中考数学知识点总结

合集下载

中考数学复习知识点归纳总结7篇

中考数学复习知识点归纳总结7篇

中考数学复习知识点归纳总结7篇篇1一、数与代数(一)数的认识1. 自然数的认识:自然数是指用以计量事物的件数或表示事物次序的数。

即用数码0,1,2,3,4……所表示的数。

中考中可能会涉及自然数的连续性及自然数的个数等问题。

复习时需要注意对自然数概念的理解及运用。

2. 整数的认识:整数包括正整数、零和负整数。

在中考复习中,需要掌握整数的性质、运算规则以及与分数的区别等知识点。

(二)代数式与方程1. 代数式的认识:代数式是由数字、字母和数学符号组成的一种数学表达式。

在中考复习中,需要掌握代数式的简化、代入计算等知识点。

同时还需要加强对代数式在实际问题中应用的能力培养。

如与面积计算、路程问题等结合出题的情况很常见。

例如“给出多边形的一条边长为a米,与其相邻的两边之差的代数式是:______________”。

因此类题目较为灵活,需要考生具备一定的数学思维和解题技巧。

(三)数的运算与性质篇2一、数与代数(一)数的认识1. 自然数的认识:自然数是指用以计量事物的件数或表示事物次序的数。

即用数码0,1,2,3,4……所表示的数。

2. 整数的认识:整数是自然数中的一部分,包括正整数和负整数。

它们在日常生活中的应用非常广泛。

3. 小数、分数与百分数的认识:熟练掌握小数、分数与百分数的概念及其相互转化,对于数学计算和应用题的解答至关重要。

(二)代数知识1. 代数式的认识与运算:掌握代数式的概念、性质及运算规则,能够熟练进行代数式的化简、求值等。

2. 方程与不等式的应用:掌握一元一次方程、不等式及其解法,能够灵活运用方程与不等式解决实际问题。

二、几何知识(一)平面几何1. 图形的认识:熟练掌握各种基本图形的性质、分类及相互之间的关系。

2. 图形的测量:掌握各种图形的周长、面积等测量方法,能够熟练计算图形的面积和周长。

3. 图形的变换:了解图形的平移、旋转、翻折等变换方式,掌握其性质和应用。

(二)立体几何1. 长方体与正方体的认识:掌握长方体与正方体的性质、体积和表面积的计算方法。

中考数学必考知识点大全

中考数学必考知识点大全

中考数学必考知识点大全1.整数的加减乘除运算:掌握整数的加减乘除运算法则,包括加法、减法、乘法和除法。

2.分数的加减乘除运算:掌握分数的加减乘除运算法则,包括分数的加法、减法、乘法和除法。

3.百分数的计算:掌握百分数的计算方法,包括百分数的转化和百分数之间的比较。

4.小数的加减乘除运算:掌握小数的加减乘除运算法则,包括小数的加法、减法、乘法和除法。

5.整式的加减乘除运算:掌握整式的加减乘除运算法则,包括整式的加法、减法、乘法和除法。

6.一元一次方程与一元一次不等式:掌握一元一次方程和一元一次不等式的解法和问题的应用。

7.二次根式:掌握二次根式的定义和性质,包括二次根式的化简和运算。

8.平方根与立方根:掌握平方根和立方根的计算方法和性质,包括平方根和立方根的开放计算和化简。

9.平面图形的面积和周长:掌握各种平面图形的面积和周长的计算方法,包括矩形、正方形、三角形、梯形、圆等。

10.空间图形的体积和表面积:掌握各种空间图形的体积和表面积的计算方法,包括长方体、正方体、三棱锥、四棱锥、棱柱、棱台、球等。

11.初等概率与统计:掌握初等概率和统计的基本概念和计算方法,包括样本空间、事件、概率、频率、直方图等。

12.等比数列与等差数列:掌握等比数列和等差数列的定义和性质,包括等比数列和等差数列的通项公式和求和公式。

13.直角三角形的性质与应用:掌握直角三角形的性质和定理,包括勾股定理、正弦定理、余弦定理等。

14.平行线与相交线:掌握平行线和相交线的基本性质和判定方法,包括平行线的性质、相交线的性质和相交线的角度关系。

15.二次函数与二次方程:掌握二次函数和二次方程的定义和性质,包括二次函数的图像、二次方程的解法和二次函数和二次方程在实际问题中的应用。

2024中考数学知识点总结

2024中考数学知识点总结

2024中考数学知识点总结一、数与代数1.完全平方公式和差平方公式完全平方公式:(a+b)² = a² + 2ab + b²差平方公式:(a-b)² = a² - 2ab + b²2.因式分解因式分解是将一个代数式按照一定规律拆分成可以相乘的因子的过程,常见的拆分方式有提公因式、求和差、分组等。

