公开课《锐角三角函数复习》PPT课件
合集下载
锐角三角函数复习课.ppt
(2)一个锐角的余弦值随着角度的增大而减小 。
5、解直角三角形必须要已知 两 个条件,且其中一个条件必
是边。
6、解直角三角形的应用:
(1)在测量时,视线与水平线所成的角中,规定:视线在水平线 上方的角叫做 仰 角,视线在水平线下方的角叫做 俯 角。
(2)坡面的铅重高度(h)与水平长度(L)的比叫做 坡度 ,用字
母
i
表示,即i=
h L
。坡面与水平面的夹角叫做 坡 角,坡
角越大,坡度就越大,坡面就越 陡 。
达标检测
1、在Rt△ABC中,∠C=90°,sinA= 12,则∠B= 60°
3
4
2、在Rt△ABC中,∠C=90°,tanA=
3 4
,则sinA=
5 ,cosA= 5 。
3、已知α为锐角,且cosα=0.8,则锐角α的大致范围是( A ) A、45°<α<60° B、α>30° C、30°<α<45° D、α>45°
(1)互为余角的三角函数关系: ①sin(90°-A)= cosA ②cos(90°-A)= sinA
(2)同角的锐角三角函数关系:
① sin2 A cos2 A 1
③ tanAtanB= 1
② tan A sin A
cos A
4、三角函数的增减性:
(1)一个锐角的正弦、正切值随着角度的增大而增大 。
答:A、B两点的距离是100( 3 +1)米。
学习目标
1、理解锐角三角函数的定义,掌握特殊锐 角的三角函数值,并进行计算;
2、掌握直角三角形三边之间的关系,会解 直角三角形;
3、运用解直角三角形的知识解决简单的实 际问题。
《锐角三角函数》PPT教学课件(第1课时)
BC AC
= 12 =
AC
34,所以AC=9.故填9.
随堂训练
AB 6.如图,在Rt△ABC中,∠C=90°,BC
17 15
,则tan
15 A=_8__.
由正切定义可知tan A=BACC , 因为 AB 17 , 可设BC=15a,AB=17a,从而可
BC 15
用勾股定理表示出第三边AC=8a,再用正切的定义求解得 tan A= BC 15 .
由勾股定理可得 AB= BC2 AC2 122 162 =20.
∴AB的长为20.
课堂小结
1.正切的定义: 如图,在Rt△ABC中,如果锐角A确定,那么∠A的对边与邻
边的比便随之确定,这个比叫做 ∠A的正切,记作tan A, 即tan A= A的对边
A的邻边
2.tanA的值越大,梯子(坡)越陡
图①
图②
新课导入
问题引入
如图所示,轮船在A处时,灯塔B位于它 的北偏东35°的方向上.轮船向东航行5 km 到达C处时,轮船位于灯塔的正南方,此时轮 船距灯塔多少千米?(结果保留两位小数)
该实际问题中的已知和所求为图中的哪些角和线段?
(事实上,求轮船距灯塔的距离,就是在Rt△ABC中,已知 ∠C=90°,∠BAC=55°,AC=5 km,求BC长度的问题)
C,C'.
BC AC
与BACC
具有怎样的关系?
在两个直角三角形中,当一对锐角相等
时,这两个直角三角形相似,从而两条对应直
角边的比相等,即当∠A(小于90°)确定时,以 ∠A为锐角的Rt△ABC的两条直角边的比 BC
AC
是确定的.
