推理正确。

3.10. 解:符号化:p:a是负数. q:b是负数. r:a、b之积为负前提: r→(p∧¬q) ∨(¬p∧q)结论:¬r→(¬p∧¬q)方法1(真值法)证明:不正确。

方法2(主析取范式法)证明:(r→(p∧¬q) ∨(¬p∧q)) →(¬r→(¬p∧¬q))⇔¬ (¬r∨(p∧¬q) ∨(¬p∧q)) ∨(r∨(¬p∧¬q))⇔r∨(¬p∧¬q)⇔m0+m2+m4+m6+m7只含5个极小项,课件原始不是重言式,因此推理不正确3.11.填充下面推理证明中没有写出的推理规则。

全版离散数学 练习题及答案.ppt

全版离散数学 练习题及答案.ppt

课件
例3 对任意两个集合A, B,试证 A (A B) A B
证明 对于任意的x
x A (A B)
x {x x A x ( A B)} x {x x A (x A B)} x {x x A (x A x B)} x {x x A (x A x B)} x {x x A x B}
课件
例10 求图的最小生成树
A 1B34 Nhomakorabea5
2 E
6
1A 2
B
E
4
6
C7 D
C
D
课件
例11
• 无向树T有7片树叶, 3个3度顶点,其余的 都是4度顶点,则T有几个4度顶点?
• 解:设T有x个4度顶点 顶点度数之和: 7+3*3+4x 由树的性质可得总边数: 7+3+x-1 由握手原理可得: 7+3*3+4x=2(7+3+x-1)
求g f
g f { 1,b , 2,b , 3,b }
课件
例12 求复合函数
X {1,2,3}, Y {p, q}, Z {a,b} f { 1, p , 2, p , 3, q } g { p,b , q,b }
求g f
g f { 1,b , 2,b , 3,b }
课件
例: 求幺元、零元、逆元
x A B 因为 x 是任意的,所以有
x ((x A (A B)) (x A B)) 的真值为T,
因此 A ( A B)课件 A B
例4 判断关系的性质
R1 { a, a , a,b , b,b , c,c }
a
1 1 0
M R 1 0 1 0
0 0 1

离散数学-第三部分代数结构练习题答案(课件模板)

离散数学-第三部分代数结构练习题答案(课件模板)

《离散数学》第三部分----代数结构一、选择或填空1、设A={2,4,6},A上的二元运算*定义为:a*b=max{a,b},则在独异点<A,*>中,单位元是( ),零元是( )。

答:2,62、设A={3,6,9},A上的二元运算*定义为:a*b=min{a,b},则在独异点<A,*>中,单位元是( ),零元是( );答:9,33、设〈G,*〉是一个群,则(1) 若a,b,x∈G,a*x=b,则x=( );(2) 若a,b,x∈G,a*x=a*b,则x=( )。

答:(1)a*-1 b (2)b4、设a是12阶群的生成元,则a2是( )阶元素,a3是( )阶元素。

答:6,45、代数系统<G,*>是一个群,则G的等幂元是( )。

答:单位元6、设a是10阶群的生成元,则a4是( )阶元素,a3是( )阶元素。

答:5,107、群<G,*>的等幂元是( ),有( )个。

答:单位元,18、素数阶群一定是( )群, 它的生成元是( )。

答:循环群,任一非单位元9、设〈G,*〉是一个群,a,b,c∈G,则(1) 若c*a=b,则c=( );(2) 若c*a=b*a,则c=( )。

答:(1)b1-*a(2) b10、<H,,*>是<G,,*>的子群的充分必要条件是( )。

答:<H,,*>是群或∀ a,b ∈G,a*b∈H,a-1∈H 或∀ a,b ∈G,a*b-1∈H 11、群<A,*>的等幂元有( )个,是( ),零元有( )个。

答:1,单位元,012、在一个群〈G,*〉中,若G中的元素a的阶是k,则a-1的阶是( )。

答:k13、在自然数集N上,下列哪种运算是可结合的?()(1) a*b=a-b (2) a*b=max{a,b} (3) a*b=a+2b (4) a*b=|a-b| 答:(2)14、任意一个具有2个或以上元的半群,它()。