3.分式分式是指一个数除以另一个数,分子和分母分别表示被除数和除数。

常见的分数运算有加减乘除、约分与换分、比较大小等。

4.一元一次方程一元一次方程是形如ax+b=0(a≠0)的方程,常见的解法有等式消元、系数关系法等。

5.一元一次不等式一元一次不等式是形如ax+b>0(a≠0)、ax+b<0(a≠0)的不等式,求解方法和一元一次方程类似。

6.二次根式二次根式就是一个根号里含有二次方程,求解方法有配方法、公式法等。

二、图形与计量1.平面图形的性质平面图形包括:点、线、角、三角形、四边形、圆等。

其性质包括平行线、垂直线、相交线的性质、多边形的性质、圆的性质等。

2.同位角、对顶角和同旁内角同位角:是指两条平行线被一条直线所截所得的两对相邻的内角,它们的度数相等。

对顶角:是指两条直线的交角的内角,它们的度数相等。

同旁内角:是指两条平行线被一条直线所截所得的两对相外侧的内角,它们的度数之和为180°。

3.三角形的性质三角形包括等边三角形、等腰三角形、直角三角形等。

其性质有角平分线的性质、中线的性质等。

4.圆的性质圆的性质包括弧长和圆心角的关系、圆周角的性质等。

5.计量单位的换算包括长度、面积、体积、质量、时间、速度、温度等不同计量单位之间的换算。

三、概率与统计1.事件与概率事件是指在次试验中可能发生也可能不发生的结果,概率是指事件发生的可能性大小。

概率的计算方法有频率法、古典概率法等。

2.排列与组合排列是指从一组事物中选出若干进行安排,组合是指从一组事物中选出若干进行组合。

中考数学的所有知识点归纳

中考数学的所有知识点归纳

中考数学的所有知识点归纳中考数学是初中阶段数学学习的重要总结,它涵盖了多个数学领域的知识点。

以下是中考数学所有知识点的归纳:一、数与代数1. 数的认识:包括自然数、整数、有理数、无理数、实数等。

2. 数的运算:四则运算、乘方、开方、绝对值、倒数等。

3. 代数式:代数式的基本运算、同类项、合并同类项、代数式的化简等。

4. 方程与不等式:一元一次方程、一元二次方程、不等式、方程组的解法等。

5. 函数:函数的概念、性质、图象、一次函数、二次函数等。

二、几何1. 平面图形:线段、角、三角形、四边形、圆等基本图形的性质。

2. 图形的变换:平移、旋转、反射等。

3. 相似与全等:相似三角形、全等三角形的判定与性质。

4. 圆的性质:圆周角、切线、弧长、扇形面积等。

5. 立体几何:立体图形的表面积、体积计算。

三、统计与概率1. 数据的收集与处理:数据的收集、整理、描述。

2. 统计图:条形统计图、折线统计图、饼图等。

3. 平均数、中位数、众数:计算方法及其意义。

4. 方差:衡量数据的离散程度。

5. 概率:事件的概率、概率的计算方法。

四、综合应用1. 数学建模:将实际问题转化为数学问题进行求解。

2. 问题解决:运用数学知识解决实际问题。

3. 创新思维:培养创新思维,解决新颖的数学问题。

结束语中考数学的知识点广泛,要求学生具备扎实的数学基础和灵活的解题能力。

通过系统地复习和练习,学生可以更好地掌握数学知识,为中考做好充分的准备。

希望以上的归纳能够帮助学生更好地理解和复习中考数学的知识点。

中考数学知识点归纳总结

中考数学知识点归纳总结

中考数学知识点归纳总结一、数与代数。

(一)有理数。

1. 有理数的概念。

- 整数和分数统称为有理数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。

- 例如:3是正整数, - 5是负整数,0.25(可化为(1)/(4))是有限小数属于分数,0.3̇(可化为(1)/(3))是无限循环小数属于分数。

2. 有理数的运算。

- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。

- 例如:3 + 5=8;-3+(-5)= - 8;3+(-5)= - 2;5+(-5)=0。

- 减法:减去一个数,等于加上这个数的相反数。

即a - b=a+(-b)。

- 例如:5 - 3 = 5+(-3)=2;3 - 5=3+(-5)= - 2。

- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0;几个不为0的数相乘,负因数的个数为偶数时,积为正,负因数的个数为奇数时,积为负。

- 例如:3×5 = 15;-3×(-5)=15;3×(-5)= - 15;0×5 = 0;(-2)×(-3)×(-4)= - 24(3个负因数,积为负)。

- 除法:除以一个不等于0的数,等于乘这个数的倒数。

即a÷b=a×(1)/(b)(b≠0)。

两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。

- 例如:15÷3 = 5;-15÷(-3)=5;15÷(-3)= - 5;0÷5 = 0。

- 乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

a^n 中,a叫做底数,n叫做指数。

- 例如:2^3 = 2×2×2 = 8;(-2)^3=-2× - 2× - 2=-8。

2024初中数学知识点中考总复习总结归纳

2024初中数学知识点中考总复习总结归纳

2024初中数学知识点中考总复习总结归纳一、整数和分数运算1.整数的四则运算:加法、减法、乘法、除法2.分数的四则运算:分数的加减法、乘法、除法3.整数与分数的混合运算:转化为同种形式进行运算二、多项式的运算1.单项式与多项式的加减法:同类项的合并2.多项式的乘法:使用分配律展开式相乘,并合并同类项3.多项式的除法:使用长除法进行整除或整除后的简化三、方程与不等式1.一元一次方程:基本概念、解方程的基本方法(逆运算、倒数、代入等)2.一元一次方程的应用:问题转化为方程、代入解的检验等3.一元二次方程的解:配方法、求根公式4.一元二次方程的应用:问题转化为方程、代入解的检验等5.一元一次不等式:基本概念、解不等式的基本方法(逆运算、倒数、代入等)6.一元一次不等式的应用:问题转化为不等式、代入解的检验等四、数形结合与图形的性质1.平面图形的拓展:几何图形的基本概念、性质和判定方法(例如多边形、平行四边形、正方形等)2.三角形与四边形的面积:基本公式的推导和应用3.三角形的相似与全等:判断相似与全等的条件及应用4.圆的性质与关系:圆心角、弧长、扇形和面积的计算5.空间几何体的计算:体积和表面积的计算五、几何与运动的关系1.几何与坐标系:点的坐标及其在平面直角坐标系中的性质2.直线与圆的方程:点斜式、斜截式和截距式的互相转换及应用3.运动方程:速度、时间、距离之间的关系及其应用六、数据与概率1.数据的整理与处理:频数、频率、中位数、众数、范围等的计算和应用2.统计图的绘制与分析:条形图、折线图、扇形图等的绘制和分析3.概率的计算:事件的排列组合、概率的计算公式以上是2024初中数学中考的一些重要知识点的总结归纳,希望对您的复习有帮助。

