数的整除与复习

合集下载

10、数的整除复习

10、数的整除复习

10、数的整除复习第一章数的整除复习一、知识梳理(一)整数和整除:整除的条件:1、除数、被除数都是_______.2、被除数除以除数,商是_____,而且余数为_____.除尽的条件:1、除数、被除数不一定是____.2、被除数除以除数,商是整数或有限小数,而且____为零.(二) 整数和整除的意义整数a 能整除整数b ,b 叫做a 的______,a 叫做b 的_______.(三) 能被2、5整除的数1.能被2整除的数的特征:个位上是____________的数.2.能被5整除的数的特征:个位上是_______的数.3.能被3整除的数的特征:各个位上数的___能被____整除,这个数就能被3整除.(四) 素数、合数与分解素因数1、素数:______________________________________________.2、合数:_______________________________________________.3、一个数的因数的个数是_____的,最小的因数是_____,最大的约数是_____.4、一个数的倍数的个数是_____的,最小的倍数是_____,没有最大的倍数.5、“1”即不是_____,也不是_____.(五)公因数和最大公因数1、若两数互素,那么它们的最大公因数就是_________.2、若两数是倍数关系,那么它们的最大公因数就是____________.(六)公倍数和最小公倍数1、若两数互素,那么它们的最小公倍数就是_____________.2、若两数是倍数关系,那么它们的最小公倍数就是_________.二、课前热身1、在下列数中,-10,2,0,-77,8.3,21,100,21 自然数有_______________,整数有_____________.2、如果27÷3=9,那么________能被_______整除,_______是_______因数。

“数的整除复习”教学设计共整数除法的教案设计4篇

“数的整除复习”教学设计共整数除法的教案设计4篇

数的整除复习教学设计共整数除法的教案设计4篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、心得体会、申请书、工作计划、工作报告、读后感、作文大全、演讲稿、教案大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, experiences, application forms, work plans, work reports, post reading feedback, essay summaries, speech drafts, lesson plans, and other materials. If you want to learn about different data formats and writing methods, please pay attention!数的整除复习教学设计共整数除法的教案设计4篇本文旨在提供一份数的整除复习教学设计,帮助学生掌握共整数除法的概念和方法。

数的整除复习

数的整除复习

数的整除复习一.知识梳理1、整数:“零”既不是正整数,也不是负整数 2、整除:整数a 除以整数b ,如果除得的商正好是整数而没有余数,我们就说a 能被b 整除,或者说b 能整除a 。

3、因数和倍数:归纳:一个数的因数是有限的。

一个数的倍数的个数是无限的。

一个数的因数通常是成对出现的。

最小的因数是1,最大的因数是它本身。

最小的倍数是它本身,没有最大的倍数。

4、区别除尽和整除:除尽:最后结果是一个有限数;整除:最后结果是一个整数。

5、偶数与奇数如果一个整数能被2整除,称该整数为偶数。

如果一个整数不能被2整除,称该整数为奇数。

整数的分类⎩⎨⎧偶数奇数 整数正整数 零 负整数 自然数 条件: 除数、被除数都是整数 被除数除以除数,商是整数而且余数为零一个数的倍数是无限的,最小的倍数是它本身定义:整数a 能被整数b 整除,a 叫做b 的倍数,b 就叫做a 因数(也称为约数) 一个整数的因数的个数是有限的,最小的因数是1,最大的因数是它本身 因数倍数6、能被2、3、5整除的数的特征:7、素数、合数:我们把只含有因数1如果除了1分解素因数的方法:8、公因数与最大公因数如果两个整数只有公因数19、公倍数和最小公倍数:例题解析例1、填空题(1)有一个直角三角形,两条直角边是两个质数,长度和是18分米,这个三角形的面积是( )平方分米。

(2)一堆苹果,已知比50个多,比70个少,把它们可以平均分成两堆,也可以平均分成三堆,还可以平均分成五堆,这堆苹果有()个(3)六年级同学站队,每排5人多2人,每排6人多3人,每排7人则差2人,六年级学生人数不超过150人,那么他们应是( )人。

