(完整版)七年级有理数的混合运算测试卷(含答案)

合集下载

人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案

人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案

人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案【解题技巧】主要是要注意混合运算的运算顺序。

一级运算:加减法;二级运算:乘除法;三级运算:乘方运算。

规定:先算高级运算再算低级运算同级运算从左到右依次进行。

(1)有括号先算括号里面的运算按小括号、中括号、大括号依次进行;(2)先乘方、再乘除、最后加减;(3)同级运算按从左往右依次进行。

当然在准守上述计算原则的前提下也需要灵活使用运算律以简化运算。

1.(2022·广西崇左·七年级期末)计算:(1)3312424⎛⎫⎛⎫-⨯÷-⎪ ⎪⎝⎭⎝⎭;(2)2014281|5|(4)(8)5⎛⎫-+-⨯---÷-⎪⎝⎭.【答案】(1)12(2)-7【分析】(1)原式从左到右依次计算即可求出值;(2)原式先算乘方及绝对值再算乘除最后算加减即可求出值.(1)原式9489⎛⎫⎛⎫=-⨯-⎪ ⎪⎝⎭⎝⎭12 =;(2)原式=﹣1+5×(85-)﹣16÷(﹣8)=﹣1﹣8+2=﹣7.【点睛】本题考查了有理数的混合运算熟练掌握运算法则是解本题的关键.2.(2022·内蒙古·七年级期末)计算:(1)31125(25)25424⎛⎫⨯--⨯+⨯-⎪⎝⎭(2)4211(1)3[2(3)]2---÷⨯--【答案】(1)25(2)1 6【分析】(1)根据乘法分配律、有理数乘法法则、减法法则和加法法则计算即可;(2)根据有理数的运算顺序和各个运算法则计算即可.(1)解:原式311252525424⎛⎫=⨯+⨯++- ⎪⎝⎭31125424⎛⎫=⨯+- ⎪⎝⎭251=⨯25=;(2)解:原式111(29)23=--⨯⨯- 11(7)6=--⨯- 761=-+ 16=. 【点睛】此题考查了有理数的混合运算.解题的关键是掌握有理数的混合运算的运算顺序和每一步的运算法则.3.(2022·山东东营·期末)计算: (1)11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭; (2)42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 【答案】(1)34- (2)5 【分析】(1)原式先算括号内的 再算乘除;(2)原式先乘方 再中计算括号内及绝对值内的减法 再计算乘法 最后计算加减即可求出值.(1)解:11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭ 433328⎛⎫=⨯-⨯ ⎪⎝⎭ 34=- (2)解:42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 111436623=-++-⨯+⨯ 14332=-++-+5=【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.4.(2022·安徽阜阳·七年级期末)计算:(1)()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭. (2)2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 【答案】(1)16(2)-2312 【分析】先计算乘方及小括号内的运算 再计算乘法 最后计算加减法.【详解】(1)解:()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭=()111723--⨯⨯- =716-+ =16. (2)解:2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 19(924)34=-⨯-+⨯- 19(1)34=-⨯-- 1934=- =-2312. 【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数的运算法则及运算顺序是解题的关键. 5.(2022·湖南娄底·七年级期末)计算:(1)()()220211110.5233⎡⎤---⨯⨯--⎣⎦; (2)()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦【答案】(1)16(2)6 【分析】(1)原式先计算乘方运算 再计算乘除运算 最后算加减运算即可得到结果.(2)先算乘方 再算乘除 最后算减法;同级运算 应按从左到右的顺序进行计算.【详解】(1)解:原式()117112912366⎛⎫=--⨯⨯-=---= ⎪⎝⎭ (2)解:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦ ()2116512434⎛⎫=-÷-+-⨯ ⎪⎝⎭ 21164242434⎛⎫=-÷+⨯-⨯ ⎪⎝⎭410=-+6=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键 运算顺序为:先乘方 再乘除 最后算加减 有括号先计算括号内的运算.6.(2022·天津北辰·七年级期末)(1)24(3)5(2)6⨯--⨯-+;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭. 【答案】(1)52;(2)-52. 【分析】(1)先算乘方 然后计算乘除 最后算加减即可;(2)先算乘方 然后计算乘除 最后算加减即可.【详解】解:(1)24(3)5(2)6⨯--⨯-+=4×9+10+6=52;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭=-16÷8-12=-2-12=-52. 【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算.7.(2022·广西百色·七年级期末)计算:(1)()()22241322⎡⎤---⨯÷⎣⎦.(2)33(2)30(5)34⎛⎫-⨯-+÷--- ⎪⎝⎭. 【答案】(1)8(2)-2【分析】根据有理数的混合运算法则计算即可;含乘方的有理数混合运算法则:1、先乘方 再乘除 最后加减;2、同级运算 从左往右进行;3、如果有括号 先做括号内的运算 按小括号、中括号、大括号依次进行.【详解】(2)解:原式()161924=--⨯÷⎡⎤⎣⎦()16824=--⨯÷⎡⎤⎣⎦8=.解:原式()()51411=÷--+⨯-()551=÷--11=--2=-.【点睛】本题考查了有理数的混合运算 熟练掌握运算法则是解题的关键.8.(2022·河南周口·七年级期末)计算: (1)2022211(1)(1)(32)23-+-⨯+-+ (2)23220213(4)(2)(2)(1)-⨯-+-÷--- 【答案】(1)556- (2)35 【分析】(1)原式先计算乘方运算及括号内的运算 再计算乘除运算 最后计算加减运算即可求出值;(2)先计算乘方运算 再计算乘除运算 最后计算加减运算即可求出值.(1)解:原式=111(92)23+⨯+-+ =1176+- =556-; (2)解:原式=9(4)(8)4(1)-⨯-+-÷--=3621-+=35【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.9.(2022·江苏扬州·七年级期末)计算: (1)3(6)( 1.55) 3.25(15.45)4---+++-; (2)()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 【答案】(1)-7 (2)98- 【分析】(1)先算同分母分数 再算加减法即可求解;(2)先算乘方 再算乘除 最后算加法;同级运算 应按从左到右的顺序进行计算.(1)解:3(6)( 1.55) 3.25(15.45)4---+++-(6.75 3.25)( 1.5515.45)=++--1017=-7=-;(2)解:()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 254(8)1425=÷-⨯- 2514()14825=⨯-⨯- 118=-- 98=-. 【点睛】本题考查了有理数的混合运算 解题的关键是掌握有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算.进行有理数的混合运算时 注意各个运算律的运用 使运算过程得到简化.19.(2022·河南南阳·七年级期末)计算(1)243(6)()94-⨯-+; (2)33116(2)()(4) 3.52÷---⨯-+.【答案】(1)11 (2)1【分析】(1)先计算乘方 再利用乘法分配律计算即可;(2)先计算乘方 再计算乘除 最后计算加减即可.(1)解:原式4336()94=⨯-+4336()3694=⨯-+⨯ 1627=-+11=;(2)解:原式116(8)()(4) 3.58=÷---⨯-+20.5 3.5=--+ 1=.【点睛】本题主要考查有理数的混合运算 解题的关键是掌握有理数的混合运算顺序和运算法则.11.(2022·河北邯郸·七年级期末)计算:()()20212132311234⎛⎫-+⨯---⨯- ⎪⎝⎭. 【答案】12-【详解】解:原式()44311213123=-⨯-++⨯⨯- 434912=--+-=-.【点睛】本题考查了有理数的混合运算 熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方 再算乘除 最后算加减;同级运算 按从左到右的顺序计算.如果有括号 先算括号里面的 并按小括号、中括号、大括号的顺序进行.有时也可以根据运算定律改变运算的顺序.12.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= ==; (3) = 71(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭= = =; (4) = = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.13.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= 14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭12489459-⨯⨯+⨯445-+16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭==; (3) = = = =; (4) = =12489459-⨯⨯+⨯ =445-+ =165 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.14.(2022·浙江七年级期末)计算:(1). (2). (3). (4). 【答案】(1)3;(2)1;(3)927;(4)1【分析】(1)先化简符号和括号 再计算加减法;(2)将除法转化为乘法 再约分计算;(3)先算括号内的 再算乘除 最后算加减;(4)先算乘方和括号 再算乘除 最后算加减. ()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦94(81)(16)49-÷⨯÷-11304(3)1556⎛⎫÷--⨯-+ ⎪⎝⎭422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭【详解】解:(1) = = ==3;(2) = =1;(3) = ==927;(4) = ==1 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序. 28.(2021·湖北恩施·七年级期末)计算下列各题:(1)2(35)(3)(13)--+-⨯-; (2)32422()93-÷⨯-. 【答案】(1)-16 (2)-8【分析】(1)先算括号中的减法 再算乘方 乘法 以及加减即可得到结果; (2)先算乘方 再算乘除即可得到结果.(1)解:原式=359(2)-++⨯-11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦11552 4.84566⎛⎫--+ ⎪⎝⎭145154425566+--107-94(81)(16)49-÷⨯÷-441819916⨯⨯⨯11304(3)1556⎛⎫÷--⨯-+⎪⎝⎭301215301÷++9001215++422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭()23168(15)(15)35-÷-+⨯--⨯-2109-+218=- =16-;(2)解:原式=94849-⨯⨯=8-.【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键. 15.(2022·河南驻马店·七年级期末)计算:(1)()22112 2.25554⎛⎫---+-- ⎪⎝⎭; (2)2220212111132322⎛⎫--⨯--+÷⨯ ⎪⎝⎭.【答案】(1)1-;(2)54-【分析】(1)先化简绝对值、去括号 再计算加减法即可得;(2)先计算乘方、除法 再化简绝对值、乘法 然后计算加减法即可得. 【详解】 解:(1)原式2 2.2275.2555--+=- 7255=- 1=-;(2)原式4143111322=--⨯-+⨯3134344=--⨯+-4331344=--⨯+3114=--+ 54=-.【点睛】本题考查了含乘方的有理数混合运算 熟练掌握运算法则是解题关键. 16.(2022·山东青岛·七年级期末)计算: (1)123()3035--+; (2)431116(2)()48-+÷---⨯. 【答案】(1)110; (2)52-【分析】(1)原式利用减法法则变形 计算即可得到结果; (2)原式先算乘方 再算乘除 最后算加减即可得到结果. (1) 原式=1233035+- =12018303030+- =1201830+- =330=110; (2)原式=()1116848⎛⎫-+÷---⨯ ⎪⎝⎭=1122--+=52-.【点睛】本题考查了有理数的加、减、乘、除、乘方的混合运算 正确理解运算顺序并细心计算是解决本题的关键;运算顺序:先乘方、再乘除、后加减 有括号的先算括号里面的. 17.(2022·福建福州·七年级期末)计算: (1)()()()()2356---++-+; (2)()2202241235⎛⎫-+-÷--- ⎪⎝⎭.【答案】(1)0 (2)9-【分析】(1)根据有理数加减混合运算法则进行计算即可; (2)根据有理数的混合运算法则进行计算即可. (1)解:()()()()2356---++-+2356=-++-88=-+0=(2)解:()2202241235⎛⎫-+-÷--- ⎪⎝⎭51434⎛⎫=-+⨯-- ⎪⎝⎭153=--- 9=-【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则 有乘方的先算乘方 再算乘除 最后算加减 有括号的先算小括号里面的 是解题的关键. 18.(2022·湖北孝感·七年级期末)计算:(1)(-5)×(-6)-40+2. (2)(-3)2-|-8|-(1-2×35)÷25.【答案】(1)8- (2)32【分析】(1)先计算有理数的乘法 然后计算加减即可;(2)先计算乘方及绝对值及小括号内的运算 然后计算除法 最后计算加减即可. (1)原式=30-40+2 =-8; (2)原式=9-8-65152⎛⎫-⨯ ⎪⎝⎭=9-8-1552⎛⎫-⨯ ⎪⎝⎭=9-8+12=32. 【点睛】题目主要考查含乘方的有理数的混合运算 绝对值化简 熟练掌握运算法则是解题关键. 19.(2022·山东枣庄·七年级期末)计算(1)22(2)31(0.2)4-+-⨯-÷-+- (2)222172(3)(6)()3-+⨯---÷-【答案】(1)-1 (2)23【分析】(1)先计算乘方 再计算乘除 最后算加减 可得答案;(2)先计算乘方 再计算乘除 最后计算加减 即可得到答案. (1)解:22(2)31(0.2)4-+-⨯-÷-+-4(6)54=-+-++1=-(2)222172(3)(6)()3-+⨯---÷-4929(6)9=-+⨯--⨯491854=-++ 23=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键.20.