中考数学必考知识点及总结

中考数学必考知识点及总结

中考数学必考知识点及总结一、代数1.整数运算:加减乘除,整数的乘方、乘方根、分式等的运算。

2.一元一次方程:解一元一次方程的方法,如用等式的性质、加减消元法、加法逆元素法、代入法等。

3.一元一次方程组:联立一元一次方程组的解法,如代入法、消元法等。

4.二元一次方程:通过解方程组方法以及用递推法。

5.实数的性质:包括有理数和无理数的性质、实数的数轴表示、实数的大小比较、实数的运算律等。

6.整式运算:包括多项式的加减乘除、综合运算等。

7.分式运算:包括分式的加减乘除、分式的化简、分式方程的解等。

8.二次根式:二次根式的概念、性质以及二次根式的加减乘除、化简等相关运算。

9.二次根式方程:涉及到解二次根式方程以及二次根式的应用等。

10.不等式:包括一元一次不等式、一元一次绝对值不等式、一元一次分式不等式、二元一次不等式等的解法。

11.初步函数:包括函数的概念、函数的表示、函数的对应法则、函数的性质等。

12.函数的图像:初步了解一元一次函数、一元二次函数的图像以及通过解题的方法掌握一元一次函数、一元二次函数的图像。

13.数列与等差数列:了解数列的概念、等差数列的概念、等差数列的通项公式、前n项和公式等。

二、平面几何1.线段的中点:中点的性质,中点的坐标,中点的应用。

2.线段的分点:分点的概念,分点的坐标,分点的共线性等相关知识。

3.三角形:三角形的性质、三角形的分类、三角形的周长、面积等相关知识。

4.多边形:包括正多边形的边数、对角、内角和外角等相关知识。

5.圆的相关性质:包括圆周率π、圆的面积、周长、内切外切相切线等相关知识。

6.平行线与相交线:包括平行线的性质、相交线的性质、平行线的判定等相关知识。

7.三角形的相似:了解相似三角形的性质、相似三角形的判定等相关知识。

8.勾股定理:了解勾股定理的概念、勾股定理的应用等相关知识。

9.平面直角坐标系:了解平面直角坐标系的概念、直角坐标系的应用等相关知识。

10.直角三角形:包括直角三角形的性质、勾股定理及其应用等相关知识。

初三数学知识点总结大全(热门6篇)

初三数学知识点总结大全(热门6篇)

初三数学知识点总结大全(热门6篇)初三数学知识点总结大全第1篇1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做多边形覆盖平面(平面镶嵌)。

镶嵌的条件:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个时,就能拼成一个平面图形。

13、公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°。

⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形、②边形共有条对角线。

初三数学知识点总结大全第2篇平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A 的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