离散数学习题的答案解析

离散数学习题的答案解析

离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p :李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语解:设p :王强学过法语;q :刘威学过法语;则命题符号化的结果是p q ∧(9)只有天下大雨,他才乘班车上班解:设p :天下大雨;q :他乘班车上班;则命题符号化的结果是q p →(11)下雪路滑,他迟到了解:设p :下雪;q :路滑;r :他迟到了;则命题符号化的结果是()p q r ∧→15、设p :2+3=5.q :大熊猫产在中国.r :太阳从西方升起.求下列复合命题的真值:(4)()(())p q r p q r ∧∧⌝↔⌝∨⌝→解:p=1,q=1,r=0, ()(110)1p q r ∧∧⌝⇔∧∧⌝⇔,(())((11)0)(00)1p q r ⌝∨⌝→⇔⌝∨⌝→⇔→⇔()(())111p q r p q r ∴∧∧⌝↔⌝∨⌝→⇔↔⇔19、用真值表判断下列公式的类型:(2)()p p q →⌝→⌝解:列出公式的真值表,如下所示:20、求下列公式的成真赋值:(4)()p q q ⌝∨→解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:()10p q q ⌝∨⇔⎧⎨⇔⎩⇒00p q ⇔⎧⎨⇔⎩ 所以公式的成真赋值有:01,10,11。

习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值:(2)()()p q q r ⌝→∧∧解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨,此即公式的主析取范式,所以成真赋值为011,111。

*6、求下列公式的主合取范式,并求成假赋值:(2)()()p q p r ∧∨⌝∨解:原式()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔,此即公式的主合取范式,所以成假赋值为100。

离散数学课后练习题答案(第三版)-乔维声-汤维版

离散数学课后练习题答案(第三版)-乔维声-汤维版

离散数学课后练习题答案(第三版)-乔维声-汤维版、命题逻辑1. 用形式语言写出下列命题:(1) 如果这个数是大于1 的整数,则它的大于1 最小因数一定是素数。

(2) 如果王琳是学生党员又能严格要求自己,则她一定会得到大家的尊敬。

(3) 小王不富有但很快乐。

(4) 说逻辑学枯燥无味或毫无价值都是不对的。

(5) 我现在乘公共汽车或者坐飞机。

(6) 如果有雾,他就不能搭船而是乘车过江。

解: (1)设P :这个数是大于1 的整数。

Q :这个数的大于1 最小因数是素数。

则原命题可表示为:P →Q 。

或:设P 1:这个数大于1。

P 2:这个数是整数。

Q :这个数的大于1 最小因数是素数。

则原命题可表示为:P 1∧ P 2→Q 。

(2)设P :王琳是学生。

Q :王琳是党员。

R :王琳能严格要求自己。

S :王琳会得到大家的尊敬。

则原命题可表示为:P ∧Q ∧R → S 。

(3)设P :小王富有。

Q :小王很快乐。

则原命题可表示为:⌝P ∧Q 。

(4)设P :逻辑学枯燥无味。

Q :逻辑学毫无价值。

则原命题可表示为:⌝( P ∨Q)。

(5)设P :我现在乘公共汽车。

Q :我现在坐飞机。

则原命题可表示为:P ⎺∨Q 。

(6)设P :天有雾。

Q :他搭船过江。

R :他乘车过江。

则原命题可表示为:P →⌝ Q ∧R 。

2.设P :天下雪。

Q :我将进城。

R :我有时间。

将下列命题形式化: (1) 天不下雪,我也没有进城。

(2) 如果我有时间,我将进城。

(3) 如果天不下雪而我又有时间的话,我将进城。

解:原命题可分别表示为:(1) ⌝P ∧⌝ Q 。

(2) R →Q 。

(3) ⌝P ∧ R →Q 。

3. 将P 、Q 、R 所表示的命题与上题相同,试把下列公式翻译成自然语言: (1) R ∧Q (2) ⌝(R ∨Q) (3) Q ↔(R ∧⌝P) (4) (Q →R)∧(R →Q)解: (1) 原公式可翻译为:我有时间而且我将进城。

