初二数学竞赛辅导共30讲

合集下载

初中数学竞赛辅导

初中数学竞赛辅导

初中数学竞赛辅导资料3质数 合数甲内容提要1 正整数的一种分类: 质数的定义:如果一个大于1的正整数,只能被1和它本身整除,那么这个正整数叫做质数质数也称素数.合数的定义:一个正整数除了能被1和本身整除外,还能被其他的正整数整除,这样的正整数叫做合数.2 根椐质数定义可知① 质数只有1和本身两个正约数,② 质数中只有一个偶数2如果两个质数的和或差是奇数那么其中必有一个是2,如果两个质数的积是偶数那么其中也必有一个是2,3任何合数都可以分解为几个质数的积.能写成几个质数的积的正整数就是合数.乙例题例1两个质数的和等于奇数a a ≥5.求这两个数解:∵两个质数的和等于奇数∴必有一个是2所求的两个质数是2和a -2.例2己知两个整数的积等于质数m, 求这两个数解:∵质数m 只含两个正约数1和m,又∵-1-m=m∴所求的两个整数是1和m 或者-1和-m.例3己知三个质数a,b,c 它们的积等于30求适合条件的a,b,c 的值解:分解质因数:30=2×3×5适合条件的值共有: ⎪⎩⎪⎨⎧===532c b a ⎪⎩⎪⎨⎧===352c b a ⎪⎩⎪⎨⎧===523c b a ⎪⎩⎪⎨⎧===253c b a ⎪⎩⎪⎨⎧===325c b a ⎪⎩⎪⎨⎧===235c b a 应注意上述六组值的书写排列顺序,本题如果改为4个质数a,b,c,d 它们的积等于210,即abcd=2×3×5×7那么适合条件的a,b,c,d 值共有24组,试把它写出来.例4试写出4个连续正整数,使它们个个都是合数.解:本题答案不是唯一的设N 是不大于5的所有质数的积,即N =2×3×5那么N +2,N +3,N +4,N +5就是适合条件的四个合数即32,33,34,35就是所求的一组数.本题可推广到n 个.令N 等于不大于n+1的所有质数的积,那么N +2, N +3,N +4,……N +n+1就是所求的合数.丙练习31, 小于100的质数共___个,它们是__________________________________ 2, 己知质数P 与奇数Q 的和是11,则P =__,Q =__3, 己知两个素数的差是41,那么它们分别是_____4, 如果两个自然数的积等于19,那么这两个数是___如果两个整数的积等于73,那么它们是____如果两个质数的积等于15,则它们是_____5, 两个质数x 和y,己知 xy=91,那么x=__,y=__,或x=__,y=__. 6, 三个质数a,b,c 它们的积等于1990.那么 ⎪⎩⎪⎨⎧===c b a7, 能整除311+513的最小质数是__8,己知两个质数A 和B 适合等式A +B =99,AB =M.求M 及B A +AB 的值 9,试写出6个连续正整数,使它们个个都是合数.10,具备什么条件的最简正分数可化为有限小数11,求适合下列三个条件的最小整数:① 大于1 ②没有小于10的质因数 ③不是质数12,某质数加上6或减去6都仍是质数,且这三个质数均在30到50之间,那么这个质数是___13,一个质数加上10或减去14都仍是质数,这个质数是__.。

初中数学竞赛辅导整数问题选讲

初中数学竞赛辅导整数问题选讲

第1讲 整数问题选讲【例l 】 求一个最小的正整数,使它的21是平方数,31是立方数,51是五次方数. 分析与解 因为这个整数的21,31,51是整数,所以它一定能被2、3、5整除,再考虑这个整数的最小性要求,它应具有形式:)0,0,0(,532=/=/=/=c b a N c b a又因为c b a N 532211-= 是平方数,则c b a ,,1-均为偶数. 因为 c l b a N 53231-=是立方数,则c b a ,1,-均为3之倍数. 因为 153251-=c b a N 是5次方数,则1,,-c b a 为5之倍数. 进而知 a 是3和5的倍数,且a 为奇数,则a 最小为15;b 是2和5的倍数,且b 被3除余l ,则b 最小数为l0;c 是2和3的倍数,且c 被5除余l ,则c 最小数为6;故所求数为 .53261015⨯⨯=N【例2】能同时表示成连续9个整数之和、连续l0个整数之和及连续11个整数之和的最小正整数是哪个分析与解 设所求正整数为A ,则依题意A 可表示为(其中p ,n ,k 均为整数): 459)9()2()1p (+=++++++=p p p A ①5510)10()2()1(+=++++++=n n n n A ②6611)11()2()1(+=++++++=k k k k A ③由①、②、③可得: )(109t n p += ④)1(1110+=k n ⑤再由④、⑤知n 是11的倍数,且除以9余8.故n 最小可取44.所以A 的最小值为10×44+55=495.【例3】有一个三位数,能被35整除,并且各位数字之和为l5,求这个数. 分析与解 设所求三位数为abc N =,则有c b a N ++=10100,15=++c b a因为35│N ,当然有5│N ,故c=0或c=5.当c=0时,有 )15(1010010100a a b a N -+=+=15090+=a )12(3)2112(7+++=a a由7│N 知 7│3)12(+a . 从而7│2a+l因为 a + b=15 , 所以 6≤a≤9,故满足7│2a+l 的a 不存在.当c=5时,有 a a N 6)1512(7++=由7│N 推出7│6a. 显然当a =7时成立.这时b=3,故所求三位数为735.【例4】一个两位数除以它的反序数所得的商恰好等于余数,求这个两位数.分析与解 设这个两位数为y x N +=10,则由题意可得:,)10(10q q x y y x ++=+ (其中q 为自然数)变形为 q y q x q =---)110()10(以下就q 的取值进行讨论:(1)1=q ,有1)(9=-y x ,不可能成立;(2)2=q ,有,2198=-y x 这时y 为偶数:2=y 时,;5=x 8,6,4=y 时,均不可能成立;(3)3=q ,有3297=-y x ,不存在x 、y ;(4)4=q ,有4396=-y x .这样的x 、y 也不存在;(5)5≥q ,有,549)110(x )10(5≥+-=-≥y q q x 11≥x ,即无解.综上所述,所求两位数为52.【例5】一整数a 若不能被2和3整除,则472+a 必能被24整除.分析与解 因为4814722+-=+a a ,所以需往证 24 │1-2a因为a 不能被2整除.则a 为奇数.即a 可表示为:12+=k a (k 为整数)所以 )1(41)12(122+=-+=-k k k a 能被8整除.又 ()()()1112+-=-a a a a a 为连续三整数之积,必能被3整除,而a 不能被3整除, 则12-a 一定能被3整除.由(3,8)=1,知12-a 能被3×8=24整除.即证.【例6】若整数a 、b 、c 、d 和m 使d cm bm am +++23能被5整除,且d 不能被5整除,证明:总可以找到这样的整数n ,使得a bn cn dn +++23也能被5整除.分析与证 设 d cm bm an A +++=23 a bn cn dn B +++=23消去d 得: ]1)1()[1(22223+++++-=-cn bmn mn n m a mn B An又由题设d 不能被5整除,知m 不能被5整除,故m 的取值有下列四种情形:l k m +=5,此时取,15+=t n 25+=k m ,此时取,35+=t n35+=k m ,此时取,25+=t n45+=k m ,此时取,45+=t n都能有5│1-mn ,即有5│B An -3从而5│ B .即对任何的m ,都可找到相应的m ,使5│B .【例7】试求一个三位数abc ,使得它的平方的末三位数字仍是abc .分析与解 由题意.我们作)1(2-=-abc abc abc abc它应为1000的倍数.而1000 = 8×125因为(8,125)=1, 1)1,(=-abc abc ,所以由l000│)1(-abc abc推出 8│abc ,125│1-abc 或 125│abc ,8│1c -ab由125│1-abc ,知abc =126,251,376,501,626,751; 这里仅有376=abc ,使8│abc由125 │abc ,知abc =125,250,375,50'0,625,750, 这里仅有625=abc 时,使8│1c -ab .所以满足条件的三位数有376和625.【例8】如果a 为合数,则a 的最小质因数一定不大于a分析与证 设bq a =,其中q 为最小质因数.若a q >,显然同时也有a b >. 则a a a bq a =⋅>=矛盾,所以结论成立.说明 这一结论表明,合数a 一定是不大于a 的质数的倍数.换句话说,如果所有不大于a 的质数都不能整除a (a ≠l),那么a 一定是质数.这就给出了判断一个数是不是质数的一种方法,如判断191是不是质数,由于a <14,小于14的质数2,3,5,7,11,13都不能整除191,所以191是质数.利用这种方法,可以求出不大于a 的所有质数.例如求50以内的所有质数.由于不大于a <8的质数有2、3、5、7,可在2,3,4,…,50中依次划去2、3、5、7的倍数(保留2、3、5、7)最后余下的数:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47就是50以内的全体质数.这就是著名的爱拉托斯散素数筛选法. · ’思考 用爱拉托斯散筛选法求出100以内的所有质数.【例9】如果p 和182+p 都是质数,求证:282+-p p 也是质数.分析与解 按整数除以3的余数对P 进行分类讨论:当13+=k p 时,)31624(31)13(818222++=++=+k k k p 为合数,故;13+=/k p 当23+=k p 时,)113224(31822++=+k k p 为合数,故;23+=/k p于是k p 3=,由P 为质数,仅有P=3,73182=+p 为质数,71282=+-p p 也为质数.所以只要P 和182+p 为质数,2p 82+-p 也为质数.【例l0】有两个两位数,它们的差为56,它们的平方末两位数相同,求这两个数. 分析与解 设这两个数为)(b b a a 、>,则有8756⨯==-b a 。

八年级上数学竞赛辅导--非常规题例解(教师版)

八年级上数学竞赛辅导--非常规题例解(教师版)

非常规题例解数学竞赛中,我们经常遇到与课本习题很大不同的一类题,它很难归人初中数学某一知识点,按照常规的解题方法很难获解.我们姑且称它为非常规题.它以思想深刻与方法 巧妙为其显著特征.解题时更需要敏锐的观察、判断和推理能力.现举例介绍一些解这类题的思考方法.例1 国际象棋比赛中,共8名选手进行单循环比赛,每赛一局胜者得1分。

负者得0分,平局各得0.5分.赛完后,发现各选手得分都不相同,当选手得分由大到小排列了名次后,第4名选手得分4.5分,第2名选手得分等于最后四名选手得分的总和.前三名选手各得几分?说明理由.解:8名选手共赛了28278=⨯局,共28分.若前三名选手得分分别为321,,a a a ,那么根据题意应有321a a a ++285.42=++a ,即5.232321=++a a a ① 注意到每局得分只有0、0.5、1三种情形,可见22a 是整数,由①式知31a a 、中一个是整数,另一个是小数.由于得分最多是7分,所以5.47321>>>≥a a a又由①式知5.2341>a ,5.2343<a ,即875.51>a ,.875.53<a所以671≥≥a ,.563≥>a 于是53=a 或5.5.当53=a 时,1a 只能是小数,所以5.61=a ,由①式得1222=a ,故.62=a当5.53=a 时,1a 只能是整数,所以71=a ,由①式得1122=a ,故5.52=a ,与3a 相等了,不合题意.综上所述,前三名得分分别是6.5分,6分,5分.例2将1~8这八个数放在正方体的八个顶点上,使任一面上四个数中任意三数之和不小于10.求各面上四数之和中的最小值.解 情形1:这个面上出现数1,设其余三个数为a ,b ,c .因为,b a +c b +,a c +互不相同,且依题意加1之和不小于10,这样b a +,c b +,a c +这三个数至少不小于9,10,11.故,11109)()()(++≥+++++a c C b b a即.15≥++c b a 加上1之后,四个数之和≥16.情形2:这个面上不出现l .显然依题意这个面上不能同时出现2,3,4,因为.109432<=++于是这些数至少有2,3,5,6,而2+3+5+6=l6.故四数之和的最小值为l6.具体作图如图例3 在一个边长为l2的正方形中,有一组直线段,使得从这个正方形中的每一点到最近的直线段的距离至多是l .求证:这些线段的总长度超过70.证明: 设有n 条直线段,第i 条直线段长为0>i x ,以i x 为中位线作一个高为2的长方形(如图).当对每一条直线段都作出了这样的长方形之后,由题设可知,原正方形内的每一点都一定落在某一个这样的长方形内.这就是说所有长方形的全体覆盖了原来的正方形.因此,所有长方形的面积必大于或等于原正方形的面积,即,14412)(2221=≥+++n x x x,7221≥+++n x x x.7021>+++n x x x即这些直线段的总长度超过70.例4 对非负整数n ,满足方程n x y x =++2的非负整数解),,(z y x 的组数记为n a .(1)求3a 的值; (2)求2001a 的值.解 (1)当n =3时,有.32=++z y x 由0,0,0≥≥≥z y x ,可得.10≤<≤z当1=z 时,1=+y x ,于是).0,1(),1,0(),(=y x当0=z 时,3=+y x ,于是),2.1(),3,0(),(=y x ).0,3(),1,2( 综上可得.63=a(2)当n =2001时,有.20012=++z y x 由0,0,0≥≥≥z y x ,可得.10000≤≤z 当1000=z 时,1=+y x ,于是)0,1(),1,0(),(=y x 有2组;当z = 999时,3=+y x ,于是)2,1(),3,0(),(=y x ,)0,3(),1,2(,有4组;当z = 998时,5=+y x ,于是=),(y x (0,5), (1,4),(2,3),(3,2),(4,1),(5,O),有6组. 当z =0时,(x ,y )=(0,2001),(1,2000),…,(2001,0),有2 002组.综上,数组(x ,y ,z )共有 2 + 4 + 6 + … + 2002 = 2(1 + 2 + 3 + … + 1001)=1003002(组). 所以a 2001 = 1003002.例5 数列 0,1,1,2,2,3,3,4,4,…,r ,r ,r + 1,r + 1,…令T n 表示数列前n 项的和.(1)归纳T n 的计算公式;(2)证明;st T T t s t s =--+,这里s ,t 是正整数,s>t .解 (1)如果n 是偶数,那么T n =0 + 1 + 2 + 3 + …+(2n - 1) + 1 + 2 + 3 + … + 2n⋅=++⋅-=4)12)(2(212)12(212n n n n n 如果n 是奇数,那么212121210-++++-++++=n n T n ⋅-=---=41)121)(21)(21(22n F n n 所以⎪⎪⎩⎪⎪⎨⎧-=).(41),(422是奇数是偶数n n n n T n (2)注意到s + t 与S - t 的差是2t ,所以s + t 与S - t 同为奇数或同为偶数. 在偶数情形,;4)(42)(2St t s t s T T t s t s =--+=--+ 在奇数情形,st t s t s T T ts t s =----+=--+41)(41)(22例6 一幢33层的大楼有一部电梯停在第一层,它一次最多能容纳32人,而且只能在第2层至第33层中的某一层停一次,对于每个人来说,他往下走一层楼梯感到1分不满意,往E 二走一层楼梯感到3分不满意.现在有32个人在第一层,并且他们分别住在第2至第33层的每一层.问:电梯停在哪一层,可以使得这32个人不满意的总分达到最小?最小值是多少?(有些人可以不乘电梯而直接从楼梯上楼)。