中考数学复习知识点归纳总结6篇

中考数学复习知识点归纳总结6篇

中考数学复习知识点归纳总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。

2. 数的运算:加减乘除四则运算,乘方、开方运算,分数运算,小数运算等。

3. 代数表达式:用字母表示数,表达数量关系和变化规律。

4. 方程与不等式:解一元一次方程,解一元一次不等式,理解函数的概念。

二、几何与图形1. 几何概念:点、线、面、体,角、度数,平行、垂直等基本几何概念。

2. 图形与变换:平移、旋转、对称等图形变换,相似图形,全等图形。

3. 面积与体积:计算平面图形的面积,计算立体图形的体积。

4. 解析几何:理解直线的方程,理解圆及其方程。

三、函数与图像1. 函数的概念:理解变量间的关系,用解析式表示函数关系。

2. 函数的运算:函数的加减法,函数的乘法,复合函数。

3. 函数的图像:理解函数的图像及其变换,根据图像理解函数的性质。

4. 反函数与对称函数:理解反函数的概念,理解对称函数的概念。

四、数据与概率1. 数据收集与整理:理解数据收集的方法,会用统计图表表示数据。

2. 数据的计算:平均数、中位数、众数等统计量的计算,方差和标准差的计算。

3. 概率的概念:理解概率的基本概念,会计算事件的概率。

4. 概率的应用:理解概率在生活中的应用,会解决与概率相关的问题。

五、综合与实践1. 图形的变换与对称:运用几何知识解决实际问题,理解图形的变换和对称。

2. 函数的实际应用:理解函数在实际问题中的应用,如利润、成本等问题。

3. 数据的分析与决策:运用统计知识解决实际问题,理解数据的分析与决策。

4. 课题学习与研究性学习:理解课题学习与研究性学习的意义和方法。

在中考数学复习过程中,我们需要对以上知识点进行全面的梳理和总结,形成系统的知识框架。

同时,我们需要关注考试动态和命题趋势,结合历年真题进行有针对性的练习和巩固。

此外,我们还要注重解题技巧和策略的学习和应用,提高解题效率和准确性。

希望同学们能够认真复习备考,取得优异的成绩!篇2一、数与代数(一)数的认识复习要点:整数、小数、分数、百分数的认识及其关系,数的运算规则和运算性质。

数学 中考必会知识点总结

数学 中考必会知识点总结

数学中考必会知识点总结一、代数1.1 代数式和代数方程式的认识代数式是由数字、字母和运算符号(+、-、*、/、^等)组成的式子。

代数方程式是通过字母和等号表达的数学关系。

1.2 一次方程及其解法一次方程是形如ax+b=0的方程,其中a、b为常数且a≠0。

解一次方程的方法主要有加减消元法、辅助角法等。

1.3 一元一次不等式及其解法一元一次不等式是形如ax+b>0或ax+b<0的不等式,其中a、b为常数且a≠0。

解一元一次不等式的方法与解一次方程类似。

1.4 二元一次方程组的解法二元一次方程组是由两个一元一次方程组成的方程组。

解二元一次方程组的方法主要有代入法、消元法、加减法等。

1.5 整式的加减乘除整式是由有限项的代数式经过加减乘除运算得到的式子。

对整式进行加减乘除的操作需要根据运算规律进行。

1.6 因式分解因式分解是将代数式分解成一些可约的因式相乘的过程。

因式分解的方法有公因式提取法、分组分解法、提公因式法等。

1.7 分式的加减乘除分式是由整式的分数形式得到的式子,对分式进行加减乘除的操作需要根据分式的性质进行。

1.8 方程的解法求解方程的方法主要有因式分解法、配方法、两边同乘或除以相同的数等。

二、几何2.1 直线和角的性质直线是没有宽度但有长度的几何对象,它有一些特殊的性质,如两直线相交于一点则称这两条直线相交,两条相交的直线总有一个公共点等。

角是由两条射线共同端点构成的几何对象,角有一些特殊的性质,如相邻补角互补、相邻角的性质等。

2.2 三角形的性质及判定三角形是一个有三条边的几何对象,三角形的性质包括内角和为180度、外角和为360度等。

判定三角形的方法主要有三边关系、两角关系、边角关系等。

2.3 四边形的性质及判定四边形是一个有四条边的几何对象,四边形的性质包括内角和为360度、对边平行、对角相等等。

判定四边形的方法主要有边关系、角关系等。

2.4 圆的性质及判定圆是由一条定长的线段围成的几何对象,圆的性质包括圆周长的计算、圆的面积的计算、圆上的角性质等。

初中中考常考数学知识点归纳总结(8篇)

初中中考常考数学知识点归纳总结(8篇)

初中中考常考数学知识点归纳总结(8篇)掌握中考常考数学知识点是我们提高成绩的关键!在平时的学习中,不管我们学什么,都需要掌握一些知识点,知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。

下面是小编给大家整理的初中中考常考数学知识点归纳总结,仅供参考希望能帮助到大家。

初中中考常考数学知识点归纳总结篇11.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

整式和分式统称为有理式。

2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3.单项式与多项式没有加减运算的整式叫做单项式(数字与字母的积—包括单独的一个数或字母)。

几个单项式的和,叫做多项式。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

划分代数式类别时,是从外形来看。

如=x,=│x│等。

4.系数与指数区别与联系:①从位置上看;②从表示的意义上看;5.同类项及其合并条件:①字母相同;②相同字母的指数相同合并依据:乘法分配律6.根式表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别:是根式,但不是无理式(是无理数)。

7.算术平方根⑴正数a的正的'平方根([a≥0—与“平方根”的区别]);⑵算术平方根与绝对值①联系:都是非负数,=│a│②区别:│a│中,a为一切实数;中,a为非负数。

8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

中考数学知识点总结(优秀4篇)

中考数学知识点总结(优秀4篇)

中考数学知识点总结(优秀4篇)一、三角形的有关概念1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。

三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。

2.三角形中的三条重要线段:角平分线、中线、高(1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

(2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

(3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

说明:①三角形的角平分线、中线、高都是线段;②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。

二、等腰三角形的性质和判定(1)性质1.等腰三角形的两个底角相等(简写成"等边对等角")。

2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成"等腰三角形的三线合一")。

3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。

4.等腰三角形底边上的垂直平分线到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。

(2)判定在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。

在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。

三、直角三角形和勾股定理有一个角是直角的三角形是直角三角形,在直角三角形中,斜边中线等于斜边的一半;30度所对的直角边等于斜边的一半;直角三角形常用面积法求斜边上的高。

中考数学知识点归纳总结

中考数学知识点归纳总结

中考数学知识点归纳总结中考数学知识点归纳总结11、随机事件必定事件:在肯定条件下,肯定会发生的事件称为必定事件。

不行能事件:在肯定条件下,肯定不会发生的事件称为不行能事件。

必定事件和不行能事件统称确定性事件。

随机事件:在肯定条件下,可能发生也可能不发生的事件称为随机事件。

2、概率(1)概率的性质:P(必定事件)=1;P(不行能事件)=0;0(2)一般地,假如在一次试验中,有n种可能的结果,而且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率。