(4)某长途汽车站向北线每20分钟发一辆汽车,向南线每15分钟发一辆汽车,如果同时向两线发车,至少要经过( )分钟又同时发车。

巩固练习:(1)一盒铅笔可以平均分给2、3、5、6个小朋友,这盒铅笔最少有()人。

(2)一筐梨,按每份2个梨分多1个,每份3个多2个,每份5个多4个,筐里至少有()个梨。

数的整除整理和复习

数的整除整理和复习

如果 a 是 b 的倍数,那幺它们的最大公约数是()最小公倍数是() 。
(3)18 和 24 的最大公约数是() ,最小公倍数是() 。
四、全课总结,交流收获。
1、今天这节课我们复习了哪些概念?
2、这节课你最感兴趣的是什幺?
五、布置作业。
北师大版总复习 P41,第 11 题、第 12 题 P52、9 题。
教学过程:
一、结合情境,搜集概念。
师:今天一共有多少位同学来这里和老师一起学习?
生:40 位同学。
师:40 位同学又分 5 个学习小组,哪位同学能用数的整除的知识说说 40 与 5 的关系?
生:40 能被 5 整除。
生:5 是 40 的约数。
识之间存在什幺联系和区别呢?请同学们动手整理一下。
(2)对比交流。
抽一小组在黑板上整理,然后各小组表示。
师:通过展示,你们认为哪种观点有道理呢?
各小组进行了充分的讨论后,都说出了道理。
下面看到老师这里也有一个网络图。
师:通过网络图更清楚地知道,在整除的前提下产生了一对概念 倍数、 约数、倍数下面又产生了公倍数,最小公倍数的概念,约数下面又产生了公 约数,最大公约数的概念;从分析自然数的个数又引入了质数合数的概念; 能被 2、3、5 整除的数一定是 2、3、5 的倍数,从能被 2 整除的这个角度, 出现了奇数偶数概念。公约数只有 1 的两个数叫互质数,所以互质数与公约 数有联系。
生:40 和 5 的最小公位数是 40,最大公约数是 5。
师:刚才大家说的很好,说到了整除、倍数、最小公倍数、最大公约数, 同学们再想一想,在数的整除里,除了这几个概念外,我们还学习了哪些知
识呢?

数的整除概念及练习复习

数的整除概念及练习复习

数的整除1.整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b 整除,或者说b能整除a 。

2.a就叫做b的倍数,b就叫做a的因数。

倍数和因数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的因数。

3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。

4.一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。

5.个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

6.个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

7.一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

8.一个数各位数上的和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

9.一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。

例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

10.一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。

例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

11.能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

0也是偶数。

自然数按能否被2 整除的特征可分为奇数和偶数。

12.一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

13.一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

数的整除整理复习

数的整除整理复习

数的整除整理复习数的整除是小学数学中的一个重要内容,同时也是许多其他数学学科的基础知识。

在学习这一知识点时,需要掌握如何判断一个数是否能够被另一个数整除,并学会运用相关的计算方法,以便在实际问题中进行运用。

一、基本概念1.1 什么是整除一个整数a能被另一个整数b整除,是指存在另一个整数x,使得a = b × x。

用数学符号表示为:b | a (读作b整除a),即b是a的因数(或因子),a是b的倍数。

例如,4 | 12,表示4是12的因数,12是4的倍数,即12能被4整除。

1.2 整数的因数和倍数一个整数可以被其他整数整除,这意味着这个整数可以被其他整数整除,这些整数就是这个整数的因数。

例如,正整数12的因数为1、2、3、4、6、12。

一个整数的倍数是指能够被这个整数整除的数。

例如,12的倍数有12、24、36,即任何正整数n × 12都是12的倍数。

1.3 两个以上整数的公共因数对于两个以上的整数,如果它们有一个共同的因子,那么这个因子称为它们的公共因数。

例如,20和30的公共因数是1、2、5、10。

如果两个数没有公共因数(除1以外),那么它们称为互质数。

二、整除的判定方法判定一个数是否能被另一个数整除,常用的方法有以下几种:2.1 因数分解法因式分解法是指将一个数分解为若干个质因数的乘积,然后将这个数的因子全部列出来,再判断这个数是否能够被给定的整数整除。

对于一个正整数n,若其能分解为若干个质因数的乘积,其表达式为n = p1^k1 × p2^k2 × ... × pn^kn,则它的所有因子为p1^i1 × p2^i2 × ... × pn^in,其中0 ≤ i1 ≤ k1, 0 ≤ i2 ≤k2, …, 0 ≤ in ≤ kn。

例如,判断72是否能被8整除,我们先将72分解为2^3 × 3^2,再列出72的所有因子为1、2、3、4、6、8、9、12、18、24、36、72,经过检查,发现8是72的一个因子,因此72能够被8整除。

数的整除知识总复习课件

数的整除知识总复习课件

质数与合数的整除性质
质数性质
质数是大于1的自然数,只能被1和它本身整除,不能被其他数整除。质数的个 数是无限的。
合数性质
合数是大于1的自然数,除了能被1和它本身整除外,还能被其他数整除。最小 的合数是4。
完全数与缺数
完全数性质
完全数是等于它所有因子之和的自然数。例如,6的因子有1、2、3和6,这些因 子之和正好等于6,因此6是完全数。
关的知识和应用,拓展自己的视野。
感谢您的观看
THANKS
应用领域
中国剩余定理在密码学、计算机科学等领域有着广泛的应用。
同余方程
同余方程定义
同余方程是指形如ax ≡ b (mod m)的方程,其中a 、b、m是整数,x是未知数。
同余方程解法
求解同余方程的方法主要有模逆元法和欧拉准则 法等。
同余方程的应用
同余方程在密码学、数论等领域有着广泛的应用 。
05
通过整除,我们可以将大 问题分解为小问题来解决 ,提高计算速度和准确率 。
整除的意义3
在日常生活中,整除也具 有广泛的应用,例如时间 计算、货币交易等。
02
数的整除性质研究
奇数与偶数的整除性质
奇数性质
奇数可被2整除余1,因此奇数可以 表示为2n+1的形式,其中n为整数 。
偶数性质
偶数可被2整除,因此偶数可以表示为 2n的形式,其中n为整数。
缺数性质
缺数是大于2的偶数,不能表示为两个质数之和的自然数。例如,8不能表示为两 个质数3和5的和,因此8是缺数。
03
数的整除应用
最大公约数的求法
定义
最大公约数是指两个或多个整数 共有约数中最大的一个。
算法描述