离散数学 杨圣洪等著 第一章习题三解答

离散数学 杨圣洪等著 第一章习题三解答

1、利用定义1.6.1,并利用等值演算或真值表,证明如下各推理式,要注明每步的理由。

1、(A→B)∧¬B⇒¬A(1) ¬B为真前提条件(2) A→B为真前提条件(3) ¬B→¬A为真因为¬B→¬A⇔A→B为真(4) ¬A为真(¬B→¬A)∧¬B⇒¬A假言推理2、 (A∨B)∧¬B⇒A(1) ¬B为真前提条件(2) (A∨B)为真前提条件(3) ¬B→A为真因为¬B→A⇔ A∨B为真(4)A为真(¬B→A)∧¬B⇒A假言推理3、 (A↔B)∧(B↔C)⇒ (A↔C)(1) (A↔B)为真前提条件(2)(A→B)∧(B→A)为真因(A↔B) ⇔(A→B)∧(B→A)(3) (A→B)为真由(2)及合取的定义(4) (B→A)为真由(2)及合取的定义(5) (B↔C)为真前提条件(6)(B→C)∧(C→B)为真因(B↔C) ⇔(B→C)∧(C→B)(7) (B→C)为真由(6)及合取的定义(8) (C→B)为真由(6)及合取的定义(9) (C→A)为真由(8)(4)及传递律(10) (A→C)为真由(3)(7)及传递律(11) (A↔C)为真由(9)(10)及双条件的定义(4) (A→B)∧( ¬A→B)⇒B((A→B)∧( ¬A→B))→B⇔¬((¬A∨B) ∧( ¬¬A∨B )) ∨B⇔¬((¬A∨B) ∧(A∨B )) ∨B⇔((A∧¬B) ∨ (¬A∧¬B )) ∨B⇔((A ∨¬A ) ∧¬B)) ∨B⇔(1 ∧¬B)) ∨B⇔¬B∨B⇔1故为永真式(A→B)∧( ¬A→B)⇒B2、采用定义1.6.2方法证明如下推理式,并注明每步理由,可采用CP规则、反证法。

离散数学王元元习题解答(3)

离散数学王元元习题解答(3)

离散数学王元元习题解答(3)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第二章谓词演算及其形式系统2.1 个体、谓词和量词内容提要谓词演算中把一切讨论对象都称为个体,它们可以是客观世界中的具体客体,也可以是抽象的客体,诸如数字、符号等。

确定的个体常用a,b,c等到小写字母或字母串表示。

a,b,c等称为常元(constants)。

不确定的个体常用字母x,y,z,u,v,w等来表示。

它们被称为变元(variables)。

谓词演算中把讨论对象——个体的全体称为个体域(domain of individuals)),常用字母D表示,并约定任何D都至少含有一个成员。

当讨论对象遍及一切客体时,个体域特称为全总域(universe),用字母U表示。

例如,当初中学生说“所有数的平方非负”时,实数集是个体域;而达尔文在写《物种起源》时,则以全体生物为个体域;也许哲学家更偏爱全总域。

讨论常常会涉及多种类型个体,这时使用全总域也是比较方便的。

当给定个体域时,常元表示该域中的一个确定的成员,而变元则可以取该域中的任何一个成员为其值。

表示D上个体间运算的运算符与常元、变元组成所谓个体项(terms)。

例如,x+y,x2等。

我们把语句中表示个体性质和关系的语言成分(通常是谓语)称为谓词(predicate)。

谓词携有可以放置个体的空位,当空位上填入个体后便产生一个关于这些个体的语句,它断言个体具有谓词所表示的性质和关系。

通常把谓词所携空位的数目称为谓词的元数。

谓词演算中的量词(quantifiers)指数量词“所有”和“有”,分别用符号(All的第一个字母A的倒写) 和(Exist的第一个字母E的反写)来表示。

为了用量词和分别表示个体域中所有个体和有些个体满足一元谓词P,需引入一个变元,同时用作量词的指导变元(放在量词后)和谓词P的命名式变元:xP(x) 读作“所有(任意,每一个)x满足P(x)”。