(2022·湖北荆州·七年级期末)计算:(1)﹣14﹣5+30﹣2 (2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4| 【答案】(1)9 (2)-3【分析】(1)根据有理数的加减法运算法则计算即可求解; (2)先算乘方 再算乘除 最后算加法求解即可. (1)解:-14-5+30-2 =(-14-5-2)+30 =-21+30 =9; (2)-32÷(-3)2+3×(-2)+|-4| =-9÷9-6+4 =-1-6+4 =-3.【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算. 21.(2022·河南驻马店·七年级期末)计算:(1)1|2|4--(34-)+11|1|2--; (2)16+(﹣2)319-⨯(﹣3)2﹣(﹣4)4.【答案】(1)312 (2)-249【分析】(1)先求绝对值 再按有理数加减法法则计算即可; (2)先计算乘方 再计算乘法 最后计算加减即可. (1)解:原式=13121442++-=312; (2)解:原式=16-8-19×9-256=16-8-1-256 =-249.【点睛】本题考查有理数混合运算 求绝对值 熟练掌握有理数运算法则是解题的关键. 22.(2022·四川广元·七年级期末)计算:220221256(4)(1)2⎛⎫---+÷-+-⨯- ⎪⎝⎭.【答案】-6 【详解】解:原式()()41241=--⨯-+-⨯ =()()424---+- =()424-++-6=-.【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数混合运算法则是解题的关键. 23.(2022·广西崇左·七年级期末)计算(1)2312130.25343-+-- (2)()22122332⎡⎤-+⨯--÷⎢⎥⎣⎦【答案】(1)-1812 (2)2 (1)解∶原式=-2123-13+334-14= -22+312 =-1812 (2)解:原式=()42932-+⨯-⨯ = -4+2×(9-6) =-4+6 =2【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则是解题的关键. 24.(2022·陕西·西安七年级期中)计算: (1)()()2132----+- (2)22212(32)243⎡⎤⨯+-÷⎣⎦ (3)152(18)369⎛⎫-+⨯- ⎪⎝⎭ (4)3202141(1)(13)82⎛⎫-+-÷⨯ ⎪⎝⎭【答案】(1)6-(2)0(3)5(4)34-【分析】(1)利用有理数加法和减法法则按照从左到右的顺序依次计算;(2)先算乘方 并把带分数化成假分数 再计算乘除 最后计算加减 同时按照先算小括号再算中括号的运算顺序计算即可;(3)利用乘法分配律进行计算即可;(4)先计算乘方 再计算乘除 最后计算加法即可.(1)原式=21326-+--=-; (2)原式=()2934294⎡⎤⨯+-÷⎣⎦ =1122⎛⎫+- ⎪⎝⎭=0;(3)原式=()121829⎛⎫-+⨯- ⎪⎝⎭=()()12181829⎛⎫-⨯-+⨯- ⎪⎝⎭=94- =5;(4)原式=()411288-+-÷⨯=111688-+÷⨯=1128-+⨯=114-+=34-. 【点睛】本题考查有理数的加减乘除及乘方的混合运算 解题关键是牢记运算法则 掌握运算顺序. 25.(2022· 绵阳市·九年级专项)计算:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭;(5)111532⎛⎫÷-- ⎪⎝⎭; (6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.【答案】(1)218-;(2)9-;(3)712-;(4)177;(5)18-;(6)22-;(7)307;(8)16. 【分析】(1)先计算除法 再计算加法 两个有理数相除 同号得正;(2)乘除法 同级运算 从左到右 依次将除法转化为乘法 先确定符号 再将数值相乘; (3)先将除法转化为乘法 再利用乘法分配律解题 注意符号;(4)先算乘除 再算减法 结合加法结合律解题;(5)先算小括号 再算除法;(6)先算小括号 再算中括号;(7)先将除法转化为乘法 再利用乘法分配律的逆运算解题; (8)先算小括号 再算中括号 结合乘法交换律解题. 【详解】解:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1477833⎛⎫⎛⎫⎛⎫=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2414493=-+24218=-; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭()1=(3)3(3)3⨯-⨯-⨯- =9;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭5165101566⎛⎫⎛⎫=--⨯- ⎪ ⎪⎝⎭⎝⎭111123=-++ 712=-; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭617324()762874⎛⎫⎛⎫=--⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭1437=++177=; (5)111532⎛⎫÷-- ⎪⎝⎭6155⎛⎫=÷- ⎪⎝⎭5156⎛⎫=⨯- ⎪⎝⎭18=-;(6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦2378261323998⎡⎤⎛⎫=-⨯⨯-÷ ⎪⎢⎥⎝⎭⎣⎦2782241399⎡⎤⎛⎫=--÷ ⎪⎢⎥⎝⎭⎣⎦282223992⎡⎤⎛⎫=-÷ ⎪⎢⎥⎝⎭⎣⎦ 982094⎛⎫=-+⨯ ⎪⎝⎭22442-=22=-;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2115128103337⎡⎤⎛⎫⎛⎫⎛⎫=---++⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2115128103337⎡⎤=-++⨯⎢⎥⎣⎦567=⨯307=; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦162113171713388⎡⎤⎛⎫⎛⎫⎛⎫=⨯⨯-⨯-+÷ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2113(16)33881⎡⎤⎛⎫⎛⎫=⨯-⨯-+⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()332286⎛⎫=-⨯ ⎪⎝⎭863=⨯16=.【点睛】本题考查有理数的四则混合运算 涉及加法结合律、乘法分配律等知识 是重要考点 掌握相关知识是解题关键.26.(2022·娄底市第二中学七年级期中)请你先认真阅读材料: 计算 解:原式的倒数是=12112()()3031065-÷-+-21121-+()3106530⎛⎫-÷- ⎪⎝⎭2112()(30)31065-+-⨯-=×(﹣30)﹣×(﹣30)+×(﹣30)﹣×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12) =﹣20+3﹣5+12 =﹣10 故原式等于﹣再根据你对所提供材料的理解 选择合适的方法计算:. 【答案】. 【分析】根据题意 先计算出的倒数的结果 再算出原式结果即可.【详解】解:原式的倒数是:故原式. 【点睛】本题主要考查了有理数的除法 读懂题意 并能根据题意解答题目是解决问题的关键. 27.(2022·黑龙江绥化·期中)计算:(1)()()()6.5 3.3 2.5 4.7-+----+; (2)()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭; (3)22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)()2449525⨯- (5)41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭【答案】(1)12- (2)63 (3)9- (4)24954-(5)99900【分析】根据有理数的加减乘除运算法则求解即可. (1)解:()()()6.5 3.3 2.5 4.7-+----+23110162511011322()()4261437-÷-+-114-113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭()132********⎛⎫=-+-⨯- ⎪⎝⎭13224242424261437⎛⎫=-⨯-⨯+⨯-⨯ ⎪⎝⎭()792812=--+-14=-114=-6.5 3.3 2.5 4.7=--+-()6.5 3.3 4.7 2.5=-+++14.5 2.5=-+12=-;(2)解:()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭ 3761246=⨯⨯⨯ 63=;(3)解:22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ()9244=-+⨯-9=-;(4)解:()2449525⨯- ()2449525⎛⎫=+⨯- ⎪⎝⎭ 24495525=-⨯-⨯ 242455=-- 42495=-; (5)解:41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭ 41399911818555⎛⎫=⨯+--- ⎪⎝⎭ 999100=⨯99900=.【点睛】本题考查有理数的加减乘除混合运算 熟练掌握相关运算法则及运算顺序是解决问题的关键. 28.(2022·河北邯郸·七年级期中)能简算的要简算(1)122 6.6 2.5325⨯+⨯ (2)44444999999999955555++++ (3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦ (4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦【答案】(1)25;(2)11110;(3)16;(4)10 【分析】(1)先把小数化为分数 然后根据乘法的结合律进行计算求解即可;(2)先把分数部分和整数部分分别相加然后得到()()()()19199199919999+++++++由此求解即可;(3)直接根据分数的混合计算法则进行求解即可;(4)先把小数化为分数 然后根据分数的混合计算法则进行求解即可.【详解】解:(1)131226232525⨯+⨯132=263255⎛⎫⨯+ ⎪⎝⎭1=2102⨯=25;(2)44444999999999955555++++()44444=999999999955555⎛⎫++++++++ ⎪⎝⎭=49999999999++++()()()()=19199199919999+++++++=10100100010000+++=11110;(3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦1633=977⎡⎤÷+⎢⎥⎣⎦1696=77÷167=796⨯1=6;(4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦1631825=58512⎛⎫⨯+⨯ ⎪⎝⎭61825=5512⎛⎫+⨯ ⎪⎝⎭2425=512⨯ =10.【点睛】本题主要考查了分数与小数的混合计算 分数的混合计算 解题的关键在于能够熟练掌握相关计算法则.29.(2022·浙江七年级期中)计算(1) (2) (3) (4) (5) (6) (7) (8) 【答案】(1);(2);(3)-8;(4);(5)8;(6);(7)161;(8) 【分析】根据有理数的混合运算法则分别计算.【详解】解:(1) = = =; (2) = = 3233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭()22012201121(0.25)4522--⨯+-÷-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦22222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦111112123123100+++++++++++13-174-49613-2001013233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭3112123124451034⎛⎫⎛⎫⎛⎫⨯-⨯-÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭110441015153-⨯⨯⨯13-()22012201121(0.25)4522--⨯+-÷-()2012220111422554⎛⎫--⨯+-÷- ⎪⎝⎭2012201151424254⎛⎫-⨯-⨯⎪⎝⎭= =; (3) = = ==-8;(4) = = ==; (5) = = = =8;(6) 2011411444⎛⎫-⨯⨯- ⎪⎝⎭174-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭111866412⎛⎫⨯--⨯ ⎪⎝⎭1114848486412⨯-⨯-⨯8124--()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()91116(32)349⎡⎤-÷--⨯--⎢⎥⎣⎦111423⎛⎫--- ⎪⎝⎭12323+49622222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭44411.35 1.057.7999⨯-⨯+⨯()411.35 1.057.79-+⨯4189⨯2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭= = = =; (7) = = = =160+1=161;(8) == = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序 以及一些常用的简便运算方法.30.(2022·河北邯郸·二模)淇淇在计算:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭时 步骤如下: 解:原式()11=202266623---+÷-÷①=202261218-++-① ()5112246274-+⨯+-⨯14125625-+⨯⨯213-+13-222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦3531345254⎛⎫⨯⨯+⨯+ ⎪⎝⎭35141254⎛⎫⨯++⎪⎝⎭511284⨯+111112123123100+++++++++++()()()11111221331100100222+++++⨯+⨯+⨯2222122334100101++++⨯⨯⨯⨯11112122334100101⎛⎫⨯++++ ⎪⨯⨯⨯⨯⎝⎭11111112122334100101⎛⎫⨯-+-+-++- ⎪⎝⎭200101=2048-①(1)淇淇的计算过程中开始出现错误的步骤是________;(填序号)(2)请给出正确的解题过程.【答案】(1)①; (2)见解析.【分析】(1)根据有理数的运算法则可知从①计算错误;(2)根据有理数的运算法则计算即可.(1)解:由题意可知:()20223111(1)(2)6=186236⎛⎫---+÷---+÷ ⎪⎝⎭; 故开始出现错误的步骤是①(2)解:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭()1=1866--+÷ =1836++=45.【点睛】本题考查含乘方的有理数的运算 解题的关键是掌握运算法则并能够正确计算.。

