2019-2020高考数学模拟试题(带答案)

合集下载

2019-2020数学高考模拟试卷(附答案)

2019-2020数学高考模拟试卷(附答案)

2019-2020数学高考模拟试卷(附答案)一、选择题1.在等比数列{}n a 中,44a =,则26a a ⋅=( ) A .4B .16C .8D .322.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(⌝q );④(⌝p )∨q 中,真命题是( ) A .①③ B .①④ C .②③ D .②④ 3.数列2,5,11,20,x ,47...中的x 等于( )A .28B .32C .33D .274.如图所示,程序据图(算法流程图)的输出结果为( )A .34 B .16 C .1112D .25245.函数2||()x x f x e -=的图象是( )A .B .C .D .6.正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF =u u u v( )A .1123AB AD -u u uv u u u vB .1142AB AD +u u uv u u u vC .1132AB DA +u u uv u u u vD .1223AB AD -u u uv u u u v .7.已知236a b ==,则a ,b 不可能满足的关系是()A .a b ab +=B .4a b +>C .()()22112a b -+-<D .228a b +>8.如图是一个正方体的平面展开图,则在正方体中直线AB 与CD 的位置关系为( )A .相交B .平行C .异面而且垂直D .异面但不垂直9.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定10.若双曲线22221x y a b-=3,则其渐近线方程为( )A .y=±2xB .y=2xC .12y x =±D .22y x =±11.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( ) A .,βγαγ<<B .,βαβγ<<C .,βαγα<<D .,αβγβ<<12.将函数()sin 2y x ϕ=+的图象沿轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .B .C .0D .4π-二、填空题13.事件,,A B C 为独立事件,若()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=,则()P B =_____.14.已知(13)n x + 的展开式中含有2x 项的系数是54,则n=_____________. 15.已知样本数据,,,的均值,则样本数据,,,的均值为 .16.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是__________. 17.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答).18.幂函数y=x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y=x α,y=x β的图像三等分,即有BM=MN=NA ,那么,αβ等于_____.19.在体积为9的斜三棱柱ABC —A 1B 1C 1中,S 是C 1C 上的一点,S —ABC 的体积为2,则三棱锥S —A 1B 1C 1的体积为___.20.已知1OA =u u u r ,3OB =u u u r 0OA OB •=u u u r u u u r,点C 在AOB ∠内,且AOC 30∠=o ,设OC mOA nOB=+u u u r u u u r u u u r ,(,)m n R ∈,则mn =__________. 三、解答题21.如图,在几何体111ABC A B C -中,平面11A ACC ⊥底面ABC ,四边形11A ACC 是正方形,1l //B C BC ,Q 是1A B 的中点,1122,3AC BC B C ACB π==∠=(I )求证:1//QB 平面11A ACC (Ⅱ)求二面角11A BB C --的余弦值.22.如图,在正方体1111ABCD A B C D -中,S 是11B D 的中点,E ,F ,G 分别是BC ,DC ,SC 的中点.求证:(1)直线//EG 平面11BDD B ; (2)平面//EFG 平面11BDD B . 23.已知函数1(1)f x m x x =---+. (1)当5m =时,求不等式()2f x >的解集;(2)若二次函数223y x x =++与函数()y f x =的图象恒有公共点,求实数m 的取值范围.24.如图,四棱锥P ABCD -中,//AB DC ,2ADC π∠=,122AB AD CD ===,6PD PB ==,PD BC ⊥.(1)求证:平面PBD ⊥平面PBC ;(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为3π?若存在,求CMCP的值;若不存在,说明理由. 25.已知(3cos ,cos )a x x =r ,(sin ,cos )b x x =r ,函数()f x a b =⋅rr .(1)求()f x 的最小正周期及对称轴方程; (2)当(,]x ππ∈-时,求()f x 单调递增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】等比数列的性质可知226416a a a ⋅==,故选B .2.C解析:C 【解析】试题分析:根据不等式的基本性质知命题p 正确,对于命题q ,当,x y 为负数时22x y>不成立,即命题q 不正确,所以根据真值表可得,(p q p ∨∧q )为真命题,故选C.考点:1、不等式的基本性质;2、真值表的应用.3.B解析:B 【解析】 【分析】通过观察,得出该数列从第二项起,后一项与前一项的差分别是3的倍数,由此可求得x 的值. 【详解】因为数列的前几项为2,5,11,20,,47x , 其中5213,11523,201133-=⨯-=⨯-=⨯, 可得2043x -=⨯,解得32x =,故选B. 【点睛】本题主要考查了数列的概念及其应用,其中解答中根据题意发现数列中数字的排布规律是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4.C解析:C 【解析】由算法流程图知s =0+12+14+16=1112.选C. 5.A解析:A 【解析】 【分析】通过(0)1f =,和函数f(x)>0恒成立排除法易得答案A . 【详解】2||()x x f x e -=,可得f(0)=1,排除选项C,D;由指数函数图像的性质可得函数f(x)>0恒成立,排除选项B , 故选A 【点睛】图像判断题一般通过特殊点和无穷远处极限进行判断,属于较易题目.6.D解析:D 【解析】 【分析】用向量的加法和数乘法则运算。

2019-2020年高三数学理科模拟试卷及答案

2019-2020年高三数学理科模拟试卷及答案

2019-2020年高三数学理科模拟试卷及答案一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数2(23)(1)z x x x i =+-+-为纯虚数,则实数x 的值为 A .3 B .1 C .-3 D .1或-3 2.已知{}n a 为等差数列,若1598a a a π++=,则28cos()a a +的值为 A .21-B .23-C .21D .233.若椭圆22221(0)x y a b a b +=>>的离心率为32,则双曲线12222=-bx a y 的渐近线方程为A .12y x =±B .2y x =±C .4y x =±D .14y x =±4.函数()sin()f x A x ωϕ=+(其中0,||2A πϕ><)的图象如图所示,为了得到x x g 2sin )(=的图像,则只需将()f x 的图像A .向右平移6π个长度单位B .向右平移12π个长度单位 C .向左平移6π个长度单位D .向左平移12π个长度单位5.设p ∶210||2x x -<-,q ∶260x x +->,则p 是q 的 A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件6.新学期开始,某校接受6名师大毕业生到校学习 。

学校要把他们分配到三个年级,每个年级2人,其中甲必须在高一年级,乙和丙均不能在高三年级,则不同的安排种数为A .18B .15C .12D .97.已知直线x y a +=与圆224x y +=交于,A B 两点,且||||OA OB OA OB +=- (其中O 为坐标原点),则实数a 的值为 A .2 B .6 C .2或2- D .6或6-8.已知22a <<,则函数22()2f x a x x =-+-的零点个数为 A .1 B .2 C .3 D .49.P 为双曲线16922y x -=1的右支上一点,,M N 分别是圆22(5)4x y ++=和22(5)1x y -+= 上的点,则PM PN -的最大值为A .6B .7C .8D .910.已知函数()f x 对任意x R ∈都有(4)()2(2)f x f x f +-=,若(1)y f x =-的图象关于直线1x =对称,且(1)2f =,则(2011)f =A .2B .3C .4D .6第Ⅱ卷 非选择题(共100分)二、填空题:本大题共5小题,每小题5分,共25分.将答案填写在题中的横线上.11. 右图中的三个直角三角形是一个体积 为320cm 的几何体的三视图,则h= cm12.已知223+=2·23,338+=3·38,4415+=4·415,…。

2019-2020年高考数学模拟试卷(文科)含解析

2019-2020年高考数学模拟试卷(文科)含解析

上的三个函数: ① f( x)= ;② f( x)=ex ③ f( x )= ,则为 “保比差数列函数 ”的是(

A . ①②
B . ②③
C. ①③
D . ①②③
二、填空题(本题包括 5 小题,共 25 分)
11.设曲线 y=
在点( 3,2)处的切线与直线 ax+y+3=0 垂直,则 a=

12.已知向量
一、选择题(本题包括 10 小题,每小题 5 分,共 50 分 .每小题只有一个选项符合题意)
1.已知集合 A={x|x > 1} , B={x| ﹣ 1< x<2} .则( ?RA ) ∩B=( )
A . {x|x >﹣ 1}
B . {x| ﹣ 1<x≤1}
C. {x| ﹣ 1< x< 2}
D . {x|1 < x<2}
故选 C.
点评: 本 题考查复合命题的真假判定.
5.设 ω是正实数, 函数 f( x)=2cosωx 在 x∈
A.
B. 2
上是减函数, 那么 ω的值可以是 ( )
C. 3
D. 4
考点: 余 弦函数的单调性. 专题: 三 角函数的图像与性质.
分析: 可 知函数的最小正周期 T=
≥2(
﹣ 0),解之可得 ω的范围,结合选项可得答案.
2019-2020 年高考数学模拟试卷(文科)含解析
一、选择题(本题包括 10 小题,每小题 5 分,共 50 分 .每小题只有一个选项符合题意)
1.已知集合 A={x|x > 1} , B={x| ﹣ 1< x<2} .则( ?RA ) ∩B=( )
A . {x|x >﹣ 1}
B . {x| ﹣ 1<x≤1}