第1章数的整除全章复习与测试(原卷版)

第1章数的整除全章复习与测试(原卷版)

第1章 数的整除全章复习与测试【知识梳理】1.⎧⎫⎪⎬⎨⎭⎪⎩正整数自然数整数零负整数; 2.整除:整数a 除以整数b ,若除得的商是整数且余数为零. 即称:a 能被b 整除;或b 能整除a.整除的条件:..⎫⎧⎪⎨⎬⎪⎩⎭除数、被除数都是整数;三整一零商是整数且余数为零 整除与除尽的关系.⎧⎧⎪⎨⎨⎩⎪⎩整除:被除数、除数、商整数,且余数为零;区别除尽:被除数、除数、商是整数,没有余数.联系:整除是除尽都是不一定的特殊形式3.因数与倍数:整数a 能被整数b 整除,a 就叫b 的倍数,b 就叫a 的因数(约数).因数与倍数的特征:⎧⎪⎨⎪⎩因数与倍数互相依存;一个整数的因数中最小因数为1,最大因数为它本身一个整数的倍数中最小的倍数是它本身,无最大倍数.4.能被2整除的数2468.⎧⎨⎩偶数(2n);(否则是奇数(2n-1))特征:个位上是0,,,,, 能5整除的数的特征:个位上数字是0,5;能同时被2、5整除的数:个位上数字是0.*能被3整除的数:一个整数的各个数位上数字之和能被3整除,这个整数就能被3整除.*能同时被2、3和5整除的数:个位数是0,且各个数位上数字之和能被3整除5.111.⎧⎪⎨⎪⎩:只有因数;正整数素数:只有和两个因数;合数:除了和以外还有别的因一个它本身它数本身6. ⎧⎪⎪→⎨⎪⎪⎩素因数:每个合数都可写成的形式,其中每个素数 都是这个合数的,叫这个合数合几个素数积因数式的素因数;数分解素因数分解素因数:把一个合数用表示.方法:短除法;树枝分解法;口算法素因数相乘的;机算法.形7. ⎧⎪→→⎨⎪⎩公有的因数最大的 定义:几个数,叫这几个数的公因数;其中公因数最大公因数叫这几个数的最大公因数;求法:枚举法;分解素因数法;短除. 一个法8. 1⎧⎨⎩公因数1不一互素:指两个整数只有.这两个整数是素数.区别素数:只有和它本身因数;定两个9. 1.⎧⎪⎪⎪⎪⎪→→→→⎧⎨⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩定义:几个整数的,叫它们的公倍数;其中叫它们的最小公倍数;公倍数最小公倍数一般方法:倍数公倍数最小公倍数;2.分解素因数法;最小公倍数的求法 3.短除法.4.特殊情况:两个数互素;两个连续的公有的倍数最小的 个正整数. 一 10.重要结论:1 .a b ab a b a b ⎧⎨⎩若是的因数,则它们的最大公因数为,最小公倍数为;若与互素,则它们的最大公因数为,最小公倍数为 【考点剖析】一.数的整除(共7小题)1.(2022秋•闵行区校级期中)下列各组数中,第一个数能被第二个数整除的是( )A .25和50B .42和3C .10和4D .9和1.52.(2022秋•徐汇区校级期中)下列说法中,正确的个数有( )①32能被4整除;②1.5能被0.5整除;③13能整除13;④0能整除5;⑤25不能被5整除;⑥0.3不能整除24.A .2个B .3个C .4个D .5个3.(2022秋•徐汇区期末)既能被2整除,又能被5整除的最小正整数是 .4.(2022秋•宝山区期中)在能够同时被2和5整除的所有两位数中,最大的是 .5.(2022秋•奉贤区校级期中)能同时被2、5整除的最大两位数是 .6.(2022秋•宝山区校级月考)能整除16的数有 .7.(2022秋•徐汇区校级期中)“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”这是驰名中外的中国古代问题之一,它是我国古代的一本著名的数学名书《孙子算经》中的一道题目,人们把它称为“韩信点兵”.这道题目可以译为:一个数除以3余2,除以5余3,除以7余2,求适合条件的最小的数?这就是外国人所称的“中国剩余定理”,是数学史上极有名的问题.表示的具体解法是:先分别求出能被5和7整除而被3除余1的数(70),能被3和7整除而被5除余1的数(21),能被3和5整除而被7除余1的数(15),然后用被3、5、7除所得的余数(即2、3、2)分别去乘这三个数,再相加,也就是70×2+21×3+15×2=233.最后从233中减去3、5、7的最小公倍数105,如果得出的差还是比105大,就再减去105,一直到得数比105小为止.233﹣105×2=23.这就是适合条件的最小的数.同学们,你能不能用这样的方法来解答下面的题目呢?或许你有更好的办法!一个数除以5余3,除以6余4,除以7余1,求适合条件的最小自然数.二.因数(共7小题)8.(2022秋•闵行区校级期中)16的所有因数的和是.9.(2022秋•青浦区期中)24的因数有.10.(2022秋•徐汇区校级期中)规定一种新运算:对于不小于3的正整数n,(n)表示不是n的因数的最小正整数,如5的因数是1和5,所以(5)=2;再如(8)的因数是1、2、4和8,所以(8)=3等等,请你在理解这种新运算的基础上,求(9)+(12)=.11.(2022秋•嘉定区期中)18的因数有.12.(2022秋•青浦区期中)我们知道,每个自然数都有因数,对于一个自然数a,我们把小于a的正的因数叫做a的真因数.如10的正因数有1、2、5、10,其中1、2、5是10的真因数.把一个自然数a的所有真因数的和除以a,所得的商叫做a的“完美指标”.所以,16的“完美指标”是.13.(2022秋•杨浦区期中)8的因数有.14.(2021秋•长宁区校级期中)规定用[A]表示数A的因数的个数,例如[4]=3,计算([84]﹣[51])÷[91]=.三.最大公因数(共4小题)15.(2022秋•徐汇区期末)如果A=2×3×5,B=2×2×3,则A和B的最大公因数是.16.(2022秋•松江区期末)18和42的最大公因数是.17.(2022秋•杨浦区期末)求18与30的最大公因数为:.18.(2022秋•浦东新区校级期中)已知A=2×3×5,B=2×3×3×7,那么A和B的最大公因数是.四.最大公因数的应用(共3小题)19.(2022秋•嘉定区期中)有三根绳子,分别长36米,54米,63米,现在要将它们裁成长度相等的短绳且没有剩余,每根短绳最长可以是几米?这样的短绳有几根?20.(2022秋•松江区期中)一张长36厘米,宽20厘米的长方形纸片,把它裁成大小相等的正方形小纸片而没有剩余,裁出的正方形纸片最少有多少张?21.(2022秋•松江区校级月考)小明把一张长为72厘米,宽为42厘米的长方形纸片裁成大小相等的正方形纸片,而且没有剩余,请你帮助小明算一下,裁出的正方形纸片最少有多少张?