(完整版)七年级有理数混合运算(附答案)

(完整版)七年级有理数混合运算(附答案)

有理数混合运算1.下列计算①()330-=--;②()()11135=-+-;③()4223=-÷-;④()55154-=⨯---,其中正确的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个2.下列各式运算结果为负数的是( )A 、532⨯- B 、()5312⨯- C 、()5132⨯- D 、()1532-⨯-3.判断题(1)()()5152125-=-÷=⨯-÷ ( ) (2)()313125431254-=⨯+-=⨯-- ( )(3)()()()138212733-=---=--⨯- ( )(4)()()()[]842812842812=+-÷-=-÷+-÷- ( ) (5)()()100105222=-=-⨯ ( )4.计算(1)()3316⨯÷-; (2)212--; (3)()325.1-⨯-;(4)2234⨯-; (5)()()48352-⨯+⨯-; (6)()⎪⎭⎫⎝⎛---21435420;(7)()322212÷-⨯-; (8)22388⎪⎭⎫ ⎝⎛⨯-;(9)()()33751-÷--; (10)⎪⎭⎫⎝⎛-⨯⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-9153153;(11)()⎪⎭⎫⎝⎛-⨯--⨯-253112232;5.列式计算 (1)21与31-的和的平方; (2)2-的立方减去3-的倒数的差;(3)已知甲数为23-,乙数比甲数的平方的2倍少21,求乙数。