知识讲解
1.正切的定义
如图所示,在Rt△ABC中,∠C=90°,我们把∠A的对边与邻边的比叫
《锐角三角函数》课件
锐角三角函数图像与性质
正弦函数图像及性质
周期性
振幅
相位
图像特点
正弦函数具有周期性,周期为2π。
正弦函数的相位表示函数在水平方向上的移动,通过调整相位可以得到不同位置的正弦波。
正弦函数的振幅为1,表示函数在垂直方向上的波动范围。
正弦函数的图像是一条连续的、平滑的曲线,呈现周期性的波动。
余弦函数图像及性质
202X
单击此处添加副标题内容
《锐角三角函数》ppt课件
汇报日期
汇报人姓名
目录
锐角三角函数基本概念
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数图像与性质
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数运算规则
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数在实际问题中应用
乘法运算规则
两个锐角三角函数的除法运算,通常转化为同角三角函数的除法运算,再利用同角三角函数的基本关系式进行化简。
除法运算规则
按照先乘除后加减的运算顺序进行乘除混合运算,注意运算过程中的化简和约分。
乘除混合运算规则
复合运算规则
复合函数的定义域
复合函数的值域
复合函数的单调性
复合函数的周期性
01
02
03
钝角三角函数定义
探讨了钝角三角函数的性质,如取值范围、增减性等,以及与锐角三角函数的异同点。
钝角三角函数的性质
介绍了在直角情况下,一些特殊角的三角函数值,如0°、30°、45°、60°、90°等,以及如何利用这些特殊值进行计算和证明。
直角情况下的特殊值
感谢观看
THANKS
渐近线与间断点
02
正弦函数图像及性质
周期性
振幅
相位
图像特点
正弦函数具有周期性,周期为2π。
正弦函数的相位表示函数在水平方向上的移动,通过调整相位可以得到不同位置的正弦波。
正弦函数的振幅为1,表示函数在垂直方向上的波动范围。
正弦函数的图像是一条连续的、平滑的曲线,呈现周期性的波动。
余弦函数图像及性质
202X
单击此处添加副标题内容
《锐角三角函数》ppt课件
汇报日期
汇报人姓名
目录
锐角三角函数基本概念
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数图像与性质
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数运算规则
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数在实际问题中应用
乘法运算规则
两个锐角三角函数的除法运算,通常转化为同角三角函数的除法运算,再利用同角三角函数的基本关系式进行化简。
除法运算规则
按照先乘除后加减的运算顺序进行乘除混合运算,注意运算过程中的化简和约分。
乘除混合运算规则
复合运算规则
复合函数的定义域
复合函数的值域
复合函数的单调性
复合函数的周期性
01
02
03
钝角三角函数定义
探讨了钝角三角函数的性质,如取值范围、增减性等,以及与锐角三角函数的异同点。
钝角三角函数的性质
介绍了在直角情况下,一些特殊角的三角函数值,如0°、30°、45°、60°、90°等,以及如何利用这些特殊值进行计算和证明。
直角情况下的特殊值
感谢观看
THANKS
渐近线与间断点
02
锐角三角函数复习课课件
90度角
总结词
正弦值和余弦值不存在,正切值为无穷大
详细描述
在90度角时,正弦函数值和余弦函数值都不存在,因为无法定义与x轴的角度;正切函数值为无穷大 ,因为在直角三角形中,对边长度可以无限小而保持与斜边的比值不变。
03
锐角三角函数的图像与性质
正弦函数图像
总结词
正弦函数图像是一个周期函数,其图像在直角坐标系中呈波 浪形。
用三角函数来处理角度和旋转。
05
常见题型解析与解题技巧
选择题
• 题型特点:选择题通常考察学生对锐角三角函数基础知识的理 解和应用,题目会给出一些具体的数值或图形,要求选择正确 的答案。
选择题
排除法
根据题目给出的选项,逐一排除明显 错误的答案,缩小选择范围。
代入法
对于涉及数值计算的题目,可以将选 项中的数值代入题目中,通过计算验 证答案的正确性。
在研究磁场和电场时,我们经常需要使用锐 角三角函数来描述场的方向和强度。
日常生活中的问题
建筑和设计
在建筑设计、工程规划和土木工程中,锐角 三角函数用于计算角度、高度和距离等参数 ,以确保结构的稳定性和安全性。
游戏和娱乐
在许多游戏和娱乐活动中,锐角三角函数也 起着重要作用。例如,在制作动画、设计游 戏关卡或创建虚拟现实环境时,我们需要使
总结词
正弦值为0,余弦值和正切值不存在
详细描述
在0度角时,正弦函数值为0,表示射线与x轴重合;余弦函数值不存在,因为无 法定义与x轴的角度;正切函数值也不存在,因为没有对边形成直角三角形。
30度角
总结词
正弦值为0.5,余弦值为0.866,正切值为1/3
详细描述
在30度角时,正弦函数值为0.5,表示对边长度为斜边长度的一半;余弦函数值 为0.866,表示邻边长度为斜边长度的一半的平方根;正切函数值为1/3,表示对 边长度与邻边长度的比值。
第16讲锐角三角函数复习课件(共42张PPT)