五.倍数(共2小题)22.(2022秋•青浦区期中)下列数中,既是3的倍数,又是60的因数的数是()A.9B.15C.20D.4523.(2022秋•宝山区期中)在正整数18、4、3中,是的倍数.六.最小公倍数(共3小题)24.(2022秋•徐汇区校级期中)若A=2×3×5,B=2×3×7,则A与B的最大公因数是,最小公倍数是.25.(2022秋•青浦区期中)A=2×3×3,B=2×3×5,则A和B的最小公倍数是.26.(2022秋•闵行区校级期中)已知A=2×3×a×7,B=3×5×7.如果A和B的最小公倍数是630,那么a=.七.最小公倍数的应用(共4小题)27.(2022秋•松江区期中)一包糖果,不论平均分给6个人还是8个人,都能正好分完,这包糖果至少块.28.(2022秋•闵行区校级期中)从运动场的一端到另一端全长100米,从一端起到另一端止每隔4米插一面小红旗.现在要改成每隔5米插一面小红旗,有多少面小红旗不用移动?29.(2022秋•青浦区校级期中)一块草坪长50cm,宽40cm,要用这样相同大小的草坪铺成一个正方形花园,铺成的正方形花园的边长至少为多少厘米?至少要多少块这样的草坪?30.(2022秋•徐汇区校级月考)有一种长6厘米,宽4厘米的长方形塑料片,如果将这种塑料片拼成一个正方形,最少需要多少块?这个正方形的面积是多少?八.质数(素数)(共6小题)31.(2022秋•宝山区期中)由式子6=2×3,我们说2和3都是6的()A.素数B.素因数C.互素D.公因数32.(2022秋•普陀区期中)在等式15=3×5中,3和5都是15()A.素数B.互素数C.素因数D.公因数33.(2022秋•宝山区期中)如果两个素数的和是奇数,那么其中较小的素数是.34.(2022秋•浦东新区校级期中)两个素数的差是15,则这两个素数的积是.35.(2022秋•徐汇区校级期中)21的所有因数中,互素的有对.36.(2022秋•宝山区期中)如果两个相邻的奇数都是素数,就说它们是一组孪生素数.如11和13就是一组孪生素数,(1)请你举出除此之外的两组孪生素数;(2)如果三个相邻的奇数都是素数,就说它们是“三胞胎素数”,请写出一组“三胞胎素数”.(本题只需直接写出答案)九.合数(共5小题)37.(2022秋•宝山区期中)最小的合数是()A.2B.4C.6D.15 38.(2022秋•奉贤区校级期中)一个正方形的边长是素数,则它的面积一定是()A.素数B.合数C.奇数D.偶数39.(2022秋•浦东新区校级期中)在下列说法中,正确的是()A.l是素数B.1是合数C.1既是素数又是合数D.1既不是素数也不是合数40.(2022秋•奉贤区校级期中)4和7是28的()A.因数B.素因数C.合数D.素数41.(2022秋•青浦区期中)下列说法正确的是()A.两个素数没有公因数B.两个合数一定不互素C.一个素数和一个合数一定互素D.两个不相等的素数一定互素一十.分解质因数(分解素因数)(共4小题)42.(2022秋•杨浦区期末)分解素因数:24=.43.(2022秋•徐汇区期末)分解素因数:18=.44.(2022秋•松江区期末)分解素因数:21=.45.(2022秋•徐汇区校级期中)把120分解成因数:120=.【过关检测】一、选择题(本大题共6小题,每题3分,满分18分)1.48全部因数共有()A.9个B.8个C.10个D.12个2.在14=2×7中,2和7都是14的()3.对18、4和6这三个数,下列说法中正确的是()A.18能被4整除B.6能整除18 C.4是18的因数D.6是4的倍数4.在下列数中,表示数7和8的最大公约数和最小公倍数的积是( )A .7B .8C .1D .565.在下列说法中,正确的是( )A .1是素数B .1是合数C .1既是素数又是合数D .1既不是素数也不是合数6.235A =⨯⨯,A 的因数有( )A .2、3、5B .2、3、5、6、10C .1、2、3、5、6、10、15D .1、2、3、5、6、10、15、30二、填空题(本大题共12题,每题2分,满分24分)7.在能够被5整除的两位数中,最小的是________.8.分解素因数:15=________9.已知235A =⨯⨯,237B =⨯⨯,则A 、B 的最小公倍数是________,最大公因数是________.10.一堆苹果,2个2个数3个3个数和5个5个数都剩下一个,这堆苹果最少有________个.11.2.82 1.4÷=,___________ (填“能”或“不能”)说2整除2.8.12.写出20以内的所有素数____________,写出20以内的所有合数_______.13.两个数的最小公倍数是72,最大公因数是12,则这两个数分别是_______.14.54的素因数有_____________.15.a 是一个正整数,它的最小的因数是______,最大的因数是______,最小的倍数是______.16.两个连续偶数的和是38,那么这两个数的最小公倍数是______.17.在两个数12和3中,________是________的因数,是________的倍数.18.a 是一个大于2的偶数,那么与a 相邻的两个奇数分别是________和________.三、解答题(满分58分)19.写出下列各数所有的因数.(1)11(2)10220.用短除法分解素因数.(1)12(2)10521.已知甲数225A =⨯⨯⨯,乙数237A =⨯⨯⨯,甲、乙两数的最大公因数是6.(1)求甲、乙两数和A ;(2)求甲、乙两数的最小公倍数.22.用短除法求出下列各组数的最大公因数和最小公倍数.(1)42和63.(2)8和20.23.用0、2、5这三个数按要求组成没有重复数字的三位数.(1)使它既能被2整除又能被5整除;(2)使它能被2整除,但不能被5整除;(3)使它能被5整除,但不能被2整除.24.中秋节班里买来了64个月饼和160个苹果,平均分给班里的全体同学,刚好全部分完,问这个班最多有多少人?25.某学校学生做操,把学生分成10人1组,14人一组,18人一组,正好分完.并且知道这个学校学生的人数超过1000人,这个学校至少有多少个学生?26.一间客厅长8米,宽4.5米,现要铺正方形的地砖,市场上地砖有23030cm ⨯,24040cm ⨯,25050cm ⨯,26060cm ⨯四种规格.请问选择哪种规格的地砖能整块铺满,并计算出需要这样的地砖多少块?。