6.拓展提高(1)已知有理数满足01331=-+++-c b a ,求()2011c b a ⨯⨯的值;(2)已知a 、b 互为相反数,c 、d 互为倒数,x 的平方等于4,试求()()()200920102d c b a x d c x ⨯-+++⨯⨯- 的值。

有理数除法 一. 判断。

1. 如果两数相除,结果为正,则这两个数同正或同负。

完整版初一有理数混合运算练习题及答案

完整版初一有理数混合运算练习题及答案

完整版初一有理数混合运算练习题及答案有理数混合运算练题及答案第1套1.计算题:1) 3.28-4.76+1-(-1) = -0.48;2) 2.75-2-3+1 = -1.25;3) 42÷(-1)-1÷(-0.125) = -336;4) (-48)÷8-(-25)÷(-6)2 = -6.125;5) -2/5×(-2.4)-1/7×(5/8) = 0.736.2.计算题:1) -23÷1×(-1)2÷1 = -23;2) -14- (2-0.5)×[(-2)2-(-3)3] = -0.5;3) -1×[1-3×(-2)]-(-2)3÷(-3) = 2;4) (0.12+0.32)÷[-22+(-3)2-3×(-1)] = -0.04;5) -6.24×3^2+31.2×(-2)^3+(-0.51)×6×24 = -6,273.48.素质优化训练】1.填空题:1) 如果a>b>c,那么a^2-b^2+c^2 = ac;如果a<b<c,那么-a^2b^2c^2 = -abc;2) abc = 4;3) x^2-(a+b)+cdx = -3.2.计算:1) -32-(-5)3×(-2)-18÷(-3)2 = -53.67;2) {1+[-(-1)^3]×(-2)^4}÷(-13/2) = -0.0769;3) 5-3×{-2+4×[-3×(-2)^2-(-4)÷(-1)^3]-7} = 47.生活实际运用】乙买入价格为1.01元,卖出价格为0.99元,亏损1%;甲买入价格为0.99元,卖出价格为0.891元,盈利10%;所以甲的盈利为0.891-1.01×0.99×0.99×0.9≈0.009元,约等于1元。

初一上册有理数的混合运算练习题及答案

初一上册有理数的混合运算练习题及答案

初一上册有理数的混合运算练习题及答案初一上册有理数的混合运算练习题及答案一、填空题1.有理数混合运算的顺序是先算_______,再算_______,最后算_______,如有括号,就先算_______.2.-1-的倒数是_______.3.-1的绝对值与(-2)3的和是_______.4.(-3)2÷×0-=_______.二、选择题1.下列各数中与(-2-3)5相等的是()A.55B.-55C.(-2)5+(-3)5D.(-2)5-352.某数的平方是,则这个数的立方是()A.+8B.-8C.0或-8D.+8或-83.10n的意义(n为正整数)是()A.10个n相乘所得的积B.表示一个1后面有n个0的数C.表示一个1后面有(n-1)个0的数D.表示一个1后面有(n+1)个0的数4.n为正整数时,(-1)n+(-1)n+1的值是()A.2B.-2C.0D.不能确定5.下列语句中,错误的`是()A.a的相反数是-aB.a的绝对值是|a|C.(-1)99=-99D.-(-22)=4三、计算题1.-7×6×(-2)2.(-20)×(-1)7-0÷(-4)3.(-2)2×(-1)3-3×[-1-(-2)]4.23-32-(-4)×(-9)×0四、代数求值当x=-1,y=-2,z=1时,求(x+y)2-(y+z)2-(z+x)2的值.参考答案一、1.乘方乘除加减括号里面的。

2.-,3.-,4.-二、1.B,2.C,3.B,4.C,5.C三、1.84, 2.20, 3.-7 , 4.-1四、8。

七年级数学有理数的混合运算练习题(附答案)

七年级数学有理数的混合运算练习题(附答案)

七年级数学有理数的混合运算练习题一、解答题1.已知a 为有理数,{}a 表示不大于a 的最大整数,如{}31, 3.734⎧⎫-=-+=+⎨⎬⎩⎭等,试计算{}{}{}17.2 6.435.32⎧⎫-÷÷-⨯-⎨⎬⎩⎭的值. 2.若,a b 互为相反数,,c d 互为倒数,m 的绝对值为2,求2234a bm cd m++-的值. 3.找到规律是解题最重要的步骤!先观察下面的式子:111123623==-⨯,1111341234==-⨯,1111452045==-⨯,,你发现规律了吗?下一个式子应该是:. 利用你发现的规律,计算: 111123344599100+++⨯⨯⨯⨯. 4.点A ,B ,C 在同一条数轴上,其中点A ,B 表示的数分别为3,1-,若B ,C 两点之间的距离为2,求A ,C 两点之间的距离.5.在数轴上表示下列各数,并按从大到小的顺序用“>”把这些数连接起来.35,3, 3.5,0,,0.52----.6.若()2120a b -++=,求a b +的值.7.已知数a 在数轴上表示的点在原点左侧,距离原点3个单位长,b 在数轴上表示的点在原点右侧,距离原点2个单位长,c 和d 互为倒数,m 与n 互为相反数,y 为最大的负整数, 求22()()y b m a cd nb ++--.8.现规定一种运算“*”,对于,a b 两数有: 2b a b a ab *=-,试计算(3)2-*的值。