1、能通过列表、画树状图等方法列出简单随机事件全部可能的结果,以及指定事件发生的全部可能结果,了解事件的概率。

2、知道通过大量的重复试验,可以用频率来估量概率。

1、必定事件、不行能事件、随机事件的辨析。

2、简单事件的概率求解。

3、用频率估量概率。

4、用概率解决实际问题。

5、概率与其它知识的综合运用。

1、下列事件中是必定事件的是()A、拉萨明日刮西北风B、抛掷一枚硬币,落地后正面朝上C、当x是实数时,x2≥0D、三角形内角和是360°2、下列说法正确的是()A、拉萨市“明天降雨的概率是75%”表示明天有75%的时间会降雨B、随机抛掷一枚均匀的硬币,落地后正面肯定朝上C、在一次抽奖活动中,“中奖的概率是1%”表示抽奖100次就肯定会中奖D、在平面内,平行四边形的两条对角线肯定相交3、下列事件是不行能事件的是()A、一个角和它的余角的和是90°B、接连掷10次骰子都是6点朝上C、一个有理数和它的倒数之和等于0D、一个有理数小于它的倒数4、下列事件中是必定事件的是()A、从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球B、扎西的脚踏车轮胎被钉子扎坏C、卓玛期末考试数学成绩肯定得满分D、将菜籽油滴入水中,菜籽油会浮在水面上5、下列说法中,正确的是()A、生活中,假如一个事件不是不行能事件,那么它就必定发生B、生活中,假如一个事件可能发生,那么它就是必定事件C、生活中,假如一个事件发生的可能性很大,那么它也可能不发生D、生活中,假如一个事件不是必定事件,那么它就不行能发生6、同时投掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数。

中考数学所有知识点

中考数学所有知识点

中考数学所有知识点一、代数与函数1. 实数- 实数的性质与分类- 实数的运算法则2. 代数式与方程式- 代数式的加减乘除运算- 一元一次方程与一元一次不等式- 二元一次方程组的解法- 一元二次方程的解法- 绝对值不等式3. 函数- 函数与自变量的关系- 函数的图像、定义域与值域- 线性函数- 平方函数- 反比例函数- 根据函数和实际问题求解二、图形和空间几何1. 图形的性质- 点、线、线段、角的性质与分类- 平行线与垂直线的判定- 三角形的性质与分类- 四边形的性质与分类2. 平面图形- 直角坐标系与平面直角坐标- 各种平面图形的性质和特点- 三角形的面积计算- 相似三角形与三角形的比例关系3. 空间几何- 空间几何中的点、线、面等基本概念- 空间几何中的距离计算- 空间几何中的立体图形的性质和计算- 空间几何中的投影计算三、数据和概率统计1. 数据的处理- 数据的收集、整理和呈现- 数据的中心趋势与离散程度- 数据的分组与频率分布- 数据的统计图表绘制2. 概率与统计- 随机事件与概率的概念- 事件的排列与组合- 事件的概率计算- 实际问题中的统计与概率计算四、函数与图像的应用1. 函数的最值与极值- 函数的最大值与最小值- 函数图像的顶点与最值的关系2. 函数与图像的画法- 函数的图像和特点- 函数与实际问题的关系3. 函数的增减性与导数- 函数增减性的判定与应用- 函数导数的概念与计算- 函数与导数的应用五、几何证明题1. 平面几何证明- 几何命题的证明- 平行线的性质与证明- 三角形的性质与证明- 四边形的性质与证明2. 空间几何证明- 空间几何命题的证明- 空间几何图形的投影证明- 空间几何图形的平行关系的证明- 空间几何图形的垂直关系的证明综上所述,中考数学涵盖了代数与函数、图形和空间几何、数据和概率统计、函数与图像的应用以及几何证明题等各个知识点。

掌握了这些知识点,就能够在中考中熟练运用数学的方法进行解题,取得良好的成绩。

中考数学常考知识点总结归纳

中考数学常考知识点总结归纳

中考数学常考知识点总结归纳一、整数与有理数1. 整数的概念与性质整数是由正整数、负整数和零组成的数系统。

它具有封闭性、交换律、结合律等性质。

2. 整数的四则运算整数的加法、减法、乘法和除法的规则与计算方法。

3. 整数的大小比较与绝对值比较整数大小时需要考虑正负,绝对值是一个数与零的距离。

4. 有理数的概念与性质有理数包括整数和分数,它们可以用分数表示,有理数也具有封闭性、交换律、结合律等性质。

二、代数式与方程式1. 代数式的概念与运算代数式是由数和字母以及运算符号组成的式子,可以进行加法、减法、乘法和除法。

2. 方程与方程的解方程是一个含有未知数的等式,方程的解是能使方程成立的未知数的值。

3. 一次方程与一次方程组一次方程是未知数的最高次数为一的方程,一次方程组是含有多个一次方程的方程组。

4. 二次方程与二次根式二次方程是未知数的最高次数为二的方程,二次根式是与二次方程相对应的根式表达式。

三、几何图形与空间图形1. 直线、线段、射线与角直线是由无数个点组成的,线段是直线的两个端点及其之间的部分,射线是直线上一个固定点及其一侧的部分,角是由两条射线共享一个端点所形成的图形。