《数整除复习》课件

《数整除复习》课件
感。
下一步学习计划
深入学习数论中的其 他概念和定理,如质 数、合数、最大公约 数等。
尝试解决一些复杂的 数学问题,以提高自 己的数学素养和解题 能力。
通过阅读相关书籍和 论文,了解整除在数 学和其他领域的应用 。
2023-2026
END
THANKS
感谢观看
KEEP VIEW
REPORTING
综合练习题
总结词
整合知识、提升思维
详细描述
综合练习题是最具挑战性的题目,通常涉及多个知识点和解题技巧的整合运用。这些题 目旨在提高学生的思维能力和解决问题的能力,帮助他们将零散的知识点整合起来,形
成完整的数学知识体系。
PART 05
总结与回顾
本章重点回顾
01
02
03
整除的定义
如果一个数a除以另一个 数b得到的结果是整数, 那么我们说a能被b整除。

在几何中,整除的概念可以应用于解决 一些与图形和空间有关的问题。例如, 当我们需要计算一个图形的周长或面积 时,我们可以使用整除的方法来得到精
确的结果。
在日常生活中的应用
整除的概念在日常生活中也具有广泛的应用。例如,当我们需要将一个物品分成 若干等份时,我们可以使用整除的方法来计算每份的数量。
在商业中,整除的概念可以应用于计算折扣、优惠和促销活动。例如,当我们需 要计算商品的原价和折扣价格之间的差额时,我们可以使用整除的方法来得到精 确的结果。
在计算机科学中的应用
在计算机科学中,整除的概念也具有广泛的应用。例如,当 我们需要编写一个程序来处理整数时,我们可以使用整除的 方法来计算两个整数之间的商和余数。
在加密学中,整除的概念可以应用于一些加密算法的实现。 例如,RSA算法中就使用了整除的概念来生成公钥和私钥。