2019-2020高考数学模拟试题含答案

2019-2020高考数学模拟试题含答案

2019-2020高考数学模拟试题含答案一、选择题1.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为( ) A .10组B .9组C .8组D .7组2.已知向量a ,b 满足2a =,||1b =,且2b a +=,则向量a 与b 的夹角的余弦值为( )A .2B .3C D .43.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=,22MF NF =,则双曲线C 的离心率为( ).A B C D 4.设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( )A .-15x 4B .15x 4C .-20i x 4D .20i x 45.已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,12F F ,为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( )A .43y x =±B .34y x C .35y x =± D .53y x =±6.若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是 ( )A .2B .3C .4D .57.若不等式222424ax ax x x +-<+ 对任意实数x 均成立,则实数a 的取值范围是( ) A .(22)-,B .(2)(2)-∞-⋃+∞,, C .(22]-,D .(2]-∞,8.已知函数()(3)(2ln 1)xf x x e a x x =-+-+在(1,)+∞上有两个极值点,且()f x 在(1,2)上单调递增,则实数a 的取值范围是( )A .(,)e +∞B .2(,2)e eC .2(2,)e +∞D .22(,2)(2,)e e e +∞9.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .108cm 3B .100cm 3C .92cm 3D .84cm 310.渐近线方程为0x y ±=的双曲线的离心率是( ) A .22B .1C .2D .211.若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件12.已知ABC 为等边三角形,2AB =,设P ,Q 满足AP AB λ=,()()1AQ AC λλ=-∈R ,若32BQ CP ⋅=-,则λ=( )A .12B .122± C .1102± D .3222± 二、填空题13.如图,一辆汽车在一条水平的公路上向正西行驶,到处时测得公路北侧一山顶D 在西偏北的方向上,行驶600m 后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度________ m.14.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________ 件.15.已知实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是__________.16.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.17.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.18.在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆2cos ρθ=相切,则a =__________.19.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________.20.如图,已知P 是半径为2,圆心角为3π的一段圆弧AB 上一点,2A B B C =,则PC PA ⋅的最小值为_______.三、解答题21.已知椭圆22221(0)x y a b a b +=>>的离心率为63,以椭圆的2个焦点与1个短轴端点为顶点的三角形的面积为22. (1)求椭圆的方程;(2)如图,斜率为k 的直线l 过椭圆的右焦点F ,且与椭圆交与,A B 两点,以线段AB 为直径的圆截直线1x =所得的弦的长度为5,求直线l 的方程.22.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.()1设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;()2设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.23.已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (1)求数列{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+ ?若存在,求n 的最小值;若不存在,说明理由.24.已知菱形ABCD 的顶点A ,C 在椭圆2234x y +=上,对角线BD 所在直线的斜率为1.(1)当直线BD 过点(0,1)时,求直线AC 的方程. (2)当60ABC ∠=︒时,求菱形ABCD 面积的最大值.25.某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示(1)由折线图可以看出,可用线性回归模型拟合月利润y (单位:百万元)与月份代码x 之间的关系,求y 关于x 的线性回归方程,并预测该公司2019年3月份的利润;(2)甲公司新研制了一款产品,需要采购一批新型材料,现有,A B 两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,但新材料的不稳定性会导致材料损坏的年限不同,现对,A B 两种型号的新型材料对应的产品各100件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表: 使用寿命/材料类型 1个月 2个月 3个月 4个月 总计 A 20 35 35 10 100 B10304020100如果你是甲公司的负责人,你会选择采购哪款新型材料? 参考数据:6196ii y==∑ 61371i i i x y ==∑参考公式:回归直线方程ˆˆˆybx a =+,其中()()()()1122211ˆ=n niii ii i nniii i x x y y x y nxyb x x xnx====---=--∑∑∑∑【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】由题意知,(14051)108.9-÷=,所以分为9组较为恰当,故选B.2.D解析:D 【解析】 【分析】根据平方运算可求得12a b ⋅=,利用cos ,a b a b a b ⋅<>=求得结果.【详解】由题意可知:2222324ba b a b a a b +=+⋅+=+⋅=,解得:12a b ⋅=1cos ,422a ba b a b⋅∴<>===本题正确选项:D 【点睛】本题考查向量夹角的求解问题,关键是能够通过平方运算求得向量的数量积.3.B解析:B 【解析】 【分析】本道题设2MF x =,利用双曲线性质,计算x ,结合余弦定理,计算离心率,即可. 【详解】结合题意可知,设22,,,MF x NF x MN ===则则结合双曲线的性质可得,21122,2MF MF a MF MN NF a -=+-=代入,解得22x a =,所以12222,22NF a a NF a =+=,01245F NF ∠= 对三角形12F NF 运用余弦定理,得到()()()()()222222222222222cos45a aac a aa ++-=+⋅,解得3ce a== 故选B.【点睛】本道题考查了双曲线的性质,考查了余弦定理,关键利用余弦定理,解三角形,进而计算x ,即可,难度偏难.4.A解析:A 【解析】 试题分析:二项式的展开式的通项为,令,则,故展开式中含的项为,故选A.【考点】二项展开式,复数的运算【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考的内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式可以写为,则其通项为,则含的项为.5.A解析:A 【解析】 【分析】依据题意作出图象,由双曲线定义可得1122PF F F c ==,又直线PF 2与以C 的实轴为直径的圆相切,可得2MF b =,对2OF M ∠在两个三角形中分别用余弦定理及余弦定义列方程,即可求得2b a c =+,联立222c a b =+,即可求得43b a =,问题得解. 【详解】依据题意作出图象,如下:则1122PF F F c ==,OM a =, 又直线PF 2与以C 的实轴为直径的圆相切, 所以2OM PF ⊥, 所以222MF c a b =-=由双曲线定义可得:212PF PF a -=,所以222PFc a =+, 所以()()()()22222222cos 2222c a c c b OF M c c a c ++-∠==⨯⨯+整理得:2b a c =+,即:2b a c -= 将2c b a =-代入222c a b =+,整理得:43b a =, 所以C 的渐近线方程为43b y x x a =±=± 故选A 【点睛】本题主要考查了双曲线的定义及圆的曲线性质,还考查了三角函数定义及余弦定理,考查计算能力及方程思想,属于难题.6.D解析:D 【解析】试题分析:根据题意可知34xi y i -=+,所以有3{4y x =-=,故所给的复数的模该为5,故选D.考点:复数相等,复数的模.7.C解析:C 【解析】由题意,不等式222424ax ax x x +-<+,可化为2(2)2(2)40a x a x -+--<, 当20a -=,即2a =时,不等式恒成立,符合题意; 当20a -≠时,要使不等式恒成立,需2)2204(44(2)0a a a --<⎧⎨∆=+⨯-<⎩, 解得22a -<<,综上所述,所以a 的取值范围为(2,2]-,故选C .8.C解析:C 【解析】 【分析】求得函数的导数()(2)()x xe af x x x-'=-⋅,根据函数()f x 在(1,)+∞上有两个极值点,转化为0x xe a -=在(1,)+∞上有不等于2的解,令()xg x xe =,利用奥数求得函数的单调性,得到()1a g e >=且()222a g e ≠=,又由()f x 在(1,2)上单调递增,得到()0f x '≥在(1,2)上恒成立,进而得到x a xe ≥在(1,2)上恒成立,借助函数()x g x xe =在(1,)+∞为单调递增函数,求得2(2)2a g e >=,即可得到答案.【详解】由题意,函数()(3)(2ln 1)xf x x e a x x =-+-+,可得2()(3)(1)(2)()(2)()x xxxa xe a f x e x e a x e x x x x-'=+-+-=--=-⋅,又由函数()f x 在(1,)+∞上有两个极值点,则()0f x '=,即(2)()0x xe ax x--⋅=在(1,)+∞上有两解,即0x xe a -=在在(1,)+∞上有不等于2的解,令()xg x xe =,则()(1)0,(1)xg x x e x '=+>>,所以函数()xg x xe =在(1,)+∞为单调递增函数,所以()1a g e >=且()222a g e ≠=,又由()f x 在(1,2)上单调递增,则()0f x '≥在(1,2)上恒成立,即(2)()0x xe ax x--⋅≥在(1,2)上恒成立,即0x xe a -≤在(1,2)上恒成立,即x a xe ≥在(1,2)上恒成立,又由函数()xg x xe =在(1,)+∞为单调递增函数,所以2(2)2a g e >=,综上所述,可得实数a 的取值范围是22a e >,即2(2,)a e ∈+∞,故选C. 【点睛】本题主要考查导数在函数中的综合应用,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.9.B解析:B 【解析】试题分析:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积.解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角). ∴该几何体的体积V=6×6×3﹣=100.故选B .考点:由三视图求面积、体积.10.C解析:C 【解析】 【分析】本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查. 【详解】根据渐近线方程为x ±y =0的双曲线,可得a b =,所以c 2a = 则该双曲线的离心率为 e 2ca==, 故选C . 【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.11.A解析:A 【解析】 【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b 的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查. 【详解】当0, 0a >b >时,2a b ab +≥,则当4a b +≤时,有24ab a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果.12.A解析:A 【解析】 【分析】运用向量的加法和减法运算表示向量BQ BA AQ =+,CP CA AP =+,再根据向量的数量积运算,建立关于λ的方程,可得选项. 【详解】∵BQ BA AQ =+,CP CA AP =+,∴()()BQ CP BA AQ CA AP AB AC AB AP AC AQ AQ AP ⋅=+⋅+=⋅-⋅-⋅+⋅()()2211AB AC AB AC AB AC λλλλ=⋅---+-⋅()()232441212222λλλλλλ=---+-=-+-=-,∴12λ=.故选:A. 二、填空题13.1006【解析】试题分析:由题设可知在中由此可得由正弦定理可得解之得又因为所以应填1006考点:正弦定理及运用 解析:【解析】试题分析:由题设可知在中,,由此可得,由正弦定理可得,解之得,又因为,所以,应填.考点:正弦定理及运用.14.18【解析】应从丙种型号的产品中抽取件故答案为18点睛:在分层抽样的过程中为了保证每个个体被抽到的可能性是相同的这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比即ni解析:18 【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18. 点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .15.6【解析】【分析】画出不等式组表示的可行域由可得平移直线结合图形可得最优解于是可得所求最小值【详解】画出不等式组表示的可行域如图中阴影部分所示由可得平移直线结合图形可得当直线经过可行域内的点A 时直线解析:6 【解析】 【分析】画出不等式组表示的可行域,由32z x y =-可得322z y x =-,平移直线322zy x =-,结合图形可得最优解,于是可得所求最小值. 【详解】画出不等式组表示的可行域,如图中阴影部分所示.由32z x y =-可得322zy x =-. 平移直线322z y x =-,结合图形可得,当直线322zy x =-经过可行域内的点A 时,直线在y 轴上的截距最大,此时z 取得最小值. 由题意得A 点坐标为(2,0),∴min 326z =⨯=,即32z x y =-的最小值是6. 故答案为6. 【点睛】求目标函数(0)z ax by ab =+≠的最值时,可将函数z ax by =+转化为直线的斜截式:a zy x b b =-+,通过求直线的纵截距z b 的最值间接求出z 的最值.解题时要注意:①当0b >时,截距z b 取最大值时,z 也取最大值;截距zb取最小值时,z 也取最小值;②当0b <时,截距z b 取最大值时,z 取最小值;截距zb取最小值时,z 取最大值. 16.【解析】【详解】因为所以①因为所以②①②得即解得故本题正确答案为解析:12- 【解析】 【详解】 因为,所以,①因为,所以,②①②得,即, 解得, 故本题正确答案为17.60【解析】【分析】采用分层抽样的方法从该校四个年级的本科生中抽取一个容量为300的样本进行调查的【详解】∵该校一年级二年级三年级四年级的本科生人数之比为4:5:5:6∴应从一年级本科生中抽取学生人解析:60 【解析】 【分析】采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查的. 【详解】∵该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6, ∴应从一年级本科生中抽取学生人数为:4300604556⨯=+++.故答案为60.18.【解析】【分析】根据将直线与圆极坐标方程化为直角坐标方程再根据圆心到直线距离等于半径解出【详解】因为由得由得即即因为直线与圆相切所以【点睛】(1)直角坐标方程化为极坐标方程只要运用公式及直接代入并化 解析:12+【解析】 【分析】根据222,cos ,sin x y x y ρρθρθ=+==将直线与圆极坐标方程化为直角坐标方程,再根据圆心到直线距离等于半径解出a . 【详解】因为222,cos ,sin x y x y ρρθρθ=+==, 由cos sin (0)a a ρθρθ+=>,得(0)x y a a +=>,由2cos ρθ=,得2=2cos ρρθ,即22=2x y x +,即22(1)1x y -+=,因为直线与圆相切,所以111201 2.2a a a a -=∴=±>∴=+,,,【点睛】(1)直角坐标方程化为极坐标方程,只要运用公式cos x ρθ=及sin y ρθ=直接代入并化简即可;(2)极坐标方程化为直角坐标方程时常通过变形,构造形如2cos ,sin ,ρθρθρ的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.19.或【解析】【分析】做出简图找到球心根据勾股定理列式求解棱锥的高得到两种情况【详解】正三棱锥的外接球的表面积为根据公式得到根据题意画出图像设三棱锥的高为hP 点在底面的投影为H 点则底面三角形的外接圆半径解析:334或934【解析】 【分析】做出简图,找到球心,根据勾股定理列式求解棱锥的高,得到两种情况. 【详解】正三棱锥P ABC -的外接球的表面积为16π,根据公式得到21642,r r ππ=⇒=根据题意画出图像,设三棱锥的高为h,P 点在底面的投影为H 点,则2,2,2OP r OA r OH h =====-,底面三角形的外接圆半径为AH ,根据正弦定理得到3sin 60=在三角形OAH 中根据勾股定理得到()223413h h -+=⇒=或 三棱锥的体积为:13ABCh S ⨯⨯代入数据得到1113332⨯⨯⨯=或者1133332⨯⨯⨯=【点睛】这个题目考查了已知棱锥的外接球的半径,求解其中的一些量;涉及棱锥的外接球的球心的求法,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.20.5﹣【解析】【分析】设圆心为OAB 中点为D 先求出再求PM 的最小值得解【详解】设圆心为OAB 中点为D 由题得取AC 中点M 由题得两方程平方相减得要使取最小值就是PM 最小当圆弧AB 的圆心与点PM 共线时PM 最解析:5﹣【解析】 【分析】设圆心为O,AB 中点为D,先求出2221944PC PA PM AC PM ⋅=-=-,再求PM 的最小值得解. 【详解】设圆心为O,AB 中点为D, 由题得22sin2,36AB AC π=⋅⋅=∴=.取AC 中点M ,由题得2PA PC PMPC PA AC ⎧+=⎨-=⎩,两方程平方相减得2221944PC PA PM AC PM ⋅=-=-,要使PC PA ⋅取最小值,就是PM 最小, 当圆弧AB 的圆心与点P 、M 共线时,PM 最小.此时DM=1,22DM ∴==,所以PM 有最小值为2﹣2,代入求得PC PA ⋅的最小值为5﹣故答案为5﹣【点睛】本题主要考查直线和圆的位置关系,考查平面向量的数量积及其最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题21.(1)22162x y +=;(2)2y x =-或2y x =-+.【解析】 【分析】(1)根据椭圆的离心率,三角形的面积建立方程,结合a 2=b 2+c 2,即可求椭圆C 的方程;(2)联立直线方程与椭圆联立,利用韦达定理表示出12x x +及12x x ⋅,结合弦的长度为即可求斜率k 的值,从而求得直线方程.【详解】解:(1)由椭圆()222210x y a b a b +=>>的离心率为3,得c =,b =.由21223S c b a =⋅⋅==a = b =22162x y +=. (2)解:设直线():2AB l y k x =-,()11,A x y ,()22,B x y ,AB 中点()00,M x y .联立方程()222360y k x x y ⎧=-⎨+-=⎩得()222213121260k x k x k +-+-=,2212122212126,1313k k x x x x k k -+==++.()2122113k AB x x k +=-=+. 所以202613k x k=+,点M 到直线1x =的距离为22022316111313k k d x k k-=-=-=++. 由以线段AB 为直径的圆截直线1x =22222AB d ⎛⎛⎫-= ⎪ ⎝⎭⎝⎭,所以()222222213113132k k k k ⎤+⎛⎫⎛⎫-⎥-= ⎪ ⎪ ⎪++⎢⎥⎝⎭⎝⎭⎣⎦, 解得1k =±,所以直线l 的方程为2y x =-或2y x =-+.【点睛】本题考查椭圆的标准方程与几何性质,考查直线与椭圆的位置关系,联立直线与椭圆方程,利用韦达定理,整理出12x x +及12x x ⋅,代入弦长公式AB =,考查学生的计算能力,属于中档题. 22.(1)13; (2)()1E X =. 【解析】 【分析】(1)可根据题意分别计算出“从10人中选出2人”以及“2人参加义工活动的次数之和为4”的所有可能情况数目,然后通过概率计算公式即可得出结果;(2)由题意知随机变量X 的所有可能取值,然后计算出每一个可能取值所对应的概率值,写出分布列,求出数学期望值. 【详解】(1)由已知有1123432101()3C C C P A C ⋅+==, 所以事件A 的发生的概率为13; (2)随机变量X 的所有可能的取值为0,1,2;2223342104(0)15C C C P X C ++===;111133342107(1)15C C C C P X C ⋅+⋅===; 11342104(2)15C C P X C ⋅===; 所以随机变量X 的分布列为:数学期望为4740121151515E X.【点睛】本题考查了离散型随机变量的分布列与数学期望的计算问题,能否正确计算出每一个随机变量所对应的的概率是解决本题的关键,考查推理能力,是中档题.23.(1) 通项公式为2n a = 或42n a n =-;(2) 当2n a = 时,不存在满足题意的正整数n ;当42n a n =- 时,存在满足题意的正整数n ,其最小值为41.【解析】 【详解】(1)依题意,2,2,24d d ++成等比数列, 故有()()22224d d +=+, ∴240d d -=,解得4d =或0d =. ∴()21442n a n n =+-⋅=-或2n a =.(2)当2n a = 时,不存在满足题意的正整数n ; 当42n a n =-,∴()224222n n n S n ⎡⎤+-⎣⎦==.令2260800n n >+,即2304000n n -->, 解得40n >或10n <-(舍去), ∴最小正整数41n =.24.(1)20x y ++=(2)【解析】 【分析】 【详解】Ⅰ)由题意得直线BD 的方程为1y x =+. 因为四边形ABCD 为菱形,所以AC BD ⊥. 于是可设直线AC 的方程为y x n =-+.由2234{x y y x n+==-+,得2246340x nx n -+-=. 因为A C ,在椭圆上,所以212640n ∆=-+>,解得n <<. 设A C ,两点坐标分别为1122()()x y x y ,,,, 则1232n x x +=,212344n x x -=,11y x n =-+,22y x n =-+.所以122n y y +=. 所以AC 的中点坐标为344n n ⎛⎫⎪⎝⎭,.由四边形ABCD 为菱形可知,点344n n ⎛⎫⎪⎝⎭,在直线1y x =+上, 所以3144n n=+,解得2n =-. 所以直线AC 的方程为2y x =--,即20x y ++=. (Ⅱ)因为四边形ABCD 为菱形,且60ABC ∠=, 所以AB BC CA ==. 所以菱形ABCD的面积2S AC =. 由(Ⅰ)可得2223162-+==n AC,所以2(316)433S n n ⎛=-+-<< ⎝⎭, 故当0n =时,有max 16==S 25.(1) ˆ29yx =+ , 31百万元;(2) B 型新材料. 【解析】 【分析】(1)根据所给的数据,做出变量,x y 的平均数,求出最小二乘法所需要的数据,可得线性回归方程的系数b ,再根据样本中心点一定在线性回归方程上,求出a 的值,写出线性回归方程;将11x =代入所求线性回归方程,求出对应的y 的值即可得结果; (2)求出A 型新材料对应产品的使用寿命的平均数与B 型新材料对应产品的使用寿命的平均数,比较其大小即可得结果. 【详解】(1)由折线图可知统计数据(),x y 共有6组,即(1,11),(2,13),(3,16),(4,15),(5,20),(6,21), 计算可得1234563.56x +++++==,611191666ii y ==⨯=∑ 所以()1221ˆni i i n ii x y nxybx n x ==-==-∑∑37163.516217.5-⋅⋅=,1ˆˆ62 3.59ˆay bx =-=-⨯=, 所以月度利润y 与月份代码x 之间的线性回归方程为ˆ29y x =+. 当11x =时,211931ˆy=⨯+=.故预计甲公司2019年3月份的利润为31百万元.(2)A 型新材料对应产品的使用寿命的平均数为1 2.35x =,B 型新材料对应的产品的使用寿命的平均数为2 2.7x =,12x x < ∴,应该采购B 型新材料. 【点睛】本题主要考查线性回归方程的求解与应用,属于中档题.求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算,x y 的值;③计算回归系数ˆˆ,ab ;④写出回归直线方程为ˆˆˆybx a =+; 回归直线过样本点中心(),x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.。