2. 三角形与其性质三角形是由三条边和三个内角构成的图形,根据角度关系可以分为锐角三角形、直角三角形和钝角三角形。

3. 四边形与其性质四边形是由四条边和四个内角构成的图形,根据边和角的特点可以分为平行四边形、矩形、正方形、菱形等。

4. 三视图与投影三视图是一个物体在不同相对位置下的投影所形成的视图,在技术绘图和工程设计中具有重要作用。

四、函数与方程1. 函数的概念与性质函数是一个映射关系,将一个自变量映射到一个因变量上,并具有定义域、值域、单调性等性质。

2. 一次函数与一次函数图像一次函数是最高次数为一的函数,它的图像是一条直线,具有斜率和截距。

3. 二次函数与二次函数图像二次函数是最高次数为二的函数,它的图像是一个抛物线,具有顶点、轴对称性和开口方向等特点。

中考数学知识点归纳总结

中考数学知识点归纳总结

中考数学知识点归纳总结一、数与代数1. 有理数- 有理数的定义- 有理数的分类(正数、负数、整数、分数)- 有理数的运算(加、减、乘、除、乘方、开方)2. 整数- 整数的性质- 整数的四则运算- 整数的比较和排序3. 分数与小数- 分数的基本性质- 分数与小数的互化- 分数的四则运算4. 代数表达式- 单项式与多项式- 代数式的加减运算- 代数式的乘除运算5. 方程与不等式- 一元一次方程的解法- 二元一次方程组的解法(代入法、消元法)- 不等式的性质和解集表示- 一元一次不等式及其解集6. 函数- 函数的概念- 线性函数和二次函数的图像及性质- 函数的基本运算(函数的和、差、积、商)二、几何1. 平面几何- 点、线、面的基本性质- 角的定义和分类(邻角、对角、同位角等)- 三角形的性质(等边、等腰、直角三角形)- 四边形的性质(矩形、菱形、正方形、平行四边形、梯形) - 圆的基本性质和圆的有关计算2. 立体几何- 立体图形的基本概念(体积、表面积)- 常见立体图形的性质(长方体、正方体、圆柱、圆锥、球)3. 图形的变换- 平移、旋转、轴对称、中心对称- 相似图形和全等图形的性质三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表的绘制和解读(条形图、折线图、饼图)2. 概率- 随机事件的概率- 计算简单事件的概率- 用树状图解决概率问题四、解题技巧与策略1. 解题方法- 列方程解应用题- 利用图形解决几何问题- 分类讨论法2. 考试策略- 时间管理- 题目审题- 检查与复核五、重要公式与定理- 面积公式(三角形、四边形、圆、梯形等)- 体积公式(长方体、正方体、圆柱、圆锥、球)- 勾股定理及其应用- 相似三角形定理- 圆周角定理- 百分比和利润计算以上是中考数学的主要知识点归纳总结。

在实际应用中,学生应根据具体的教学大纲和考试要求,对每个知识点进行深入学习和练习,以确保在考试中能够熟练运用。

中考数学重要知识点归纳大全

中考数学重要知识点归纳大全

中考数学重要知识点归纳大全
一、数与代数
1.自然数、整数、有理数、实数的概念及性质。

2.数字计算的初步技能,包括整数的加减乘除、分数的加减乘除、百分数的运算等。

3.基本的代数运算,包括代数表达式的计算、方程的求解、分式的运算等。

4.代数式的展开与因式分解。

5.利用等式解决问题。

二、几何与图形
1.平面内角的概念,直线与平面的位置关系。

2.常见图形的性质,如正方形、长方形、三角形、梯形等。

3.常见多面体和圆柱体的性质。

4.直线与曲线的位置关系。

5.平行线与平行四边形的性质。

6.相似与全等的判断。

7.平行线与平面的位置关系。

三、函数与方程
1.函数的概念与性质。

2.函数的图像和函数关系的表示。

3.线性函数的性质与图像。

4.二次函数的性质与图像。

5.函数的运算与复合函数。

6.一元一次方程与一元一次不等式。

7.二次方程及一元二次不等式的解法。

8.一元一次方程组的解法。

四、数据与概率
1.数据的收集和整理。

2.数据的统计和描述。

3.常见统计图表的制作与分析。

4.概率的概念与性质。

5.事件的概念与计算。

6.排列与组合的计算。

7.概率的计算与应用。

五、实际问题
1.实际问题中的数学模型建立。

2.实际问题解决中的数学计算与推理。

3.实际问题中的解释和表达能力。

初中中考数学知识点总结

初中中考数学知识点总结

初中中考数学知识点总结一、数与代数1. 整数和有理数- 整数的概念、性质和运算规则- 有理数的概念、性质和运算规则- 绝对值的含义和性质- 正数和负数的概念及其运算2. 代数表达式- 单项式和多项式的定义和运算- 合并同类项、配方法- 因式分解的基本概念和方法3. 一元一次方程与不等式- 一元一次方程的解法- 解含有字母系数的方程- 不等式的性质和解法- 用不等式解决实际问题4. 二元一次方程组- 代入法和消元法解二元一次方程组- 三元一次方程组的解法5. 函数的基本概念- 函数的定义和表示方法- 常见函数(一次函数、二次函数、反比例函数)的图像和性质 - 函数的基本运算和性质二、几何1. 平面图形- 点、线、面的基本性质- 角的概念和分类- 三角形、四边形的性质和计算- 圆的基本性质和计算2. 空间图形- 空间直线和平面的位置关系- 简单几何体(如棱柱、棱锥、圆柱、圆锥、球)的性质和计算3. 图形的变换- 平移、旋转、对称(轴对称、中心对称)的概念和性质- 坐标系中的图形变换4. 相似与全等- 全等三角形的判定和性质- 相似三角形的判定和性质- 相似多边形的判定和性质5. 解析几何- 坐标系中点的坐标表示- 直线和曲线的方程表示- 点、线、面之间的位置关系三、统计与概率1. 统计- 数据的收集、整理和描述- 统计图表(如条形图、折线图、饼图)的绘制和解读- 统计量(如平均数、中位数、众数、方差、标准差)的计算和意义2. 概率- 随机事件的概念和分类- 概率的计算方法(如经典概率、相对频率概率)- 概率公式的应用四、综合应用题1. 数列的基本概念和简单数列的求和2. 应用题的解题策略,如列方程解应用题3. 探索性问题,如图形的变化规律、最优化问题4. 开放性问题,如存在性问题、推理证明五、解题技巧与策略1. 审题技巧:准确把握题目要求和条件2. 画图技巧:利用图形辅助解题3. 转化技巧:将复杂问题转化为简单问题4. 检验技巧:解题后的结果验证以上是初中中考数学的主要知识点总结,学生在复习时应重点掌握每个部分的核心概念、性质和计算方法,并结合实际题目进行练习,以提高解题能力和应试技巧。

