中考数学试题及解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学试题及解析

科学安排、合理利用,在这有限的时间内中等以上的学生成绩就会有明显的提高,为了复习工作能够科学有效,为了做好中考复习工作全面迎接中考,下文为各位考生准备了中考数学试题及解析。

A级基础题

1.(2019年浙江丽水)假设二次函数y=ax2的图象经过点P(-2,4),那么该图象必经过点( )

A.(2,4)

B.(-2,-4)

C.(-4,2)

D.(4,-2)

2.抛物线y=x2+bx+c的图象先向右平移2个单位长度,再向下平移3个单位长度,所得图象的函数解析式为y=(x-1)2-4,那么b,c的值为( )

A.b=2,c=-6

B.b=2,c=0

C.b=-6,c=8

D.b=-6,c=2

3.(2019年浙江宁波)如图3-4-11,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),以下结论中,正确的一项为哪一项( )

A.abc0;②b>a>c;③假设-1

图3-4-13

12.(2019年广东)二次函数y=x2-2mx+m2-1.

(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;

(2)如图3-4-14,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;

(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?假设P 点存在,求出P点的坐标;假设P点不存在,请说明理由.

C级拔尖题

13.(2019年黑龙江绥化)如图3-4-15,抛物线y=1a(x-2)(x+a)(a>0)与x轴交于点B,C,与y轴交于点E,且点B在点C的左侧.

(1)假设抛物线过点M(-2,-2),求实数a的值;

(2)在(1)的条件下,解答以下问题;

①求出△BCE的面积;

②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H 的坐标.

14.(2019年广东肇庆)二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0),B(x2,0),x10且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.

15.(2019年广东湛江)如图3-4-16,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴与B,C两点(点B在点C的左侧),A点坐标为(0,-5).

(1)求此抛物线的解析式;

(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明;

(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.假设存在,求点P的坐标;假设不存在,请说明理由.

1.A

2.B 解析:利用反推法解答,函数y=(x-1)2-4的顶点坐标为(1,-4),其向左平移2个单位长度,再向上平移3个单位长度,得到函数y=x2+bx+ c,又∵1-2=-1,-4+3=-1,∴平移前的函数顶点坐标为(-1,-1),函数解析式为y=(x+1)2-1,即y=x2+2x,∴b=2,c=0.

3.D

4.C

5.C

6.B

9.解:(1)∵抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),

∴抛物线的解析式为y=-(x-3)(x+1),

即y=-x2+2x+3.

(2)∵y=-x2+2x+3=-(x-1)2+4,

∴抛物线的顶点坐标为(1,4).

10.B 11.①③④

12.解:(1)将点O(0,0)代入,解得m=±1,

二次函数关系式为y=x2+2x或y=x2-2x.

(2)当m=2时,y=x2-4x+3=(x-2)2-1,

∴D(2,-1).当x=0时,y=3,∴C(0,3).

(3)存在.接连接C,D交x轴于点P,那么点P为所求.

由C(0,3),D(2,-1)求得直线CD为y=-2x+3.

当y=0时,x=32,∴P32,0.

13.解:(1)将M(-2,-2)代入抛物线解析式,得

-2=1a(-2-2)(-2+a),

解得a=4.

(2)①由(1),得y=14(x-2)(x+4),

当y=0时,得0=14(x-2)(x+4),

解得x1=2,x2=-4.

∵点B在点C的左侧,∴B(-4,0),C(2,0).

当x=0时,得y=-2,即E(0,-2).

∴S△BCE=12×6×2=6.

②由抛物线解析式y=14(x-2)(x+4),得对称轴为直线x=-1,

根据C与B关于抛物线对称轴x=-1对称,连接BE,与对称轴交于点H,即为所求.

设直线BE的解析式为y=kx+b,

将B(-4,0)与E(0,-2)代入,得-4k+b=0,b=-2,

解得k=-12,b=-2.∴直线BE的解析式为y=-12x-2.

将x=-1代入,得y=12-2=-32,

那么点H-1,-32.

宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为〝教谕〞。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称〝教习〞。到清末,学堂兴起,各科教师仍沿用〝教习〞一称。其实〝教谕〞在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育生员者那么谓〝教授〞和〝学正〞。〝教授〞〝学正〞和〝教谕〞的副手一律称〝训导〞。于民间,特别是汉代以后,对于在〝校〞或〝学〞中传授经学者也称为〝经师〞。在一些特定的讲学场合,比如书院、皇室,也称教师为〝院长、西席、讲席〞等。

相关文档
最新文档