2019-2020数学高考模拟试题(附答案)

2019-2020数学高考模拟试题(附答案)

2019-2020数学高考模拟试题(附答案)一、选择题1.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥B .若a αβ∥,b ∥,αβ∥,则a b ∥C .若a b a b αβ⊂⊂P ,,,则αβ∥D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥r r2.2532()x x-展开式中的常数项为( ) A .80 B .-80C .40D .-403.如果42ππα<<,那么下列不等式成立的是( )A .sin cos tan ααα<<B .tan sin cos ααα<<C .cos sin tan ααα<<D .cos tan sin ααα<<4.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙5.函数()()2ln 1f x x x=+-的一个零点所在的区间是( ) A .()0,1B .()1,2C .()2,3D .()3,46.一动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则此动圆必过定点( ) A .(4,0)B .(2,0)C .(0,2)D .(0,0)7.已知sin cos 0θθ<,且cos cos θθ=,则角θ是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角8.下列四个命题中,正确命题的个数为( ) ①如果两个平面有三个公共点,那么这两个平面重合; ②两条直线一定可以确定一个平面;③若M α∈,M β∈,l αβ=I ,则M l ∈; ④空间中,相交于同一点的三直线在同一平面内.A .1B .2C .3D .49.当1a >时, 在同一坐标系中,函数xy a -=与log a y x =-的图像是( )A .B .C .D .10.设,a b R ∈,“0a =”是“复数a bi +是纯虚数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件11.已知非零向量AB u u u v 与AC u u uv 满足0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭u u u v u u u v u u uv u u u v u u u v 且12AB AC AB AC ⋅=u u u v u u u v u u u v u u u v ,则ABC V 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形D .以上均有可能12.在[0,2]π内,不等式3sin x <的解集是( ) A .(0)π,B .4,33ππ⎛⎫⎪⎝⎭C .45,33ππ⎛⎫⎪⎝⎭D .5,23ππ⎛⎫⎪⎝⎭二、填空题13.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________.14.在ABC V 中,60A =︒,1b =3sin sin sin a b cA B C++=++________.15.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________.16.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.17.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,3c =,2C B =,则ABC V 的面积为______.18.已知样本数据,,,的均值,则样本数据,,,的均值为 .19.如图,已知P 是半径为2,圆心角为3π的一段圆弧AB 上一点,2A B B C =u u u v u u u v ,则PC PA ⋅u u u v u u u v的最小值为_______.20.设函数21()ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 取值范围为_______________.三、解答题21.已知平面直角坐标系xoy .以O 为极点,x 轴的非负半轴为极轴建立极坐标系,P 点的极坐标为23,6π⎛⎫⎪⎝⎭,曲线C 的极坐标方程为223sin 1ρρθ+= (1)写出点P 的直角坐标及曲线C 的普通方程; (2)若Q 为C 上的动点,求PQ 中点M 到直线32:2x tl y t=+⎧⎨=-+⎩(t 为参数)距离的最小值.22.已知椭圆()2222:10x y C a b a b+=>>的一个焦点为)5,05(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.23.(辽宁省葫芦岛市2018年二模)直角坐标系xOy 中,直线l 的参数方程为21x tcos y tsin αα=+⎧⎨=+⎩(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点为极点,以x 轴正半轴为极轴)中,圆C 的方程为6cos ρθ=.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点,A B ,若点P 的坐标为()2,1,求PA PB +的最小值. 24.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。

2019-2020数学高考模拟试卷(带答案)

2019-2020数学高考模拟试卷(带答案)