9.将下列各数填在相应的集合里.222033.8,20%,4.3,,4,0,,3.75⎛⎫------- ⎪⎝⎭整数集合:{ ···};分数集合:{ ···}; 正数集合:{ ···}; 负数集合:{ ···}.10.已知:有理数m 所表示的点到点3的距离是4个单位,,a b 互为相反数,且都不为零,,c d 互为倒数.求:223a a b cd m b ⎛⎫++--⎪⎝⎭的值. 11、粮库3天内的粮食进出库的吨数如下(“+”表示进库表示出库):+26,-32,-15,+34,-38,-20.1.经过这3天,库里的粮食是增多了还是减少了?2.经过这3天,仓库管理员结算发现库里还存有480吨粮食,那么3天前库里存粮多少吨?3.如果进出的装卸费都是每吨5元,那么这3天要付多少装卸费? 二、计算题12.计算211(6)()23-⨯-13.计算.(1)3351 (1)()48624-+÷-(2)3221113()(2)(2)()(3)()222⨯---÷+-⨯-÷-(3)2419(5)25-⨯- (4)43510.712(15)0.7(15)9494⨯+⨯-+⨯+⨯-(5)2111315()1(2)(5)223114-⨯-⨯÷⨯-÷- (6)31002111132(2)()(1)3(3)82--++⨯-+-⨯-- 14.计算: (1)521315.565772-+--; (2)111()(24)8612--⨯-; (3)1111115()133()555-⨯--⨯-⨯-; (4)20192311917(1)5()5-+÷--⨯-; (5)20182110.2(20)(2)4---⨯-+-; (6)2233[5(10.6)(3)]5---+-⨯÷-. 15.计算:11111.20023003400460068008-+-+- 16.计算:222111112233+++++21....20182018+++ 17.计算:211154(23)173.31246----+ 18.计算:11111()4(67826++-⨯-111111)5()786789---⨯++-.19.计算:12345678...201720182019.--++--+++-- 20.计算:7111145(25)()(1).81247⨯-⨯⨯-÷⨯- 21.计算:1332(3) 2.195(4)7.81(4).3843-+++-++- 22.计算下列各题:(1)()()223232-⨯-+-⨯⎡⎤⎣⎦ (2)1113151232114⎛⎫⨯-⨯÷ ⎪⎝⎭ 23.计算:211108225⎛⎫+⨯--÷ ⎪⎝⎭24.计算:111112431264⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭25.计算:1325792111315217-⨯++-⨯++-⨯++⋅⋅⋅+20112013220152017-⨯++ 26.计算:12313011.7211.712.52352⎛⎫⨯-+-⨯+⨯⎪⎝⎭27.计算:7111145(25)181547⎛⎫⎛⎫⨯-⨯⨯-÷⨯- ⎪ ⎪⎝⎭⎝⎭28.计算:13323 2.19547.8143843⎛⎫⎛⎫⎛⎫-+++-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭29.请你参考黑板中老师的讲解,用运算律简便计算:(1)999(15)⨯-; (2)413999118999()99918555⨯+⨯--⨯. 30.用简便方法计算:(1)141.530.75 1.53 1.53;25-⨯+⨯+⨯ (2)1191(231)(1).32126-+÷-31、计算32.用简便方法计算: 1799(9)18⨯- 33.计算:22222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.34.计算:()()332211432333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.35.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上的数的和都相等.尝试:1.求前4个台阶上数的和是多少. 2.求第5个台阶上的数x 是多少. 应用:求从下到上前31个台阶上的数的和.发现:试用含为k (k 正整数)的式子表示出数“1”所在的台阶数. 36.计算1557()(36)29612-+-⨯-参考答案1.答案:解:原式(8)(6)(4)(6)2=-÷+÷-⨯-=-. 解析:2.答案:解:由题意,可得0,1,2a b cd m +===, 故24m =.原式024315=+⨯-⨯=. 解析: 3.答案:49100解析:4.答案:解:因为点A ,B 表示的数分别为31-,,所以A ,B 之间的距离为4. 当点C 在点B 的右边时,如图1所示, 则A ,C 两点之间的距离为426+=;当点C 在点B 的左边时,如图2所示, 则A ,C 两点之间的距离为422-=.综上所述,A ,C 两点之间的距离为2或6. 解析:5.答案:解:如图所示:按从大到小的顺序用“>”把这些数连接起来为330.50 3.552->>>->->-.解析:6.答案:1-解析:由题意得,10,20a b -=+=, 解得1,2a b ==-.所以()12121a b +=+-=-=-. 7.答案:由题意知,3, 2.a b =-=c 和d 互为倒数, 1.cd ∴= m 与n 互为相反数,0m n ∴+=.y 为最大的负整数, 1.y ∴=-22()()y b m a cd nb -∴++-2(12)(31)4m n =-++---14()m n =-+10=-1=.解析:8.答案:解:21 解析:9.答案:整数集合: {}224,0,3,-;分数集合: 2033.8,20%,4.3,,,75⎧⎫⎛⎫------⎨⎬ ⎪⎝⎭⎩⎭; 正数集合: 234.3,4,,5⎧⎫⎛⎫--⎨⎬ ⎪⎝⎭⎩⎭;负数集合: 2203.8,20%,,3,7⎧⎫-----⎨⎬⎩⎭.解析:10.答案:因为,a b 互为相反数,且都不为零,,c d 互为倒数,所以0,1,1aa b cd b+==-=. 有理数m 所表示的点到点3的距离是4个单位,则7m =或1-.当7m =时()2232013711a a b cd m b ⎛⎫++--=⨯+---=- ⎪⎝⎭. 当1m =-时,()()223201313a a b cd m b ⎛⎫++--=⨯+----=- ⎪⎝⎭.解析:答案: 11、解析: 1.经过这3天,库里的粮食减少了. 2.3天前库里存粮525吨. 3.这3天要付825元装卸费.理解“+”表示进库“-”表示出库,把粮库3天内发生粮食进出库的吨数相加就是库里现在的情况,要求这3天要付多少装卸费就要先算出这3天装卸了多少吨.12.答案:原式=1136()1812623⨯-=-=解析:13.答案:解:(1)原式735(24)(24)(24)486=⨯--⨯-+⨯-42920 =-+-53=-(2)原式1113()(2)()(3)4 842=⨯---⨯+-⨯-⨯31166828 =-++=(3)原式1 (20)(5)25=-+⨯-1(20)(5)(5)25=-⨯-+⨯-14 10099.55=-=(4) 原式7135111 ()(15)() 109944 =⨯++-⨯+7(15)3 5=+-⨯21(45)5=+-343.5=-(5)原式11134144() 26115525 =⨯⨯⨯⨯⨯-=-(6)原式213(8)()1398=-+⨯-+-⨯283()() 398 =-+-+-67172=-解析:14.答案:(1)解:原式521(36)(15.55)10100772=--+-=-+=(2)解:原式111(242424)(342)3 8612=-⨯-⨯-⨯=---=(3)解:原式1111 (5133)()5()1155=-+-⨯-=⨯-=-(4)解:原式114 191725363512555 =--+⨯=-+=-.(5)解:原式1111(20)41(20)41(1)44 4520=---⨯-+=--⨯-+=---+=(6)解:原式3319[5(1)]559=---+-⨯⨯119(5)925=---+-1195925=-+-+164225=- 解析:15.答案:解:原式11111001210013=-⨯+⨯111111100141001610018-⨯+⨯-⨯ 111111()100123468=⨯-+-+- 133().100188008=⨯-=- 解析:16.答案:解:原式111(11)2(21)=++⨯+⨯+11...3(31)2018(20181)++⨯+⨯+111122334=+++⨯⨯⨯1 (20182019)+⨯ 11111122334=-+-+-11...20182019++-120181.20192019=-= 解析:17.答案:解:原式2111542317331246=-+-+211(4)(23)312=--++15(17)(3)46+--++ (423173)=-+-++21115()31246-+-+5555.66=+= 解析:18.答案:解:原式1111()46782=++-⨯1111114()5()678678+⨯++-⨯++159+⨯ 11111()(145)4567829=++⨯+--⨯+⨯54021.99=-+=- 解析:19.答案:解:观察算式发现:12340,56780,--+=--+=...,20172018201920200.--+= ∴原式(1234)(5678)=--++--+...(2017201820192020)++--+2020-020202020.=-=-解析:20.答案:解:原式1178(45)(254)()1587=-⨯⨯⨯⨯⨯3310013300=-⨯⨯=-. 解析:21.答案:解:原式12[(3)(4)](2.197.81)33=-+-++33[5(4)]84++-58108=-++5522.88=+= 解析:22.答案:(1)24(2)15-解析:(1)()()223232-⨯-+-⨯⎡⎤⎣⎦3436=-⨯+ 1236=-+ 24=(2)1113151232114⎛⎫⨯-⨯÷ ⎪⎝⎭ 11315126114⎛⎫=⨯-⨯÷ ⎪⎝⎭1131112114⎛⎫=-⨯÷ ⎪⎝⎭ 11144⎛⎫=-÷ ⎪⎝⎭ 1445⎛⎫=-⨯ ⎪⎝⎭ 15=-23.答案:原式1108251021024=+⨯-⨯=+-=解析: 24.答案:112-解析:原式的倒数为211113126424⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭ ()21112431264⎛⎫=-+-⨯- ⎪⎝⎭2111(24)(24)(24)(24)31264=⨯--⨯-+⨯--⨯- 16646=-+-+ 12=-所以原式112=-.25.答案:2017 解析:原式()(1325)(79211)1315217=-⨯++-⨯++-⨯+()20112013220152017+⋅⋅⋅+-⨯++ 2017=26.答案:130 解析:原式123130303011.712.522352⎛⎫=⨯-⨯+⨯+⨯- ⎪⎝⎭ 15201811.710=-++⨯ 13117=+ 130=27.答案:3300- 解析:原式()1178=452541587⎛⎫⎛⎫-⨯⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭331001=-⨯⨯ 3300=-28.答案:528解析:原式()1233=34 2.197.81543384⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-+-++++- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 5=8108-++ 5=28+ 5=2829.答案:(1)999(15)⨯-(10001)(15)=-⨯-1000(15)15=⨯-+1500015=-+14985=-; (2) 413999118999()99918555⨯+⨯--⨯ 413999(11818)555=⨯-- 999100=⨯99900=解析:30.答案:(1)141.530.75 1.53 1.5325-⨯+⨯+⨯ 1.53(0.750.50.8)=-⨯-++1.53(1.30.75)=⨯-1.530.55=⨯0.8415=; (2)1191(231)(1)33126-+÷- 77216()()32127=-+⨯- 7676216()()()3727127=⨯--⨯-+⨯- 3232=-+- 12=-.解析:答案: 31、32.答案:解: 1(100)(9)899.518-⨯-=- 解析: 33.答案:原式44411.35 1.057.7999⎛⎫⎛⎫=⨯+⨯--⨯- ⎪ ⎪⎝⎭⎝⎭ 44411.35 1.057.7999=⨯-⨯+⨯ ()411.35 1.057.79=-+⨯ 729=. 解析:34.答案:原式=()()81164329273⎡⎤-÷---⨯--⎢⎥⎣⎦ ()811221333⎛⎫=--=--= ⎪⎝⎭. 解析:35.答案:尝试:1.由题意得前4个台阶上的数的和是52193--++=.2.由题意得2193x -+++=,解得5x =-,则第5个台阶上的数x 是-5.应用:由题意知台阶上的数字是每4个一循环,因为31473÷=⋯⋯, 所以7312515⨯+--=,即从下到上前31个台阶上的数的和为15.发现:数“1”所在的台阶数为41k -解析:36.答案:-7解析:。