初二数学竞赛辅导

初二数学竞赛辅导

淮安外国语学校初二数学竞赛辅导专题一概率概率是新课程增加的内容之一,概率题不只以“投骰子”和“扑克牌”为背景,更多是以生活实际、游戏和新课程核心内容为背景。

1.概率与实际问题例1.甲、乙、丙、丁四位同学参加校田径运动会4×100米接力跑比赛,如果任意安排四位同学的跑步顺序,那么恰好由甲将接力棒交给乙的概率是 .例2.某省N市和S市之间每天有往返飞机航班各2趟,设从N 市飞往S市的航班为A、B,从S市飞往N 市的航班为以a、b,业务员小路和小乔同一天从N市飞往S市,第二天又从S市飞回N 市,如果他们可选择任一航班往返.求:(1)选择同一航班从N市飞往S市的概率是多少?(2)选择相同航班往返的概率是多少?解答中请用列表法或树形图分析.2.概率与函数例3.六个面上分别标有1 ,1 ,2 ,3 ,3 ,5六个数字的均匀立方体表面如图 3 所示. 掷这个立方体一次,记朝上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数为该点的纵坐标. 按照这样的规定,每掷一次该立方体,就能得到平面内的一个点的坐标. 已知小明前两次掷得的两个点能确定一条直线l ,且这条直线l 经过点(4 ,7) . 那么,他第三次掷得的点也在这条直线上的概率是 .例4:(2013•恩施州)一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为.(1)求袋子里2号球的个数.(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x,乙摸出球的编号记为y,用列表法求点A(x,y)在直线y=x下方的概率.3.概率与几何问题例5(2013•临沂)如图,在平面直角坐标系中,点A1,A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是()B C D纸板上),则飞镖落在阴影区域的概率是.例7.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,求这张卡片与口袋外的两张卡片上的数能构成三角形的概率是.例8. 长为1、2、3、4、5的线段各一条,从这5条线段中任取3条,能构成钝角三角形的概率为.例9.(2013•苏州)如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全..等.但面积相等的三角形是(只需要填一个三角形);(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解).4.概率与游戏概率起源于游戏和赌博,所以概率以游戏作为背景就不足为怪了.例10. (田忌赛马)齐王和他的大臣田忌均有上、中、下马各一匹,每场比赛三匹马各出场一次,共赛三次,以胜的次数多者为赢.已知田忌的马较齐王的马略有逊色,即田忌的上马不敌齐王的上马,但胜过齐王的中马;田忌的中马不敌齐王的中马,但胜过齐王的下马;田忌的下马不敌齐王的下马.田忌在按图7的方法比赛屡败后,接受了孙膑的建议,用图8的方法,结果田忌两胜一负,赢了比赛.假如在不知道齐王出马顺序的情况下,田忌能赢得比赛的概率?例11. 甲、乙两同学下棋,胜一盘得2分,和一盘各得1分,负一盘得0分.连下三盘,得分多者胜.甲取胜的概率是.例12. 一场数学游戏在两个非常聪明的学生甲、乙之间进行.裁判在黑板上先写出正整数2,3,⋯,2006,然后随意擦去一个数,接下来由乙、甲两人轮流擦去其中的一个数(即乙先擦去其中的一个数,然后甲再擦去另一个数,如此下去).若最后剩下的两个数互质,则判甲胜,否则,判乙胜.按照这种游戏规则,求甲获胜的概率.(用具体的数字回答)链接中考:1.(2013兰州)某校决定从两名男生和三名女生中选出两名同学作为兰州国际马拉松赛的志愿者,则选出一男一女的概率是.2. (2013•江西)甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是().A.乙抽到一件礼物B.乙恰好抽到自己带来的礼物C.乙没有抽到自己带来的礼物D.只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A),请列出事件A的所有可能的结果,并求事件A的概率.3. (2013•荆门)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时:(1)求三辆车全部同向而行的概率;(2)求至少有两辆车向左转的概率;(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为,向左转和直行的频率均为.目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.。

初中数学竞赛辅导讲义及习题解答 第23讲 圆与圆

初中数学竞赛辅导讲义及习题解答 第23讲 圆与圆

第二十三讲圆与圆圆与圆的位置关系有外离、外切、相交、内切、内含五种情形,判定两圆的位置关系有文档设计者:设计时间:文档类型:文库精品文档,欢迎下载使用。

Word精品文档,可以编辑修改,放心下载如下三种方法:1.通过两圆交点的个数确定;2.通过两圆的半径与圆心距的大小量化确定;3.通过两圆的公切线的条数确定.为了沟通两圆,常常添加与两圆都有联系的一些线段,如公共弦、共切线、连心线,以及两圆公共部分相关的角和线段,这是解圆与圆位置关系问题的常用辅助线.熟悉以下基本图形、基本结论:【例题求解】【例1】如图,⊙O l与半径为4的⊙O2内切于点A,⊙O l经过圆心O2,作⊙O2的直径BC 交⊙O l于点D,EF为过点A的公切线,若O2D=22,那么∠BAF= 度.思路点拨直径、公切线、O2的特殊位置等,隐含丰富的信息,而连O2O l必过A点,先求出∠D O2A的度数.注:(1)两圆相切或相交时,公切线或公共弦是重要的类似于“桥梁”的辅助线,它可以使弦切角与圆周角、圆内接四边形的内角与外角得以沟通.同时,又是生成圆幂定理的重要因素.(2)涉及两圆位置关系的计算题,常作半径、连心线,结合切线性质等构造直角三角形,将分散的条件集中,通过解直角三角形求解.【例2】如图,⊙O l与⊙O2外切于点A,两圆的一条外公切线与⊙O1相切于点B,若AB 与两圆的另一条外公切线平行,则⊙O l 与⊙O2的半径之比为( )A.2:5 B.1:2 C.1:3 D.2:3思路点拨添加辅助线,要探求两半径之间的关系,必须求出∠CO l O2 (或∠DO2O l)的度数,为此需寻求∠CO1B、∠CO1A、∠BO1A的关系.【例3】如图,已知⊙O l与⊙O2相交于A、B两点,P是⊙O l上一点,PB的延长线交⊙O2于点C,PA交⊙O2于点D,CD的延长线交⊙O l于点N.(1)过点A作AE∥CN交⊙O l l于点E,求证:PA=PE;(2)连结PN,若PB=4,BC=2,求PN的长.思路点拨(1)连AB,充分运用与圆相关的角,证明∠PAE=∠PEA;(2)PB·PC=PD·PA,探寻PN、PD、PA对应三角形的联系.【例4】如图,两个同心圆的圆心是O,AB是大圆的直径,大圆的弦与小圆相切于点D,连结OD并延长交大圆于点E,连结BE交AC于点F,已知AC=24,大、小两圆半径差为2.(1)求大圆半径长;(2)求线段BF的长;(3)求证:EC与过B、F、C三点的圆相切.思路点拨(1)设大圆半径为R,则小圆半径为R-2,建立R的方程;(2)证明△EBC∽△ECF;(3)过B、F、C三点的圆的圆心O′,必在BF上,连OˊC,证明∠O′CE=90°.注:本例以同心圆为背景,综合了垂径定理、直径所对的圆周角为直角、切线的判定、勾股定理、相似三角形等丰富的知识.作出圆中基本辅助线、运用与圆相关的角是解本例的关键.【例5】 如图,AOB 是半径为1的单位圆的四分之一,半圆O 1的圆心O 1在OA 上,并与弧AB 内切于点A ,半圆O 2的圆心O 2在OB 上,并与弧AB 内切于点B ,半圆O 1与半圆O 2相切,设两半圆的半径之和为x ,面积之和为y . (1)试建立以x 为自变量的函数y 的解析式; (2)求函数y 的最小值.思路点拨 设两圆半径分别为R 、r ,对于(1),)(2122r R y +=π,通过变形把R 2+r 2用“x =R+r ”的代数式表示,作出基本辅助线;对于(2),因x =R+r ,故是在约束条件下求y 的最小值,解题的关键是求出R+r 的取值范围.注:如图,半径分别为r 、R 的⊙O l 、⊙O 2外切于C ,AB ,CM 分别为两圆的公切线,O l O 2与AB 交于P 点,则: (1)AB=2r R ;(2) ∠ACB=∠O l M O 2=90°; (3)PC 2=PA ·PB ; (4)sinP=rR rR +-; (5)设C 到AB 的距离为d ,则dR r 211=+.学力训练1.已知:⊙O l 和⊙O 2交于A 、B 两点,且⊙O l 经过点O 2,若∠AO l B=90°,则∠A O 2B 的度数是 .2.矩形ABCD 中,AB=5,BC=12,如果分别以A 、C 为圆心的两圆相切,点D 在圆C 内,点B 在圆C 外,那么圆A 的半径r 的取值范围 . (2003年上海市中考题)3.如图;⊙O l 、⊙O 2相交于点A 、B ,现给出4个命题:(1)若AC 是⊙O 2的切线且交⊙O l 于点C ,AD 是⊙O l 的切线且交⊙O 2于点D ,则AB 2=BC ·BD ;(2)连结AB 、O l O 2,若O l A=15cm ,O 2A=20cm ,AB=24cm ,则O l O 2=25cm ;(3)若CA 是⊙O l 的直径,DA 是⊙O 2 的一条非直径的弦,且点D 、B 不重合,则C 、B 、D 三点不在同一条直线上,(4)若过点A 作⊙O l 的切线交⊙O 2于点D ,直线DB 交⊙O l 于点C ,直线CA 交⊙O 2于点E ,连结DE ,则DE 2=DB ·DC ,则正确命题的序号是 (写出所有正确命题的序号) .4.如图,半圆O 的直径AB=4,与半圆O 内切的动圆O l 与AB 切于点M ,设⊙O l 的半径为y ,AM 的长为x ,则y 与x 的函数关系是 ,自变量x 的取值范围是 .5.如图,施工工地的水平地面上,有三根外径都是1米的水泥管两两相切摞在一起,则其最高点到地面的距离是( )A .2B .221+C .231+D .231+ 6.如图,已知⊙O l 、⊙O 2相交于A 、B 两点,且点O l 在⊙O 2上,过A 作⊙O l l 的切线AC交B O l 的延长线于点P ,交⊙O 2于点C ,BP 交⊙O l 于点D ,若PD=1,PA=5,则AC 的长为( )A .5B .52C .52+D .537.如图,⊙O l 和⊙O 2外切于A ,PA 是内公切线,BC 是外公切线,B 、C 是切点①PB=AB ;②∠PBA=∠PAB ;③△PAB ∽△O l AB ;④PB ·PC=O l A ·O 2A . 上述结论,正确结论的个数是( )A .1B .2C .3D .48.两圆的半径分别是和r (R>r),圆心距为d ,若关于x 的方程0)(222=-+-d R rx x 有两个相等的实数根,则两圆的位置关系是( )A.一定内切B.一定外切C.相交D.内切或外切9.如图,⊙O l和⊙O2内切于点P,过点P的直线交⊙O l于点D,交⊙O2于点E,DA与⊙O2相切,切点为C.(1)求证:PC平分∠APD;(2)求证:PD·PA=PC2+AC·DC;(3)若PE=3,PA=6,求PC的长.10.如图,已知⊙O l和⊙O2外切于A,BC是⊙O l和⊙O2的公切线,切点为B、C,连结BA并延长交⊙O l于D,过D点作CB的平行线交⊙O2于E、F,求证:(1)CD是⊙O l的直径;(2)试判断线段BC、BE、BF的大小关系,并证明你的结论.11.如图,已知A是⊙O l、⊙O2的一个交点,点M是O l O2的中点,过点A的直线BC垂直于MA,分别交⊙O l、⊙O2于B、C.(1)求证:AB=AC;(2)若O l A切⊙O2于点A,弦AB、AC的弦心距分别为d l、d2,求证:d l+d2=O1O2;(3)在(2)的条件下,若d l d2=1,设⊙O l、⊙O2的半径分别为R、r,求证:R2+r2= R2r2.12.已知半径分别为1和2的两个圆外切于点P,则点P到两圆外公切线的距离为.13.如图,7根圆形筷子的横截面圆半径为r,则捆扎这7根筷子一周的绳子的长度为.14.如图,⊙O l和⊙O2内切于点P,⊙O2的弦AB经过⊙O l的圆心O l,交⊙O l于C、D,若AC:CD:DB=3:4:2,则⊙O l与⊙O2的直径之比为( )A.2:7 B.2:5 C.2:3 D.1:315.如图,⊙O l与⊙O2相交,P是⊙O l上的一点,过P点作两圆的切线,则切线的条数可能是( )A.1,2 B.1,3 C.1,2,3 D.1,2,3,416.如图,相等两圆交于A、B两点,过B任作一直线交两圆于M、N,过M、N各引所在圆的切线相交于C,则四边形AMCN有下面关系成立( )A.有内切圆无外接圆B有外接圆无内切圆C.既有内切圆,也有外接圆D.以上情况都不对17.已知:如图,⊙O与相交于A,B两点,点P在⊙O上,⊙O的弦AC切⊙P于点A,CP及其延长线交⊙P P于点D,E,过点E作EF⊥CE交CB的延长线于F.(1)求证:BC是⊙P的切线;(2)若CD=2,CB=22,求EF的长;(3)若k=PE:CE,是否存在实数k,使△PBD恰好是等边三角形?若存在,求出是的值;若不存在,请说明理由.18.如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.(1)若PC=PD,求PB的长;(2)试问线段AB上是否存在一点P,使PC2+PD2=4?,如果存在,问这样的P点有几个?并求出PB的值;如果不存在,说明理由;(3)当点F在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少,或PC、PD 具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与OB的位置关系,证明你的结论.19.如图,D、E是△ABC边BC上的两点,F是BA延长线上一点,∠DAE=∠CAF.(1)判断△ABD的外接圆与△AEC的外接圆的位置关系,并证明你的结论;(2)若△ABD的外接圆半径是△AEC的外接圆半径的2倍,BC=6,AB=4,求BE的长.20.问题:要将一块直径为2cm的半圆形铁皮加工成一个圆柱的两个底面和一个圆锥的底面.操作:方案一:在图甲中,设计一个使圆锥底面最大,半圆形铁皮得以最充分利用的方案(要求,画示意图) .方案二;在图乙中,设计一个使圆柱两个底面最大,半圆形铁皮得以最充分利用的方案(要求:画示意图);,探究:(1)求方案一中圆锥底面的半径;(2)求方案二中圆锥底面及圆柱底面的半径;(3)设方案二中半圆圆心为O,圆柱两个底面的圆心为O1、O2,圆锥底面的圆心为O3,试判断以O1、O2、O3、O为顶点的四边形是什么样的特殊四边形,并加以证明.参考答案温馨提示After writing the test paper, you must remember to check Oh, I wish you all can achieve good results!可以编辑的试卷(可以删除)。