2019-2020数学高考模拟试卷(带答案)一、选择题1.若3tan 4α= ,则2cos 2sin 2αα+=( ) A .6425 B .4825C .1D .16252.若以连续掷两颗骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 落在圆229x y +=内的概率为( )A .536B .29C .16D .193.设01p <<,随机变量ξ的分布列如图,则当p 在()0,1内增大时,( )A .()D ξ减小B .()D ξ增大C .()D ξ先减小后增大D .()D ξ先增大后减小4.已知sin cos 0θθ<,且cos cos θθ=,则角θ是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角5.在△ABC 中,a =5,b =3,则sin A :sin B 的值是( ) A .53B .35C .37D .576.两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为A .12B .512C .14D .167.已知,m n 是两条不同的直线,α,β是两个不同的平面,给出下列命题: ①若m αP ,m n ⊥,则n α⊥; ②若m α⊥,n αP ,则m n ⊥;③若,m n 是异面直线,m α⊂,m βP ,n β⊂,n αP ,则αβ∥; ④若,m n 不平行,则m 与n 不可能垂直于同一平面. 其中为真命题的是( ) A .②③④B .①②③C .①③④D .①②④8.sin 47sin17cos30cos17-o o ooA .3-B .12-C .12D .3 9.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab += B .4a b +> C .()()22112a b -+-<D .228a b +>10.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为 A .1220B .2755C .2125D .2722011.若实数满足约束条件,则的最大值是( )A .B .1C .10D .1212.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则U A B =I ð( ) A .{}1- B .{}0,1 C .{}1,2,3-D .{}1,0,1,3-二、填空题13.已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a= .14.设n S 是等差数列{}*()n a n N ∈的前n 项和,且141,7a a ==,则5______S =15.已知函数21,1()()1a x x f x x a x ⎧-+≤=⎨->⎩,函数()2()g x f x =-,若函数()()y f x g x =-恰有4个不同的零点,则实数a 的取值范围为______.16.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________. 17.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,3c =,2C B =,则ABC V 的面积为______.18.()sin 5013=oo________________.19.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)20.高三某班一学习小组的,,,A B C D 四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A 不在散步,也不在打篮球;②B 不在跳舞,也不在散步;③“C 在散步”是“A 在跳舞”的充分条件;④D 不在打篮球,也不在散步;⑤C 不在跳舞,也不在打篮球.以上命题都是真命题,那么D 在_________.三、解答题21.已知2256x ≤且21log 2x ≥,求函数22()log log 22x xf x =⋅的最大值和最小值. 22.如图,已知四棱锥P ABCD -的底面为等腰梯形,//AB CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高.(Ⅰ)证明:平面PAC ⊥平面PBD ; (Ⅱ)若AB 6=,APB ADB ∠=∠=60°,求四棱锥P ABCD -的体积. 23.已知()f x 是二次函数,不等式()0f x <的解集是()0,5,且()f x 在区间[]1,4-上的最大值是12.(1)求()f x 的解析式;(2)设函数()f x 在[],1x t t ∈+上的最小值为()g t ,求()g t 的表达式. 24.已知函数1(1)f x m x x =---+. (1)当5m =时,求不等式()2f x >的解集;(2)若二次函数223y x x =++与函数()y f x =的图象恒有公共点,求实数m 的取值范围.25.如图,在边长为4的正方形ABCD 中,点E,F 分别是AB,BC 的中点,点M 在AD 上,且14AM AD =,将AED,DCF V V 分别沿DE,DF 折叠,使A,C 点重合于点P ,如图所示2.()1试判断PB 与平面MEF 的位置关系,并给出证明;()2求二面角M EF D --的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A . 【考点】同角三角函数间的基本关系,倍角公式.【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系.2.D解析:D 【解析】掷骰子共有36个结果,而落在圆x 2+y 2=9内的情况有(1,1),(1,2),(2,1),(2,2)这4种,∴P=41369=. 故选D3.D解析:D 【解析】 【分析】先求数学期望,再求方差,最后根据方差函数确定单调性. 【详解】111()0122222p p E p ξ-=⨯+⨯+⨯=+Q , 2222111111()(0)(1)(2)2222224p p D p p p p p ξ-∴=--+--+--=-++, 1(0,1)2∈Q ,∴()D ξ先增后减,因此选D. 【点睛】222111(),()(())().n n ni i i i i i i i i E x p D x E p x p E ξξξξ=====-=-∑∑∑4.D解析:D 【解析】 【分析】由cos cos θθ=以及绝对值的定义可得cos 0θ≥,再结合已知得sin 0,cos 0θθ<>,根据三角函数的符号法则可得. 【详解】由cos cos θθ=,可知cos 0θ≥,结合sin cos 0θθ<,得sin 0,cos 0θθ<>, 所以角θ是第四象限角, 故选:D 【点睛】本题考查了三角函数的符号法则,属于基础题.5.A解析:A 【解析】 由正弦定理可得:sin 5sin 3A aB b == . 本题选择A 选项.6.B解析:B 【解析】记两个零件中恰好有一个一等品的事件为A ,即仅第一个实习生加工一等品(A 1)与仅第二个实习生加工一等品(A 2)两种情况, 则P (A )=P (A 1)+P (A 2)=2 3×14+13×34=512故选B.7.A解析:A 【解析】 【分析】根据空间中点、线、面位置关系,逐项判断即可. 【详解】①若m αP ,m n ⊥,则n 与α位置关系不确定;②若n αP ,则α存在直线l 与n 平行,因为m α⊥,所以m l ⊥,则m n ⊥; ③当m α⊂,m P β,n β⊂,n αP 时,平面α,β平行;④逆否命题为:若m 与n 垂直于同一平面,则,m n 平行,为真命题. 综上,为真命题的是②③④. 故选A 【点睛】本题主要考查空间中点线面位置关系,熟记线面关系、面面关系,即可求解,属于常考题型.8.C解析:C 【解析】 【分析】由()sin 473017sin θ=+oo o,利用两角和的正弦公式以及特殊角的三角函数,化简即可. 【详解】0000sin 47sin17cos30cos17-sin()sin cos cos 1730173017︒+︒-︒︒=︒ sin17cos30cos17sin 30sin17cos30cos17︒︒+︒︒-︒︒=︒1302sin =︒=.故选C .【点睛】三角函数式的化简要遵循“三看”原则: (1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式; (3)三看“结构特征”,分析结构特征,找到变形的方向.9.C解析:C 【解析】 【分析】根据236a b ==即可得出21l 3og a =+,31l 2og b =+,根据23log log 132⋅=,33log log 222+>,即可判断出结果.【详解】 ∵236a b ==;∴226log 1og 3l a ==+,336log 1og 2l b ==+;∴2332log 2log 4a b +=++>,2332log og 42l ab =++>,故,A B 正确;()()()()2322223211log log 2log 323log 22a b =>⋅-+-+=,故C 错误;∵()()()22232223log log 2log 2323log 2a b =+++++232l 23og log 82>+=⋅,故D 正确故C .本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:2a b ab +≥和不等式222a b ab+≥的应用,属于中档题10.D解析:D 【解析】 【分析】旧球个数x=4即取出一个新球,两个旧球,代入公式即可求解. 【详解】因为从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数为x=4,即旧球增加一个,所以取出的三个球中必有一个新球,两个旧球,所以129331227(4)220C C P X C ===,故选D . 【点睛】本题考查离散型随机变量的分布列,需认真分析P(X=4)的意义,属基础题.11.C解析:C 【解析】 【分析】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查. 【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以为顶点的三角形区域(包含边界),由图易得当目标函数经过平面区域的点时,取最大值.【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错.解析:A 【解析】 【分析】本题根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查. 【详解】={1,3}U C A -,则(){1}U C A B =-I【点睛】易于理解集补集的概念、交集概念有误.二、填空题13.8【解析】试题分析:函数在处的导数为所以切线方程为;曲线的导函数的为因与该曲线相切可令当时曲线为直线与直线平行不符合题意;当时代入曲线方程可求得切点代入切线方程即可求得考点:导函数的运用【方法点睛】解析:8 【解析】试题分析:函数ln y x x =+在(1,1)处的导数为111|1|2x x y x===+=',所以切线方程为;曲线2(2)1y ax a x =+++的导函数的为,因与该曲线相切,可令,当时,曲线为直线,与直线平行,不符合题意;当时,代入曲线方程可求得切点,代入切线方程即可求得.考点:导函数的运用.【方法点睛】求曲线在某一点的切线,可先求得曲线在该点的导函数值,也即该点切线的斜率值,再由点斜式得到切线的方程,当已知切线方程而求函数中的参数时,可先求得函数的导函数,令导函数的值等于切线的斜率,这样便能确定切点的横坐标,再将横坐标代入曲线(切线)得到纵坐标得到切点坐标,并代入切线(曲线)方程便可求得参数.14.25【解析】由可得所以解析:25 【解析】由141,7a a ==可得11,2,21n a d a n ===-,所以5(19)5252S +⨯==. 15.【解析】【分析】由函数把函数恰有个不同的零点转化为恰有4个实数根列出相应的条件即可求解【详解】由题意函数且函数恰有个不同的零点即恰有4个实数根当时由即解得或所以解得;当时由解得或所以解得综上可得:实解析:(]2,3【解析】 【分析】由函数()2()g x f x =-,把函数()()y f x g x =-恰有4个不同的零点,转化为()1f x =恰有4个实数根,列出相应的条件,即可求解. 【详解】由题意,函数()2()g x f x =-,且函数()()y f x g x =-恰有4个不同的零点, 即()1f x =恰有4个实数根,当1x ≤时,由11a x -+=,即110x a +=-≥,解得2=-x a 或x a =-,所以2112a a a a -≤⎧⎪-≤⎨⎪-≠-⎩,解得13a <?;当1x >时,由2()1x a -=,解得1x a =-或1x a =+,所以1111a a ->⎧⎨+>⎩,解得2a >,综上可得:实数a 的取值范围为(]2,3. 【点睛】本题主要考查了函数与方程的应用,其中解答中利用条件转化为()1f x =,绝对值的定义,以及二次函数的性质求解是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于中档试题.16.【解析】【详解】因为所以①因为所以②①②得即解得故本题正确答案为解析:12-【解析】 【详解】 因为,所以,①因为,所以,②①②得,即, 解得, 故本题正确答案为17.【解析】【分析】由已知利用正弦定理二倍角的正弦函数公式可求的值根据同角三角函数基本关系式可求的值利用二倍角公式可求的值根据两角和的正弦函数公式可求的值即可利用三角形的面积公式计算得解【详解】由正弦定【解析】 【分析】由已知利用正弦定理,二倍角的正弦函数公式可求cos B 的值,根据同角三角函数基本关系式可求sin B 的值,利用二倍角公式可求sin C ,cos C 的值,根据两角和的正弦函数公式可求sin A 的值,即可利用三角形的面积公式计算得解. 【详解】2b =Q ,3c =,2C B =,∴由正弦定理sin sin b c B C =,可得:23sin sin B C=,可得:233sin sin22sin cos B B B B==,∴可得:3cos 4B =,可得:sin 4B ==,∴可得:sin sin22sin cos C B B B ===,21cos cos22cos 18C B B ==-=,()13sin sin sin cos cos sin 84A B C B C B C ∴=+=+=+=,11sin 2322S bc A ∴==⨯⨯=.故答案为:16. 【点睛】本题主要考查了正弦定理,同角三角函数基本关系式,二倍角公式,两角和的正弦函数公式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.18.【解析】【分析】利用弦化切的运算技巧得出然后利用辅助角二倍角正弦以及诱导公式可计算出结果【详解】原式故答案为:【点睛】本题考查利用三角恒等变换思想求非特殊角的三角函数值在计算时要结合角之间的关系选择 解析:1【解析】 【分析】利用弦化切的运算技巧得出()cos10sin 50cos 0sin 5011an10++=⋅o ooo o o ,然后利用辅助角、二倍角正弦以及诱导公式可计算出结果.【详解】 原式()2sin 1030sin50cos102sin 40cos 40sin50cos10cos10cos10++=⋅==o o o o o o o o o o o()sin 9010sin80cos101cos10cos10cos10-====o o o oo o o . 故答案为:1.【点睛】本题考查利用三角恒等变换思想求非特殊角的三角函数值,在计算时要结合角之间的关系选择合适的公式化简计算,考查计算能力,属于中等题.19.【解析】【分析】首先想到所选的人中没有女生有多少种选法再者需要确定从人中任选人的选法种数之后应用减法运算求得结果【详解】根据题意没有女生入选有种选法从名学生中任意选人有种选法故至少有位女生入选则不同 解析:16【解析】【分析】首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人的选法种数,之后应用减法运算,求得结果.【详解】根据题意,没有女生入选有344C =种选法,从6名学生中任意选3人有3620C =种选法,故至少有1位女生入选,则不同的选法共有20416-=种,故答案是16.【点睛】该题是一道关于组合计数的题目,并且在涉及到“至多、至少”问题时多采用间接法,一般方法是得出选3人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有两名女生分别有多少种选法,之后用加法运算求解.20.画画【解析】以上命题都是真命题∴对应的情况是:则由表格知A 在跳舞B 在打篮球∵③C 在散步是A 在跳舞的充分条件∴C 在散步则D 在画画故答案为画画 解析:画画【解析】以上命题都是真命题,∴对应的情况是:则由表格知A 在跳舞,B 在打篮球,∵③“C 在散步”是“A 在跳舞”的充分条件,∴C 在散步,则D 在画画,故答案为画画三、解答题21.最小值为14-,最大值为2. 【解析】【分析】 由已知条件化简得21log 32x ≤≤,然后化简()f x 求出函数的最值 【详解】由2256x ≤得8x ≤,2log 3x ≤即21log 32x ≤≤()()()222231log 1log 2log 24f x x x x ⎛⎫=-⋅-=-- ⎪⎝⎭. 当23log ,2x =()min 14f x =-,当2log 3,x = ()max 2f x =. 【点睛】熟练掌握对数的基本运算性质是转化本题的关键,将其转化为二次函数的值域问题,较为基础.22.(Ⅰ)证明见解析;(Ⅱ)33+. 【解析】【分析】【详解】试题分析:(Ⅰ)因为PH 是四棱锥P-ABCD 的高.所以AC ⊥PH,又AC ⊥BD,PH,BD 都在平面PHD 内,且PH I BD=H.所以AC ⊥平面PBD.故平面PAC ⊥平面PBD.(Ⅱ)因为ABCD 为等腰梯形,AB P CD,AC ⊥.所以因为∠APB=∠ADR=600所以,HD=HC=1.可得等腰梯形ABCD 的面积为S=12所以四棱锥的体积为V=13x (33+ 考点:本题主要考查立体几何中的垂直关系,体积的计算.点评:中档题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算.在计算问题中,有“几何法”和“向量法”.利用几何法,要遵循“一作、二证、三计算”的步骤,利用向量则能简化证明过程.本题(I )较为简单,(II )则体现了“一作、二证、三计算”的解题步骤.23.(1)2()210f x x x =-(2)223268,,22535(),,2225210,,2t t t g t t t t t ⎧--≤⎪⎪⎪=-<<⎨⎪⎪-≥⎪⎩【解析】(1)因为()f x 是二次函数,不等式()0f x <的解集是()0,5,所以可设()(5)(0).f x ax x a =->,然后因为-1比5离对称轴的距离远,所以最大值为(-1)=6a,求出a 值,从而求出f(x)的解析式.(II )本小题属于二次函数轴定区间动的问题,分三种情况讨论分别求其最小值即可. 解:(1)Q ()f x 是二次函数,且()0f x <的解集是(0,5),∴可设()(5)(0).f x ax x a =->()f x ∴在区间[]1,4-上的最大值是(1)6.f a -=由已知,得612,a =2,a ∴=2()2(5)210().f x x x x x x R ∴=-=-∈(2)由(1)知22525()2102.22f x x x x ⎛⎫∴=-=-- ⎪⎝⎭,开口向上,对称轴为52x = ①当512t +≤,即32t ≤时,()f x 在[],1t t +上是单调递减, ()()()2221101268g t t t t t ∴=+-+=--②当52t ≥时,()f x 在[],1t t +上是单调递减 ()22210210g t t t t t ∴=-=-③当512t t ≤≤+,即3522t ≤≤时,()f x 在对称轴处取得最小值 ()52522g t f ⎛⎫∴==- ⎪⎝⎭24.(Ⅰ)4,03⎛⎫-⎪⎝⎭;(Ⅱ)4m ≥ 【解析】试题分析:(1)当m=5时,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)由二次函数y=x 2+2x+3=(x+1)2+2在x=﹣1取得最小值2,f (x )在x=﹣1处取得最大值m ﹣2,故有m ﹣2≥2,由此求得m 的范围.试题解析: (1)当5m =时,()()()()521311521x x f x x x x ⎧+<-⎪=-≤≤⎨⎪->⎩,由()2f x >得不等式的解集为3322x x ⎧⎫-<<⎨⎬⎩⎭. (2)由二次函数()222312y x x x =++=++,知函数在1x =-取得最小值2,因为()()()()2121121m x x f x m x m x x ⎧+<-⎪=--≤≤⎨⎪->⎩,在1x =-处取得最大值2m -,所以要是二次函数223y x x =++与函数()y f x =的图象恒有公共点.只需22m -≥,即4m ≥.25.(1)见解析;(2).3 【解析】【分析】(1)根据线面平行的判定定理直接证明即可;(2)连接BD 交EF 与点N ,先由题中条件得到MND ∠为二面角M EF D ﹣﹣的平面角,再解三角形即可得出结果.【详解】(1)PB P 平面MEF .证明如下:在图1中,连接BD ,交EF 于N ,交AC 于O , 则1124BN BO BD ==, 在图2中,连接BD 交EF 于N ,连接MN ,在DPB n 中,有14BN BD =,14PM PD =, MN PB P ∴. PB ⊄Q 平面MEF ,MN ⊂平面MEF ,故PB P 平面MEF ;(2)连接BD 交EF 与点N ,图2中的三角形PDE 与三角形PDF 分别是图1中的Rt ADE n 与Rt CDF n ,PD PE PD PF ∴⊥⊥,,又PE PE P ⋂=,PD ∴⊥平面PEF ,则PD EF ⊥,又EF BD ⊥,EF ∴⊥平面PBD ,则MND ∠为二面角M EF D ﹣﹣的平面角.可知PM PN ⊥,则在Rt MND n中,1PM PN =,=MN ==在MND n中,3MD DN ==,2222MN DN MD cos MND MN DN +-∠==⋅. ∴二面角M EF D ﹣﹣.【点睛】本题主要考查线面平行的判定,以及二面角的求法,熟记线面平行的判定定理以及二面角的概念即可,属于常考题型.。