解:原式= 3+ 2× 22+ 3--3-2 3+1= 3+1+ 3 +3-2 3+1=5.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
4.在△ABC 中,若|cos A-12|+(1-tan B)2=0,则∠C 的
度数是
(C )
A.45°
B.60°
C.75°
D.105°
5.式子 2cos 30°-tan 45°- (1-tan 60°)2的值是
∵CE=EF,∴CAEC=
m= 5m
55,
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
∴tan∠CAE= 55. 解法二:∴在 Rt△ABC 中,
tan
B=ABCC=
2m = 5m
2, 5
在 Rt△EFB 中,EF=BF·tan B=2m,∴CE=EF=2m,
5
5
2m
∴在 Rt△ACE 中,tan∠CAE=CAEC=2m5= 55,
∴tan∠CAE= 55.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
7.如图5-16-4,在Rt△ABC中, ∠C=90°,∠A=30°,E为线段AB上 一点且AE∶EB=4∶1,EF⊥AC于F, 连结FB,则tan∠CFB的值等于 ( C )
3 A. 3
53 C. 3
23 B. 3 D.5 3
大师导航 归类探究 自主招生交流平台 思维训练
第五章 解直角三角形
第16讲 锐角三角函数
全效优等生
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
月球有多远? 如图,如果从地球上A点看, 月球S刚好在地平线上(即AS和地 球半径OA垂直),而同时从地球上B点看,S刚好在天顶处(即S 在地球半径OB的延长线上),那么∠S就叫做月球S的地平视 差,根据一个天体的地平视差,可以算出这个天体的距离. ∠S可以从∠AOB算出,而∠AOB可以从地球上A,B两点 的经纬度算出. 月球S的地平视差(∠S),就是从月球S看来,垂直于视线 (SA)的地球半径(OA)所对的角.
公开课锐角三角函数复习课件ppt
一.锐角三角函数的概念
ca
正弦:把锐角A的_对__边__与__斜__边_的比叫做∠A
的正弦,记作 sin A a
c
A bC
余弦:把锐角A的_邻__边__与__斜__边_的比叫做∠A的 余弦,记作 cos A b
c
正切:把锐角A的_对__边__与__邻__边_的比叫做∠A的 正切,记作 tan A a
思考:若∠A+∠B=900,那么: sinA = cosB cosA = sinB
在 整堂课 的教学 中,刘 教师总 是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
☆ 应用练习
一.已知角,求值 (1)tan45°-sin60°cos30° (2)2sin30°+3tan30°+tan45° (3)cos245°+ tan60°cos30° (4)2sin60°-3tan30°-(π-cos30°)+(-1)2012
一试. tan22.5 °= 2 1
A
D
D′
B
C
在 整堂课 的教学 中,刘 教师总 是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
☆ 应用练习
三.比较大小
(1)sin250____sin430 (2)cos70____cos80 (3)sin400____cos600 (4)tan480____tan400
B
A
C
4.如图,在Rt△ABC中,∠C=90,b= 2 3 ,c=4.
则a= 2 ,∠B= 60°,∠A= 30°.
5.如果 coAs1+ 3taB n30
锐角三角函数总复习ppt课件.pptx
基础自主导学
1.如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的 是( )
A.sin
A=
3 2
C.cos
B=
3 2
答案:D
B.tan A=12 D.tan B= 3
2.在正方形网格中,△ABC的位置如图,则cos B的值为( )
A.
1 2
C.
3 2
答案:B
B.
2 2
D.
┃ 知识归类
解直角三角形
1.三边关系:a2+b2=c2
2.三角关系:∠A=90°-∠B
a
3.边角关系:sinA=cosB= c
;
;
b
,cosA=sinB=c ,tanA
sinA
sinB
= cosA ,tanB= cosB
.
4.面积关系:sABC
1 2
ab
1 2
ch
(2)直角三角形可解的条件和解法
条件:解直角三角形时知道其中的2个元素(至少有一个是边), 就可以求出其余的3个未知元素.
[思路分析]设每层楼高为x m,由MC-CC′求出MC′的 长,进而表示出DC′与EC′的长,在直角三角形DC′A′中, 利用锐角三角函数定义表示出C′A′,同理表示出C′B′, 由 C′B′-C′A′求出 AB 的长即可.
解:设每层楼高为 x m, 由题意,得 MC′=MC-CC′=2.5-1.5=1(m). ∴DC′=5x+1,EC′=4x+1. 在Rt△DC′A′中,∠DA′C′=60°, ∴C′A′=tDanC6′0°= 33(5x+1).