初中数学竞赛精品标准教程及练习:连续正整数的性质

初中数学竞赛精品标准教程及练习:连续正整数的性质

初中数学竞赛精品标准教程及练习:连续正整数的性质初中数学竞赛精品标准教程及练习(24)连续正整数的性质一、内容提要一.两个连续正整数1.两个连续正整数一定是互质的,其商是既约分数。

2.两个连续正整数的积是偶数,且个位数只能是0,2,6。

3.两个连续正整数的和是奇数,差是1。

4.大于1的奇数都能写成两个连续正整数的和。

例如3=1+2,79=39+40,111=55+56。

二.计算连续正整数的个数例如:不同的五位数有几个?这是计算连续正整数从10000到99999的个数,它是99999-10000+1=90000(个)1. n位数的个数一般可表示为9×10n-1(n为正整数,100=1)例如一位正整数从1到9共9个(9×100),二位数从10到99共90个(9×101)三位数从100到999共900个(9×102)……2.连续正整数从n 到m的个数是m-n+1把它推广到连续奇数、连续偶数、除以模m有同余数的连续数的个数的计算,举例如下:3.从13到49的连续奇数的个数是21349-+1=19从13到49的连续偶数的个数是21448-+1=184.从13到49能被3整除的正整数的个数是31548-+1=12从13到49的正整数中除以3余1的个数是31349-+1=13你能从中找到计算规律吗?三.计算连续正整数的和1.1+2+3+……+n=(1+n)2n(n是正整数)连续正整数从a到b的和记作(a+b)21 +-ab把它推广到计算连续奇数、连续偶数、除以模m有同余数的和,举例如下:2.11+13+15+…+55=(11+55)×223=759(∵从11到55有奇数21155-+1=23个)3.11+14+17+…+53=(11+53)×215=480(∵从11到53正整数中除以3余2的数的个数共31153-+1=15)四. 计算由连续正整数连写的整数,各数位上的数字和1.123456789各数位上的数字和是(0+9)+(1+8)+…+(4+5)=9×5=452.1234…99100计算各数位上的数字和可分组为:(0,99),(1,98),(2,97)…(48,51),(49,50)共有50个18,加上100中的1∴各数位上的数字和是18×50+1=901五. 连续正整数的积从1开始的n 个正整数的积1×2×3×…×n 记作n !,读作n 的阶乘1.n 个连续正整数的积能被n !整除,如11×12×13能被1×2×3整除;97×98×99×100能被4!整除;a (a+1)(a+2)…(a+n)能被(n+1)!整除。

初二数学竞赛讲座余式定理及其应用

初二数学竞赛讲座余式定理及其应用

1)除后的余式为px2 + qx + r,则p2 - q2 + r2
=

• 2、如果以x²-5x+6除多项式f(X)得余式2x-5 ,则f(3)=?
• 3.如果以2x²-3x-2除多项式f(X)与g(X),分 别得到余式2x+3与4x-1,则以2x+1除f(x )-g(x)的余式为?
课后练习
• 4 、求以(x + 1)2除x12的余式
2
பைடு நூலகம்
22
则以2x 1除f (x)g(x)之余式是什么?
变式练习:f (x)除以x2 1之余式为3x 2, 且g(x)除以 x2 2x 3之余式为5x 2,则以x 1去除 (x+3)f(x)+(5x2 1)g(x)的余式是什么?
典型例题讲解
• 例题5、设 f (x) x5 6x4 4x3 25 x2 30 x 6 ,求f (7)。
• 5、设f (x)除以(x - 1)2的余式是x + 2,除以
(x - 2)2的余式是3x + 4,则f (x)除以(x - 1)(x
- 2)2的余式是

• 6、如果以2x²-3x-2除多项式f(X)与g(X),分 别得到余式2x+3与4x-1,则以2x+1除f(x )-g(x)的余式为?
初二数学竞赛讲座 余式定理及其应用
高中数学教师欧阳文丰
知识要点
• 1、f x的意义:已知多项式 f x,若把x 用 c
代入所得到的值,即称为 f x在 x=c 的多项 式值,用 f c表示。
• 2、被除式、除式、商式、余式之间的关系:
设多项式 f x除以gx所得的商式为qx ,余

初中数学竞赛辅导资料(总24页)

初中数学竞赛辅导资料(总24页)

初中数学竞赛辅导资料-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一篇 一元一次方程的讨论第一部分 基本方法1. 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。

一元方程的解也叫做根。

例如:方程 2x +6=0, x (x -1)=0, |x |=6, 0x =0, 0x =2的解 分别是: x =-3, x =0或x =1, x =±6, 所有的数,无解。

2. 关于x 的一元一次方程的解(根)的情况:化为最简方程ax =b 后, 讨论它的解:当a ≠0时,有唯一的解 x =ab ; 当a =0且b ≠0时,无解;当a =0且b =0时,有无数多解。

(∵不论x 取什么值,0x =0都成立)3. 求方程ax =b (a ≠0)的整数解、正整数解、正数解当a |b 时,方程有整数解;当a |b ,且a 、b 同号时,方程有正整数解;当a 、b 同号时,方程的解是正数。

综上所述,讨论一元一次方程的解,一般应先化为最简方程ax =b第二部分 典例精析例1 a 取什么值时,方程a (a -2)x =4(a -2) ①有唯一的解②无解③有无数多解④是正数解例2 k取什么整数值时,方程①k(x+1)=k-2(x-2)的解是整数?②(1-x)k=6的解是负整数?例3己知方程a(x-2)=b(x+1)-2a无解。

问a和b应满足什么关系?例4a、b取什么值时,方程(3x-2)a+(2x-3)b=8x-7有无数多解?第三部分 典题精练1. 根据方程的解的定义,写出下列方程的解:① (x +1)=0, ②x 2=9, ③|x |=9, ④|x |=-3,⑤3x +1=3x -1, ⑥x +2=2+x2. 关于x 的方程ax =x +2无解,那么a __________3. 在方程a (a -3)x =a 中,当a 取值为____时,有唯一的解; 当a ___时无解;当a _____时,有无数多解; 当a ____时,解是负数。

八年级数学尖子生培优竞赛专题辅导专题11 用分式方程解决问题

八年级数学尖子生培优竞赛专题辅导专题11  用分式方程解决问题

专题11 用分式方程解决问题专题解读】用分式方程解决问题时,重要的是用代数式表达相关的量,利用实际问题的意义建立分式方程解决问题.将实际问题去情景化,抽象出其数学意义,用数学符号语言来表达,借助于方程思想解决后再回到实际问题,这正是数学核心素养的基本要求.思维索引例1.小明和小刚相约到红星电影院电影,他们的家分别距离电影院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达电影院.求两人的速度.例2.某公司在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?例3.市场上的红茶由茶原液与纯净水按一定比例配制而成,其中购买一吨茶原液的钱可以买15吨纯净水.由于今年以来茶产地连续大旱,茶原液收购价上涨50%,纯净水价也上涨了10%,导致配制的这种茶饮料成本上涨40%,求这种茶饮料中茶原液与纯净水的配制比例.素养提升1.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是()A.40 1.2540800x x⨯-= B.800800402.25x x-=C.800800401.25x x-= D.800800401.25x x-=2.为迎接2019年全国青运会,我市加紧城市建设的步伐,某城区对一条全长1200m的公路进行绿化带改造,计划每天完成绿化带改造任务x m,当x满足的方程为2120012003300x x⨯=+时,下列对这一方程所反映的数量关系描述正确的是()A.实际每天比计划多完成改造任务300m,实际所用天数是计划的23;B.实际每天比计划少完成改造任务300m,计划所用天数是实际的23;C.实际每天比计划多完成改造任务300m,计划所用天数是实际的23;D.实际每天比计划少完成改造任务300m,实际所用天数是计划的2 3 .3.某学校食堂需采购部分餐桌,现有A、B两个商家,A商家每张餐桌的售价比B商家的优惠13元.若该校花费2万元采购款在B商家购买餐桌的张数等于花费1.8万元采购款在A商家购买餐桌的张数,则A 商家每张餐桌的售价为()A.117元B.118元C.119元D.120元4.小王步行的速度比跑步慢50%,跑步的速度比骑车慢50%.如果他骑车从A城去B城,再步行返回A城共需2小时,问小王跑步从A城到B城需要的时间是()A.45分钟B.48分钟C.56分钟D.60分钟5.一个人步行从A地出发,匀速向B地走去.同时另一个人骑摩托车从B地出发,匀速向A地驶去.二人在途中相遇,骑车者立即把步行者送到B地,再向A地驶去,这样他在途中所用的时间是他从B地直接驶往A地原计划所用时间的2.5倍,那么骑摩托车者的速度与步行者速度的比是()A. 2﹕1B. 3﹕1C. 4﹕1D. 5 ﹕16.某商场销售一种商品,第一个月将此商品的进价提高20%作为销售价,共获利1200元,第二个月商场搞促销活动,将商品的进价提高15%作为销售价,第二个月的销售量比第一个月增加80件,并且商场第二个月比第一个月多获利300元.设此商品的进价是x元,则可列方程________________.7.某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的54倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是_______元.8.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现:小琼步行13500步与小刚步行9000步消耗的能量相同,若每消耗1千卡能量小琼行走的步数比小刚多15步,则小刚每消耗1千卡能量需要行走的步数是________.9.小王与小李约定下午3点在学校门口见面,为此,他们在早上8点将自己的手表对准,小王于下午3点到达学校门口,可是小李还没到,原来小李的手表比正确时间每小时慢4分钟.如果小李按他自己的手表在3点到达,则小王还需要等_______分钟.10.一次数学活动课上,老师利用“在面积一定的矩形中,正方形的周长最短”这一结论,推导出“式子1xx+(x>0)的最小值为2”.其推导方法如下:在面积是1的矩形中,设矩形的一边长为x,则另一边长是1x,矩形的周长是12()xx+;当矩形成为正方形时,就有1xx=(x>0),解得x=1,这时矩形的周长12()xx+=4最小,因此1xx+(x>0)的最小值是2,模仿老师的推导,你求得式子216xx+(x>0)的最小值是_______.11.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元;(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元.12.为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设,已知A工程公司单独建设完成此项工程需要180天,A工程公司单独施工45天后,B工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天;(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n天完成,其中m,n均为正整数,且m<46,n<92,求A、B两个工程公司各施工建设了多少天.13.若干人乘坐若干辆汽车,如果每辆汽车坐22人,有1人不能上车;如果有一辆车不坐人,那么所有游客正好能平分乘到其他各车上,求游客共有多少人.14.若干个工人装卸一批货物,每个工人的装卸速度相同,如果这些工人同时工作,则需10小时装卸完毕;现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸完毕,且最后参加的一个人装卸的时间是第一个人的1 4(1)若按改变的方式装卸,求自始至终共需的时间;(2)求参加装卸的有工人人数.专题11用分式方程解决问题思维索引】例1.设小明的速度为3x 米/分,则小刚的速度为4x 米/分,20004x -12003x=4,解得:x =25,经检验,x =25是分式方程的根,且有实际意义,∴3x =75,4x =100.所以小明的速度是75米/分,小刚的速度是100米/分.例2.(1)设甲种树苗每棵的价格是x 元,则乙种树苗每棵的价格是(x +10)元,480x 10+=360x, 解得:x =30.经检验,x =30是原方程的解,且有实际意义,x +10=30+10=40.所以甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元.(2)设他们可购买y 棵乙种树苗,30×(1-10%)(50-y )+40y ≤1500,解得y ≤11713, ∵y 为整数,∴y 最大为11.所以他们最多可购买11棵乙种树苗.例3.设这种茶饮料中茶原液与纯净水的配制比例为a :b ,购买一吨纯净水的价格是x , ()()bx 110%15x 150%a a b++++=()bx 15xa 10%a b ++4+,解得a b =15.素养提升】1.C ;2.A ;3.A ;4.B ;5.B ;6.12000.2x=12003000.15x +-80;7.4;8.30;9.30;10.8;11.(1)设B 种原料每千克的价格为x 元,则A 种原料每千克的价格为(x +l 0)元,由题意:1.2(x +10)+x ≤34,解得:x ≤10.所以购入B 种原料每千克的价格最高不超过10元; (2)设这种产品的批发价为a 元,则零售价为(a +30)元,由题意:10000a =16000a 30+,解得:a =50,经检验,a =50是原方程的根,且符合实际.所以这种产品的批发价为50元. 12.(1)设B 工程公司单独完成需要x 天,由题意:45×1180+54(1180+1x)=1,解得:x =120,经检验x =120是分式方程的解,且符合题意,所以B 工程公司单独完成需要120天; (2)根据题意得:m ×1180+n ×1120=1,整理得:n =120-23m ,∵m <46,n <92,∴120-23m <92,解得42<m <46,∵m 为正整数,∴m =43,44,45,又∵120-23m 为正整数,∴m =45,n =90,所以A 、B 两个工程公司各施工建设了45天和90天.13.设起初有汽车m 辆,当有一辆车不做人时,平均每辆车所乘游客为n 人.由题意:22m +1=n (m -1).所以n =22m 11m +-=22+231m -,因为n 为自然数,所以231m -为整数,所以m -1=1,或m -1=23,即m =2或m =24.当m =2时,n =45,n (m -1)=45;当m =24时,n =23,n (m -1)=529.故游客共有45人或529人.14.(1)设装卸工作需x小时完成,则第一人干了x小时,最后一个人干x4小时,两人共干活(x+x4)小时,平均每人干活12(x+x4)小时,由题意,第二人与倒数第二人,第三人与倒数第三人,平均每人干活的时间也是12(x+x4)小时.所以12(x+x4)=10,解得x=16;所以共需16小时.(2)设共有y人参加装卸工作,由于每隔t小时增加一人,因此最后一人比第一人少干(y-1)t小时,按题意,得16-(y-1)=16×14,即(y-1)t=12.解此不定方程得y=2,t=12;y=3,t=6;y=4,t=4;y=5,t=3;y=7,t=2;y=7,t=1.所以参加的人数为2或3或4或5或7或13.。