2019-2020数学高考模拟试题(附答案)

2019-2020数学高考模拟试题(附答案)

2019-2020数学高考模拟试题(附答案)一、选择题1.若复数21iz =-,其中i 为虚数单位,则z = A .1+iB .1−iC .−1+iD .−1−i2.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为$y =0.85x-85.71,则下列结论中不正确的是 A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1cm ,则其体重约增加0.85kgD .若该大学某女生身高为170cm ,则可断定其体重必为58.79kg3.一动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则此动圆必过定点( ) A .(4,0) B .(2,0)C .(0,2)D .(0,0)4.下列各组函数是同一函数的是( )①()32f x x =-与()2f x x x =-;()3f x 2x y x 2x 与=-=-②()f x x =与()2g x x =;③()0f x x =与()01g x x=;④()221f x x x =--与()221g t t t =--. A .① ② B .① ③C .③ ④D .① ④5.设R λ∈,则“3λ=-”是“直线2(1)1x y λλ+-=与直线()614x y λ+-=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件6.在△ABC 中,P 是BC 边中点,角、、A B C 的对边分别是,若0cAC aPA bPB ++=ru u u v u u u v u u u v ,则△ABC 的形状为( )A .直角三角形B .钝角三角形C .等边三角形D .等腰三角形但不是等边三角形.7.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为 A .10B .20C .40D .808.在如图的平面图形中,已知1,2,120OM ON MON ==∠=o,2,2,BM MA CN NA ==u u u u vu u u v u u u v u u u v则·BC OM u u u vu u u u v的值为A .15-B .9-C .6-D .09.设,a b ∈R ,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则( )A .当101,102b a => B .当101,104b a => C .当102,10b a =->D .当104,10b a =->10.把红、黄、蓝、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是 A .对立事件 B .互斥但不对立事件 C .不可能事件D .以上都不对11.设双曲线22221x y a b-=(0a >,0b >)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( ) A .3B .2C .6D .512.将函数()sin 2y x ϕ=+的图象沿轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .B .C .0D .4π-二、填空题13.设α 为第四象限角,且sin3sin αα=135,则 2tan =α ________. 14.设函数()212log ,0log (),0x x f x x x >⎧⎪=⎨-<⎪⎩ ,若()()f a f a >-,则实数a 的取值范围是__________.15.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.16.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.17.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________. 18.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为 ▲19.已知向量a r与b r的夹角为60°,|a r|=2,|b r|=1,则|a r+2 b r|= ______ . 20.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 .三、解答题21.如图,四棱锥P ABCD -的底面ABCD 是平行四边形,连接BD ,其中DA DP =,BA BP =.(1)求证:PA BD ⊥;(2)若DA DP ⊥,060ABP ∠=,2BA BP BD ===,求二面角D PC B --的正弦值.22.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-2ρcos(θ-)=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程. (2)求经过两圆交点的直线的极坐标方程.23.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.(I )求红队至少两名队员获胜的概率;(II )用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ. 24.如图,四棱锥P ABCD -中,//AB DC ,2ADC π∠=,122AB AD CD ===,6PD PB ==,PD BC ⊥.(1)求证:平面PBD ⊥平面PBC ;(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为3π?若存在,求CMCP的值;若不存在,说明理由.25.某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示(1)由折线图可以看出,可用线性回归模型拟合月利润y(单位:百万元)与月份代码x 之间的关系,求y关于x的线性回归方程,并预测该公司2019年3月份的利润;(2)甲公司新研制了一款产品,需要采购一批新型材料,现有,A B两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,但新材料的不稳定性会导致材料损坏的年限不同,现对,A B两种型号的新型材料对应的产品各100件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:使用寿命/材料类型1个月2个月3个月4个月总计A20353510100 B10304020100如果你是甲公司的负责人,你会选择采购哪款新型材料?参考数据:6196iiy==∑61371i iix y==∑参考公式:回归直线方程ˆˆˆy bx a=+,其中()()()()1122211ˆ=n ni i i ii in ni ii ix x y y x y nxybx x x nx====---=--∑∑∑∑【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B 【解析】试题分析:22(1i)1i,1i 1i(1i)(1i)z z+===+∴=---+,选B.【考点】复数的运算,复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,一般考查复数运算与概念或复数的几何意义,也是考生必定得分的题目之一.2.D解析:D【解析】根据y与x的线性回归方程为 y=0.85x﹣85.71,则=0.85>0,y 与 x 具有正的线性相关关系,A正确;回归直线过样本点的中心(,x y),B正确;该大学某女生身高增加 1cm,预测其体重约增加 0.85kg,C正确;该大学某女生身高为 170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误.故选D.3.B解析:B【解析】【分析】设圆和x轴相交于M点,根据圆的定义得到CA=CM=R,因为x=-2,是抛物线的准线,结合抛物线的定义得到M点为焦点.【详解】圆心C在抛物线上,设与直线20x+=相切的切点为A,与x轴交点为M,由抛物线的定义可知,CA=CM=R,直线20x+=为抛物线的准线,故根据抛物线的定义得到该圆必过抛物线的焦点()2,0.故选B 【点睛】这个题目考查了抛物线的定义的应用以及圆的定义的应用,一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用.尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化.4.C解析:C 【解析】 【分析】定义域相同,对应关系一致的函数是同一函数,由此逐项判断即可. 【详解】①中()f x =的定义域为(),0∞-,()f x =(),0∞-,但()f x ==-与()f x =②中()f x x =与()g x =R ,但()g x x ==与()f x x =对应关系不一致,所以②不是同一函数;③中()0f x x =与()01g x x =定义域都是{}|0x x ≠,且()01f x x ==,()11g x x ==对应关系一致,所以③是同一函数;④中()221f x x x =--与()221g t t t =--定义域和对应关系都一致,所以④是同一函数.故选C 【点睛】本题主要考查同一函数的概念,只需定义域和对应关系都一致即可,属于基础题型.5.A解析:A 【解析】 【分析】当3λ=-时,两条直线是平行的,但是若两直线平行,则3λ=-或1λ=,从而可得两者之间的关系. 【详解】当3λ=-时,两条直线的方程分别为:6410x y ++=,3220x y +-=,此时两条直线平行;若两条直线平行,则()()2161λλλ⨯-=--,所以3λ=-或1λ=,经检验,两者均符合,综上,“3λ=-”是“直线()211x y λλ+-=与直线()614x y λ+-=平行” 的充分不必要条件,故选A. 【点睛】充分性与必要性的判断,可以依据命题的真假来判断,若“若p 则q ”是真命题,“若q 则p ”是假命题,则p 是q 的充分不必要条件;若“若p 则q ”是真命题,“若q 则p ”是真命题,则p 是q 的充分必要条件;若“若p 则q ”是假命题,“若q 则p ”是真命题,则p 是q 的必要不充分条件;若“若p 则q ”是假命题,“若q 则p ”是假命题,则p 是q 的既不充分也不必要条件.6.C解析:C 【解析】 【分析】 【详解】 解答: 由已知条件得;根据共面向量基本定理得:∴△ABC 为等边三角形。