数的整除整理和复习

数的整除整理和复习

数的整除整理和复习数的整除,是小学数学的一项重要知识点。

本文将对整除的相关概念进行探讨和复习,并介绍整除在实际生活中的应用。

一、整除的基本概念整除是指一个数能够被另一个数整除,也就是说,当两个数相除后没有余数时,则称这两个数满足整除关系。

符号表示为:a|b,即a能够整除b。

例如,2能够整除8,即2|8。

在整除的定义中,需要注意两个概念:除数和被除数。

其中,除数是指用来除的数,被除数是被除的数。

以2|8为例,2是除数,8是被除数。

除数和被除数都是整数,如果除数为0,则除数和被除数均为0才能满足整除。

因为任何数除以0,结果都无法确定。

二、整除的性质整除有以下性质:1.整数是自己的约数,即任何一个整数都能被1和自身整除。

2.如果a能够整除b,b能够整除c,则a一定能够整除c。

即,如果a|b,b|c,那么a|c。

3.如果a能够整除b,a能够整除c,则a也能够整除b+c。

即,如果a|b,a|c,那么a|(b+c)。

4.如果a能够整除b,那么a的倍数都能够整除b。

即,如果a|b,那么ka|b,其中k是任意整数。

5.如果a能够整除b且a能够整除c,那么a能够整除它们的最大公约数。

即,如果a|b,a|c,那么a|(b,c),其中(b,c)表示b和c的最大公约数。

三、整除的规律在整除的运算过程中,还存在着一些规律。

1.奇数整除偶数,结果为偶数。

例如,3|6,结果为2。

2.偶数整除奇数,结果为奇数。

例如,6|3,结果为2。

3.能够被5整除的数,其末位数字必须是0或5。

4.能够被2和5同时整除的数,其末位数字必须是0。

5.能够被3和9同时整除的数,其各个数字的和也能够被3和9整除。

例如,63能够被3和9整除,因为6+3=9能够被3和9整除。

四、整除的应用整除在实际生活中有很多应用。

以下是其中一些例子:1.商场促销活动:商场在进行促销活动时,通常会给顾客发放优惠券。

例如,发放10元优惠券的条件为满100元减10元。

此时,如果顾客买了200元的商品,应该给顾客发放多少张优惠券呢?计算方法是:200÷100=2,即2张优惠券。

教案-初数六年级-数的整除的复习—学

教案-初数六年级-数的整除的复习—学
3、有三根钢管,分别长200厘米、240厘米、360厘米。现要把这三根钢管截成尽可能长而且相等的小段,一共能截成多少段?
4、用96朵红花和72朵白花做花束,如果每个花束里的红花朵数都相等,每个花束里的白花的朵数也都相等.每个花束里最少有几朵花?
公倍数与最小公倍数
1、几个数共有的倍数叫做公倍数,其中最小的一个叫做最小公倍数。
C. 12在100以内的倍数共有10个
D. 一个数既是16的因数,又是16的倍数,这个数就是16
能被2、5整除的数:
能被2整除的数的特征是个位上的数字是;
能被5整除的数的特征是个位上的数字是;
能同时被2、5整除的数的特征是个位上的数字是.
能被2整除的整数叫做,不能被2整除的整数叫做。
能被3整除的数的特征是该数各位数之和能被3整除。
6、有一堆桔子,按每4个一堆分少1个,按每5个一堆分也少1个,按每6个一堆分还是少1个。这堆桔子至少有多少个?
7、某公共汽车站有三条线路的公共汽车。第一条线路每隔5分钟发车一次,第二、三条线路每隔6分钟和8分钟发车一次。9点时三条线路同时发车,下一次同时发车是什么时间?
三、课堂练习
一、填空题
1、24的因数有。
C. 最大的负整数是-1 D. 最大的自然数不存在
2、最小的正整数是______,最大的负整数是_______。
3、把下列各数填入相应的横线上:-3, 18,-143, 0, 5,100.
负整数:;正整数:;整数:.
整除:
整数a除以整数b,如果除得的商是整数而余数为零,我们就说;或者说。
整除的条件:(3整1零)
一个整数的倍数有无数个,没有最大的倍数,最小的倍数是它本身。
性质:
一个整数既是它本身的约数又是它本身的倍数。