初中数学竞赛辅导资料

初中数学竞赛辅导资料

初中数学竞赛辅导资料初中数学竞赛辅导资料(70)正整数简单性质的复习甲. 连续正整数⼀. n 位数的个数:⼀位正整数从1到9,共9个,两位数从10到99,共90个,三位数从100到999共9×102个,那么 n 位数的个数共__________.(n 是正整数)练习:1. ⼀本书共1989页,⽤0到9的数码,给每⼀页编号,总共要⽤数码___个. 2. 由连续正整数写成的数1234……9991000是⼀个_______位数;100110021003……19881989是_______位数.3. 除以3余1的两位数有____个,三位数有____个,n 位数有_______个.4. 从1到100的正整数中,共有偶数____个,含 3的倍数____个;从50到1000的正整数中,共有偶数____个,含3的倍数____个.⼆. 连续正整数的和:1+2+3+……+n=(1+n)×2n . 把它推⼴到连续偶数,连续奇数以及以模m 有同余数的连续数的和.练习:5.计算2+4+6+……+100=__________.6. 1+3+5+……+99=____________.7. 5+10+15+……+100=_________.8. 1+4+7+……+100=____________.9. 1+2+3+……+1989其和是偶数或奇数?答______10. 和等于100的连续正整数共有______组,它们是______________________.11. 和等于100的连续整数共有_____组,它们是__________________________.三. 由连续正整数连写的整数,各位上的数字和整数 123456789各位上的数字和是:(0+9)+(1+8)+…+(4+5)=9×5=45;1234…99100各位数字和是(0+99)+(1+98)+…+(49+50)+1=18×50+1=901.练习:12. 整数 1234……9991000各位上的数字和是_____________.13. 把由1开始的正整数依次写下去,直到第198位为⽌:位198011121234567891这个数⽤9除的余数是__________. (1987年全国初中数学联赛题)14. 由1到100这100个正整数顺次写成的数1234……99100中:①它是⼀个________位数;②它的各位上的数字和等于________;③从这⼀数中划去100个数字,使剩下的数尽可能⼤,那么剩下的数的前⼗位是___________________________.四.连续正整数的积:① 1×2×3×…×n 记作n ! 读作n 的阶乘.② n 个连续正整数的积能被n !整除.如:2!|a(a+1), 3!|a (a+1)(a+2), n !|a(a+1)(a+2)…(a+n -1). a 为整数.③ n ! 中含有质因数m 的个数是m n +2m n +…+??i m n . [x]表⽰不⼤于x 的最⼤正整数,i=1,2,3… m i ?n如:1×2×3×…×10的积中,含质因数3的个数是:+????2310310=3+1=4 练习:15. 在100!的积5的个数是:____16.⼀串数1,4,7,10,……,697,700相乘的积中,末尾共有零_______个(1988年全国初中数学联赛题)17. 求证:10494 | 1989!18. 求证:4! | a(a 2-1)(a+2) a 为整数五. 两个连续正整数必互质练习:19. 如果n+1个正整数都⼩于2n, 那么必有两个是互质数,试证之.⼄. 正整数⼗进制的表⽰法⼀. n+1位的正整数记作:a n ×10n +a n -1×10n -1+……+a 1×10+a 0其中n 是正整数,且0?a i ?9 (i=1,2,3,…n)的整数, 最⾼位a n ≠0.例如:54321=5×104+4×103+3×102+2×10+1.例题:从12到33共22个正整数连写成A=121314…3233. 试证:A 能被99整除.证明:A=12×1042+13×1040+14×1038+……+31×104+32×102+33=12×10021+13×10020+14×1019+……+31×1002+32×100+33.∵ 100的任何次幂除以9的余数都是1,即100 n =(99+1) n ≡1 (mod 9)∴ A=99k+12+13+14+……+31+32+33 (k 为正整数 )=99 k+(12+33)+(13+32)+…+(22+23)=99k+45×11=99k+99×5.∴A 能被99整除.练习:20. 把从19到80的连结两位数连写成19202122…7980.试证明这个数能被1980整除⼆. 常见的⼀些特例 99999个n =10 n -1, 33333个n =31(10 n -1), 9111111= 个n (10 n -1). 例题:试证明12,1122,111222,11112222,……这些数中的任何⼀个,都是两个相邻的正整数的积.证明:第n 个数是2122221111个个n n =)110(91 -n ×10 n +)110(92-n =)110(91 -n (10 n +2) =331103110+-?-n n=)13110(3110+-?-n n = 33333个n ×433333)1(个-n . 证毕. 练习:21. 化简 99999个n × 99999个n +199999个n =_______________________________. 22. 化简2122222-1111个个n n =____________________________________________. 23. 求证119901111个是合数. 24. 已知:存在正整数 n,能使数11111个n 被1987整除. 求证:数p= 11111个n 99999个n 88888个n77777个n 和数q= 111111个+n 919999个+n 818888个+n717777个+n 都能被1987整除. (1987年全国初中数学联赛题)25. 证明:把⼀个⼤于1000的正整数分为末三位⼀组,其余部分⼀组,若这两组数的差,能被7(或13)整除,则这个正整数就能被7(或13)整除.26. 求证: 11111个n ×110000个-n 5+1是完全平⽅数. 丙. 末位数的性质.⼀.⽤N (a)表⽰⾃然数的个位数. 例如a=124时,N (a)=4; a=-3时,N (a)=3.1. N (a 4k+r )=N (a r ) a 和k 都是整数,r=1,2,3,4.特别的:个位数为0,1,5,6的整数,它们的正整数次幂的个位数是它本⾝.个位数是4,9 的正偶数次幂的个位数也是它本⾝.2. N (a)=N (b)?N (a -b)=0?10 |(a -b).3. 若N (a)=a 0, N (b)=b 0. 则N (a n )=N (a 0n ); N (ab)=N (a 0b 0).例题1:求①53100 ;和②777的个位数. 解:①N (53100)=N (34×24+4)=N (34)=1②先把幂的指数77化为4k+r 形式,设法出现4的因数.77=77-7+7=7(76-1)+4+3=7(72-1)(74+72+1)+4+3=7×4×12× (74+72+1)+4+3=4k+3∴N(777)=N(74k+3)=N(73)=3.练习:27. 19891989的个位数是______,999的个位数是_______.28. 求证:10 | (19871989-19931991).29. 2210×3315×7720×5525的个位数是______.⼆. ⾃然数平⽅的末位数只有0,1,4,5,6,9;连续整数平⽅的个位数的和,有如下规律:12,22,32,……,102的个位数的和等于 1+4+9+6+5+5+9+4+0=45.1. ⽤这⼀性质计算连续整数平⽅的个位数的和例题1. 填空:12,22,32,……,1234567892的和的个位数的数字是_______.(1991年全国初中数学联赛题)解:∵12,22,32,……,102的个位数的和等于 1+4+9+6+5+5+9+4+0=45.11到20;21到30;31到40;………123456781到123456789,的平⽅的个位数的和也都是45. 所以所求的个位数字是:(1+4+9+6+5+5+9+4+0)×(12345678+1)的个位数5.2. 为判断不是完全平⽅数提供了⼀种⽅法例题2. 求证:任何五个连续整数的平⽅和不能是完全平⽅数.证明:(⽤反证法)设五个连续整数的平⽅和是完全平⽅数,那么可记作:(n -2)2+(n -1)2+n 2+(n+1)2+(n+2)2=k 2 (n, k 都是整数)5(n 2+2)=k 2 .∵ k 2是5的倍数,k 也是5的倍数.设k=5m, 则5(n 2+2)=25m 2.n 2+2=5m 2.n 2+2是5的倍数,其个位数只能是0或5,那么 n 2的倍数是8或3.但任何⾃然数平⽅的末位数,都不可能是8或3.∴假设不能成⽴∴任何五个连续整数的平⽅和不能是完全平⽅数.3.判断不是完全平⽅数的其他⽅法例题3. 已知:a 是正整数.求证: a(a+1)+1不是完全平⽅数证明:∵a(a+1)+1=a 2+a+1,且a 是正整数∴ a 2< a(a+1)+1=a 2+a+1<(a+1)2,∵a 和a+1是相邻的两个正整数,a(a+1)+1介于它们的平⽅之间∴a(a+1)+1不是完全平⽅数例题4. 求证:11111个n (n>1的正整数) 不是完全平⽅数证明:根据奇数的平⽅数除以4必余1,即(2k+1)2=4(k+1)+1.但 11111个n =1100111112-个n =4k+11=4k+4×2+3=4(k+2)+3 即11111个n 除以4余数为3,⽽不是1,∴它不是完全平⽅数.例题5. 求证:任意两个奇数的平⽅和,都不是完全平⽅数.证明:设2a+1,2b+1(a,b 是整数)是任意的两个奇数.∵(2a+1)2+(2b+1)2=4a 2+4a+1+4b 2+4b+1=4(a 2+b 2+a+b)+2.这表明其和是偶数,但不是4的倍数,故任意两个奇数的平⽅和,都不可能是完全平⽅数.三. 魔术数:将⾃然数N 接写在每⼀个⾃然数的右⾯,如果所得到的新数,都能被N整除,那么N 称为魔术数.常见的魔术数有:a) 能被末位数整除的⾃然数,其末位数是1,2,5 (即10的⼀位正约数是魔术数) b) 能被末两位数整除的⾃然数,其末两位数是10,20,25,50(即100的两位正约数也是魔术数))c) 能被末三位数整除的⾃然数,其三末位数是100,125,200,250,500(即1000的三位正约数也是魔术数)练习:30. 在⼩于130的⾃然数中魔术数的个数为_________.(1986年全国初中数学联赛题)四. 两个连续⾃然数,积的个位数只有0,2,6;和的个位数只有1,3,5,7,9. 练习:31. 已知:n 是⾃然数,且9n2+5n+26的值是两个相邻⾃然数的积,那么n 的值是:___________________. (1985年上海初中数学竞赛题)丁. 质数、合数1. 正整数的⼀种分类:??).1(.)1( 1然数整除和本⾝外还能被其他⾃除合数;然数整除和本⾝外不能被其他⾃除质数; 2. 质数中,偶数只有⼀个是2,它也是最⼩的质数.3. 互质数:是指公约数只有1的两个正整数. 相邻的两个正整数都是互质数.例题:试写出10个连续⾃然数,个个都是合数.解:答案不是唯⼀的,其中的⼀种解法是:令A=1×2×3×4×5×6×7×8×9×10×11那么A+2,A+3,A+4,A+5,A+6,A+7,A+8,A+9,A+10,A+11就是10个连续数,且个个都是合数.⼀般地,要写出n 个连续⾃然数,个个是合数,可⽤令m=n+1, 那么m !+2, m !+3, m !+4, +……+ m !+n+1 就是所求的合数.∵m !+i (2?i ?n+1) 有公约数i.练习:32. 已知质数a ,与奇数b 的和等于11,那么a=___,b=___.33. 两个互质数的最⼩公倍数是72,若这两个数都是合数,那么它们分别等于____,____.34. 写出10个连续正奇数,个个都是合数,可设m=(10+1)×2, m !=22!那么所求的合数是22!+3,_____,____,____,……35. 写出10个连续⾃然数,个个都是合数,还可令 N=2×3×5×7×11.(这⾥11=10+1,即N 是不⼤于11的质数的积).那么 N+2,N+3,N+4,……N+11就是所求的合数.这是为什么?如果要写15个呢?36. 已知:x, m, n 都是正整数 . 求证:24m+2+x 4n 是合数.戊.奇数和偶数1.整数的⼀种分类:)12(.2)02(2,余数为即除以整除的整数奇数:不能被,余数为即除以整除的整数;偶数:能被2. 运算性质:奇数+奇数=偶数,偶数+偶数=偶数,奇数+偶数=奇数.奇数×奇数=奇数,偶数×偶数=偶数,奇数×偶数=偶数.(奇数)正整数=奇数,(偶数)正整数=偶数.4. 其他性质:①两个连续整数必⼀奇⼀偶,其和是奇数,其积是偶数.②奇数的平⽅被4除余1;偶数的平⽅能被4整除;除以4余2或3的整数不是平⽅数.a) 2n (n 为正整数)不含⼤于1的奇因数.b) 若两个整数的和(差)是奇数,则它们必⼀奇⼀偶.c) 若n 个整数的积是奇数,则它们都是奇数.例1. 设m 与n 都是正整数,试证明m 3-n 3为偶数的充分必要条件是m -n 为偶数.证明:∵m 3-n 3=(m -n )(m 2+mn+n 2).当m -n 为偶数时,不论m 2+mn+n 2是奇数或偶数,m 3-n 3都是偶数;∴m -n 为偶数是m 3-n 3为偶数的充分条件.当m -n 为奇数时,m, n 必⼀奇⼀偶,m 2,mn ,n 2三个数中只有⼀个奇数,∴m 2+mn+n 2是奇数,从⽽m 3-n 3也是奇数.∴m -n 为偶数,是m 3-n 3为偶数的必要条件.综上所述m 3-n 3为偶数的充分必要条件是m -n 为偶数.例2. 求⽅程x 2-y 2=1990的整数解.解:(x+y)(x -y)=2×5×199.若x, y 同是奇数或同是偶数,则 x+y ,x -y 都是偶数,其积是4的倍数,但1990不含4的因数,∴⽅程左、右两边不能相等.若x, y 为⼀奇⼀偶,则x -y ,x+y 都是奇数,其积是奇数,但1990不是奇数,∴⽅程两边也不能相等.