1 2
,sin45°=
2 2
,sin60°=
3 2
锐角三角函数PPT优质课市公开课一等奖省优质课获奖课件.pptx
∠A邻边与斜边比叫做余弦。记作cosA
第5页
∠A对边与邻边比叫做正切。记作tanA
第6页
当直角三角形一个锐角 大小确定时,其对边与邻 边比值也是惟一确定吗?
第7页
B
思索:锐角A正切值能够等
于1吗?为何?
A
┌ C
能够大于1吗?
对于锐角A每一个确定值,sinA、cosA、tanA都有唯 一确实定值与它对应,所以把锐角A正弦、余弦、正切叫
做∠A锐角三角函数。
第8页
例2 在Rt △ABC中,∠C=90°,AB=10,BC=6,
求sinA,cosA,tanA值。
解:由勾股定理得
B
AC AB 2 BC 2 102 62 8
因此sin A BC 6 3 AB 10 5
cos A AC 8 4 AB 10 5
tan A BC 6 3 AC 8 4
3.如图
B
3
A 300
C
7
则 sinA=______ .
第2页
2.在Rt△ABC中,锐角A对边和斜边同时扩大
100倍,sinA值( )
A.扩大100倍
B.缩小
C.不变
D.不能确定
第3页
在直角三角形中,一个角邻边比斜边、对边 比邻边又是什么情况呢?
第4页
如图:在Rt △ABC中,∠C=90°,当∠A确定时, ∠A对边与斜边比随之确定。此时,其它边之间比是 否也随之确定呢?为何?
B
(1) tanA =
(
)
=
CD
AC ( )
D
A
C
(2) tanB=
(
)
=
CD
BC ( )
第5页
∠A对边与邻边比叫做正切。记作tanA
第6页
当直角三角形一个锐角 大小确定时,其对边与邻 边比值也是惟一确定吗?
第7页
B
思索:锐角A正切值能够等
于1吗?为何?
A
┌ C
能够大于1吗?
对于锐角A每一个确定值,sinA、cosA、tanA都有唯 一确实定值与它对应,所以把锐角A正弦、余弦、正切叫
做∠A锐角三角函数。
第8页
例2 在Rt △ABC中,∠C=90°,AB=10,BC=6,
求sinA,cosA,tanA值。
解:由勾股定理得
B
AC AB 2 BC 2 102 62 8
因此sin A BC 6 3 AB 10 5
cos A AC 8 4 AB 10 5
tan A BC 6 3 AC 8 4
3.如图
B
3
A 300
C
7
则 sinA=______ .
第2页
2.在Rt△ABC中,锐角A对边和斜边同时扩大
100倍,sinA值( )
A.扩大100倍
B.缩小
C.不变
D.不能确定
第3页
在直角三角形中,一个角邻边比斜边、对边 比邻边又是什么情况呢?
第4页
如图:在Rt △ABC中,∠C=90°,当∠A确定时, ∠A对边与斜边比随之确定。此时,其它边之间比是 否也随之确定呢?为何?
B
(1) tanA =
(
)
=
CD
AC ( )
D
A
C
(2) tanB=
(
)
=
CD
BC ( )
公开课锐角三角函数复习课件
特殊角的三角函数值
• 0°、30°、45°、60°、90°等特殊角的三角函数值应熟练掌握, 包括sin、cos、tan、cot、sec、csc等函数。
02
锐角三角函数的图像与 性质
正弦函数的图像与性质
正弦函数的周期性和对称性
正弦函数是周期函数,具有轴对称性和中心对称性。
正弦函数的单调性
在每个周期内,正弦函数在一定区间内单调递增或递减。
正切函数的图像与性质
正切函数的定义域
正切函数只在直角三角形 中定义,表示对边与邻边 的比值。
正切函数的单调性
正切函数在每个区间内单 调递增,无周期性。
正切函数的值域
正切函数的值域为全体实 数,表示任意两个边的比 值。
三角函数图像的变换
平移变换
翻折变换
通过平移正弦、余弦、正切函数的图 像,可以得到其他三角函数图像。
根据数学模型,选择合适的三角 函数公式进行计算。
计算结果
根据选择的公式进行计算,得出 结果。
理解题意
首先需要仔细阅读题目,理解题 目的要求和所给条件,明确解题 的目标。
检验结果
最后需要对计算结果进行检验, 确保结果的正确性。经典Leabharlann 角三角函数综合题解析题型一
求角度问题
题型二
求边长问题
题型三
求面积问题
02
通过已知的边长和角度,利用三角函数可以求出其他边长或角
度,从而解决实际问题。
特殊角的三角函数值
03
对于一些特殊角,如30°、45°、60°等,其三角函数值是已知的
,这些值在解直角三角形时非常有用。
三角函数在实际问题中的应用
测量问题
在建筑、工程和地理测量等领域 ,经常需要使用三角函数来解决 实际问题,如计算距离、高度和
锐角三角函数复习.ppt
又BC-CD=BD
解得x=6
∴CD=6
A
B
C
D
例题解析
(2) BC=BD+CD=4+6=10=AD
在Rt△ACD中
在Rt△ABC中z x xk
问题2 要解一个直角三角形,除一个直角的已知元素外,还需要几个元素?为什么这些元素中至少要有一条边?试给出可以求解直角三角形的两个条件.
