新乡数学全等三角形单元复习练习(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新乡数学全等三角形单元复习练习(Word版含答案) 一、八年级数学轴对称三角形填空题(难)

1.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=1

2

BC,则△ABC的顶角的度数为

_____.

【答案】30°或150°或90°

【解析】

试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.

解:①BC为腰,

∵AD⊥BC于点D,AD=1

2 BC,

∴∠ACD=30°,

如图1,AD在△ABC内部时,顶角∠C=30°,

如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,

②BC为底,如图3,

∵AD⊥BC于点D,AD=1

2 BC,

∴AD=BD=CD,

∴∠B=∠BAD,∠C=∠CAD,

∴∠BAD+∠CAD=1

2

×180°=90°,

∴顶角∠BAC=90°,

综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.

故答案为30°或150°或90°.

点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.

2.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD,当△AOD是等腰三角形时,求α的角度为______

【答案】110°、125°、140°

【解析】

【分析】

先求出∠DAO=50°,分三种情况讨论:①AO=AD,则∠AOD=∠ADO,②OA=OD,则

∠OAD=∠ADO,③OD=AD,则∠OAD=∠AOD,分别求出α的角度即可.

【详解】

解:∵设∠CBO=∠CAD=a,∠ABO=b,∠BAO=c,∠CAO=d,

则a+b=60°,b+c=180°﹣110°=70°,c+d=60°,

∴b﹣d=10°,

∴(60°﹣a)﹣d=10°,

∴a+d=50°,

即∠DAO=50°,

分三种情况讨论:

①AO=AD,则∠AOD=∠ADO,

∴190°﹣α=α﹣60°,

∴α=125°;

②OA=OD,则∠OAD=∠ADO,

∴α﹣60°=50°,

∴α=110°;

③OD=AD,则∠OAD=∠AOD,

∴190°﹣α=50°,

∴α=140°;

所以当α为110°、125°、140°时,三角形AOD 是等腰三角形,

故答案为:110°、125°、140°.

【点睛】

本题是对等边三角形的考查,熟练掌握等边三角形的性质定理及分类讨论是解决本题的关键.

3.在平面直角坐标系xOy 中,已知点A (2,3),在x 轴上找一点P ,使得△AOP 是等腰三角形,则这样的点P 共有_____个.

【答案】4

【解析】

【分析】

以O 为圆心,OA 为半径画弧交x 轴于点P 1、P 3,以A 为圆心,AO 为半径画弧交x 轴于点P 4,作OA 的垂直平分线交x 轴于P 2.

【详解】

解:如图,使△AOP 是等腰三角形的点P 有4个.

故答案为4.

【点睛】

本题考查了在平面直角坐标系中寻找等腰三角形,掌握两圆一线找等腰三角形是解题的关键.

4.如图,线段AB ,DE 的垂直平分线交于点C ,且72ABC EDC ∠=∠=︒,

92AEB ∠=︒,则EBD ∠的度数为 ________ .

【答案】128︒

【解析】

【分析】

连接CE ,由线段AB ,DE 的垂直平分线交于点C ,得CA=CB ,CE=CD ,

ACB=∠ECD=36°,进而得∠ACE=∠BCD ,易证∆ACE ≅∆BCD ,设∠AEC=∠BDC=x ,得则

∠BDE=72°-x ,∠CEB=92°-x ,BDE 中,∠EBD=128°,根据三角形内角和定理,即可得到答案.

【详解】

连接CE ,

∵线段AB ,DE 的垂直平分线交于点C ,

∴CA=CB ,CE=CD ,

∵72ABC EDC ∠=∠=︒=∠DEC ,

∴∠ACB=∠ECD=36°,

∴∠ACE=∠BCD ,

在∆ACE 与∆BCD 中,

∵CA CB ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩

∴∆ACE ≅

∆BCD (SAS ), ∴∠AEC=∠BDC ,

设∠AEC=∠BDC=x ,则∠BDE=72°-x ,∠CEB=92°-x ,

∴∠BED=∠DEC-∠CEB=72°-(92°-x )=x-20°,

∴在∆BDE 中,∠EBD=180°-(72°-x )-(x-20°)=128°.

故答案是:128︒.

【点睛】

本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.

5.如图,将ABC ∆沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的1A 处,称为第1次操作,折痕DE 到BC 的距离记为1h ,还原纸片后,再将ADE ∆沿着过AD 中点1D 的直线折叠,使点A 落在DE 边上的2A 处,称为第2次操作,折痕11D E 到BC 的距离记为2h ,按上述方法不断操作下去…经过第2020次操作后得到的折痕20192019D E 到BC 的距离记为2020h ,若11h =,则2020h 的值为______.

【答案】2019122-

【解析】

【分析】

根据中点的性质及折叠的性质可得DA=DA ₁=DB,从而可得∠ADA ₁=2∠B,结合折叠的性质可得.,∠ADA ₁=2∠ADE,可得∠ADE=∠B,继而判断DE// BC,得出DE 是△ABC 的中位线,证得AA ₁⊥BC,AA ₁=2,由此发现规律:01

2122h =-=-₁同理21122h =-3211122222

h =-⨯=-…于是经过第n 次操作后得到的折痕Dn-1 En-1到BC 的距离1122n n h -=-

,据此求得2020h 的值. 【详解】

相关文档
最新文档