有理数加减混合计算题100道【含答案】

有理数加减混合计算题100道【含答案】

有理数加减混合计算题100道【含答案】(七年级数学)92267(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--有理数运算练习(一) 【加减混合运算】一、有理数加法.1、【基础题】计算:(1) 2+(-3); (2)(-5)+(-8); (3)6+(-4); (4)5+(-5); (5)0+(-2); (6)(-10)+(-1); (7)180+(-10); (8)(-23)+9;(9)(-25)+(-7); (10)(-13)+5; (11)(-23)+0; (12)45+(-45).2、【基础题】计算:(1)(-8)+(-9); (2)(-17)+21; (3)(-12)+25; (4)45+(-23);(5)(-45)+23; (6)(-29)+(-31); (7)(-39)+(-45); (8)(-28)+37.3、【基础题】计算,能简便的要用简便算法:(1)(-25)+34+156+(-65); (2)(-64)+17+(-23)+68; (3)(-42)+57+(-84)+(-23); (4)63+72+(-96)+(-37); (5)(-301)+125+301+(-75); (6)(-52)+24+(-74)+12; (7)41+(-23)+(-31)+0; (8)(-26)+52+16+(-72).4、【综合Ⅰ】计算:(1))43(31-+; (2)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3121; (3)()⎪⎭⎫⎝⎛++-5112.1; (4))432()413(-+-;(5))752()723(-+; (6)(—152)+8.0; (7)(—561)+0; (8)314+(—561).5、【综合Ⅰ】计算:(1))127()65()411()310(-++-+; (2)75.9)219()29()5.0(+-++-;(3))539()518()23()52()21(++++-+-; (4))37(75.0)27()43()34()5.3(-++++-+-+-二、有理数减法.6、【基础题】计算:(1)9-(-5); (2)(-3)-1; (3)0-8; (4)(-5)-0; (5)3-5; (6)3-(-5);(7)(-3)-5 (8)(-3)-(-5); (9)(-6)-(-6); (10)(-6)-6.、【综合Ⅰ】计算:(1)(-52)-(-53); (2)(-1)-211; (3)(-32)-52; (4)521-(-7.2);(5)0-(-74); (6)(-21)-(-21); (7)525413- ; (8)-64-丨-64丨7、【基础题】填空:(1)(-7)+( )=21; (2)31+( )=-85;(3)( )-(-21)=37; (4)( )-56=-408、【基础题】计算:(1)(-72)-(-37)-(-22)-17; (2)(-16)-(-12)-24-(-18); (3)23-(-76)-36-(-105); (4)(-32)-(-27)-(-72)-87.(5)(-32)-21-(-65)-(-31); (6)(-2112)-[ --(-)-516 ] .三、有理数加减混合运算9、【综合Ⅰ】计算(1)-7+13-6+20; (2)-+-+10; (3)(-53)+51-54;(4)(-5)-(-21)+7-37; (5)31+(-65)-(-21)-32; (6)-41+65+32-21;10、【综合Ⅰ】计算,能简便的要用简便算法:(1)-+(-); (2)(-)-21+(-51); (3)21-(-)-61; (4)(-31)-15+(-32); (5)32+(-51)-1+31; (6)(-12)-(-56)+(-8)-10711、【综合Ⅰ】计算:(1)-(-)+(-); (2)(-8)-(-15)+(-9)-(-12);(3)+(-41)-(-)+21; (4)(-32)+(-61)-(-41)-21;(5)21+(-32)-(-54)+(-21); (6)310+(-411)-(-65)+(-127)12、【综合Ⅰ】计算:(1)7+(-2)-; (2)(-)+3-+(-52); (3)31+(-45)+; (4)7-(-21)+; (5)49-(-)-53; (6)(-56)-7-(-)+(-1);(7)11512+丨-11611丨-(-53)+丨212丨; (8)(- )+ 1098 + +(- 1098)13、【综合Ⅰ】计算:(1)()()()()-+-+++-+-++12345678; (2)-+++(-)(3)-⎛⎝ ⎫⎭⎪--⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪13123423; (4)5146162341456+-⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪;(5)--(-413)+-(+217); (6)3745124139257526+-+有理数运算练习(一) 答案1、【答案】 (1)-1; (2)-13; (3)2; (4)0; (5)-2; (6)-11; (7)170;(8)-14; (9)-32; (10)-8; (11)-23; (12)0.2、【答案】 (1)-17; (2)4; (3)13; (4)22; (5)-22;(6)-60; (7)-84; (8)9.3、【答案】(1)100; (2)-2; (3)-92; (4)2; (5)50; (6)-90; (7)-13; (8)-30.4、【答案】 (1)125-; (2)65-; (3)0; (4)-6; (5)74; (6)32; (7)615-; (8)65-.5、【答案】 (1)65 (2) (3)12 (4)311-6、【答案】 (1)14; (2)-4; (3)-8; (4)-5; (5)-2; (6)8; (7)-8;(8)2; (9)0; (10)-12、【答案】 (1)51; (2)-25; (3)-1516; (4); (5)74; (6)0;(7)-2043(8)-1287、【答案】 (1)28; (2)-116; (3)16; (4)168、【答案】 (1)-30; (2)-10; (3)168; (4)-20; (5)0; (6)-或-1016 9、【答案】 (1)20; (2); (3)-56; (4)61; (5)-32; (6)4310、【答案】 (1)-7; (2)-; (3)127; (4)-16; (5)-51; (6)-23911、【答案】 (1); (2)10; (3)27; (4)-1213; (5)152; (6)65;12、【答案】 (1); (2)-; (3)30; (4)9; (5)69; (6)-6; (7); (8)013、【答案】 (1)8; (2)-3; (3)41; (4)-13; (5)-2; (6)902313。

七年级数学(上)有理数的混合运算练习题40道(带答案)

七年级数学(上)有理数的混合运算练习题40道(带答案)

七年级数学(上)有理数的混合运算练习题40道(带答案)嘿,同学们,今天咱们来聊聊数学这门神奇的学科。

说到数学,尤其是七年级的数学,那可是我们人生中第一次接触到有理数的混合运算。

今天,我就给大家带来了40道有理数混合运算的练习题,还有答案哦!准备好了吗?咱们就开始吧!1. 3 + 5 2 = ?2. 7 4 + 2 × 3 = ?3. 6 ÷ 2 + 3 × (2) = ?4. 8 (3) + 4 ÷ 2 = ?5. (5) × (2) + 3 1 = ?(答案:1. 0,2. 8,3. 7,4. 9,5. 7)怎么样,这些题目简单吗?其实,有理数的混合运算并没有那么难,关键是要掌握好运算顺序。

下面,我们再来挑战一些稍微有点难度的题目。

6. 2 × (3) + 4 (2) ÷ 2 = ?7. (1) × (4) 5 + 2 ÷ (2) = ?8. 6 (3) × 2 + 5 ÷ (1) = ?9. (2) ÷ 3 + 4 × (1) 5 = ?10. 7 3 × (2) + (4) ÷ 2 = ?(答案:6. 3,7. 3,8. 3,9. 7,10. 8)同学们,看到这里,你们是不是觉得有点头绪了呢?其实,数学就像一场游戏,只要我们用心去玩,就能找到其中的乐趣。

下面,我们再来挑战一些更有难度的题目。

11. (3) × (2) + 4 ÷ 2 5 = ?12. 6 (3) × 2 + (4) ÷ (1) = ?13. 7 × (1) + 4 (2) ÷ 2 = ?14. (2) × (3) + 5 4 ÷ 2 = ?15. 6 3 × (2) + (4) ÷ (1) = ?(答案:11. 4,12. 10,13. 7,14. 5,15. 10)怎么样,这些题目是不是有点意思了?其实,数学的世界是无穷无尽的,只要我们勇于挑战,就能发现其中的奥秘。