A
B
C
D
问题3 如果题中给出的图形不是直角三角形而是一个综合图形,我们用什么方法进行处理,就能把它转化为可以解的直角三角形?
问题4 你认为需要具备哪些知识、掌握哪些方法,就能较顺利地解决有关实际问题?请总结实际问题的一般步骤和注意点.
锐角三角 函数z x xk
特殊角的三 角函数
解直角三 角形
简单实际 问题
c
a
b
A
B
C
知识
特殊角的三 角函数
2
1
30°
1
1
45°
2
1
60°
30°+ 60°= 90°
返 回
解直角 三角形
∠A+ ∠ B=90°
a2+b2=c2
三角函数 关系式
计算器
由锐角求三角函数值
由三角函数值求锐角
返 回
简单实 际问题
数学模型
直角三角形
等腰梯形
组合图形
等腰三角形
构建
解
作高转化为直角三角形
解
返 回
问题1 已知:如同,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AD=3,CD= ,怎样求sinA和cos∠BCD的值?怎样求∠B的正切值?
已知:如图,在△ABC中,∠C=90°,点D在BC上,BD=4,AD=BC,cos∠ADC= ,求:(1)DC的长;(2)sinB的值.
解得x=6
∴CD=6
A
B
C
D
例题解析
(2) BC=BD+CD=4+6=10=AD
在Rt△ACD中
在Rt△ABC中z x xk
问题2 要解一个直角三角形,除一个直角的已知元素外,还需要几个元素?为什么这些元素中至少要有一条边?试给出可以求解直角三角形的两个条件.
A
B
C
D
问题3 如果题中给出的图形不是直角三角形而是一个综合图形,我们用什么方法进行处理,就能把它转化为可以解的直角三角形?
问题4 你认为需要具备哪些知识、掌握哪些方法,就能较顺利地解决有关实际问题?请总结实际问题的一般步骤和注意点.
锐角三角 函数z x xk
特殊角的三 角函数
解直角三 角形
简单实际 问题
c
a
b
A
B
C
知识
特殊角的三 角函数
2
1
30°
1
1
45°
2
1
60°
30°+ 60°= 90°
返 回
解直角 三角形
∠A+ ∠ B=90°
a2+b2=c2
三角函数 关系式
计算器
由锐角求三角函数值
由三角函数值求锐角
返 回
简单实 际问题
数学模型
直角三角形
等腰梯形
组合图形
等腰三角形
构建
解
作高转化为直角三角形
解
返 回
问题1 已知:如同,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AD=3,CD= ,怎样求sinA和cos∠BCD的值?怎样求∠B的正切值?
已知:如图,在△ABC中,∠C=90°,点D在BC上,BD=4,AD=BC,cos∠ADC= ,求:(1)DC的长;(2)sinB的值.
锐角三角函数复习课ppt课件
sina cosa tana
1
2
3
2
2
2
3
2
1
2
2
2
3
3
1
3
思考
锐角A的正弦值、余弦 值有无变化范围?