综上所述,不论x, y 取什么整数值,⽅程两边都不能相等.所以原⽅程没有整数解本题是根据整数的⼀种分类:奇数和偶数,详尽地讨论了⽅程的解的可能性.练习:37. 设n 为整数,试判定n 2-n+1是奇数或偶数.38. 1001+1002+1003+……+1989其和是偶数或奇数,为什么?39. 有四个正整数的和是奇数,那么它们的⽴⽅和,不可能是偶数,试说明理由.40. 求证:⽅程x 2+1989x+9891=0没有整数根.41. 已知: =?=++++.0321321n x x x x x x x x n n ;求证:n 是4的倍数. 42. 若n 是⼤于1的整数,p=n+(n 2-1)2)1(1n --试判定p 是奇数或偶数,或奇偶数都有可能. (1985年全国初中数学联赛题)已. 按余数分类1. 整数被正整数 m 除,按它的余数可分为m 类,称按模m 分类.如:模m=2,可把整数分为2类:{2k}, {2k+1} k 为整数,下同模m=3,可把整数分为3类:{3k}, {3k+1},{3k+2}.……模m=9,可把整数分为9类:{9k},{9k+1},{9k+2}.…{9k+8}.2. 整数除以9的余数,与这个整数各位上的数字和除以9的余数相同.如:6372,5273,4785各位数字和除以9的余数分别是0,8,6. 那么这三个数除以9的余数也分别是0,8,6.3. 按模m 分类时,它们的余数有可加,可乘,可乘⽅的性质.如:若a=5k 1+1, b=5k 2+2.则a+b 除以5 余数是3 (1+2);ab 除以5余2 (1×2);b 2 除以5余4 (22).例1. 求19891989除以7的余数.解:∵19891989=(7×284+1)1989,∴19891989≡11989 ≡1 (mod 7).即19891989除以7的余数是1.练习:43. 今天是星期⼀,99天之后是星期________.44. n 个整数都除以 n -1, ⾄少有两个是同余数,这是为什么? 45. a 是整数,最简分数7a 化为⼩数时,若为循环⼩数,那么⼀个循环节最多有⼏位?4. 运⽤余数性质和整数除以9的余数特征,可对四则运算进⾏检验例2. 下列演算是否正确?① 12625+9568=21193 ;② 2473×429=1060927.解:①⽤各位数字和除以9,得到余数:12625,9568,21193除以9的余数分别是7,1,7.∵ 7+1≠7,∴演算必有错.② 2473,429,1060927除以9的余数分别是7,6,7.⽽7×6=42,它除以9余数为6,不是7,故演算也有错.注意:发现差错是准确的,但这种检验并不能肯定演算是绝对正确.练习:46. 检验下列计算有⽆差错:①372854-83275=289679 ;②23366292÷6236=3748.5. 整数按模分类,在证明题中的应⽤例3. 求证:任意两个整数a 和b ,它们的和、差、积中,⾄少有⼀个是3的倍数.证明:把整数a 和b 按模3分类,再详尽地讨论.如果a, b 除以3,有同余数 (包括同余0、1、2),那么a, b 的差是3的倍数;如果a, b 除以3,余数不同,但有⼀个余数是0,那么a, b 的积是3的倍数;如果a, b 除以3,余数分别是1和2,那么a, b 的和是3的倍数.综上所述任意两个整数a ,b ,它们的和、差、积中,⾄少有⼀个是3的倍数.(分类讨论时,要求做到既不重复⼜不违漏)例4. 已知: p ?5,且 p 和2p+1都是质数.求证:4p+1是合数.证明:把整数按模3分类. 即把整数分为3k,3k+1,3k+2 (k 为整数)三类讨论∵p 是质数,∴不能是3的倍数,即p ≠3k ;当p=3k+1时, 2p+1=2(3k+1)+1=3(2k+1). ∴ 2p+1不是质数,即p ≠3k+1;只有当质数p=3k+2时, 2p+1=2(3k+2)+1=6k+5.∴2 p+1也是质数,符合题设.这时,4p+1=4(3k+2)+1=3(4k+3)是合数. 证毕练习:47. 已知:整数a 不能被2和3整除 . 求证:a 2+23能被24整除.48. 求证:任何两个整数的平⽅和除以8,余数不可能为6.49. 若正整数a 不是5的倍数. 则a 8+3a 4-4能被100整除.50. 已知:⾃然数n>2求证:2n -1和2n +1中,如果有⼀个是质数,则另⼀个必是合数.51.设a,b,c 是三个互不相等的正整数,求证 a 3b -ab 3,b 3c -bc 3,c 3a -ca 3三个数中,⾄少有⼀个能被10整除. (1986年全国初中数学联赛题)庚. 整数解1. ⼆元⼀次⽅程 ax+by=c 的整数解:当a,b 互质时,若有⼀个整数的特解?==00y y x x 那么可写出它的通解)(00为整数k ak y y bk x x ?-=+= 2. 运⽤整数的和、差、积、商、幂的运算性质整数±整数=整数,整数×整数=整数,整数÷(这整数的约数)=整数, (整数)⾃然数=整数3. ⼀元⼆次⽅程,⽤求根公式,根的判别式,韦达定理讨论整数解.4. 根据已知条件讨论整数解.例1. ⼩军和⼩红的⽣⽇.都在10⽉份,且星期⼏也相同,他们⽣⽇的⽇期的和等于34,⼩军⽐⼩红早出⽣,求⼩军的⽣⽇.解:设⼩军和⼩红的⽣⽇分别为x, y ,根据题意,得=+=-347x y k x y (k=1,2,3,4) 2x=34-7k x=17-k 27 k=1, 3时, x 没有整数解;当k=2时, ==.2410y x ,当k=4时,?==.313y y x , (10⽉份没有31⽇,舍去) ∴⼩军的⽣⽇在10⽉10⽇例2. 如果⼀个三位数除以11所得的商,是这个三位数的各位上的数的平⽅和,试求符合条件的所有三位数. (1988年泉州市初⼆数学双基赛题)解:设三位数为100a+10b+c, a, b, c 都是整数,0那么 1191110100c b a b a c b a +-++=++ ,且-8( 1)当a -b+c=0时,得9a+b=a 2+b 2+c 2.以b=a+c 代⼊,并整理为关于a 的⼆次⽅程,得2a 2+2(c -5)a+2c 2-c=0根据韦达定理??-=-=+.2522121c c a a c a a ,这是必要⽽⾮充分条件. ∵5-c>0, 以c=0, 1, 2, 3, 4 逐⼀讨论a 的解.当 c=2, 4时,⽆实数根;当c=1, 3时,⽆整数解;只有当c=0时,a=5;或 a=0. (a=0不合题意,舍去)∴只有c=0, a=5, b=5适合∴所求的三位数是550;(2)当a -b+c=11时,得9a+b+1=a 2+b 2+c 2.以b=a+c 代⼊,并整理为关于a 的⼆次⽅程,得2a 2+2(c -16)a+2c 2-23c+131=0.仿(1)通过韦达定理,由c 的值逐⼀以讨论a 的解.只有当c=3时, a=8, b=0适合所有条件.即所求三位数为803.综上所述,符合条件的三位数有550和803.练习:52. 正整数x 1, x 2, x 3,……x n 满⾜等式x 1+x 2+x 3+x 4+x 5=x 1x 2x 3x 4x 4x 5那么 x 5的最⼤值是________. (1988年全国初中数学联赛题)53. 如果p, q, pq q p 12,12-- 都是整数,.且p>1, q>1, 试求p+q 的值. (1988年全国初中数学联赛题) 54.能否找到这样的两个正整数m 和n ,使得等式m 2+1986=n 2成⽴. 试说出你的猜想,并加以证明. (1986年泉州市初⼆数学双基赛题) 55.当m 取何整数时,关于x 的⼆次⽅程m 2x 2-18mx+72=x 2-6x 的根是正整数,并求出它的根. (1988年泉州市初⼆数学双基赛题) 56.若关于x 的⼆次⽅程(1+a )x 2+2x+1-a=0的两个实数根都是整数,那么a 的取值是________________. (1989年泉州市初⼆数学双基赛题) 57.不等边三⾓形的三条边都是整数,周长的值是28,最⼤边与次⼤边的差⽐次⼤边与最⼩边的差⼤1,适合条件的三⾓形共有____个,它们的边长分别是:______________________________________________________________. 58.直⾓三⾓形三边长都是整数,且周长的数值恰好等于⾯积的数值,求各边长. 59.鸡翁⼀,值钱;,鸡母⼀,值钱三;鸡雏三,值钱⼀.百钱买百鸡,问鸡翁、鸡母、鸡雏各⼏何? 60. 甲买铅笔4⽀,笔记本10本,⽂具盒1个共付1.69元,⼄买铅笔3⽀,笔记本7本,⽂具盒1个共付1.26元,丙买铅笔、笔记本、⽂具盒各1,应付⼏元?若1×2×3×4×……×99×100=12 n ×M ,其中M 为⾃然数,n 为使得等式成⽴的最⼤⾃然数,则M 是( )(A).能被2整除,不能被3整除 . (B).能被3整除,但不能被2整除.(C).被4整除,不能被3整除. (D).不能被3整除,也不能被2整除.(1991年全国初中数学联赛题)练习701. 9+90×2+900×3+990×4=68492. 2893 79563. 30,300,3×10n -14. 50, 33, 476, 317 .5.25506.2500.7. 10501. 1717. 9.奇数 (1+1989)×21989 . 10有两组:18,19,20,21,22; 9,10,11,12,13,14,15,16.11.有四组:除上题中的两组外,尚有-8到16;-17到2212. 13501. 13. 余数是6(由1到102刚好是198位).14. (1)192 (2)901 (3)9999978596 15.516. 60个. 计算积中含质因数5的个数是:从10,25,40,55,……700这组数中含质因数5⽽25,100,175,……700含有52因数,应各加且250,625,含有53因数,应再各加1个5625 含有54因数,再加1个5. ∴总共是17. ??+++625198912519892519895198918. 把a(a 2-1)(3a+2)化为a(a+1)(a -1)[(2a+4)+(a -2)]=2(a -1)a(a+1)(a+2)+(a -2)(a -1)a(a+1).19.因为它们都⼩于2n,n 组中的⼀个互质.20. 易证能被21. 原数=(10n22. 原数=91=(3110-n )2=( 个n 2)3333( (109-1) =91×(10995+1) (10-1)×N (N 为整数) 24. p= n×(103n +9×102n +8×10n +7) q=11111+n ×(103n+3+9×102n+2+8×10n+1+7) ∵10n =9×个n 1111+1, 103n+3,102n+2,10n+1除以个n 1111的余数分别为103,102,10.∴q 的第⼆因式除以个n 1111的余数分别为1×103+9×102+8×10+7…… 25.设A=103 M+N , 7|(M -N).A=103 M+N=103 M+M -M+N=1001M -(M -N).26. 原数=1)510(9110++?-n n =…… 27. 1. 28. 71与33的个位数相同. 29 . 0.30. 9个(1,25,10,20,25,50,100,125).31. 2,6. 可设9n 2+5n+26=m(m+1), 配⽅,分解因式32. 2,9. 33. 8,9.34. 22!+3,22!+5,22!+7,………22!+19,22!+2135. 可设2×3×5×7×11×13×17,那么 N+2,N+3,……N+16即所求.36. (22n+1)2+(x 2n )2+2×22n+1×x 2n -4×22n ×x 2n =(22n+1+x 2n )2-(2 ×2m ×x n )2……37. 奇数. 38 奇数 .39. 4个正整数的和为奇数,则这4个数中有1个或3个是奇数.40. 若有奇数根,则奇+奇+奇≠0;若有偶数根,则偶+偶+奇≠0.41. 若n 为奇数,则与(1)⽭盾;若n 为偶数,由(1)可知,偶数必成双,再由(2)知n 是4的倍数.42. 奇数 43. 星期⼆,∵9 9除以7余数是1.44. 除以整数n -1的余数,最多只有n -1种45. 六位. ∵除以7,余数除0以外,只有6种.46. ①不对,∵⽤9除的余数 11-7≠5,②错.8×2=32,除以9余数不是6.47. a=6k ±1, a 2+23=12k(3k ±1)+2448. 把整数按模4分类为4n, 4n+1, 4n+2, 4n+3.其平⽅后除以8余数分别为0,1,4,1任何两个余数的和都不等于6.49. a 8+3a 4-4=(a 4+4)(a 2+1)(a 2-1), a ≠5k ,则a=5k ±1,5k ±2, a 2 除以5的余数分别为1和4, a 4 除以5余数均为1.50. 2 n 不是3的倍数,可分别设为3k+1,3k -1.51. (同练习69第10题). 52. 5 53. 854. 不可能.(n+m)(n -m)=1986 按n+m, n -m 同奇,同偶讨论.m 2-1)x 2-6(3m-1)x+72=0, [(m+1)x-12][(m-1)x-6]=0.; x 2=16-m . ∵⽅程的根是⾃然数,∴ 11,2,3,4,11,2,3,6.m m +=??-=? 0,1,2,3,5,11;2,3,4,7.m m =??=? ∴m=2,;或m=3.∴当m=2时,x 1=4;或 x 2=6. 当 m=3时, x 1=x 2=3. 56. a=-3,-2, 0, 1 (x 1+x 2=-a +12, x 1x 2=-1+a+12)57. 有三个,其边长分别是:11,9,8; 12,9,7; 13,9,6.58. 6,8,10或5,12,13.59. 设鸡翁,鸡母,鸡雏⼀只分别值 x,y,z 钱,则1001531003x y z x y z ++=++=??消去⼀元,得⼆元⼀次⽅程: 7x+4y=200. 求⾃然数解,得有四组答案:12,8,4,0,4,11,18,25,84;81;78;75.x x x x y y y y z z z z ============???? 60.=++=++12673169104 z y x z y x x+y+z=40 .61. 选(A). 根据连续整数的积的性质,100!含因数2共97个,含因数3有48个……。