离散数学第3章习题答案

离散数学第3章习题答案

离散数学第3章习题答案离散数学是计算机科学和数学领域中的一门重要课程,它涉及到了许多有趣的概念和方法。

在离散数学的学习过程中,习题是非常重要的一部分,通过解答习题可以巩固所学的知识,并提升自己的思维能力和解决问题的能力。

本文将对离散数学第3章的一些习题进行解答,帮助读者更好地理解和掌握相关的知识。

1. 习题3.1题目:证明或给出反例:若A、B、C是集合,且A∪B=A∪C,则B=C。

解答:要证明这个命题,我们可以采用反证法。

假设存在集合A、B、C,满足A∪B=A∪C,但是B≠C。

由于A∪B=A∪C,所以对于任意的元素x,如果x属于B,那么x也属于A∪C,反之亦然。

由于B≠C,所以存在一个元素y,y属于B但不属于C,或者y属于C但不属于B。

不失一般性,我们假设y属于B但不属于C。

由于y属于A∪B,所以y属于A∪C。

但是由于y不属于C,所以y必须属于A。

这就意味着y属于A∩B。

但是由于y属于B,所以y属于B∩A。

由于A∩B=A∩C,所以y属于C∩A。

但是由于y不属于C,所以y属于C∩A必然不成立。

因此,假设B≠C是错误的,即B=C。

2. 习题3.2题目:证明或给出反例:若A、B、C是集合,且A∩B=A∩C,则B=C。

解答:要证明这个命题,我们同样可以采用反证法。

假设存在集合A、B、C,满足A∩B=A∩C,但是B≠C。

由于A∩B=A∩C,所以对于任意的元素x,如果x属于B,那么x也属于A∩C,反之亦然。

由于B≠C,所以存在一个元素y,y属于B但不属于C,或者y属于C但不属于B。

不失一般性,我们假设y属于B但不属于C。

由于y属于A∩B,所以y属于A∩C。

但是由于y不属于C,所以y不属于C∩A。

这就意味着y不属于A∩C。

但是由于y属于A∩B,所以y 属于A∩C必然成立。

因此,假设B≠C是错误的,即B=C。

3. 习题3.3题目:证明或给出反例:若A、B、C是集合,且A∪B=A∩C,则B=C。

解答:要证明这个命题,我们同样可以采用反证法。

自考2324离散数学第三章课后答案

自考2324离散数学第三章课后答案

自考2324离散数学课后答案3.1 习题参考答案1、写出下列集合的的表示式。

a)所有一元一次方程的解组成的集合。

A={x|x是所有一元一次方程的解组成的集合}晓津答案:A={x| ax+b=0∧a∈R∧b∈R}b) x2-1 在实数域中的因式集。

B={1,(x-1),(x+1)|x∈R}c)直角坐标系中,单位圆内(不包括单位圆周)的点集。

C={x,y| x2+y2<1 }晓津答案:C={a(x,y)|a为直角坐标系中一点且 x2+y2<1 }d)极坐标中,单位圆外(不包括单位圆周)的点集。

D={r,θ| r>1,0<=θ<=360}晓津答案:D={a(r,θ)|a为极坐标系中一点且 r>1,0<=θ<=2π } e)能被5整除的整数集E={ x| x mod 5=0}2、判定下列各题的正确与错误。

a) {x}{x};正确b) {x}∈{x};正确晓津观点:本命题错误。

理由:{x}作为一个元素是一个集合,而右边集合中的元素并不是集合。

c) {x}∈{x,{x}};正确d) {x}{x,{x}};正确----------------------------------------------------------------3、设 A={1,2,4},B={1,3,{2}},指出下列各式是否成立。

a) {2}∈A; b) {2}∈B c) {2}Ad) {2}B; e) ∈A f) A解:jhju、晓津和wwbnb 的答案经过综合补充,本题的正确答案是:b、c、d、f成立,a,d、e不成立。