0< sinA<1
0<cosA最<新1 版整理ppt
角度 逐渐 增大
正 弦 值 余弦 也 值逐 增 渐减 大 正小切
值也 随之 增大
14
sin 2 cos2 1 tan sin
cos
1.3m
O
O
10m
方法总结:对于这
样的实际问题,先认真 分析题意,建立直角三
BC
B
角形的模型,将实际问
题转化为数学问题
A
A
最新版整理ppt
19
• 10分:元旦期间,学校的教学楼上AC挂着庆元旦 条幅BC,小明站在点F处,测得条幅顶端B的仰 角为300,再往条幅方向前进20m到达点E处,测 得B的仰角为600,求条幅BC的长。
AC=
√3,
AB=2,Tan
B 2
75° √3 =3
4,如果α和β都是锐角,且sinα= cosβ,
则α与β的关系 是( B
)
A,相等 B,互余 C,互补 D,不确定。
5.已知在Rt△ABC中, ∠C=90°,sinA=
1 2
,则
cosB=( A )
A,
1 2
B,√22
C, √最2新3版整理Dp,pt √3
4
6. 计算
(1) tan30°+cos45°+tan60°
3 2 3 32
4 3 2 32
(2) tan30°·tan60°+ cos230°
《锐角三角函数》PPT教学课件(第2课时)
1
∠ 的对边 =
= .
2
斜边
A
可得 AB=2BC=70m,即需要准备70m长的水管.
C
知识讲解
1.正弦
如图,任意画一个Rt△ABC,使∠C=90°,∠A=45°,计
算∠A的对边与斜边的比
A
BC
AB
,你能得出什么结论?
即在直角三角形中,当一个锐角等于45°
时,不管这个直角三角形的大小如何,这
数形结合,构造直角三角形).
2.sinA,cosA,tanA各是一个完整的符号,分别表示∠A的正弦
、余弦和正切,记号中习惯省去“∠”;
3.sinA,cosA,tanA分别是一个比值.注意比的顺序,且在直角
三角形中sinA,cosA,tanA均大于0,无单位.
4.sinA,cosA,tanA的大小只与∠A的大小有关,而与直角三角
切比3,分子根号别忘添.
30°,45°,60°角的正切值可以看成是 3, 9 , 27.
当A、B为锐角时,
若A≠B,则
sinA≠sinB,
cosA≠cosB,
tanA≠tanB.
知识讲解
注意
1.从函数角度理解∠A的锐角三角函数:把∠A看成自
变量,其取值范围是0°<∠A<90°,sinA,cosA,
在Rt△ABC中,如果锐角A确定,
那么∠ A 的对边与斜边的比、邻
边与斜边的比都是一个定值.
B
斜
边
A
∠A的邻边
∠A的对边
┌
C
知识讲解
归纳:
在有一个锐角相等的所有直角三角形中,这个锐角的邻边与斜
边的比值是一个常数,与直角三角形的大小无关.
锐角三角函数PPT比赛课市公开课一等奖省优质课获奖课件.pptx
第10页
【针对练一】
1.计算: (1)2 cos45°;
解: 2 2 2
2
(2)1-2sin30°cos30°. 解: 1 2 1 3 22 1 3 2 2 3 2
第11页
合作探究 达成目标
例4:如图(1),在RtABC中,C 900 ,
AB 6, BC 3, 求A的度数。
(2)如图(2),已知圆锥的高AO等于
第13页
总结梳理 内化目标
熟记特殊三角函数表:
30°
45°
60°
sinα
1
2
3
2
2
2
cosα
3
2
1
2
2
2
tanα
3
3
1
3
要熟记上表,灵活利用
第14页
达标检测 反思目标
1、已知α为锐角,且 1 <cosα< 2 ,则α取
2
2
值范围是( )C
A.0°<α<30°
B.60°<α<90
C.45°<α<60°
展示点评:问题(1)中,有两个变量t与v,当一个量t 改变时,另一个量v伴随它改变而改变,而且对于t每个 确定值,v都有唯一确定值与其对应.问题(2)(3) 也一样.所以这些变量间含有函数关系,它们
解析式分别为 v 1463 ,y 1000 ,S 1.68104 .
t
x
n
第5页
合作探究 达成目标
第3,4,7题 .
• 课后作业:“学生用书”课 后作业部分.
第18页
∠A邻边
第3页
• 1.了解特殊角三角函数值由来 . • 2.熟记30°,45°,60°三角函数值. • 3.依据一个特殊角三角函数值说出这个角.