专项训练卷有理数的混合运算 (含答案)2024-2025学年数学北师大版(2024)七年级上册

专项训练卷有理数的混合运算 (含答案)2024-2025学年数学北师大版(2024)七年级上册

专项训练卷(一) 有理数的混合运算时间:60分钟 满分:100分考试范围:第二章题序一二三评卷人总分得分一、选择题(每小题4分,共32分)1.丁丁做了4道计算题:①(-1)2024=1;②0-(-1)=-1;③-1+13-12=-76;④12÷-12=1.请你帮他检查一下,他一共做对了( )A .1道B .2道C .3道D .4道2.要使得算式-1□0.5的值最小,则“□”中填入的运算符号是( )A .+B .-C .×D .÷3.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a-b+c=( )A .-1B .0C .1D .24.用2,0,2,2这四个数进行如下运算,计算结果最大的式子是( )A .2-0×2+2B .2-0+2×2C .2×0+2-2D .2+0-2×25.若m ,n 互为相反数,p ,q 互为倒数,t 的绝对值等于4,则m +n 2002024-(-pq )2023+t 3的值是( )A .-63B .65C .-63或65D .63或-656.如图,这是一个计算程序,若输入a 的值为-1,则输出的结果b 为( )A .-5B .-6C .5D .67.用“※”定义一种新运算:对于任何有理数a 和b ,规定a ※b=ab+b 2.如1※2=1×2+22=6,则(-4)※2的值为( )A .4B .-4C .8D .-88.在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图所示.则第5个方框中最下面一行的数可能是( )A .1296B .2809C .3136D .4225二、填空题(每小题4分,共16分)9.按照下图所示的步骤,若输入x 的值为-7,则输出y 的值为 .10.某地气象观测用的测温气球,每上升1千米,气温大约降低6 ℃,若地面温度为21 ℃,高空某处的气温为-39 ℃,则此处的高度为 千米.11.现用四个数2,-6,5,8进行加、减、乘、除、乘方混合运算,每个数只能用一次,且每个数都用上,要使运算结果等于24,则可以列式为 . 12.已知|x|=3,|y|=5,且x>y ,则3x-y 2的值为 . 三、解答题(本大题6小题,共52分)13.(6分)计算:(1)(-36)×12-59+712;(2)-14-[1―(1―0.5×13)×6].14.(8分)已知a 的立方等于-8,b 的倒数为-12,c 的绝对值为2,求a+b+c 2的值.15.(8分)阅读下列材料:计算:124÷13-14+112.解法一:原式=124÷13-124÷14+124÷112=124×3-124×4+124×12=1124.解法二:原式=124÷212=124×6=14.解法三:原式的倒数=13-14+112÷124=13-14+112×24=13×24-14×24+112×24=4.所以原式=14.(1)上述得到的结果不同,其中,解法 是错误的. (2)计算:12-14+16×36= .(3)请你选择合适的解法计算:-1210÷37+215-310-521.16.(8分)小乌龟从点A 出发,在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程(单位: cm)依次记为+5,-3,+10,-8,-6,+12,-10.(1)小乌龟最后是否回到出发点A ?(2)小乌龟在爬行过程中,若每爬行1 cm 奖励2粒芝麻,则小乌龟一共得到多少粒芝麻?17.(10分)已知四个数“-8,-2,1,3”及四种运算符号“+,-,×,÷”,请列算式解答下列问题:(1)求这四个数的和;(2)在这四个数中选出两个数,使得两数差的结果最小,并简单说明理由;(3)在这四个数中选出三个数,在这四种运算符号中选出两种,组成一个算式,可以带括号,使运算结果等于没选的那个数.18.(12分)规定一种新运算法则:a ※b=ab-2a+b 2.例如:1※2=1×2-2×1+22=4.请用上述运算法则回答下列问题:(1)求3※(-1)的值;(2)求(-4)※12※2的值;(3)若m※5的值为40,求m的值.参考答案一、选择题12345678BDCBCABB1.B 【解析】①(-1)2024=1,符合题意;②0-(-1)=0+1=1,不符合题意;③-1+13-12=-23-12=-76,符合题意;④12÷-12=-1,不符合题意.2.D 【解析】-1+0.5=-0.5;-1-0.5=-1.5;-1×0.5=-0.5;-1÷0.5=-2.所以使得算式-1□0.5的值最小时,“□”中填入的运算符号是÷.3.C 【解析】由题意,得a=0,b=-1,c=0,则a-b+c=1.4.B 【解析】2-0×2+2=2-0+2=4,2-0+2×2=2-0+4=6,2×0+2-2=0+2-2=0,2+0-2×2=2+0-4=-2,由上可得,2-0+2×2的结果最大.5.C 【解析】根据题意,得m+n=0,pq=1,t=4或t=-4,当t=4时,原式=02024-(-1)2023+43=0+1+64=65;当t=-4时,原式=02024-(-1)2023+(-4)3=1-64=-63.综上,m +n 2002024-(-pq )2023+t 3的值是65或-63.6.A 【解析】把a=-1代入得[(-1)2-(-2)]×(-3)+4=(1+2)×(-3)+4=3×(-3)+4=-9+4=-5.7.B 【解析】根据题中的新定义,得(-4)※2=-4×2+22=-8+4=-4.8.B 【解析】由图中信息可知,第一行从右向左分别为个位数字和十位数字的平方,每个数的平方占两个空,平方是一位数的前面的空用0填补,第二行前3个空是这个两位数的两个数字的乘积的2倍,然后相加即得到这个两位数的平方.第5个方框中第二行数是30,所以原数的十位数字和个位数字的乘积是30×12=15,那么这两个数就应该是3和5,所以这个两位数是35或53,352=1225,532=2809.二、填空题9.1 【解析】由题意可得,当x=-7时,(x+5)2-3=(-7+5)2-3=(-2)2-3=4-3=1.10.10 【解析】根据题意,得[21-(-39)]÷6×1=(21+39)÷6×1=60÷6×1=10(千米),则此处的高度为10千米.11.2×5-(-6)+8(答案不唯一)12.-16或-34 【解析】因为|x|=3,|y|=5,且x>y ,所以x=±3,y=-5,当x=3,y=-5时,3x-y 2=3×3-(-5)2=9-25=-16,当x=-3,y=-5时,3x-y 2=3×(-3)-(-5)2=-9-25=-34.三、解答题13.解:(1)原式=(-36)×12-(-36)×59+(-36)×712=(-18)+20+(-21)=-19;................................................(3分)(2)原式=-1-[1―(1―16)×6]=-1-(1-56×6)=-1-(1-5)=-1-(-4)=-1+4=3.......................................(6分)要点归纳 关于有理数的混合运算问题,运算顺序是:先算乘方,再算乘除,最后算加减,如果有括号,先算括号里的,若是同级运算,应按照从左到右的顺序进行.14.解:因为a 的立方等于-8,b 的倒数为-12,c 的绝对值为2,所以a 3=-8,1b =-12,|c|=2,所以a=-2,b=-2,c=±2,所以c 2=4.................................................................(4分)所以a+b+c 2=(-2)+(-2)+4=-4+4=0.....................................................................................................(8分)15.解:(1)一 .................................................................................................................................................(1分)提示:除法没有分配律,故解法一错误.(2)15 ..............................................................................................................................................................(4分)提示:12-14+16×36=12×36-14×36+16×36=18-9+6=15.(3)原式的倒数=37+215-310-521÷-1210=37+215-310-521×(-210)=37×(-210)+215×(-210)-310×(-210)-521×(-210)=-90-28+63+50=-5,所以-1210÷37+215-310-521=-15.............................................................................................................(8分)16.解:(1)+5-3+10-8-6+12-10=+5+10+12-3-8-6-10=27-27=0,所以小乌龟最后回到出发点A..............................................................................................................(4分)(2)小乌龟爬行的总路程为|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm),54×2=108(粒).所以小乌龟一共得到108粒芝麻.........................................................................................................(8分)17.解:(1)-8-2+1+3=-10+4=-6................................................................................................................(2分)(2)由题意可得,(-8)-3=(-8)+(-3)=-11....................................................................................................(4分)理由:要使得两数差的结果最小,则选择最小的负数与最大的正数作差..................................(6分)(3)答案不唯一,如(-8)÷(-2)-3=1或(-8)÷(-2)-1=3或(1+3)×(-2)=-8...........................................(10分)18.解:(1)3※(-1)=3×(-1)-2×3+(-1)2=(-3)-6+1=-8;...........................................................................(3分)(2)(-4)※12※2=(-4)※12×2-2×12+22=(-4)※(1-1+4)=(-4)※4=(-4)×4-2×(-4)+42=(-16)+8+16=8;.........................................................................................................................................................................(8分)(3)因为m ※5的值为40,所以5m-2m+52=40,解得m=5,即m 的值是5...........................................................................................................................................(12分)。