2019-2020数学高考模拟试题含答案

2019-2020数学高考模拟试题含答案

2019-2020数学高考模拟试题含答案一、选择题1.命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 02≥0D .存在x 0∈R ,使得x 02<02.已知532()231f x x x x x =++++,应用秦九韶算法计算3x =时的值时,3v 的值为( ) A .27B .11C .109D .363.已知a R ∈,则“0a =”是“2()f x x ax =+是偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4.抛掷一枚骰子,记事件A 为“落地时向上的点数是奇数”,事件B 为“落地时向上的点数是偶数”,事件C 为“落地时向上的点数是3的倍数”,事件D 为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( ) A .A 与BB .B 与C C .A 与DD .C 与D 5.设集合2{|20,}M x x x x R =+=∈,2{|20,}N x x x x R =-=∈,则M N ⋃=( ) A .{}0B .{}0,2C .{}2,0-D .{}2,0,2-6.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23B .35C .25 D .157.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A .19B .29C .49 D .718 8.已知向量a v ,b v满足a =v||1b =v ,且2b a +=v v ,则向量a v 与b v 的夹角的余弦值为( ) A.2B.3C.8D.49.在二项式n的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( ) A .16B .14C .512D .1310.如图,AB 是圆的直径,PA 垂直于圆所在的平面,C 是圆上一点(不同于A 、B )且PA =AC ,则二面角P -BC -A 的大小为( )A .60︒B .30°C .45︒D .15︒11.在ABC V 中,若 13,3,120AB BC C ==∠=o ,则AC =( ) A .1B .2C .3D .412.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的,且样本容量是160,则中间一组的频数为( ) A .32B .0.2C .40D .0.25二、填空题13.已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a= .14.如图,一辆汽车在一条水平的公路上向正西行驶,到处时测得公路北侧一山顶D 在西偏北的方向上,行驶600m 后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度________ m.15.设α 为第四象限角,且sin3sin αα=135,则 2tan =α ________. 16.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.17.如图所示,平面BCC 1B 1⊥平面ABC ,∠ABC =120︒,四边形BCC 1B 1为正方形,且AB =BC =2,则异面直线BC 1与AC 所成角的余弦值为_____.18.已知复数z=1+2i (i 是虚数单位),则|z|= _________ .19.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.现有抛物线22(0)y px p =>,如图一平行于x 轴的光线射向抛物线,经两次反射后沿平行x 轴方向射出,若两平行光线间的最小距离为4,则该抛物线的方程为__________.20.设函数21()ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 取值范围为_______________.三、解答题21.已知数列{}n a 与{}n b 满足:*1232()n n a a a a b n N ++++=∈L ,且{}n a 为正项等比数列,12a =,324b b =+. (1)求数列{}n a 与{}n b 的通项公式; (2)若数列{}n c 满足*2211()log log n n n c n N a a +=∈,n T 为数列{}n c 的前n 项和,证明:1n T <.22.在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 3sin 110ρθρθ++=.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值. 23.在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m m y k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3:cos sin 20l ρθθ+-=,M 为l 3与C 的交点,求M 的极径.24.商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (1) 求的值;(2) 若商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大25.选修4-5:不等式选讲:设函数()13f x x x a =++-. (1)当1a =时,解不等式()23f x x ≤+;(2)若关于x 的不等式()42f x x a <+-有解,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】因为全称命题的否定是特称命题,所以命题“对任意x ∈R ,都有x 2≥0”的否定为.存在x 0∈R ,使得x 02<0. 故选D .2.D解析:D 【解析】 【分析】 【详解】 由秦九韶算法可得()())((())532231? 02311,f x x x x x x x x x x =++++=+++++0ν1∴=1ν=1303⨯+= 2ν33211=⨯+= 3ν113336=⨯+=故答案选D3.C解析:C 【解析】因为()2f x x ax =+是偶函数,所以22()()20f x x ax f x x ax ax -=-==+∴=所以0a =.所以“0a =”是“()2f x x ax =+是偶函数”的充要条件.故选C.4.C解析:C 【解析】分析:利用互斥事件、对立事件的概念直接求解判断即可. 详解:在A 中,A 与B 是对立事件,故不正确;在B 中,B 与C 能同时发生,不是互斥事件,所以不正确;在C 中,A 与D 两个事件不能同时发生,但能同时不发生,所以是互斥事件,但不是对立事件,所以是正确的;在D 中,C 与D 能同时发生,不是互斥事件,所以是错误的. 综上所述,故选C.点睛:本题主要考查了命题的真假判定,属于基础题,解答时要认真审题,注意互斥事件与对立事件的定义的合理运用,同时牢记互斥事件和对立事件的基本概念是解答的基础.5.D解析:D 【解析】 【分析】 【详解】试题分析:M ={x|x 2+2x =0,x ∈R}={0,-2},N ={x|x 2-2x =0,x ∈R}={ 0,2},所以M N ⋃={-2,0,2},故选D .考点:1、一元二次方程求根;2、集合并集的运算.6.B解析:B 【解析】 【分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解. 【详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种,所以恰有2只做过测试的概率为63105=,选B . 【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.7.C解析:C 【解析】试题分析:由题为古典概型,两人取数作差的绝对值的情况共有36种,满足|a-b|≤1的有(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)(1,2)(2,1)(3,2)(2,3)(3,4)(4,3)(5,4)(4,5)(5,6)(6,5)共16种情况,则概率为;164369p == 考点:古典概型的计算.8.D解析:D 【解析】 【分析】根据平方运算可求得12a b ⋅=r r ,利用cos ,a b a b a b ⋅<>=r r r r r r 求得结果. 【详解】由题意可知:2222324b a b a b a a b +=+⋅+=+⋅=r r r r r r r r ,解得:12a b ⋅=r rcos ,4a b a b a b ⋅∴<>===r r r rr r 本题正确选项:D 【点睛】本题考查向量夹角的求解问题,关键是能够通过平方运算求得向量的数量积.9.C解析:C 【解析】 【分析】先根据前三项的系数成等差数列求n ,再根据古典概型概率公式求结果【详解】因为42nx x ⎛+ ⎪⎭前三项的系数为1212111(1)1,,112448n n n n n n C C C C n -⋅⋅∴=+⋅∴-= 163418118,0,1,2,82rr r r n n T C x r -+>∴=∴=⋅=Q L ,当0,4,8r =时,为有理项,从而概率为636799512A A A =,选C. 【点睛】本题考查二项式定理以及古典概型概率,考查综合分析求解能力,属中档题.10.C解析:C 【解析】由条件得:PA ⊥BC ,AC ⊥BC 又PA ∩AC =C ,∴BC ⊥平面P AC ,∴∠PCA 为二面角P -BC -A 的平面角.在Rt △P AC 中,由P A =AC 得∠PCA =45°,故选C .点睛:二面角的寻找主要利用线面垂直,根据二面角定义得二面角的棱垂直于二面角的平面角所在平面.11.A解析:A 【解析】余弦定理2222?cos AB BC AC BC AC C =+-将各值代入 得2340AC AC +-=解得1AC =或4AC =-(舍去)选A.12.A解析:A 【解析】试题分析:据已知求出频率分布直方图的总面积;求出中间一组的频率;利用频率公式求出中间一组的频数.解:设间一个长方形的面积S 则其他十个小长方形面积的和为4S ,所以频率分布直方图的总面积为5S 所以中间一组的频率为所以中间一组的频数为160×0.2=32 故选A点评:本题考查频率分布直方图中各组的面积除以总面积等于各组的频率.注意频率分布直方图的纵坐标是.二、填空题13.8【解析】试题分析:函数在处的导数为所以切线方程为;曲线的导函数的为因与该曲线相切可令当时曲线为直线与直线平行不符合题意;当时代入曲线方程可求得切点代入切线方程即可求得考点:导函数的运用【方法点睛】解析:8 【解析】试题分析:函数ln y x x =+在(1,1)处的导数为111|1|2x x y x===+=',所以切线方程为;曲线2(2)1y ax a x =+++的导函数的为,因与该曲线相切,可令,当时,曲线为直线,与直线平行,不符合题意;当时,代入曲线方程可求得切点,代入切线方程即可求得.考点:导函数的运用.【方法点睛】求曲线在某一点的切线,可先求得曲线在该点的导函数值,也即该点切线的斜率值,再由点斜式得到切线的方程,当已知切线方程而求函数中的参数时,可先求得函数的导函数,令导函数的值等于切线的斜率,这样便能确定切点的横坐标,再将横坐标代入曲线(切线)得到纵坐标得到切点坐标,并代入切线(曲线)方程便可求得参数.14.1006【解析】试题分析:由题设可知在中由此可得由正弦定理可得解之得又因为所以应填1006考点:正弦定理及运用 解析:【解析】试题分析:由题设可知在中,,由此可得,由正弦定理可得,解之得,又因为,所以,应填.考点:正弦定理及运用.15.-【解析】因为=====4cos2α-1=2(2cos2α-1)+1=2cos2α+1=所以cos2α=又α是第四象限角所以sin2α=-tan2α=-点睛:三角函数求值常用方法:异名三角函数化为同解析:-34【解析】 因为3sin sin αα=()2sin sin ααα+=22sin cos cos sin sin ααααα+=()22221sin cos cos sin sin ααααα+-=24sin cos sin sin αααα-=4cos 2α-1=2(2cos 2α-1)+1=2cos 2α+1 =135,所以cos 2α=45. 又α是第四象限角,所以sin 2α=-35,tan 2α=-34. 点睛:三角函数求值常用方法:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化.16.1和3【解析】根据丙的说法知丙的卡片上写着和或和;(1)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;所以甲的说法知甲的卡片上写着和;(2)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;又加解析:1和3. 【解析】根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3; 所以甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3; 又加说:“我与乙的卡片上相同的数字不是2”; 所以甲的卡片上写的数字不是1和2,这与已知矛盾; 所以甲的卡片上的数字是1和3.17.【解析】【分析】将平移到和相交的位置解三角形求得线线角的余弦值【详解】过作过作画出图像如下图所示由于四边形是平行四边形故所以是所求线线角或其补角在三角形中故【点睛】本小题主要考查空间两条直线所成角的解析:4【解析】 【分析】将AC 平移到和1BC 相交的位置,解三角形求得线线角的余弦值. 【详解】过B 作//BD AC ,过C 作//CD AB ,画出图像如下图所示,由于四边形ABCD 是平行四边形,故//BD AC ,所以1C BD ∠是所求线线角或其补角.在三角形1BC D 中,1122,23BC C D BD ===,故16cos 22223C BD ∠==⨯⨯.【点睛】本小题主要考查空间两条直线所成角的余弦值的计算,考查数形结合的数学思想方法,属于中档题.18.【解析】【分析】【详解】复数z=1+2i (i 是虚数单位)则|z|==故答案为 解析:【解析】 【分析】 【详解】复数z=1+2i (i 是虚数单位),则|z|==.故答案为.19.【解析】【分析】先由题意得到必过抛物线的焦点设出直线的方程联立直线与抛物线方程表示出弦长再根据两平行线间的最小距离时最短进而可得出结果【详解】由抛物线的光学性质可得:必过抛物线的焦点当直线斜率存在时 解析:24y x =【解析】 【分析】先由题意得到PQ 必过抛物线的焦点,设出直线PQ 的方程,联立直线PQ 与抛物线方程,表示出弦长,再根据两平行线间的最小距离时,PQ 最短,进而可得出结果. 【详解】由抛物线的光学性质可得:PQ 必过抛物线的焦点(,0)2pF , 当直线PQ 斜率存在时,设PQ 的方程为()2py k x =-,1122(,),(,)P x y Q x y , 由2()22p y k x y px⎧=-⎪⎨⎪=⎩得:222()24p k x px px -+=,整理得2222244)0(8k x k p p x k p -++=,所以21222k p p x x k ++=,2124p x x =, 所以2122222k PQ x x p p p k+=++=>; 当直线PQ 斜率不存在时,易得2PQ p =;综上,当直线PQ 与x 轴垂直时,弦长最短,又因为两平行光线间的最小距离为4,PQ 最小时,两平行线间的距离最小;因此min 24PQ p ==,所求方程为24y x =.故答案为24y x =【点睛】本题主要考查直线与抛物线位置关系,通常需要联立直线与抛物线方程,结合韦达定理、弦长公式等求解,属于常考题型.20.【解析】试题分析:的定义域为由得所以①若由得当时此时单调递增当时此时单调递减所以是的极大值点;②若由得或因为是的极大值点所以解得综合①②:的取值范围是故答案为考点:1利用导数研究函数的单调性;2利用 解析:【解析】试题分析:()f x 的定义域为()()10,,'f x ax b x +∞=--,由()'00f =,得1b a =-,所以()()()11'ax x f x x+-=.①若0a ≥,由()'0f x =,得1x =,当01x <<时,()'0f x >,此时()f x单调递增,当1x >时,()'0f x <,此时()f x 单调递减,所以1x =是()f x 的极大值点;②若0a <,由()'0f x =,得1x =或1x a=-.因为1x =是()f x 的极大值点,所以11a->,解得10a -<<,综合①②:a 的取值范围是1a >-,故答案为()1,-+∞. 考点:1、利用导数研究函数的单调性;2、利用导数研究函数的极值. 三、解答题21.(1)2n n a =,21n n b =-;(2)证明见解析.