中考数学知识点总结(完整版)

中考数学知识点总结(完整版)

中考数学知识点总结(完整版)中考数学知识点总结一、整数及其运算1. 整数的概念:包括正整数、负整数和零。

2. 整数的比较:根据绝对值的大小进行比较,绝对值越大的整数越小。

3. 整数的加法和减法:- 同号相加,取相同符号,数值相加;- 异号相加,取绝对值较大的符号,数值取较大的减去较小的;- 整数减法可以转换为加法运算。

二、分数及其运算1. 分数的概念:由分子和分母组成,表示部分与整体的比例关系。

2. 分数的比较:可以先通分,再比较分子的大小。

3. 分数的加法和减法:- 分母相同,分子相加或相减;- 分母不同,先通分,再进行加减运算。

4. 分数的乘法和除法:- 分子相乘,分母相乘;- 除法转换为乘法,将除数倒数乘以被除数。

三、代数式及其运算1. 代数式的概念:由数字、字母和算符组成,可表示一个或多个数的和、差、积、商。

2. 代数式的加法和减法:将同类项相加或相减,并合并同类项。

3. 代数式的乘法:使用分配律,将每一项与其他项相乘。

4. 代数式的除法:将除法转换为乘法,将除数的倒数乘以被除数。

四、方程与方程组1. 方程的概念:由等号连接的两个代数式构成,表示两个量相等的关系。

2. 解一元一次方程:通过逆运算,使得未知数单独在一边,求出未知数的值。

3. 解一元一次不等式:通过运算规则,求出不等式的解集。

4. 方程组的概念:由多个方程组成,表示多个变量之间的关系。

5. 解二元一次方程组:通过消元法或代入法,求出方程组的解。

五、几何图形与计算1. 平面图形:包括点、线、线段、射线、角、三角形、四边形等。

2. 空间图形:包括立体图形如球体、长方体、正方体等。

3. 相似与全等:相似图形的对应边比值相等,全等图形各边和角相等。

4. 长度、面积、体积的计算公式:根据几何图形的特点,计算对应的量。

六、统计与概率1. 统计图表的读取与分析:理解直方图、折线图、饼图等的含义。

2. 平均数的计算:包括算术平均数、加权平均数等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学知识点总结一.不为0的量: 1.分式AB中,分母B ≠0; 2.二次方程ax 2+bx +c =0(a ≠0) 3.一次函数y =kx +b (k ≠0) 4.反比例函数ky x=(k ≠0) 5.二次函数y = ax 2+bx +c =0(a ≠0)二.绝对值:(0)(0)aa a a a ≥⎧=⎨-⎩<三.非负数1.│a │≥02. ≥0(a ≥0)3. a 2n ≥0(n 为自然数) 四.重要概念1. 平方根与算术平方根:如果x 2=a (a ≥0),则称x 为a 的平方根,记作:x=,其中称为x 的算术平方根.2. 负指数:1p p a a-= 3. 零指数:a 0=1(a ≠0)*4. 科学计数法:a ×10 n (n 为整数,1≤a <10)五.重要公式(一)幂的运算性质1.同底数幂的乘法法则: m n m n a a a +⋅= ( a ≠0,m,n 都是正数)2.幂的乘方法则:()m n mn a a = (m,n 都是正数)3.积的乘方法则:()n n n ab a b =(n 为正整数)。

4.同底数幂的除法法则: m n m n a a a -÷= (a ≠0,m 、n 都是正数,且m >n ). (二)整式的运算1.平方差公式:22()()a b a b a b +-=-2.完全平方公式:222()2a b a ab b ±=±+ (三)二次根式的运算 &)0,00,0)a b a b ≥≥=≥>(四)一元二次方程一元二次方程ax 2+bx +c =0(a ≠0)当△=b 2-4ac ≥0时,x ;x 1+x 2= -b a ;x 1x 2=ca(五)二次函数 抛物线的三种表达形式:一般式:y = ax 2+bx +c =0(a ≠0)顶点式:2()y a x h k =-+ 双根式:12()()y a x x x x =--其中2bh a=-,244ac b k a -=,12x x 、为抛物线与x 轴两交点的横坐标,且此两交点间距离为12x x a-=。