【针对练一】
1.计算: (1)2 cos45°;
解: 2 2 2
2
(2)1-2sin30°cos30°. 解: 1 2 1 3 22 1 3 2 2 3 2
第11页
合作探究 达成目标
例4:如图(1),在RtABC中,C 900 ,
AB 6, BC 3, 求A的度数。
(2)如图(2),已知圆锥的高AO等于
第13页
总结梳理 内化目标
熟记特殊三角函数表:
30°
45°
60°
sinα
1
2
3
2
2
2
cosα
3
2
1
2
2
2
tanα
3
3
1
3
要熟记上表,灵活利用
第14页
达标检测 反思目标
1、已知α为锐角,且 1 <cosα< 2 ,则α取
2
2
值范围是( )C
A.0°<α<30°
B.60°<α<90
C.45°<α<60°
展示点评:问题(1)中,有两个变量t与v,当一个量t 改变时,另一个量v伴随它改变而改变,而且对于t每个 确定值,v都有唯一确定值与其对应.问题(2)(3) 也一样.所以这些变量间含有函数关系,它们
解析式分别为 v 1463 ,y 1000 ,S 1.68104 .
t
x
n
第5页
合作探究 达成目标
第3,4,7题 .
• 课后作业:“学生用书”课 后作业部分.
第18页
∠A邻边
第3页
• 1.了解特殊角三角函数值由来 . • 2.熟记30°,45°,60°三角函数值. • 3.依据一个特殊角三角函数值说出这个角.
28章锐角三角函数全章ppt课件
问题(1)当梯子与地面所成的角a为75°时,梯子顶端与地面的 距离是使用这个梯子所能攀到的最大高度.
问题(1)可以归结为:在Rt △ABC中,已知∠A=75°,斜
边AB=6,求∠A的对边BC的长.
B
由 sin A BC 得 AB
BC AB sin A 6sin 75
由计算器求得 sin75°≈0.97
α
A
C
所以 BC≈6×0.97≈5.8
因此使用这个梯子能够安全攀到墙面的最大高度约是5.8m
对于问题(2),当梯子底端距离墙面2.4m时,求梯子与地面所成的 角a的问题,可以归结为:在Rt△ABC中,已知AC=2.4,斜边AB=6, 求锐角a的度数
由于
B
cos a AC 2.4 0.4
AB 6
tan A BC 8k 8 AC 15k 15
例题示范
例3: 如图,在Rt△ABC中,∠C=90° B
1.求证:sinA=cosB,sinB=cosA
2.求证:tan A sin A ;tan A 1
cos A
tan B
3.求证:sin2 A cos2 A 1
A
C
sin2 A sin A sin A
如图,Rt△ABC中,直角边AC、BC小于斜边AB,
sin A BC <1
AB
sin B AC AB
<1
A
C
所以0<sinA <1, 0<sinB <1, 如果∠A < ∠B,则BC<AC , 那么0< sinA <sinB <1
探究
精讲
如图,在Rt△ABC中,∠C= 90°,当锐角A确定时,∠A 的对边与斜边的比就随之确 定,此时,其他边之间的比 是否也确定了呢?为什么?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
坡角:坡面与水平面的夹角叫做坡角,用字母α表示.
坡度:坡面的铅直高度h和水 平距离l的比叫做坡度,用字 母i表示,即:
i
tan
h l
h
l
.
14
1.在Rt △ ABC中,∠C=90°,∠ A=30°,a=5, 求b、c的大小.
B
5
30°
A
C
.
15
2.海中有一个小岛A,它的周围6海里内有暗礁,渔船跟踪鱼群 由西向到航行,在B点测得小岛A在北偏东60°方向上,航行12 海里到达C点,这时测得小岛A在北偏东30°方向上,如果渔船 不改变航线继续向东航行,有没有触礁的危险?
4.会用解直角三角形的有关知识解决简单的实际
问题.
.
2
B
一.锐角三角函数的概念
ca
正弦:把锐角A的_对__边__与__斜__边_的比叫做∠A
的正弦,记作 sin A a
c
A bC
余弦:把锐角A的_邻__边__与__斜__边_的比叫做∠A的 余弦,记作 cos A b
c
正切:把锐角A的_对__边__与__邻__边_的比叫做∠A的 正切,记作 tan A a
cosA
=
sinB .
8
☆ 应用练习
一.已知角,求值 (1)tan45°-sin60°cos30° (2)2sin30°+3tan30°+tan45° (3)cos245°+ tan60°cos30° (4)2sin60°-3tan30°-(π-cos30°)+(-1)2012
.
9
☆ 应用练习
二.已知值,求角
2
.
20
B
A
C
4.如图,在Rt△ABC中,∠C=90,b= 2 3,c=4.
则a= 2 ,∠B= 60° ,∠A= 30° .
5.如果 coAs1 3tan B30
2
那么△ABC是( D )
A.直角三角形 C.钝角三角形
B.锐角三角形
D.等边三角形
.