【解析】【分析】(1)由a 1+a 2+a 3+…+a n =2b n ①,n ≥2时,a 1+a 2+a 3+…+a n ﹣1=2b n ﹣1②,①﹣②可得:a n =2(b n ﹣b n ﹣1)(n ≥2),{a n }公比为q ,求出a n ,然后求解b n ;(2)化简2211log log n n n c a a +=(n ∈N *),利用裂项消项法求解数列的和即可. 【详解】(1)由a 1+a 2+a 3+…+a n =2b n ①n ≥2时,a 1+a 2+a 3+…+a n ﹣1=2b n ﹣1②①﹣②可得:a n =2(b n ﹣b n ﹣1)(n ≥2),∴a 3=2(b 3﹣b 2)=8∵a 1=2,a n >0,设{a n }公比为q ,∴a 1q 2=8,∴q =2∴a n =2×2n ﹣1=2n∴()1231212222222212n n n nb +-=++++==--L , ∴b n =2n ﹣1.(2)证明:由已知:()22111111n n 1n n n c log a log a n n +===-++. ∴1231111111111223n n 11n c c c c n L L ++++=-+-++-=-<++ 【点睛】 本题考查数列的递推关系式的应用,数列求和,考查转化思想以及计算能力.数列求和的常见方法有:列项求和,错位相减求和,倒序相加求和.22.(1)22:1,(1,1]4y C x x +=∈-;:2110l x ++=;(2【解析】【分析】 (1)利用代入消元法,可求得C 的直角坐标方程;根据极坐标与直角坐标互化原则可得l 的直角坐标方程;(2)利用参数方程表示出C 上点的坐标,根据点到直线距离公式可将所求距离表示为三角函数的形式,从而根据三角函数的范围可求得最值.【详解】(1)由2211t x t -=+得:210,(1,1]1x t x x -=≥∈-+,又()2222161t y t =+ ()()222116141144111xx y x x x x x -⨯+∴==+-=--⎛⎫+ ⎪+⎝⎭ 整理可得C 的直角坐标方程为:221,(1,1]4y x x +=∈- 又cos x ρθ=,sin y ρθ=l ∴的直角坐标方程为:23110x y ++= (2)设C 上点的坐标为:()cos ,2sin θθ则C 上的点到直线l 的距离4sin 112cos 23sin 11677d πθθθ⎛⎫++ ⎪++⎝⎭== 当sin 16πθ⎛⎫+=- ⎪⎝⎭时,d 取最小值 则min 7d =【点睛】本题考查参数方程、极坐标方程与直角坐标方程的互化、求解椭圆上的点到直线距离的最值问题.求解本题中的最值问题通常采用参数方程来表示椭圆上的点,将问题转化为三角函数的最值求解问题.23.(1)()2240x y y -=≠(2)5【解析】(1)消去参数t 得1l 的普通方程()1:2l y k x =-;消去参数m 得l 2的普通方程()21:2l y x k=+. 设(),P x y ,由题设得()()212y k x y x k ⎧=-⎪⎨=+⎪⎩,消去k 得()2240x y y -=≠. 所以C 的普通方程为()2240x y y -=≠. (2)C 的极坐标方程为()()222cos sin 402π,πρθθθθ-=<<≠. 联立()()222cos sin 4,cos sin 20ρθθρθθ⎧-=⎪⎨+-=⎪⎩得()cos sin 2cos sin θθθθ-=+.故1tan 3θ=-, 从而2291cos ,sin 1010θθ==. 代入()222cos sin 4ρθθ-=得25ρ=,所以交点M 的极径为5.【名师点睛】本题考查了极坐标方程的求法及应用,重点考查了转化与化归能力.遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用极坐标的几何意义求解.要结合题目本身特点,确定选择何种方程. 24.(1)因为时,所以;(2)由(1)知该商品每日的销售量,所以商场每日销售该商品所获得的利润:222()(3)[10(6)]210(3)(6),363f x x x x x x x =-+-=+--<<-; /2()10[(6)2(3)(6)]30(4)(6)f x x x x x x =-+-----,令/()0f x =得4x =函数在(3,4)上递增,在(4,6)上递减,所以当时函数取得最大值 答:当销售价格时,商场每日销售该商品所获得的利润最大,最大值为42. 【解析】(1)利用销售价格为5元/千克时,每日可售出该商品11千克.把x=5,y=11代入,解关于a 的方程即可求a..(2)在(1)的基础上,列出利润关于x 的函数关系式,利润=销售量⨯(销售单价-成品单价),然后利用导数求其最值即可.25.(1)15[,]42(2)(5,3)-【解析】【分析】(1)通过讨论x 的范围,求出不等式的解集即可;(2)问题等价于关于x 的不等式14x x a ++-<有解,()min 14x x a++-<,求出a的范围即可.【详解】解:(1)()1323f x x x a x =++-≤+可转化为 14223x x x ≥⎧⎨-≤+⎩或114223x x x -<<⎧⎨-≤+⎩或12423x x x ≤-⎧⎨-≤+⎩, 解得512x ≤≤或114x ≤<或无解. 所以不等式的解集为15,42⎡⎤⎢⎥⎣⎦. (2)依题意,问题等价于关于x 的不等式14x x a ++-<有解,即()min 14x x a ++-<,又111x x a x x a a ++-≥+-+=+,当()()10x x a +-≤时取等号.所以14a +<,解得53a -<<,所以实数a 的取值范围是()5,3-.【点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020高考数学模拟试题(带答案)一、选择题1.下列函数图像与x 轴均有公共点,其中能用二分法求零点的是( )A .B .C .D .2.从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是( )A .110B .310C .35D .253.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为( ) A .15 B .20 C .30 D .354.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为1214,,A A A L ,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是( )A .7B .8C .9D .10 5.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有A .4种B .10种C .18种D .20种6.设i 为虚数单位,复数z 满足21i i z=-,则复数z 的共轭复数等于( )A .1-iB .-1-iC .1+iD .-1+i 7.下列各组函数是同一函数的是( ) ①()32f x x =-与()2f x x x =-;()3f x 2x y x 2x 与=-=-②()f x x =与()2g x x =;③()0f x x =与()01g x x=;④()221f x x x =--与()221g t t t =--. A .① ② B .① ③C .③ ④D .① ④ 8.函数y ()y ()f x f x ==,的导函数的图像如图所示,则函数y ()f x =的图像可能是A .B .C .D .9.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为0.70.35y x =+,则下列结论错误的是( )x 34 5 6 y2.5 t4 4.5 A .产品的生产能耗与产量呈正相关 B .回归直线一定过4.5,3.5() C .A 产品每多生产1吨,则相应的生产能耗约增加0.7吨 D .t 的值是3.1510.若实数满足约束条件,则的最大值是( ) A .B .1C .10D .1211.样本12310,?,?,? a a a a ⋅⋅⋅的平均数为a ,样本12310,?,?,? b b b b ⋅⋅⋅的平均数为b ,那么样本1122331010,? ,,? ,?,,?,? a b a b a b a b ⋅⋅⋅的平均数为( )A .()a b +B .2()a b +C .1()2a b +D .1()10a b + 12.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A .3B .2C 3D 2二、填空题13.若双曲线22221x y a b-=()0,0a b >>两个顶点三等分焦距,则该双曲线的渐近线方程是___________.14.曲线21y x x=+在点(1,2)处的切线方程为______________. 15.函数log (1)1(01)a y x a a =-+>≠且的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中,0,m n >则12m n+的最小值为 16.已知0x >,0y >,0z >,且36x z ++=,则323x y z ++的最小值为_________.17.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.18.已知点()0,1A ,抛物线()2:0C y ax a =>的焦点为F ,连接FA ,与抛物线C 相交于点M ,延长FA ,与抛物线C 的准线相交于点N ,若:1:3FM MN =,则实数a 的值为__________.19.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.20.幂函数y=x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y=x α,y=x β的图像三等分,即有BM=MN=NA ,那么,αβ等于_____.三、解答题21.如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=o ,求二面角A −PB −C 的余弦值.22.已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列.(1)求数列{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+ ?若存在,求n 的最小值;若不存在,说明理由.23.十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民收入也逐年增加.为了更好的制定2019年关于加快提升农民年收入力争早日脱贫的工作计划,该地扶贫办统计了2018年50位农民的年收入并制成如下频率分布直方图:附:参考数据与公式 6.92 2.63≈,若 ()2~,X N μσ,则① ()0.6827P X μσμσ-<+=…;② (22)0.9545P X μσμσ-<+=…;③ (33)0.9973P X μσμσ-<+=….(1)根据频率分布直方图估计50位农民的年平均收入x (单位:千元)(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图可以认为该贫困地区农民年收入 X 服从正态分布 ()2,N μσ,其中μ近似为年平均收入2,x σ 近似为样本方差2s ,经计算得:2 6.92s =,利用该正态分布,求:(i )在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?(ii )为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每个农民的年收入相互独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?24.已知数列{n a }的前n 项和Sn =n 2-5n (n∈N +). (1)求数列{n a }的通项公式;(2)求数列{12n n a +}的前n 项和Tn . 25.如图,在边长为4的正方形ABCD 中,点E,F 分别是AB,BC 的中点,点M 在AD 上,且14AM AD =,将AED,DCF V V 分别沿DE,DF 折叠,使A,C 点重合于点P ,如图所示2.()1试判断PB 与平面MEF 的位置关系,并给出证明;()2求二面角M EF D --的余弦值.26.已知数列{}n a 与{}n b 满足:*1232()n n a a a a b n N ++++=∈L ,且{}n a 为正项等比数列,12a =,324b b =+.(1)求数列{}n a 与{}n b 的通项公式;(2)若数列{}n c 满足*2211()log log n n n c n N a a +=∈,n T 为数列{}n c 的前n 项和,证明:1n T <.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据函数图象理解二分法的定义,函数f (x )在区间[a ,b ]上连续不断,并且有f (a )•f (b )<0.即函数图象连续并且穿过x 轴.【详解】解:能用二分法求零点的函数必须在给定区间[a ,b ]上连续不断,并且有f (a )•f (b )<0A 、B 中不存在f (x )<0,D 中函数不连续.故选C .【点睛】本题考查了二分法的定义,学生的识图能力,是基础题.2.C解析:C【解析】【分析】设第一张卡片上的数字为x ,第二张卡片的数字为y ,问题求的是()P x y ≤, 首先考虑分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,有多少种可能,再求出x y ≤的可能性有多少种,然后求出()P x y ≤.【详解】设第一张卡片上的数字为x ,第二张卡片的数字为y , 分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,共有5525⨯=种情况, 当x y ≤时,可能的情况如下表:()255P x y ≤==,故本题选C . 【点睛】 本题考查用列举法求概率,本问题可以看成有放回取球问题.3.C解析:C【解析】【分析】利用多项式乘法将式子展开,根据二项式定理展开式的通项即可求得2x 的系数.【详解】根据二项式定理展开式通项为1C r n r r r n T a b -+=()()()66622111111x x x x x ⎛⎫++=++⋅+ ⎪⎝⎭则()61x +展开式的通项为16r r r T C x += 则()62111x x ⎛⎫++ ⎪⎝⎭ 展开式中2x 的项为22446621C x C x x ⎛⎫+⋅ ⎪⎝⎭则()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为2466151530C C +=+= 故选:C【点睛】本题考查了二项定理展开式的应用,指定项系数的求法,属于基础题.4.C解析:C【解析】【分析】根据流程图可知该算法表示统计14次考试成绩中大于等于90的人数,结合茎叶图可得答案.【详解】根据流程图所示的顺序,可知该程序的作用是累计14次考试成绩超过90分的次数.根据茎叶图可得超过90分的次数为9.故选:C .【点睛】本题主要考查了循环结构,以及茎叶图的认识,解题的关键是弄清算法流程图的含义,属于基础题.5.B解析:B【解析】【分析】【详解】分两种情况:①选2本画册,2本集邮册送给4位朋友,有C 42=6种方法;②选1本画册,3本集邮册送给4位朋友,有C 41=4种方法.所以不同的赠送方法共有6+4=10(种).6.B解析:B【解析】【分析】利用复数的运算法则解得1i z =-+,结合共轭复数的概念即可得结果.【详解】∵复数z 满足21i i z=-,∴()()()2121111i i i z i i i i +===---+, ∴复数z 的共轭复数等于1i --,故选B.【点睛】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.7.C解析:C【解析】【分析】定义域相同,对应关系一致的函数是同一函数,由此逐项判断即可.【详解】①中()f x =的定义域为(),0∞-,()f x =(),0∞-,但()f x ==-与()f x =②中()f x x =与()g x =R ,但()g x x ==与()f x x =对应关系不一致,所以②不是同一函数;③中()0f x x =与()01g x x =定义域都是{}|0x x ≠,且()01f x x ==,()011g x x ==对应关系一致,所以③是同一函数; ④中()221f x x x =--与()221g t t t =--定义域和对应关系都一致,所以④是同一函数. 故选C【点睛】本题主要考查同一函数的概念,只需定义域和对应关系都一致即可,属于基础题型. 8.D解析:D【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数'()f x 的正负,得出原函数()f x 的单调区间.9.D解析:D【解析】由题意,x =34564+++=4.5, ∵ˆy=0.7x+0.35, ∴y =0.7×4.5+0.35=3.5, ∴t=4×3.5﹣2.5﹣4﹣4.5=3, 故选D .10.C解析:C【解析】【分析】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以为顶点的三角形区域(包含边界),由图易得当目标函数经过平面区域的点时,取最大值.