七年级数学上册二单元有理数的混合运算测验题附答案

七年级数学上册二单元有理数的混合运算测验题附答案

七年级数学上册二单元有理数的混合运算测验题附答案七年级数学上册二单元有理数的混合运算测验题附答案有理数可以用大写黑正体符号Q代表。

小编为大家准备了这篇七年级数学上册二单元有理数的混合运算测验题。

1.形如a cb d的式子叫做二阶行列式,它的运算法则用公式表示为a cb d=ad-bc,依此法则计算2 -1-3 4的结果为(C)A.11B.-11C.5D.-22.计算13÷(-3)×-13×33的结果为(A)A.1B.9C.27D.-33.下列各组数中最大的数是(D)A.3×32-2×22B.(3×3)2-2×22C.(32)2-(22)2D.(33)2-(22)24.计算16-12-13×24的结果为__-16__.5.若(a-4)2+|2-b|=0,则ab=__16__,a+b2a-b=__1__.6.计算:(1)(23-3)×45=__4__;(2)(-4)÷(-3)×13=__49__.7.若n为正整数,则(-1)n+(-1)n+12=__0__.8.计算:(1)-0.752÷-1123+(-1)12×12-132;(2)(-3)2-(-5)2÷(-2);(3)(-6)÷65-(-3)3-1-0.25÷12×18.【解】 (1)原式=-342÷-323+(-1)12×162=-916÷-278+1×136 =916×827+136=16+136=736.(2)原式=(9-25)÷(-2)=(-16)÷(-2)=16×12=8.(3)原式=-6×56--27-1-12×18=-5+495=490.9.对于任意有理数a,b,规定一种新的运算:a*b=a2+b2-a-b+1,则(-3)*5=__33__.【解】 (-3)*5=(-3)2+52-(-3)-5+1=9+25+3-5+1=33.10.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水(C)A.3瓶B.4瓶C.5瓶D.6瓶【解】 16个矿泉水瓶换4瓶矿泉水,再把喝完的4个空瓶再换一瓶水,共5瓶,故选C.11.已知2a-b=4,则2(b-2a)2-3(b-2a)+1=__45__.【解】∵2a-b=4,∴b-2a=-4.原式=2×(-4)2-3×(-4)+1=45.12.十进制的自然数可以写成2的乘方的降幂的式子,如:19(10)=16+2+1=1×24+0×23+0×22+1×21+1×20=10011(2),即十进制的数19对应二进制的'数10011.按照上述规则,十进制的数413对应二进制的数是__110011101__.【解】413(10)=256+128+16+8+4+1=1×28+1×27+0×26+0×25+1×24 +1×23+1×22+0×21+1×20=110011101(2).13.如图,一个盖着瓶盖的瓶子里面装着一些水,根据图中标明的数据,瓶子的容积是__70__cm3.(第13题)14.(1)计算:23÷-122-9×-133+(-1)16;(2)已知c,d互为相反数,a,b互为倒数,|k|=2,求(c+d)5a-7b9a+8b+5ab-k2的值.【解】 (1)原式=8×4-9×-127+1=32+13+1=3313.(2)由题意,得c+d=0,ab=1,k=±2,∴原式=0+5-4=1.15.计算:11×2×3+12×3×4+13×4×5+…+111×12×13.【解】原式=1211×2-12×3+1212×3-13×4+1213×4-14×5+…+12111×12-112×13=1211×2-12×3+12×3-13×4+13×4-14×5+…+111×12-112×13=1211×2-112×13=77312.16.阅读材料,思考后请试着完成计算:大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…n=12n(n+1),其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…n(n+1)=?观察下面三个特殊的等式:1×2=13(1×2×3-0×1×2);2×3=13(2×3×4-1×2×3);3×4=13(3×4×5-2×3×4).将这三个等式的两边相加,可以得到1×2+2×3+3×4=13×3×4×5=20.读完这段材料,请计算:(1)1×2+2×3+…+100×101;(2)1×2+2×3+…+2015×2016.【解】(1)1×2+2×3+…+100×101=13(1×2×3-0×1×2)+13(2×3×4-1×2×3)+…+13(100×101×102-99×100×101)=13(100×101×102-0×1×2)=343400.(2)同理于(1),原式=13(2015×2016×2017-0×1×2)=2731179360.七年级数学上册二单元有理数的混合运算测验题到这里就结束了,希望同学们的成绩能够更上一层楼。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的混合运算测试卷
一、填空(每空1分,共24分)
1. 在下列各式的括号内填上适当的数: (1)-(-5)+( )=5 (2)( )×(-9)=-1
(3)(+5
3
)×( )=1 (4)(-7)-(-2)=( ) (5)( )÷(-41
)= 4
(6)(-5)÷( )=15
(7)-5×4×51
=( )
(8)3×5×7+(-3)(-5)(-7)=( )
(9))(=9
1
2.
二、选择题(每题2分,共30分。

请将你的选择答案填在下表中)
(A )非负数 (B )非正数 (C )负数 (D )正数 2. 两个负数的差是正数,就必须符合( )
(A )被减数大 (B )被减数小 (C )两个数相等 (D )减数大 3. 两个负数的差为零,就必须符合( )
(A )被减数大 (B )被减数小 (C )两个数相等 (D )减数大 4. 下列式子中,正确的是( )
①-|-5|=-5 ②|-(-5)|=-5 ③-(-5)=-5 ④-[-(-5)]=-5 (A )①和② (B )①和③ (C )①和④ (D )②和③ 5. 一个数与( )相加,仍得本身
(A )正数 (B )负数 (C )零 (D )整数
6. 下列式子使用加法交换律,正确的是( )
①(a+b )+c=a+(b+c ) ②2+(-5 )=-5+2 ③a+b=b+a ④ab=ba (A )①和② (B )①和③ (C )①和④ (D )②和③ 7. 式子-20-5+3+7读作( )
(A )20,5,3,7的和 (B )20,5,3,7的差 (C )负20,负5,正3,正7的和 (D )3与7的和及20与5的差 8. n 个不等于零的有理数的积是负数,负因数有( )
(A )无数个 (B )奇数个 (C )偶数个 (D )一个 9. 一个数除以它的绝对值的商为-1,这个数是( )
(A )正数 (B )非负数 (C )非正数 (D )负数 10. 式子4×25×(
21-103+52)=100(21-103+5
2
)=50-30+40中用的运算律是( ) (A )乘法交换律及乘法结合律 (B )乘法交换律及分配律
(C )乘法结合律及分配律 (D )分配律及加法结合律 11. 两个互为倒数的数的积是( )
(A )正数 (B )负数 (C )零 (D )任何有理数 12. 两个带有绝对值的数的积是( )
(A )正数 (B )负数 (C )零 (D )非负数
13. 如果两个数之和等于零,并且这两个数的积为负数,那么这两个数只能是( )
(A )符号不同的两个数 (B )都为零的两个数 (C )互为相反数且不相等 (D )都不是正数的两个数 14. 和自身的倒数相等的有理数有( )
(A )1个 (B )2个 (C )3个 (D )不存在 15. ( )的绝对值和它的倒数之和为零。

(A )1 (B )0 (C )-1 (D )以上结论都不对 三、判断题(对的打“”,错的打“”,每题1分,共10分) 1. 绝对值不大于3的所有整数是-2,-1,0,1,2。

( ) 2. 任何有理数都可以写出它的倒数。

( ) 3. 把减数变为它的倒数,减法就可以转化为加法。

( ) 4. 把除数变为它的相反数,除法就可以转化为乘法。

( ) 5. a 是任意一个有理数,则|a|一定不是负数。

( ) 6. 任何有理数都可以写出它的相反数。

( ) 7. 两个数的积一定大于两个因数。

( ) 8. 两个数的商一定小于被除数。

( ) 9. 已知|a|=12,b 的相反数是20,则a+b 的值是-8。

( ) 10. 较小的有理数减去较大的有理数,它们的差一定是负数。

( ) 四、计算(每题3分共36分) 1.(-
21)×(-32)×(-4
3

2. -6+(-3)×(+25)
3. -374÷(-132)×(-432)
4. 917
16×(-34)
5. )72
1()361()9
4(-÷⎥⎦⎤⎢⎣
⎡-
-+
6. (+74)×(-1280)+74×1140+(-74)×(-141)
7. (-8)(-7.2)(-2.5)(+125) 8. 13×32+0.34×72+31×13+7
5
×0.34 9.(-2476)÷6 10. (97-65+36
7
)×36-5.45×6+1.45×6
11. -1×⎭
⎬⎫⎩⎨⎧--÷⎥⎦⎤
⎢⎣⎡-⨯-+-÷2)32()4.0()411()4(324
12. (-1
72)×75÷(-43)×2.5÷(-0.25)×52×231÷(-7
5

答案及解释
一、填空:
1. (1)、0;(2)、91
;(3)、35;(4)、-5;(5)、-1;(6)、-
3
1
;(7)、-4;(8)、0;(9)、±9
1
(此题错得多) 2.
二、选择:
三、判断:
1、2、3、4、7、8、9错,其他对 四、计算: 1、-4
1
;2、-81;3、-10;4、-338;5、-34;6、74;7、-60;8、13.34;9、-4
7
1
;10、-19;11、0;12、16。

相关文档
最新文档