竞赛数学讲座PPT课件

竞赛数学讲座PPT课件

或参观游览,第五天闭幕式,宣布考试成绩和颁奖。
成绩最好的约30名选手(现改为约60名)以及中国
女子数学奥林匹克和中国西部数学奥林匹克的前两
名(现已无参加集训队资格)组成参加当年IMO的
中国国家集训队。3月中旬至4月初,进行参加IMO
的中国代表队的选拔工作。每年7月份参加IMO。
全国中学生数学冬令营是在全国高中数学联赛的基
2.广东省历届国际数学奥林匹克竞赛获奖情 况:13人14次,其中华南师范大学附中7人8 次,深圳中学4人,深圳高级中学1人,深圳 第三高级中学1人。9人就读北京大学,3人就 读清华大学,1人就读中国科技大学。
.
13
三、IMO——中国队获奖情况
2013年获奖的饶家鼎,深圳市第三高级中学 高二年级学生 (7岁从加拿大回国读书)。 2010年,12岁的高一学生饶家鼎参加全国高 中数学联赛,与高三顶尖学生同台竞技,获 得全国三等奖。当同龄人还在读初一、初二 的时候,他已经被北京大学数学科学学院和 清华大学数学科学系提前预录取,并入选 2012年中国数学奥林匹克广东省数学代表队, 在2013年以一分之差,遗憾地摘取了国际奥 林匹克数学竞赛银牌,而此前他被寄予得满 分的厚望。
四个方面。前两道题每题40分,后两道 题每题50分。
.
26
七、全国高中学联赛题型与 考试大纲
考试大纲:一试完全按照全日制中学 《数学教学大纲》中所规定的教学要求
和内容,即高考所规定的知识范围和方 法,在方法的要求上略有提高。 二试:超过高考大纲(有具体的规定)
.
27
二试
1、平面几何 基本要求:掌握初中数学竞赛大纲所确定的所有内容。 补充要求:面积和面积方法。 几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。 几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角

人教版初二数学上册奥数竞赛辅导资料(新、全)

人教版初二数学上册奥数竞赛辅导资料(新、全)

人教版初二上册数学奥赛讲义目录本内容适合八年级学生竞赛拔高使用。

重点落实在奥赛方面的基础知识和基本技能培训和提高。

本内容难度适中,讲练结合,由浅入深,讲解与练习同步,重在提高学生的数学分析能力与解题能力。

另外,在本次培训中,内容的编排和讲解可以根据学生的具体状况由任课教师适当的调整顺序和增删内容。

其中《因式分解》为初二下册内容,但是考虑到它的重要性和工具性,将在本次培训进行具体解读。

注:有(*)标注的为选做内容。

本次培训具体计划如下,以供参考:第一讲实数(一)第二讲实数(二)第三讲平面直角坐标系、函数第四讲一次函数(一)第五讲一次函数(二)第六讲全等三角形第七讲直角三角形与勾股定理第八讲株洲市初二数学竞赛模拟卷(未装订在内,另发)第九讲竞赛中整数性质的运用第十讲不定方程与应用第十一讲因式分解的方法第十二讲因式分解的应用第十三讲考试(未装订在内,另发)第十四讲试卷讲评第1讲 实数(一)【知识梳理】一、非负数:正数和零统称为非负数1、几种常见的非负数(1)实数的绝对值是非负数,即|a |≥0在数轴上,表示实数a 的点到原点的距离叫做实数a 的绝对值,用|a |来表示设a 为实数,则⎪⎩⎪⎨⎧<-=>=0)0(0)0(||a a a a a a绝对值的性质:①绝对值最小的实数是0②若a 与b 互为相反数,则|a |=|b |;若|a |=|b |,则a =±b③对任意实数a ,则|a |≥a , |a |≥-a④|a ·b |=|a |·|b |,||||||b a b a =(b ≠0) ⑤||a |-|b ||≤|a ±b |≤|a |+|b |(2)实数的偶次幂是非负数如果a 为任意实数,则n a 2≥0(n 为自然数),当n =1时,2a ≥0(3)算术平方根是非负数,即 a ≥0,其中a ≥0. 算术平方根的性质:()a a =2 (a ≥0) ||2a a ==⎪⎩⎪⎨⎧<-=>0)0(0)0(a a a a a2、非负数的性质(1)有限个非负数的和、积、商(除数不为零)是非负数(2)若干个非负数的和等于零,则每个加数都为零(3)若非负数不大于零,则此非负数必为零3的式子,被开方数必须为非负数;4a =5、利用配方法来解题:开平方或开立方时,将被开方数配成完全平方式或完全立方。

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角2第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手3第一讲走进追问求根公式形如a某2b某c0(a0)的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。

而公式法是解一元二次方程的最普遍、最具有一般性的方法。

求根公式某1,2bb24ac内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了2a一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。

降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。

解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。

【例题求解】【例1】满足(n2n1)n21的整数n有个。

思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。

【例2】设某1、某2是二次方程某2某30的两个根,那么某134某2219的值等于()A、一4B、8C、6D、0思路点拨:求出某1、某2的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如某123某1,某223某2。

初中八年级数学培优竞赛辅导讲义全册(213页)

初中八年级数学培优竞赛辅导讲义全册(213页)

初中八年级数学培优竞赛辅导讲义(共213页,按住ctrl键点击目录直接跳转到对应章节)第1讲全等三角形的性质与判定 (2)第2讲角平分线的性质与判定 (12)第3讲轴对称及轴对称变换 (17)第4讲等腰三角形 (25)第5讲等边三角形 (37)第06讲实数 (43)第7讲变量与函数 (50)第8讲一次函数的图象与性质 (55)第9讲一次函数与方程、不等式 (64)第10讲一次函数的应用 (69)第11讲幂的运算 (81)第12讲整式的乘除 (87)第13讲因式分解及其应用 (94)第14讲分式的概念•性质与运算 (101)第15讲分式的化简求值与证明 (109)第16讲分式方程及其应用 (118)第17讲反比例函数的图象与性质 (126)第18讲反比例函数的应用 (139)第19讲勾股定理 (146)第20讲平行四边形 (158)第21讲菱形与矩形 (167)第22讲正方形 (175)第23讲梯形 (185)第24讲数据的分析 (194)B AC D EF 第1讲 全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同; 2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS ,ASA ,AAS ,SSS ,对于两个直角三角形全等的判定方法,除上述方法外,还有HL 法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( ) A .5对 B .4对 C .3对 D .2对【解法指导】从题设题设条件出发,首先找到比较明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.解:⑴∵AB ∥EF ∥DC ,∠ABC =90. ∴∠DCB =90. 在△ABC 和△DCB 中AB DC ABC DCB BC CB =⎧⎪=⎨⎪=⎩∠∠ ∴△ABC ≌∴△DCB (SAS ) ∴∠A =∠D ⑵在△ABE 和△DCE 中A DAED DEC AB DC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ABE ≌∴△DCE ∴BE =CE ⑶在Rt △EFB 和Rt △EFC 中BE CEEF EF=⎧⎨=⎩ ∴Rt △EFB ≌Rt △EFC (HL )故选C . 【变式题组】 01.(天津)下列判断中错误的是( )A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等A F C E DB D .有一边对应相等的两个等边三角形全等 02.(丽水)已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.03.(上海)已知线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF (如图所示).⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ; ⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题(选择“真”或“假”填入空格).【例2】已知AB =DC ,AE =DF ,CF =FB . 求证:AF =DE .【解法指导】想证AF =DE ,首先要找出AF 和DE 所在的三角形.AF 在△AFB 和△AEF 中,而DE 在△CDE 和△DEF 中,因而只需证明△ABF ≌△DCE 或△AEF ≌△DFE 即可.然后再根据已知条件找出证明它们全等的条件.证明:∵FB =CE ∴FB +EF =CE +EF ,即BE =CF 在△ABE 和△DCF 中, AB DCAE DF BE CF =⎧⎪=⎨⎪=⎩∴△ABE ≌△DCF (SSS ) ∴∠B =∠C在△ABF 和△DCE 中, AB DC B C BF CE =⎧⎪=⎨⎪=⎩∠∠ ∴△ABF ≌△DCE ∴AF =DE【变式题组】01.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO 的长为( ) A .2 B .3 C .4 D .5A B C D O FE A CEFBD02.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD⊥AE 于D ,DE =4cm ,CE =2cm ,则BD =__________. \ 03.(北京)已知:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .【例3】如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B 和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【解法指导】⑴∠AFD =∠DCA⑵∠AFD =∠DCA 理由如下:由△ABC ≌△DEF ,∴AB =DE ,BC =EF , ∠ABC =∠DEF , ∠BAC =∠EDF ∴∠ABC -∠FBC =∠DEF -∠CBF , ∴∠ABF =∠DEC在△ABF 和△DEC 中, AB DE ABF DEC BF EC =⎧⎪=⎨⎪=⎩∠∠∴△ABF ≌△DEC ∠BAF =∠DEC ∴∠BAC -∠BAF =∠EDF -∠EDC , ∴∠FAC =∠CDF∵∠AOD =∠FAC +∠AFD =∠CDF +∠DCA∴∠AFD =∠DCAAFECB DAE第1题图A BCDEBCDO第2题图B (E )OC F 图③DA【变式题组】01.(绍兴)如图,D、E分别为△ABC的AC、BC边的中点,将此三角形沿DE折叠,使点C 落在AB边上的点P处.若∠CDE=48°,则∠APD等于()A.42°B.48°C.52°D.58°02.如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是()A.△ABC≌△DEF B.∠DEF=90°C.AC=DF D.EC=CF03.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B、F、C、D在同一条直线上.⑴求证:AB⊥ED;⑵若PB=BC,找出图中与此条件有关的一对全等三角形,并证明.【例4】(第21届江苏竞赛试题)已知,如图,BD、CE分别是△ABC的边A C和AB边上的高,点P在BD的延长线,BP=AC,点Q在CE上,CQ=AB.求证:⑴AP=AQ;⑵AP⊥AQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证AP=AQ,也就是证△APD和△AQE,或△APB和△QAC全等,由已知条件BP=AC,CQ=AB,应该证△APB≌△QAC,已具备两组边对应相等,于是再证夹角∠1=∠2即可. 证AP⊥AQ,即证∠PAQ=90°,∠PAD+∠QAC=90°就可以.证明:⑴∵BD、CE分别是△ABC的两边上的高,∴∠BDA=∠CEA=90°,∴∠1+∠BAD=90°,∠2+∠BAD=90°,∴∠1=∠2.在△APB和△QAC中, 2AB QCBP CA=⎧⎪=⎨⎪=⎩∠1∠∴△APB≌△QAC,∴AP=AQE FBACDG第2题图21ABCPQEFD⑵∵△APB ≌△QAC ,∴∠P =∠CAQ , ∴∠P +∠PAD =90° ∵∠CAQ +∠PAD =90°,∴AP ⊥AQ 【变式题组】01.如图,已知AB =AE ,∠B =∠E ,BA =ED ,点F 是CD 的中点,求证:02.直距离MA 为am ,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB 为bm ,梯子倾斜角为45°,这间房子的宽度是( )A .2a bm + B .2a bm - C .bm D .am03.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE 的面积为__________演练巩固·反馈提高01.(海南)已知图中的两个三角形全等,则∠α度数是( )A .72°B .60°C .58°D .50°02.如图,△ACB ≌△A /C /B /,∠ BCB /=30°,则∠ACA /的度数是( )A .20°B .30°C .35°D .40° 03.(牡丹江)尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是( )AECBA 75° C45° BNM第2题图第3题图D第1题图a αcca50° b72° 58°A .SASB .ASAC .AASD .SSS 04.(江西)如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A . CB =CD B .∠BAC =∠DAC C . ∠BCA =∠DCAD .∠B =∠D =90°05.有两块不同大小的等腰直角三角板△ABC 和△BDE ,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A 、B 、D 不在一条直线上时,下面的结论不正确的是( )A . △ABE ≌△CBDB . ∠ABE =∠CBDC . ∠ABC =∠EBD =45° D . AC ∥BE06.如图,△ABC 和共顶点A ,AB =AE ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,小华说:“一定有△ABC ≌△AED .”小明说:“△ABM ≌△AEN .”那么( ) A . 小华、小明都对 B . 小华、小明都不对 C . 小华对、小明不对 D .小华不对、小明对07.如图,已知AC =EC , BC =CD , AB =ED ,如果∠BCA =119°,∠ACD =98°,那么∠ECA 的度数是___________.08.如图,△ABC ≌△ADE ,BC 延长线交DE 于F ,∠B =25°,∠ACB =105°,∠DAC =10°,则∠DFB 的度数为_______.09.如图,在Rt △ABC 中,∠C =90°, DE ⊥AB 于D , BC =BD . AC =3,那么AE +DE =______10.如图,BA ⊥AC , CD ∥AB . BC =DE ,且BC ⊥DE ,若AB =2, CD =6,则AE =_____. 11.如图, AB =CD , AB ∥CD . BC =12cm ,同时有P 、Q 两只蚂蚁从点C 出发,沿CB 方向爬行,P 的速度是0.1cm /s , Q 的速度是0.2cm /s . 求爬行时间t 为多少时,△APB ≌△QDC .DA C .Q P.BA E FB DC 12.如图, △ABC 中,∠BCA =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D . ⑴求证:AE =CD ;⑵若AC =12cm , 求BD 的长.13.(吉林)如图,AB =AC ,AD ⊥BC 于点D ,AD 等于AE ,AB 平分∠DAE 交DE 于点F , 请你写出图中三对全等三角形,并选取其中一对加以证明.14.如图,将等腰直角三角板ABC的直角顶点C 放在直线l 上,从另两个顶点A 、B 分别作l 的垂线,垂足分别为D 、E .⑴找出图中的全等三角形,并加以证明; ⑵若DE =a ,求梯形DABE 的面积.(温馨提示:补形法)15.如图,AC ⊥BC , AD ⊥BD , AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F .求证:CE =DF .16.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等,那么在什么情况下,它们会全等? ⑴阅读与证明:对于这两个三角形均为直角三角形,显然它们全等;对于这两个三角形均为钝角三角形,可证明它们全等(证明略); 对于这两个三角形均为锐角三角形,它们也全等,可证明如下;已知△ABC 、△A 1B 1C 1均为锐角三角形,AB =A 1B 1,BC =B 1C 1,∠C =∠C 1.求证:△ABC ≌△A 1B 1C 1.(请你将下列证明过程补充完整)⑵归纳与叙述:由⑴可得一个正确结论,请你写出这个结论.ABCDA 1B 1C 1D 1D B A C EF A E B F D CAEF C DB 培优升级·奥赛检测01.如图,在△ABC 中,AB =AC ,E 、F 分别是AB 、AC 上的点,且AE =AF ,BF 、CE 相交于点O ,连接AO 并延长交BC 于点D ,则图中全等三角形有( ) A .4对 B .5对 C .6对 D .7对02.如图,在△ABC 中,AB =AC ,OC =OD ,下列结论中:①∠A =∠B ②DE =CE ,③连接DE , 则OE 平分∠AOB ,正确的是( ) A .①② B .②③ C .①③ D .①②③03.如图,A 在DE 上,F 在AB 上,且AC =CE , ∠1=∠2=∠3, 则DE 的长等于()A .DCB . BC C . ABD .AE +AC04.下面有四个命题,其中真命题是( )A .两个三角形有两边及一角对应相等,这两个三角形全等B .两边和第三边上的高对应相等的两个三角形全等C . 有一角和一边对应相等的两个直角三角形全等D . 两边和第三边上的中线对应相等的两个三角形全等05.在△ABC 中,高AD 和BE 所在直线相交于H 点,且BH =AC ,则∠ABC =_______.06.如图,EB 交AC 于点M , 交FC 于点D , AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C , AE=AF . 给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ; ④CD =DB ,其中正确的结论有___________.(填序号)07.如图,AD 为在△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且有BF =AC ,FD =CD .⑴求证:BE ⊥AC ;⑵若把条件“BF =AC ”和结论“BE ⊥AC ”互换,这个命题成立吗?证明你的判定.08.如图,D 为在△ABC 的边BC 上一点,且CD =AB ,∠BDA =∠BAD ,AE 是△ABD 的中线.求证:AC =2AE .09.如图,在凸四边形ABCD 中,E 为△ACD 内一点,满足AC =AD ,AB =AE , ∠BAE +∠BCEABE D CF第6题图2 1AB CE N M3 21ADEBC FADECOA E O BFCD 第1题图B第2题图第3题图AB C DEAEBDC=90°, ∠BAC =∠EAD .求证:∠CED =90°.10.(沈阳)将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .⑴求证:AF +EF =DE ;⑵若将图①中△DBE 绕点B 顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中结论是否仍然成立;⑶若将图①中△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③你认为(1)中结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF 、EF 与DE 之间的关系,并说明理由。