《数整除复习》课件

《数整除复习》课件

THANKS FOR WATCHING
感谢您的观看
数学运算
整除是数学运算中的基础,如加减 乘除等都涉及到整除的概念,整除 的掌握有助于提高数学运算的准确 性和速度。
代数方程求解
在代数方程求解过程中,整除的应 用可以帮助确定解的范围和个数, 简化求解过程。
在日常生活中的应用
时间计算
在日常生活中的时间计算中,整 除的概念被广泛应用,如将一天 、一小时、一分钟等时间单位进
详细描述
中国剩余定理表明,对于给定的整数m1, m2, ..., mn,以及与这些m对应的模两两互质的余数b1, b2, ..., bn,存在一个唯一解的同余方程组,该解可以通过对每个模mi使用扩展欧几里得算法来找到。
模反元素与费马小定理
总结词
模反元素与费马小定理是数论中关于 模运算的两个重要概念和定理。
合数的整除性质
总结词
合数的整除性质是指一个数如果是合数,则它至少有一个除了1和它本身之外的 正因数。
详细描述
合数是除了1和本身外还有其他正因数的自然数。例如,4、6、8、9等都是合数 ,因为它们除了1和本身外还有其他正因数。如果一个数是合数,那么它至少有 一个因数不是1和本身,可以被其他自然数整除。
《数整除复习》ppt课 件
contents
目录
• 整除的基本概念 • 数的整除性质 • 整除的应用 • 整除的拓展知识 • 复习题与答案
01
整除的基本概念
整除的定义
1 2
整除
如果整数a除以整数b(b≠0)的余数为0,那么 我们就说a能被b整除,或b能整除a。
整除符号
a|b表示a能被b整除。
3
整除性质
详细描述
欧几里得算法基于一个简单的事实:对于任意整数a和b,其中a>b,a和b的最大公约数与b和a%b的最大公约数 相同。通过不断将较大的数替换为较小的数,直到其中一个数为0,另一个数就是它们的最大公约数。

数的整除总复习

数的整除总复习

九把二0分解质因数是
二0=二×二×五×一。
⑩能同时被二,三,五整除的最 大三位数是九九0 。
一一三八一七三个数只有公因 数一,所以它们是互质数。
×
一二最小的质数是全部偶数的 最大公因数。
一三因为a÷b=八,所以a一定
是b的倍数。
×
一四把一五三分解质因数是:一
五三=三×五一
×
一五与“非典”病人接触者感染
三.能被二.三.五整除的数的特征
能同时被二,五整除的数的特征:
个位是0
你能举些例 子吗?
能同时被二,三,五整除的数的

个征位: 是0,而且各个位上的数字
的和能被三整除.
炼习: 下面哪些数有因数二?哪些数 是三的倍数?哪些数能被五整
除12? 一五 三六 五 四 六0
13 八八 一三五 二 七三
按要求填数。
二 一八 三四九

二 一二 四
一八,二四 = 二 × 三 = 六
一八,二四 = 六 × 二 × 二 × 三 = 七二
八和一二的公因数是一,二 ,, 其中最大公因数是 四 四
五和一一的最小公倍数是五 。 五
四和九的最小公倍数是 三 。 三二和四的最大公因数是六四 , 最小公倍数是 三。

两个数的公因数的个数 是有限的 ,公倍数的个数 是 无,限并的且只有 个最大一公因数和 个 最小公一倍数。
一 三 能被二三五同时整除。 二 一 三 能被二三同时整除 三 四 0 能被二三五同时整除
四.偶数和奇数
一个自然数,不是奇数就是偶数
偶数: 能被二整除的数叫做偶数 奇数: 不能被二整除的数叫做奇数
最小的偶数是: 0 最小的奇数是: 一
四.偶数和奇数 偶数±偶数= 偶数 奇数±奇数= 偶数 偶数±奇数= 奇数

《数的整除》整理和复习

《数的整除》整理和复习
2 8 2 4 3 2 2
60
30 15 15 5 6 3 1
12
40X
X
16、一个计算器的价钱是一节电池价钱的 40倍。小强买了一个计算器和3节电池, 一共花了77.40元。一节电池的价钱是多 少元?(列方程解)
一节电池的价钱是X元 解:设 一节电池的价钱是 元 。 40X + 3X= 77.4 43X=77.4 X=77.4÷43 ÷ X=1.8 一节电池的价钱是1.8元 答:一节电池的价钱是 元 。
质数: 质数: 2
3 3和4 和 4和7 和 7和9 和
7
合数: 合数: 4
9
12
互质数: 和 互质数: 2和3
2和7 2和9 和 和 3和7 和 4和9 和 7和12 和
(1)求18和24的最大公约数和最小公倍数。 说说它们的求法有什么相同和不同的地 方。
2 7 3 18 9 3 24 12 4
最大公约数: 最大公约数: 2 × 3 =
6 72
最小公倍数: 最小公倍数: 2 × 3 × 3 × 4=
(2)求4、6、10的最小公倍数。它的求法 与两个数的最小公倍数求法有什么不同?
2 4 2 6 3 10 5
2× 最小公倍数: 最小公倍数: 2 × 2× 3 × 5= 3 5 30 10 2 45 15 3
约 数
1、2、4 、 、 1、2、3、6 、 、 、 1、2、4、8 、 、 、 1、3、9 、 、 1、2、5、10 、 、 、 1、2、3、 、 、 、 4、6、12 、 、
自 然 数 1
约 数
1
2 3 5 7 11
1、2 、 1、3 、 1、5 、 1、7 、 1、11 、
一个数, 一个数,如果 只有1 只有1和它本身 两个约数, 两个约数,这样 的数叫质数。 的数叫质数