理由:a式中,{2}是一个集合,而在A中并无这样的元素。

因此不能说{2}属于A,当然如果说2∈A则是正确的。

对于e式也应作如此理解,空集是一个集合,在A中并无这个集合元素,如f 式则是正确的。

空集包含于任何集合中,但空集不一定属于任一集合。

----------------------------------------------------------------4、设A= {} , B=(A),问下列各题是否正确。

离散数学第三版课后习题答案

离散数学第三版课后习题答案
反之,对任x∈(A\C)\(B\C),可知x∈A\C,xB\C。由x∈A\C,可知x∈A,xC。又因为xB\C及xC,可知xB。所以,x∈(A\B)\C。因此(A\B)\C(A\B)\C。
由此可得(A\B)\(B\C)(A\B)\C。
3)方法一:(A\C)\C
=A\(B∪C)(根据1))
=A\(C∪B)(并运算交换律)
4)真。因为是集合{}的元素;
5)真。因为{a,b}是集合{a,b,c,{a,b,c}}的子集;
6)假。因为{a,b}不是集合{a,b,c,{a,b,c}}的元素;
7)真。因为{a,b}是集合{a,b,{{a,b}}}的子集;
8)假。因为{a,b}不是集合{a,b,{{a,b}}}的元素。
4.对任意集合A,B,C,确定下列命题的真假性:
A′∪B=(A∪A′)∪B(∪的交换律)
A′∪B=X∪B(互补律)
A′∪B=X(零壹律)
方法三:因为A′X且BX,所以根据定理2的3)就有A′∪BX;
另一方面,由于BA′∪B及根据换质位律可得B′A′A′∪B,因此,由互补律及再次应用定理2的3),可得X=B∪B′A′∪B,即XA′∪B;
所以,A′∪B=X。
=(A\C)\B(根据1))
方法二:对任一元素x∈(A\B)\C,可知x∈A,xB,xC。由为x∈A,xC,所以,x∈A\C。又由xB,x∈(A\C)\B。所以,(A\B)\C(A\C)\B。
同理可证得(A\C)\B(A\B)\C。
9.设A、B是Ⅹ全集的子集,证明:
ABA′∪B=XA∩B′=
[解](采用循环证法)
离散数学辅助教材
概念分析结构思想与推理证明
第一部分
集合论
离散数学习题解答
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学习题三参考答案
第三节图论
1.画出所有4个顶点的简单图。

解:本题这考虑连通图的情况。

共有5个不同构的图。

2.在某次宴会上,许多人互相握手,证明奇数次握手的人一定是偶数个。

解:设每个人看成一个顶点,两人握手看成两顶点间的一条边,每人握手的次数就是该顶点的度数,由定理1的推论2马上可得结论。

3.设图G=(V,E)中有12条边,已知G中3度顶点的有3个,其余顶点的度数均小于3,问G中至少有多少个顶点?为什么?
解:如图G不是连通图,那么12条边最多的顶点数是12×2=24;一个顶点的度数是3,则要减去2个顶点数,所以3度顶点的有3个,就要减去2×3-6个顶点;同样一个顶点的度数是2,则要减去1个顶点数;为了使顶点数最小,图必须是连通图,所以顶点数为2的顶点的个数是(12×2-3×3)÷2的整数部分等于7个,有一个顶点的度数是1,所以G中至少有的顶点数是3+7+1=11(个)。