全国初中数学竞赛辅导(初1)_绝对值

全国初中数学竞赛辅导(初1)_绝对值

第七讲初中数学竞赛中绝对值的应用(一)绝对值在计算中应用从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离.但除零以外,任一个绝对值都是表示两个不同数的绝对值.即一个数与它相反数的绝对值是一样的.因为这个性质,所以含有绝对值的方程与不等式的求解过程又出现了一些新特点.本讲主要介绍方程与不等式中含有绝对值的处理方法.含绝对值的不等式的性质:(2)|a|-|b|≤|a+b|≤|a|+|b|;(3)|a|-|b|≤|a-b|≤|a|+|b|.因为绝对值的定义,所以含有绝对值的代数式无法实行统一的代数运算.通常的手法是分别按照绝对值符号内的代数式取值的正、负情况,脱去绝时值符号,转化为不含绝对值的代数式实行运算,即含有绝对值的方程与不等式的求解,常用分类讨论法.在实行分类讨论时,要注意所划分的类别之间应该不重、不漏.下面结合例题予以分析.例1 a,b为实数,下列各式对吗?若不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a-b|=|b-a|;(4)若|a|=b,则a=b;(5)若|a|<|b|,则a<b;(6)若a>b,则|a|>|b|.解(1)不对.当a,b同号或其中一个为0时成立.(2)对.(3)对.(4)不对.当a≥0时成立.(5)不对.当b>0时成立.(6)不对.当a+b>0时成立.例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.根据有理数加减运算的符号法则,有b-a<0,a+c<0,c-b<0.再根据绝对值的概念,得|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.于是有原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.例3已知x<-3,化简:|3+|2-|1+x|||.分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解原式=|3+|2+(1+x)||(因为1+x<0)=|3+|3+x||=|3-(3+x)|(因为3+x<0)=|-x|=-x.解因为abc≠0,所以a≠0,b≠0,c≠0.(1)当a,b,c均大于零时,原式=3;(2)当a,b,c均小于零时,原式=-3;(3)当a,b,c中有两个大于零,一个小于零时,原式=1;(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.说明本例的解法是采取把a,b,c中大于零与小于零的个数分情况加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很常用.例5若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.解因为|x-y|≥0,所以y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.(1)当y=2时,x+y=-1;(2)当y=-2时,x+y=-5.所以x+y的值为-1或-5.例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.解a,b,c均为整数,则a-b,c-a也应为整数,且|a-b|19,|c-a|99为两个非负整数,和为1,所以只能是|a-b|19=0且|c-a|99=1,①或|a-b|19=1且|c-a|99=0.②由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=a且a=b±1,于是|b-c|=|a-b|=1.无论①或②都有|b-c|=1且|a-b|+|c-a|=1,所以|c-a|+|a-b|+|b-c|=2.解依相反数的意义有|x-y+3|=-|x+y-1999|.因为任何一个实数的绝对值是非负数,所以必有|x-y+3|=0且|x+y-1999|=0.即由①有x-y=-3,由②有x+y=1999.②-①得2y=2002,y=1001,所以例8 化简:|3x+1|+|2x-1|.分析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.这里我们为三个部分(如图1-2所示),即这样我们就能够分类讨论化简了。

初中数学竞赛辅导讲义及习题解答 第3讲 充满活力的韦达定理

初中数学竞赛辅导讲义及习题解答 第3讲 充满活力的韦达定理

第三讲 充满活力的韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的。

韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在:运用韦达定理,求方程中参数的值;运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用韦达定理逆定理,构造一元二次方程辅助解题等。

韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路。

韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。

【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 。

思路点拨:所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么ba ab +的值为( ) A 、22123 B 、22125或2 C 、22125 D 、22123或2思路点拨:可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件。

注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式。

【例3】 已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根。

(2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x 。

思路点拨:对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手。

【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值。

全国通用初中数学竞赛培优辅导讲义1-10)讲

全国通用初中数学竞赛培优辅导讲义1-10)讲
合数的定义:一个正整数除了能被1和本身整除外,还能被其他的正整数整除,这样的正整数叫做合数。
2.根椐质数定义可知
1)质数只有1和本身两个正约数,
2)质数中只有一个偶数2
如果两个质数的和或差是奇数那么其中必有一个是2,
如果两个质数的积是偶数那么其中也必有一个是2,3任何合数都可以分解为几个质数的积。
能写成几个质数的积的正整数就是合数。
8.8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972中,能被下列各数整除的有(填上编号):6________,8__________,9_________,11__________
9.从1到100这100个自然数中,能同时被2和3整除的共_____个,
解:五位数字都不相同的最小五位数是10234,
但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行
调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263。
练习
1.分解质因数:(写成质因数为底的幂的連乘积)
①593②1859③1287④3276⑤10101⑥10296
那么N+2,N+3,N+4,N+5就是适合条件的四个合数. 即32,33,34,35就是所求的一组数。
本题可推广到n个。
令N等于不大于n+1的所有质数的积,那么N+2,N+3,N+4,……N+(n+1)就是所求的合数。
练习3
1.小于100的质数共___个,它们是__________________________________
三在近似数中,当0作为有效数字时,它表示不同的精确度。
例如 近似数1.6米与1.60米不同,前者表示精确到0.1米(即1分米),误差不超过5厘米;

初中数学竞赛辅导讲义(总77页)

初中数学竞赛辅导讲义(总77页)

初中数学竞赛辅导讲义-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除初中数学竞赛辅导讲义(初三)第一讲 分式的运算[知识点击]1、分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。

2、综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。

3、分式运算:实质就是分式的通分与约分。

[例题选讲]例1.化简2312++x x + 6512++x x + 12712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + )4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 41+x =)4)(1(3++x x例2. 已知z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

解:易知:z y x + = y z x + = x z y + =k 则⎪⎩⎪⎨⎧=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1例3.设 12+-mx x x =1,求 12242+-x m x x 的值。

解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=121-m例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2+1整除,求a的值。

解:1- a=0 ∴ a=1例5:设n为正整数,求证311⨯ + 511⨯ + …… +)12)(12(1+-n n < 21证:左边=21(1 - 31 + 31 - 51+ …… +121-n - 121+n ) =21(1- 121+n )∵n 为正整数,∴121+n < 1 ∴1- 121+n < 1 故左边< 21 [小结归纳]1、部分分式的通用公式:)(1k x x + = k 1 (x 1 - kx +1) 2、参数法是解决比例问题特别是连比问题时非常有效的方法,其优点在于设连比值为K ,将连等式化为若干个等式,把各字母用同一字母的解析式表示,从而给解题带来方便。

八年级奥数

八年级奥数

目录本内容适合八年级学生竞赛拔高使用。

注重中考与竞赛的有机结合,重点落实在中考中难以上题、奥赛方面的基础知识和基本技能培训和提高。

本内容难度适中,讲练结合,由浅入深,讲解与练习同步,重在提高学生的数学分析能力与解题能力。

另外在本次培训中,内容的编排大多大于120分钟的容量,因此在实际教学过程中可以根据学生的具体状况和层次,由任课教师适当的调整顺序和选择内容(如专题复习可以提前上)。

注:有(*) 标注的为选做内容。

本次培训具体计划如下,以供参考:第一讲如何做几何证明题第二讲平行四边形(一)第三讲平行四边形(二)第四讲梯形第五讲中位线及其应用第六讲一元二次方程的解法第七讲一元二次方程的判别式第八讲一元二次方程的根与系数的关系第九讲一元二次方程的应用第十讲专题复习一:因式分解、二次根式、分式第十一讲专题复习二:代数式的恒等变形第十二讲专题复习三:相似三角形第十三讲结业考试(未装订在内,另发)第十四讲试卷讲评第一讲:如何做几何证明题【知识梳理】1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。