数的整除知识总复习

数的整除知识总复习
例:(1,2,4)是8和12的公约数,( 4 )是8和12的最大公约数.
公倍数,最小公倍数: 几个数公有的倍数,叫做这几个数的公倍数, 其中最小的一个叫做这几个数的最小公倍 数.
例:(12,24,36 …)都是4和6的公倍数,(12 )是4和6的最小公倍数.
互质数: 公约数只有1的两个数叫做互质数.
你能举些 例子吗?
能被5整除的数的特征: 个位上是0或5
能被3整除的数的特征:各个位上的数字的和能被3整除
能同时被2,5整除的数的特征: 个位是0
能同时被2,3,5整除的数的特征: 个位是0,而且各个位上的 数字的和能被3整除.
注意:有一些数能被7,9,11,13整除,但是不容易看出来, 这是大家在约分中容),a就叫做b的倍数,b就叫做a的约数.
约数
一个数的约数的个数是有 限的,其中最小的约数是1, 最大的约数是它本身.
倍数
一个数的倍数的个数是无 限的,其中最小的倍数是它 本身,没有最大的倍数.
约数和 倍数是 相互依 存的
3. 能被整除的数的特征
能被2整除的数的特征: 个位上是0,2,4,6,8,
分解质因数的方法:短除法
把30分解质因数
2 30 3 15 5
30=2×3×5
把30分解质因数正确的做法是( C ) A.30=1×2 ×3 ×5 1不是质数 B.2 ×3 ×5=30 书写格式不符
C.30=2×3×5
7. 最大公约数和最小公倍数
公约数,最大公约数: 几个数公有的约数,叫做这几个数的公约数; 其中最大的一个叫做这几个数的最大公约数.
1. 整除与除尽
整除: 整数a除以整数b(b≠0),除得的商是整数而没有余数, 我们就说数a能被数b整除,或数b能整除a.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数的整除与复习
Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】
数的整除整理与复习
教学目标:1、让学生进一步掌握整除、约数、倍数、质数、合数、分解质因数、最大公约数、最小公倍数等概念及其相互间的联系,掌握能被2、3、5整除的数的特征。

2、让学生经历数的整除的有关概念的整除和复习的过程,培养学生整理复习的能力,进一步完善认知结构。

3、进一步培养学生整理的意识和习惯,渗透辩证唯物主义启蒙教育。

教学过程:
师投影出示问题:
在一次行动中,我方侦察员劫获了敌人的密码:第一个数字是10以内的最大的质数;第二个数字既有约数3,又是6的倍数;第三个数字既不是质数,又不是合数;第四个数字既是质数又是偶数;第五个数字是10以内既是合数又是奇数的数。

谁能破译密码,并说明你是怎样破译的
师:同学们真聪明!在破译密码的过程中,同学们应用了“数的整除这个单元的许多知识,除质数、合数、奇数、偶数、倍数、约数这几个概念外,我们还学过哪些概念
?
师:本单元我们共学习了18个概念,这18个概念既有联系,又有区别,相互之间可以联系成一个庞大的网络。

这个网络的庐山真面目是什么呢下面就请各小组运用手中的学具,根据概念的发展与其含义,找到它们的联系,汇成网络,并思考为什么会有这样的联系请在时间15分钟内完成。

如果你们有困难,别忘记老师就在你们的身边;你们也可以打开课本寻求帮助。

(学生小组合作,讨论概念间的联系。


?
师:每个小组都绘制了自己的网络结构,哪个小组愿意第一个为大家介绍你们的网络图,并说明为什么会有这样的联系。

1组:出示网络图:
?
师:这个小组找到了这样的联系,并说明了为什么有这样的联系。

其他小组有什么问题可以提出来共同商量。

师:同学们同意吗
师:请你们来改正。

(3组帮助改正)
修改后的网络:
?
师:经过全班同学的努力,我们发现了知识之间的联系,并且明确了为什么会有这样的联系。

(边总结边板书)
在整除的前提下产生了一对概念---倍数、约数,这对概念是相互依存的。

倍数下面又产生了公倍数、最小公倍数的概念;约数下面又产生了公约数、最大公约数的概念;从分析自然数约数的个数,又引出了质数、合数的概念;从对合数的分解,又引出了质因数、分解质因数的概念;能被2、3、5整除的数一定是2、3、5的倍数,从能否被2整除这个角度,出现了奇数、偶数的概念。

在这个网络中,沿着这个方向知识是发展的;沿着这个方向,知识之间又是有联系的。

例如:根据能否被2整除,我们将自然数分为两类;而又据其约数的个数,将自然数分为质数和事数还有1。

这并不矛盾,就像人,有男人有女人,同样也有老年人、中年人、青年人,只是因为分类的标准不同产生的结果也不同。

(板书)
?
师:学了知识是为了应用,下面我们就来练习。

练习设计:
1.谁是与众不同的,并说明选择的理由。

2、6、9、10
?
2.猜猜我是谁。

(请学生选择一个数字,据今天复习的内容编一个谜语,目的是巩固概念间的联系)
1、2、3、4、5、6、7、8、9
?
总结:今天,同学们通过合作,复习了数的整除这个单元的概念;并根据概念的发展找到了它们之间的联系,你们很了不起!像这种运用联系绘制网络图复习的方法是一种很好的复习方法,你们可以运用在今后的复习中。

?
?
参考资料:
1、? 《小学数学教育》
2、? 《小学教学设计》
3、? 《小学教学参考数学》
?。

相关文档
最新文档