4.n个运动队之间安排一项比赛,已赛完了n+1场,求证:一定存在这样一个队,它已经至少参加了3场比赛。

解:如果每个运动队都只赛了2场,则共赛了2n÷2=n<n+1,所以一定存在这样一个队,它已经至少参加了3场比赛。

5.下图表示用堤埂分割成很多小块的水稻田。

为了用水灌溉需要挖开一些堤埂(不能挖堤埂的交点)。

问最少要挖开多少条堤埂,才能使水浇灌到每小块稻田?
第五题
解:把每块田看成顶点,相邻的田同一条边连接,这题就是最小生成树问题。

因为有12块田地,所以最少要挖开11条堤埂,才能使水浇灌到每小块稻田。

(见上右图)6在下列图中,求一条欧拉通路。

解:略
2,其中m为图的边数,n为图的顶7.证明:若G=〈V,E〉是简单图,则m≤C
n
点数。

(7,9一样)
解:顶点数相同的情况下,简单图的边数一定小于完全图的边数。

8.设G是一个连通图,不含奇数点,证明:从G中任意去掉一条边,得到的图
仍是连通图。

解:G 是一个连通图,不含奇数点,所以其所有顶点的度数均大于2,就是任何一个顶点至少有两条边与其他顶点相邻。

去掉一条边,则两个顶点与其他顶点至少还有一条边与其他顶点相邻,所以还是通路图。

9.证明:若G=〈V ,E 〉是简单图,则m ≤C n 2 ,其中m 为图的边数,n 为图的顶
点数。

10.证明:设图G 是一棵树,则图G 中最长通路的起点和终点的度数均为1。

证:倘如最长通路的起点和终点的度数有一个大于1,则至少有两条边在起点(或终点)相邻。

那么至少有一条边不是这通路上的边,(因为是端点),加上这条边,仍然是一条通路(因为是树,不可能成圈),并比前一条通路要长,与最长通路矛盾。

11.求下列各图中最小生成树。

第11题
解:用破圈法即可得,见上右图:。

12.设有邮路图如下:问邮递员应按怎样的路线行走才能 使所行的路程最短?(设邮局为A )
(第12题图)
解:A →B →C →A →C →D →A →E →D →E →F →A ,见上右图。

重复走了两段AC 和 DF ,多走了2+4=6个单位。

13.求出下图中从v 1到其他各点的最短通路。

(第13题图)
解:见上右图。

14.在完全图K n 中,(1)任意两点间有多少条边?
(2)有多少个圈?
(3)包含某条边e 的圈有多少个?
解:(1)任意两点间有1条边;
(2)有)1(211243----=+++n n n C C C n n n n n 个圈; (3)包含某条边e 的圈有12111
2212-=+++-----n n n n n C C C 个。

15. 若图G=<V,E>中存在一条包含G的所有顶点的通路,则此通路称为哈密尔顿通路。

如存在一个包含G的所有顶点的圈,则这个圈为G的哈密尔顿圈。

图G 就称为哈密尔顿图。

证明:完全图是哈密尔顿图。

证明:因为完全图可以找到一条通路通过所有顶点。

16.某人从A出发到B,C,D,E四地去旅游,在回到A,各地间的路程如下图:
第16题
问应如何选择旅游路线,使总路程最短?
解:A→B→E→D→C→A 即 7+7+2+3+5=24(见上右图)。

17.下列各图是否是两步图?
第17题
解:三个都是,见下图。

18.已知关于人员a,b,c,d,e,f的下述事实:
a 会说汉语,法语和日语;
b 会说德语,俄语和日语;
c 会说英语和法语;
d 会说汉语和西班牙语;
e 会说英语和德语;
f 会说俄语和西班牙语,
试问能否把这六人分成两组,使同组中没有两人能互相交谈?
解:能,见图。

19.有5个工人分配5个工种,要求每个工种配一个工人,每个工人可以做的工
种如下表:
工种 1 2 3 4 5
工号 1 能 不能 不能 能 不能
2 能 不能 不能 不能 能
3 不能 能 不能 能 能
4 能 不能 能 不能 能
5 不能 不能 能 能 能
能否有合适的安排,使得每项工作都有人做? 解:能,见图。

20.现有四个工人A i 和四种零件B j ,工人A i 加工零件B j 所得的收益为W ij 由下表给出,
工种 B 1 B 2 B 3 B 4
工号 A 1 5 9 2 7
A 2 3 4 3 5
A 3 6 7 7 3
A 4 6 10 3 4
问应怎样安排加工任务,使每个工人加工一种零件,一个零件由一个工人加工,且使工人们的总收益最大? 解:
所以}y ,x )(y ,x )(y ,x )(y ,x {(M 42332411)
最大收益值为5+10+7+5=27。

相关文档
最新文档