几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2、掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲:因式分解(一) (1)第二讲:因式分解(二) (4)第三讲实数的若干性质和应用 (7)第四讲分式的化简与求值 (10)第五讲恒等式的证明 (13)第六讲代数式的求值 (16)第七讲根式及其运算 (18)第八讲非负数 (22)第九讲一元二次方程 (26)第十讲三角形的全等及其应用 (29)第十一讲勾股定理与应用 (33)第十二讲平行四边形 (36)第十三讲梯形 (39)第十四讲中位线及其应用 (42)第十五讲相似三角形(一) (45)第十六讲相似三角形(二) .............................................. 48 第十七讲* 集合与简易逻辑. (51)第十八讲归纳与发现 (56)第十九讲特殊化与一般化 (59)第二十讲类比与联想 (63)第二十一讲分类与讨论 (67)第二十二讲面积问题与面积方法 (70)第二十三讲几何不等式 (73)第二十四讲* 整数的整除性 (77)第二十五讲* 同余式 (80)第二十六讲含参数的一元二次方程的整数根问题 (83)第二十七讲列方程解应用问题中的量 (86)第二十八讲怎样把实际问题化成数学问题 (90)第二十九讲生活中的数学(三) ——镜子中的世界 (94)第三十讲生活中的数学(四)──买鱼的学问 (99)第一讲:因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n 为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n 为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n 为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c >0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.第二讲:因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)] =(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解(1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n 的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2). 原式=(x 3-2x 2)-(2x 2-4x)+(2x-4) =x 2(x-2)-2x(x-2)+2(x-2) =(x-2)(x 2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x 2-2x+2).说明 在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x 4-3x 3+7x 2-3x-2.分析 因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x 2-3x-2. 解 9x 4-3x 3+7x 2-3x-2 =9x 4-3x 3-2x 2+9x 2-3x-2 =x 2(9x 3-3x-2)+9x 2-3x-2 =(9x 2-3x-2)(x 2+1) =(3x+1)(3x-2)(x 2+1)说明 若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x 2-3x-2,这样可以简化分解过程. 总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了. 3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用. 在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法. 例4 分解因式:x 2+3xy+2y 2+4x+5y+3. 分析 由于(x 2+3xy+2y 2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m 和x +y +n 的形式,应用待定系数法即可求出m 和n ,使问题得到解决. 解 设x 2+3xy+2y 2+4x+5y+3 =(x+2y+m)(x+y+n)=x 2+3xy+2y 2+(m+n)x+(m+2n)y+mn , 比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明 本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x 4-2x 3-27x 2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.第三讲实数的若干性质和应用实数是高等数学特别是微积分的重要基础.在初中代数中没有系统地介绍实数理论,是因为它涉及到极限的概念.这一概念对中学生而言,有一定难度.但是,如果中学数学里没有实数的概念及其简单的运算知识,中学数学也将无法继续学习下去了.例如,即使是一元二次方程,只有有理数的知识也是远远不够用的.因此,适当学习一些有关实数的基础知识,以及运用这些知识解决有关问题的基本方法,不仅是为高等数学的学习打基础,而且也是初等数学学习所不可缺少的.本讲主要介绍实数的一些基本知识及其应用.用于解决许多问题,例如,不难证明:任何两个有理数的和、差、积、商还是有理数,或者说,有理数对加、减、乘、除(零不能做除数)是封闭的.性质1 任何一个有理数都能写成有限小数(整数可以看作小数点后面为零的小数)或循环小数的形式,反之亦然.例1分析要说明一个数是有理数,其关键要看它能否写成两个整数比的形式.证设两边同乘以100得②-①得99x=261.54-2.61=258.93,无限不循环小数称为无理数.有理数对四则运算是封闭的,而无理是说,无理数对四则运算是不封闭的,但它有如下性质.性质2 设a为有理数,b为无理数,则(1)a+b,a-b是无理数;有理数和无理数统称为实数,即在实数集内,没有最小的实数,也没有最大的实数.任意两个实数,可以比较大小.全体实数和数轴上的所有点是一一对应的.在实数集内进行加、减、乘、除(除数不为零)运算,其结果仍是实数(即实数对四则运算的封闭性).任一实数都可以开奇次方,其结果仍是实数;只有当被开方数为非负数时,才能开偶次方,其结果仍是实数.例2分析证所以分析要证明一个实数为无限不循环小数是一件极难办到的事.由于有理数与无理数共同组成了实数集,且二者是矛盾的两个对立面,所以,判定一个实数是无理数时,常常采用反证法.证用反证法.所以p一定是偶数.设p=2m(m是自然数),代入①得4m2=2q2,q2=2m2,例4 若a1+b1a=a2+b2a(其中a1,a2,b1,b2为有理数,a为无理数),则a1=a2,b1=b2,反之,亦成立.分析设法将等式变形,利用有理数不能等于无理数来证明.证将原式变形为(b1-b2)a=a2-a1.若b1≠b2,则反之,显然成立.说明本例的结论是一个常用的重要运算性质.是无理数,并说明理由.整理得:由例4知a=Ab,1=A,说明本例并未给出确定结论,需要解题者自己发现正确的结有理数作为立足点,以其作为推理的基础.例6 已知a,b是两个任意有理数,且a<b,求证:a与b之间存在着无穷多个有理数(即有理数集具有稠密性).分析只要构造出符合条件的有理数,题目即可被证明.证因为a<b,所以2a<a+b<2b,所以说明构造具有某种性质的一个数,或一个式子,以达到解题和证明的目的,是经常运用的一种数学建模的思想方法.例7 已知a,b是两个任意有理数,且a<b,问是否存在无理数α,使得a<α<b成立?即由①,②有存在无理数α,使得a<α<b成立.b4+12b3+37b2+6b-20的值.分析因为无理数是无限不循环小数,所以不可能把一个无理数的小数部分一位一位确定下来,这样涉及无理数小数部分的计算题,往往是先估计它的整数部分(这是容易确定的),然后再寻求其小数部分的表示方法.14=9+6b+b2,所以b2+6b=5.b4+12b3+37b2+6b-20=(b4+2·6b3+36b2)+(b2+6b)-20=(b2+6b)2+(b2+6b)-20=52+5-20=10.例9 求满足条件的自然数a,x,y.解将原式两边平方得由①式变形为两边平方得例10 设a n是12+22+32+…+n2的个位数字,n=1,2,3,…,求证:0.a1a2a3…a n…是有理数.分析有理数的另一个定义是循环小数,即凡有理数都是循环小数,反之循环小数必为有理数.所以,要证0.a1a2a3…a n…是有理数,只要证它为循环小数.因此本题我们从寻找它的循环节入手.证计算a n的前若干个值,寻找规律:1,5,4,0,5,1,0,4,5,5,6,0,9,5,0,6,5,9,0,0,1,5,4,0,5,1,0,4,…发现:a20=0,a21=a1,a22=a2,a23=a3,…,于是猜想:a k+20=a k,若此式成立,说明0.a1a2…a n…是由20个数字组成循环节的循环小数,即下面证明a k+20=a k.令f(n)=12+22+…+n2,当f(n+20)-f(n)是10的倍数时,表明f(n+20)与f(n)有相同的个位数,而f(n+20)-f(n)=(n+1)2+(n+2)2+…+(n+20)2=10(2n2+42·n)+(12+22+…+202).由前面计算的若干值可知:12+22+…+202是10的倍数,故a k+20=a k成立,所以0.a1a2…a n…是一个有理数.第四讲分式的化简与求值分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据.在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值.例1 化简分式:分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多.=[(2a+1)-(a-3)-(3a+2)+(2a-2)]说明本题的关键是正确地将假分式写成整式与真分式之和的形式.例2 求分式当a=2时的值.分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b),可将分式分步通分,每一步只通分左边两项.例3 若abc=1,求分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法.解法1 因为abc=1,所以a,b,c都不为零.解法2 因为abc=1,所以a≠0,b≠0,c≠0.例4 化简分式:分析与解三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简.说明互消掉的一对相反数,这种化简的方法叫“拆项相消”法,它是分式化简中常用的技巧.例5 化简计算(式中a,b,c两两不相等):似的,对于这个分式,显然分母可以分解因式为(a-b)(a-c),而分子又恰好凑成(a-b)+(a-c),因此有下面的解法.解说明本例也是采取“拆项相消”法,所不同的是利用例6 已知:x+y+z=3a(a≠0,且x,y,z不全相等),求分析本题字母多,分式复杂.若把条件写成(x-a)+(y-a)+(z-a)=0,那么题目只与x-a,y-a,z-a 有关,为简化计算,可用换元法求解.解令x-a=u,y-a=v,z-a=w,则分式变为u2+v2+w2+2(uv+vw+wu)=0.由于x,y,z不全相等,所以u,v,w不全为零,所以u2+v2+w2≠0,从而有说明从本例中可以看出,换元法可以减少字母个数,使运算过程简化.例7 化简分式:适当变形,化简分式后再计算求值.(x-4)2=3,即x2-8x+13=0.原式分子=(x4-8x3+13x2)+(2x3-16x2+26x)+(x2-8x+13)+10=x2(x2-8x+13)+2x(x2-8x+13)+(x2-8x+13)+10=10,原式分母=(x2-8x+13)+2=2,说明本例的解法采用的是整体代入的方法,这是代入消元法的一种特殊类型,应用得当会使问题的求解过程大大简化.解法1 利用比例的性质解决分式问题.(1)若a+b+c≠0,由等比定理有所以a+b-c=c,a-b+c=b,-a+b+c=a,于是有(2)若a+b+c=0,则a+b=-c,b+c=-a,c+a=-b,于是有说明比例有一系列重要的性质,在解决分式问题时,灵活巧妙地使用,便于问题的求解.解法2 设参数法.令则a+b=(k+1)c,①a+c=(k+1)b,②b+c=(k+1)a.③①+②+③有2(a+b+c)=(k+1)(a+b+c),所以 (a+b+c)(k-1)=0,故有k=1或 a+b+c=0.当k=1时,当a+b+c=0时,说明引进一个参数k表示以连比形式出现的已知条件,可使已知条件便于使用.第五讲恒等式的证明代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析.两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等.证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧.1.由繁到简和相向趋进恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式).例1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz.分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边.证因为x+y+z=xyz,所以左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2) =(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx) =xyz+xyz+xyz+xyz=4xyz=右边.说明本例的证明思路就是“由繁到简”.例2 已知1989x2=1991y2=1993z2,x>0,y>0,z>0,且证令1989x2=1991y2=1993z2=k(k>0),则又因为所以所以说明本例的证明思路是“相向趋进”,在证明方法上,通过设参数k,使左右两边同时变形为同一形式,从而使等式成立.2.比较法a=b(比商法).这也是证明恒等式的重要思路之一.例3 求证:分析用比差法证明左-右=0.本例中,这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b代a,c代b,a代c,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作轮换式.利用这种特性,可使轮换式的运算简化.证因为所以所以说明本例若采用通分化简的方法将很繁.像这种把一个分式分解成几个部分分式和的形式,是分式恒等变形中的常用技巧.全不为零.证明:(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).同理所以所以(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).说明本例采用的是比商法.3.分析法与综合法根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论.证要证 a2+b2+c2=(a+b-c)2,只要证a2+b2+c2=a2+b2+c2+2ab-2ac-2bc,只要证 ab=ac+bc,只要证 c(a+b)=ab,只要证这最后的等式正好是题设,而以上推理每一步都可逆,故所求证的等式成立.说明本题采用的方法是典型的分析法.例6 已知a4+b4+c4+d4=4abcd,且a,b,c,d都是正数,求证:a=b=c=d.证由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0,所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以a2-b2=c2-d2=ab-cd=0,所以 (a+b)(a-b)=(c+d)(c-d)=0.又因为a,b,c,d都为正数,所以a+b≠0,c+d≠0,所以a=b,c=d.所以ab-cd=a2-c2=(a+c)(a-c)=0,所以a=c.故a=b=c=d成立.说明本题采用的方法是综合法.4.其他证明方法与技巧求证:8a+9b+5c=0.a+b=k(a-b),b+c=2k(b-c),(c+a)=3k(c-a).所以6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a).以上三式相加,得6(a+b)+3(b+c)+2(c+a)=6k(a-b+b-c+c-a),即 8a+9b+5c=0.说明本题证明中用到了“遇连比设为k”的设参数法,前面的例2用的也是类似方法.这种设参数法也是恒等式证明中的常用技巧.例8 已知a+b+c=0,求证2(a4+b4+c4)=(a2+b2+c2)2.分析与证明用比差法,注意利用a+b+c=0的条件.左-右=2(a4+b4+c4)-(a2+b2+c2)2=a4+b4+c4-2a2b2-2b2c2-2c2a2=(a2-b2-c2)2-4b2c2=(a2-b2-c2+2bc)(a2-b2-c2-2bc)=[a2-(b-c)2][a2-(b+c)2]=(a-b+c)(a+b-c)(a-b-c)(a+b+c)=0.所以等式成立.说明本题证明过程中主要是进行因式分解.分析本题的两个已知条件中,包含字母a,x,y 和z,而在求证的结论中,却只包含a,x和z,因此可以从消去y着手,得到如下证法.证由已知说明本题利用的是“消元”法,它是证明条件等式的常用方法.例10 证明:(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).分析与证明此题看起来很复杂,但仔细观察,可以使用换元法.令y+z-2x=a,①z+x-2y=b,②x+y-2z=c,③则要证的等式变为a3+b3+c3=3abc.联想到乘法公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca),所以将①,②,③相加有a+b+c=y+z-2x+z+x-2y+x+y-2z=0,所以 a3+b3+c3-3abc=0,所以(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).说明由本例可以看出,换元法也可以在恒等式证明中发挥效力.例11 设x,y,z为互不相等的非零实数,且求证:x 2y 2z 2=1.分析 本题x ,y ,z 具有轮换对称的特点,我们不妨先看二元的所以x 2y 2=1.三元与二元的结构类似. 证 由已知有①×②×③得x 2y 2z 2=1.说明 这种欲进先退的解题策略经常用于探索解决问题的思路中.总之,从上面的例题中可以看出,恒等式证明的关键是代数式的变形技能.同学们要在明确变形目的的基础上,深刻体会例题中的常用变形技能与方法,这对以后的数学学习非常重要.第六讲 代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析 x 的值是通过一个一元二次方程给出的,若解出x 后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件. 解 已知条件可变形为3x 2+3x -1=0,所以 6x 4+15x 3+10x 2=(6x 4+6x 3-2x 2)+(9x 3+9x 2-3x)+(3x 2+3x -1)+1 =(3x 2+3x -1)(2z 2+3x+1)+1 =0+1=1.说明 在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答. 例2 已知a ,b ,c 为实数,且满足下式: a 2+b 2+c 2=1,①求a+b+c 的值.解 将②式因式分解变形如下即所以a+b+c=0或bc+ac+ab=0. 若bc+ac+ab=0,则(a+b+c)2=a 2+b 2+c 2+2(bc+ac+ab)=a 2+b 2+c 2=1,所以 a+b+c=±1.所以a+b+c 的值为0,1,-1. 说明 本题也可以用如下方法对②式变形:。

相关文档
最新文档