【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错.11.C解析:C【解析】【分析】【详解】 由题意可知1210121010,10a a a a b b b b +++=+++=L L ,所以所求平均数为 ()121012101210121012020202a a a b b b a a a b b b a b +++++++++++++=+=+L L L L 考点:样本平均数12.B解析:B【解析】【分析】【详解】M N Q ,是双曲线的两顶点,M O N ,,将椭圆长轴四等分∴椭圆的长轴长是双曲线实轴长的2倍Q 双曲线与椭圆有公共焦点,∴双曲线与椭圆的离心率的比值是2故答案选B二、填空题13.【解析】【分析】由题意知渐近线方程是再据得出与的关系代入渐近线方程即可【详解】∵双曲线的两个顶点三等分焦距∴又∴∴渐近线方程是故答案为【点睛】本题考查双曲线的几何性质即双曲线的渐近线方程为属于基础题解析:y =±【解析】【分析】 由题意知,渐近线方程是b y x a =±,1223a c =⨯,再据222c ab =+,得出 b 与a 的关系,代入渐近线方程即可.【详解】 ∵双曲线22221x y a b-= (0,0)a b >>的两个顶点三等分焦距,∴1223a c =⨯,3c a =,又222c ab =+,∴b =∴渐近线方程是b y x a =±=±,故答案为y =±. 【点睛】 本题考查双曲线的几何性质即双曲线22221x y a b-= (0,0)a b >>的渐近线方程为b y x a =±属于基础题.14.【解析】设则所以所以曲线在点处的切线方程为即点睛:求曲线的切线方程是导数的重要应用之一用导数求切线方程的关键在于求出斜率其求法为:设是曲线上的一点则以为切点的切线方程是若曲线在点处的切线平行于轴(即 解析:1y x =+【解析】设()y f x =,则21()2f x x x '=-,所以(1)211f '=-=, 所以曲线21y x x=+在点(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+. 点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 为切点的切线方程是000()()y y f x x x '-=-.若曲线()y f x =在点00(,())P x f x 处的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.15.8【解析】∵函数(且)的图象恒过定点A∴当时∴又点A 在一次函数的图象上其中∴又∴∴(当且仅当时取)故答案为8点睛:本题主要考查了基本不等式基本不等式求最值应注意的问题(1)使用基本不等式求最值其失误 解析:8【解析】∵函数log 11a y x =-+()(0a >,且1a ≠)的图象恒过定点A , ∴当2x =时,1y =,∴()21A ,,又点A 在一次函数y mx n =+的图象上,其中∴21m n +=,又0mn >,∴0m >,0n >,∴()12124 248n m m n m n m n m n+=+⋅+=++≥(),(当且仅当122n m ==时取“=”),故答案为8. 点睛:本题主要考查了基本不等式.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.16.【解析】【分析】利用已知条件目标可转化为构造分别求最小值即可【详解】解:令在上递减在上递增所以当时有最小值:所以的最小值为故答案为【点睛】本题考查三元函数的最值问题利用条件减元构造新函数借助导数知识 解析:374【解析】【分析】利用已知条件目标可转化为232345334x y z x x y ⎛++=-++ ⎝⎭,构造()33f x x x =-,()2454g y y ⎛=-+ ⎝⎭,分别求最小值即可. 【详解】解:323x y z ++= ()3236x y x ++-- 234534x x y ⎛=-++ ⎝⎭令()33f x x x =-,()2454g y y ⎛=+ ⎝⎭, ()()()2'33311f x x x x =-=-+,0x >,()f x 在()0,1上递减,在()1,+∞上递增,所以,()()min 12f x f ==-当y =()g y 有最小值:()min 454g y = 所以,323x y z ++的最小值为4537244-+= 故答案为374本题考查三元函数的最值问题,利用条件减元,构造新函数,借助导数知识与二次知识处理问题.考查函数与方程思想,减元思想,属于中档题.17.60【解析】【分析】采用分层抽样的方法从该校四个年级的本科生中抽取一个容量为300的样本进行调查的【详解】∵该校一年级二年级三年级四年级的本科生人数之比为4:5:5:6∴应从一年级本科生中抽取学生人解析:60【解析】【分析】采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查的.【详解】∵该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6, ∴应从一年级本科生中抽取学生人数为:4300604556⨯=+++. 故答案为60. 18.【解析】依题意可得焦点的坐标为设在抛物线的准线上的射影为连接由抛物线的定义可知又解得点睛:本题主要考查的知识点是抛物线的定义以及几何性质的应用考查了学生数形结合思想和转化与化归思想设出点在抛物线的准【解析】依题意可得焦点F 的坐标为04a ⎛⎫ ⎪⎝⎭,, 设M 在抛物线的准线上的射影为K ,连接MK 由抛物线的定义可知MF MK = 13FM MN =Q ∶∶KN KM ∴=∶ 又01404FN K a a--==-,FN KN K KM ==-4a-∴=-a =点睛:本题主要考查的知识点是抛物线的定义以及几何性质的应用,考查了学生数形结合思想和转化与化归思想,设出点M 在抛物线的准线上的射影为K ,由抛物线的定义可知MF MK =,再根据题设得到KN KM =∶,然后利用斜率得到关于a 的方程,进而求解实数a 的值19.【解析】【分析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积【详解】因为长方体的体积为120所以因为为的中点所以由长方体的性质知底面所以是三棱锥的底面上的高所以三棱锥的体积【点睛】本题蕴 解析:【解析】【分析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.【详解】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点, 所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.20.【解析】【分析】由条件得MN 则结合对数的运算法则可得αβ=1【详解】由条件得MN 可得即α=loβ=lo 所以αβ=lo·lo=1【点睛】本题主要考查幂函数的性质对数的运算法则及其应用等知识意在考查学生解析:【解析】【分析】由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫ ⎪⎝⎭,则1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,结合对数的运算法则可得αβ=1. 【详解】由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫ ⎪⎝⎭, 可得1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 即α=lo 2313g ,β=lo 1323g .所以αβ=lo 2313g ·lo 1312233·21333lglg g lg lg ==1. 【点睛】 本题主要考查幂函数的性质,对数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(1)见解析;(2)33-. 【解析】【详解】(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD .由于AB//CD ,故AB ⊥PD ,从而AB ⊥平面P AD .又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD .(2)在平面PAD 内作PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD . 以F 为坐标原点,FA u u u v 的方向为x 轴正方向,AB u u u v 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得22A ⎛⎫ ⎪ ⎪⎝⎭,20,0,2P ⎛ ⎝⎭,2,1,02B ⎛⎫ ⎪ ⎪⎝⎭,22C ⎛⎫- ⎪ ⎪⎝⎭. 所以2222PC ⎛⎫=-- ⎪ ⎪⎝⎭u u u v ,)2,0,0CB =u u u v ,2222PA ⎛=- ⎝⎭u u u v ,()0,1,0AB =u u u v . 设(),,n x y z =r 是平面PCB 的法向量,则0,0,n PC n CB ⎧⋅=⎨⋅=⎩u u u v r u u u v r即0,220,x y z ⎧-+-=⎪⎨⎪=⎩可取(0,1,n =-r . 设(),,m x y z r=是平面PAB 的法向量,则 0,0,m PA m AB ⎧⋅=⎨⋅=⎩u u u v r u u u v r即0,0.x z y =⎪=⎩可取()1,0,1m =r .则cos ,n m n m n m ⋅==r r r r r r , 所以二面角A PB C --的余弦值为 【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.22.(1) 通项公式为2n a = 或42n a n =-;(2) 当2n a = 时,不存在满足题意的正整数n ;当42n a n =- 时,存在满足题意的正整数n ,其最小值为41.【解析】【详解】(1)依题意,2,2,24d d ++成等比数列,故有()()22224d d +=+,∴240d d -=,解得4d =或0d =.∴()21442n a n n =+-⋅=-或2n a =.(2)当2n a = 时,不存在满足题意的正整数n ;当42n a n =-,∴()224222n n n S n ⎡⎤+-⎣⎦==.令2260800n n >+,即2304000n n -->,解得40n >或10n <-(舍去),∴最小正整数41n =.23.(1)17.4;(2)(i )14.77千元(ii )978位【解析】【分析】(1)用每个小矩形的面积乘以该组中点值,再求和即可得到平均数;(2)(i )根据正态分布可得:0.6827()0.50.84142P X μσ>-=+≈即可得解;(ii )根据正态分布求出每个农民年收入不少于12.14千元的事件概率为0.9773,利用独立重复试验概率计算法则求得概率最大值的k 的取值即可得解.【详解】(1)由频率分布直方图可得:120.04140.12160.28180.36200.1220.06240.0417.4x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=; (2)(i )由题()~17.4,6.92X N ,0.6827()0.50.84142P X μσ>-=+≈, 所以17.4 2.6314.77μσ-=-=满足题意,即最低年收入大约14.77千元;(ii )0.9545(12.14)(2)0.50.97732P X P X μσ≥=≥-=+≈, 每个农民年收入不少于12.14千元的事件概率为0.9773, 记这1000位农民中的年收入不少于12.14千元的人数为X ,()1000,0.9773X B : 恰有k 位农民中的年收入不少于12.14千元的概率()()100010000.997310.9973k k k P X k C -==-()()()()10010.97731110.9773P X k k P X k k =-⨯=>=-⨯-得10010.9773978.2773k <⨯=, 所以当0978k ≤≤时,()()1P X k P X k =-<=,当9791000k ≤≤时,()()1P X k P X k =->=,所以这1000位农民中的年收入不少于12.14千元的人数最有可能是978位.【点睛】此题考查频率分布直方图求平均数,利用正态分布估计概率,结合独立重复试验计算概率公式求解具体问题,综合性强.24.(1)26()n a n n N +=-∈;(2)112n nn T -=--【解析】【分析】 (1)运用数列的递推式:11,1,1n n n S n a S S n -=⎧=⎨->⎩,计算可得数列{n a }的通项公式;(2)结合(1)求得1322n n n a n +-=,运用错位相减法,结合等比数列的求和公式,即可得到数列{12n n a +}的前n 项和n T . 【详解】(1)因为11,1,1n n n S n a S S n -=⎧=⎨->⎩,()25n S n n n N +=-∈ 所以114a S ==-, 1n >时,()()22 515126n a n n n n n =---+-=- 1n =也适合,所以()+26N n a n n =-∈(2)因为1322n n n a n +-=, 所以12121432222n n n n n T -----=++⋅⋅⋅++ 2311214322222n n n n n T +----=++⋅⋅⋅++ 两式作差得:1211211322222n n n n T +--=++⋅⋅⋅+- 化简得1111222n n n T +-=--, 所以112n n n T -=--. 【点睛】本题考查数列的通项公式的求法,等比数列的求和公式,考查数列的错位相减法,属于中档题. “错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以1q -.25.(1)见解析;(2【解析】【分析】(1)根据线面平行的判定定理直接证明即可;(2)连接BD 交EF 与点N ,先由题中条件得到MND ∠为二面角M EF D ﹣﹣的平面角,再解三角形即可得出结果.【详解】(1)PB P 平面MEF .证明如下:在图1中,连接BD ,交EF 于N ,交AC 于O , 则1124BN BO BD ==, 在图2中,连接BD 交EF 于N ,连接MN ,在DPB n 中,有14BN BD =,14PM PD =, MN PB P ∴.PB ⊄Q 平面MEF ,MN ⊂平面MEF ,故PB P 平面MEF ;(2)连接BD 交EF 与点N ,图2中的三角形PDE 与三角形PDF 分别是图1中的Rt ADE n 与Rt CDF n ,PD PE PD PF ∴⊥⊥,,又PE PE P ⋂=,PD ∴⊥平面PEF ,则PD EF ⊥,又EF BD ⊥,EF ∴⊥平面PBD ,则MND ∠为二面角M EF D ﹣﹣的平面角.可知PM PN ⊥,则在Rt MND n 中,12PM PN =,=,则22PM PN 3MN =+=.在MND n 中,332MD DN ==,,由余弦定理,得22262MN DN MD cos MND MN DN +-∠==⋅. ∴二面角M EF D ﹣﹣的余弦值为63.【点睛】本题主要考查线面平行的判定,以及二面角的求法,熟记线面平行的判定定理以及二面角的概念即可,属于常考题型.26.(1)2n n a =,21n n b =-;(2)证明见解析.【解析】【分析】(1)由a 1+a 2+a 3+…+a n =2b n ①,n ≥2时,a 1+a 2+a 3+…+a n ﹣1=2b n ﹣1②,①﹣②可得:a n =2(b n ﹣b n ﹣1)(n ≥2),{a n }公比为q ,求出a n ,然后求解b n ;(2)化简2211log log n n n c a a +=(n ∈N *),利用裂项消项法求解数列的和即可. 【详解】(1)由a 1+a 2+a 3+…+a n =2b n ①n ≥2时,a 1+a 2+a 3+…+a n ﹣1=2b n ﹣1②①﹣②可得:a n =2(b n ﹣b n ﹣1)(n ≥2),∴a 3=2(b 3﹣b 2)=8∵a 1=2,a n >0,设{a n }公比为q ,∴a 1q 2=8,∴q =2∴a n =2×2n ﹣1=2n∴()1231212222222212n n n n b +-=++++==--L ,∴b n =2n ﹣1.(2)证明:由已知:()22111111n n 1n n n c log a log a n n +===-++. ∴1231111111111223n n 11n c c c c n L L ++++=-+-++-=-<++ 【点睛】 本题考查数列的递推关系式的应用,数列求和,考查转化思想以及计算能力.数列求和的常见方法有:列项求和,错位相减求和,倒序相加求和.。

相关文档
最新文档