(六)统计1.平均数:121()n x x x x n =++…2.加权平均数:11221()k k x x f x f x f n=++…,其中12k f f f n +++=3.方差:222212n 1()()()s x x x x x x n⎡⎤=-+-+-⎣⎦… 》(七)锐角三角函数1. 五个特殊角的三角函数值:2. 22sin sin cos 1tan cot 1tan cos ααααααα⋅+=,=,=(八)圆1.面积2S r π=, 周长2C r π=, 弧长180n r l π=, 213602n R S lR π==扇。

¥2.直角三角形内切圆半径1()2r a b c =+-边形内角和:(n -2)180° 正n 边形内角:(2)180n n- 正n 边形外角=中心角=360n正n 边形的边长=R sin 180n 正n 边形的边心距= R cos 180n正n 边形面积=21180180sin cos2nR n n ,n 边形对角线条数:1(3)2n n - (九)面积1. S △=12底×高=12ab sin ∠C =12(a +b +c )r (a 、b 、c 为三角形三边,∠C 为a 、b 边夹角,r 为三角形内切圆半径)2. S □ =底×高= ab sin ∠C (a 、b 为平行四边形两临边,∠C 为a 、b 边夹角,)3. S 菱形=12l 1·l 2 (l 1、l 2为菱形两对角线长) 4. S 正△2(a 为正三角形边长) (十)平面直角坐标系1.中点坐标公式:坐标平面内两点A (x 1,x 2)、B (y 1,y 2)的中点坐标为1212,22x x y y ++⎛⎫ ⎪⎝⎭¥2. 两点间坐标公式:A (x 1,x 2)、B (y 1,y 2六.重要定理 (一)角平分线角平分线上一点到角两边距离相等;到角两边距离相等的点在角的平分线上. (二)线段中垂线线段中垂线上一点到线段两端点距离相等,到线段两端点距离相等的点在线段中垂线上. (三)三角形1.三角形第三边大于另两边之差,小于另两边之和.2.三角形的中位线平行于三角形第三边,并等于第三边的一半.3. 三角形的一个外角等于和它不相邻的两个内角的和 *4.重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离重心定理:D 、E 、F 分别为ABC 三边中点,则A D 、BE 、CF 交于一点G ,且AG =2GD 、BG =2GE 、CG =2GFA BCDE F G的2倍。

该点叫做三角形的重心。

(四)直角三角形1. 直角三角形的两个锐角互余2. 直角三角形斜边上的中线等于斜边的一半。

3. 直角三角形中30°所对直角边等于斜边的一半4. ∠C =90°,则a 2+b 2=c 2 (五)等腰三角形 1.等边对等角 ,2.“三线合一”3. 有一个角等于60°的等腰三角形是等边三角形 (六)平行四边形1.两组对边分别平行的四边形是平行四边形2.两组对角分别相等的四边形是平行四边形3.两组对边分别相等的四边 形是平行四边形4. 对角线互相平分的四边形是平行四边形5. 一组对边平行相等的四边形是平行四边形 (七)矩形1.有一个内角是直角的平行四边形叫矩形。

!2.有三个角是直角的四边形是矩形3. 对角线相等的平行四边形是矩形 (八)菱形1.一组邻边相等的平行四边形是菱形。

2.四边都相等的四边形是菱形3.对角线互相垂直的平行四边形是菱形(九)正方形 正方形的四个角都是直角,四条边都相等 ,正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 (十)轴对称1.关于某条直线对称的两个图形是全等形2.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 ~3.两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 (十一)旋转与中心对称1.把一个图形绕着某一点O 转动一个角度的图形变换叫做旋转。

点O 叫做旋转中心,转动的角叫做旋转角。

2.关于中心对称的两个图形是全等的3. 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分旋转与旋转角轴对称中心对称'B 'A'C 'D 'C 'A 'B 'C BADCB A O(十二)梯形与等腰梯形1.梯形的中位线平行于梯形的底边,并等于上、下两底和的一半2.等腰梯形在同一底上的两个角相等3.等腰梯形的两条对角线相等 `(十三)相似形1. 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似2. 两角对应相等的两三角形相似3. 两边对应成比例且夹角相等,两三角形相似4. 三边对应成比例的两三角形相似5. 相似三角形对应边、对应高的比,对应中线的比与对应角平分线的比都等于相似比6.相似三角形周长的比等于相似比 7. 相似三角形面积的比等于相似比的平方 8.射影定理:*9.位似图形:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。

(十四)圆1.垂径定理:如果一条直线满足:①过圆心②垂直于弦③平分弦④平分弦所对优弧⑤平分弦所对劣弧中的任意两条(当以①③为题设时,弦不能是直径),必满足其它三条.2. 在同圆或等圆中,如果两个圆心角、两个圆周角、两条弧、两条弦或两弦的弦心距中有一组量相等,那么它们所对应的其余各组量都相等 :3. 一条弧所对的圆周角等于它所对的圆心角的一半4. 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径5. 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形6. 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角7. 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 8. 切线的性质定理:如果一条直线满足:①过圆心②过切点③垂直于切线 中的任意两条,必满足第三条9. 切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角13. 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等AB 于P ,则∠CPB =∠D .切割线定理与割线定理:如果PT 切O 于T ,则PT 2=PA ∙PB=PC ∙PD 相交弦定理:PA ∙PB=PC ∙PD B CP 射影定理:CB 2=BD ∙BA AC 2=AD ∙AB CD 2=AD ∙BD ''''D C B A。

相关文档
最新文档