21
c
c
b
归纳:只要知道其中的2个元素(至少有一个是__边__),
就可以求出其余3个未知元. 素.
12
四.解直角三角形的应用
1.仰角和俯角
在进行测量时, 从下向上看,视线与水平线的夹角叫做_仰__角_; 从上往下看,视线与水平线的夹角叫做_俯__角_。
视线
铅 直
仰角
线
俯角
水平线
视线
.
13
2.坡角、坡度
(1)已知 sinA=
3 2
,求锐角A .
(2)已知2cosA - 2 = 0 , 求锐角A.
(3)已知 tan( ∠A+20°)= 3 ,求锐角A .
(4)在△ABC中, ∠ B、 ∠ C均为锐角,且
2
siBn12
coCs
3 2
0
,求∠A的度数。
.
10
☆ 应用练习
三.比较大小
(1)sin250____sin430 (2)cos70____cos80 (3)sin400____cos600 (4)tan480____tan400
.
11
三.解直角三角形
1.什么叫解直角三角形?
由直角三角形中,除直角外的已知元素,求出所 B 有未知元素的过程,叫做解直角三角形.
2.直角三角形中的边角关系:
ca
(1)三边关系: a2b2c2 (勾股定理)
(2)两锐角的关系:∠A十∠B=90°
A bC
(3)边角的关系:sin A a cos A b tan A a
y C
A
O
专家指点
找一个与之 相等的角!
x
B
.
6
二.特殊角的三角函数值
1
2
3
2
2
2
3
2
1
2
2
2
3
1
3
3
锐角的三角函数值有
何变化规. 律呢?
7
三角函数的增减性:
正切值和正弦值都随着锐角度数的增大而_增__大__;
余弦值随着锐角度数的增大而_减__小__.
思考:若∠A+∠B=900,那么:
sinA = cosB
三
⑴定义
角 函
3.解直角三角形
⑵解直角三角形的依据
①三边间关系 ②锐角间关系 ③边角间关系
数
⑶解直角三角形在实际问题中
的应用
.
19
1.若 2si n 20,则锐角α= 45°
2.若ta n(20) 30,则锐角α= 80°
3.计算:
(1) 22si4 n5ta6n02co3s0. 12
2 6 ta n 2 3 0 03 s in 6 0 0 2 c o s4 5 0 .1 2
b
锐角A的正弦、余弦、正切都. 叫做∠A的锐角三角函数3.
1、如图,在Rt△ABC中,∠C=90, AB=5,AC=3,求sinA,cosA及tanA。
B
A
C
.
4
2、 在正方形网格中,△ABC的位置如图所示, 则cos∠ABC的值为________。
A
专家指点
B
C
作辅助线构造 直角三角形!
.
5
3、如图,直径为5的⊙A经过点C(0,3)和 点O(0,0),B是y轴右侧⊙A优弧上一点, 则∠OBC的余弦值为_______。
.
1
1. 巩固三角函数的概念,巩固用直角三角形边之 比来表示某个锐角的三角函数.
2. 熟记30°,45°, 60°角的三角函数值.会计算含 有特殊角的三角函数的值,会由一个特殊锐角 的三角函数值,求出它的对应的角度.
3.掌握直角三角形的边角关系,会运用勾股定理, 直角三角形的两锐角互余及锐角三角函数解直 角三角形.
(结果保留根号)?
GF
.
17
试一试:(2009年江苏省中考原题)如图,在航线l的两侧分 别有观测点A和B,点A到航线l的距离为2km,点B位于 点A北偏东60°方向且与A相距10km处.现有一艘轮船从 位于点B南偏西76°方向的C处,正沿该航线自西向东航行, 5min后该轮船行至点A的正北方向的D处.
(1) 求观测点B到航线l的距离;
(2)求该轮船航行的速度(结果精确到0.1km/h )
参考数据:
3 ≈1.73
sin76°≈ 0.97
cos76°≈ 0.24
tan76°≈ 4.01Βιβλιοθήκη 北 东C D 60°
F
A
.
B
76°
El
18
⑴正弦
1.锐角三角函数的定义 ⑵余弦
⑶正切
锐 角
2.30°、45°、60°特殊角的三角函数值
A
B
CD
30°
.
练
习 16
3.我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地, 如图所示.BC∥AD,斜坡AB=40米,坡角∠BAD=60°,为防夏季因 瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造.经地 质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时 保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米