2005年武汉大学数学分析解答
武汉大学2006年数学分析考研试题

武汉大学2006年数学分析考研试题武汉大学2006年数学分析考研试题一、已知:21lim 31x x ax b x→++=-,求常数,.a b二、已知:2111()221n nn x x +∞=-+∑,求其收敛域。
三、f 在[]0,1上可导,且(1)2(0)f f =,求证:(0,1)ξ∃∈,使得(1)()()f f ξξξ'+=。
四、已知()f x 在[]0,1上可导,(0)0,0()1f f x '=<≤。
求证:11230(())()f x dx f x dx≥⎰⎰。
五、 已知f 在[,]a b 上单调递增,(),()f a a f b b ≥≤,求证:[,]a b ξ∃∈,使得()f ξξ=六、 在过(0,0),(,0)O A π的曲线:sin (0)L y a x a =>中,求出使得3(1)(2)Ly dx x y dy +++⎰的值最小的。
七、 求第二型曲面积分32222()Sxdydz ydzdx zdxdy I x y z ++=++⎰⎰,S为椭圆2222221x y z a b c ++=的外侧八、 求证0sin xyxedxx y+∞-+⎰在[]0,1上一致收敛。
九、 已知方程2cos()0xy xy +-=(1)研究上述方程并说明它在什么时候可以在点(0,1)附近确定函数()y y x =,且(0)1y =。
(2)研究函数()y y x =在点(0,1)附近的可微性。
(3)研究函数 ()y y x =在点(0,1)附近的单调性。
(4) 试问上述方程在点(0,1)的充分小邻域内可否确定函数(),(1)0x x y x ==?并说明理由。
武汉大学2006年数学分析考研试题解答一.解 由21lim 31x x ax b x→++=-,知()21lim 0x xax b →++=,10a b ++=,()21123lim lim 211x x x ax b x aa x →→+++===-+--,所以5a =-,4b =. 二.解 设()211221n n n x ux x -⎛⎫=⎪+⎝⎭,显然当1x =时,()11nn u∞=∑收敛,当1x ≠时,()()21111limlim221n n n n n u x x x u x ++→∞→∞-=+,当1121x x -<+时,()()1lim 0n n n u x u x +→∞=,此时,()1nn ux ∞=∑绝对收敛;当1121x x -=+时,()12n nu x ≤,此时,()1n n ux ∞=∑绝对收敛;当1121x x ->+时,()()1limn n n u x u x +→∞=+∞,此时,()1nn ux ∞=∑发散,所以级数的收敛域为1121x x -≤+,()()22121x x -≤+,()320x x +≥,x ≥或者2x ≤-,故收敛域为(][),20,-∞-+∞. 三.证明 设()()1f x F x x =+,则有()()00F f =,()()()()11002f F f F ===, ()()()()()211x f x f x F x x '+-'=+,由拉格朗日中值定理,存在()0,1ξ∈,使得()()()()1010F F F ξ'-=-,()()()100F F F ξ'=-=,即知有()()()10f f ξξξ'+-=,()()()1f f ξξξ'+=.四、假设()f x 在[]0,1上可导,且()0()1,0,1,(0)0f x x f '<<∀∈=,试证明 ()230()()>⎰⎰x xf t dtf t dt,()0,1∀∈x . 证明 令()230()()()=-⎰⎰xxF x f t dtf t dt,()320()2()()()()2()()'=-=-⎰⎰x xF x f x f t dt f x f x f t dt f x ,因()0()1,0,1,(0)0f x x f '<<∀∈=,所以()0>f x , 令20()2()()=-⎰x g x f t dt f x ,则[]()2()1()0''=->g x f x f x ,即得()(0)0>=g x g , 所以()0'>F x , 则()230()()()(0)0=->=⎰⎰x xF x f t dtf t dt F ,()0,1∀∈x ,于是 ()230()()xxf t dtf t dt>⎰⎰,()0,1∀∈x .五.证明 有题设条件,对a x b≤≤,有()()()a f a f x f b b≤≤≤≤,若()f a a =,则取a ξ=,即得结论.若()a f a <,则存在0δ>(充分小),当a x a δ≤≤+时,有()()x f a f x <≤,令[](){}:,,E x t a x t f t =∈<,则E 是非空有界集, 设sup E β=,则有a b β<≤,()f ββ≤,若b β=,则有()b f b b ≤≤,()b f b =, 若b β<,我们断言()f ββ=,假若()f ββ<,则存在0δ>,使得[],t a βδ∈+时, 有()t f t <,于是E βδ+∈,这与sup E β=矛盾,所以()f ββ=, 综合以上,结论得证.六.解()()()312LI a y dx x y dx =+++⎰()()331sin 2sin cos a x x a x a x dx π⎡⎤=+++⎣⎦⎰332000sin 2cos sin cos a xdx a x xdx a x xdx ππππ=+++⎰⎰⎰()3242203aa a π=+⋅+-+⋅3443a a π=-+,()()()244411I a a a a '=-=+-,1a =时,()0I a '=,当01a <<时,()0I a '<,()I a 在[]0,1上严格递减, 当1a <<+∞时,()0I a '>,()I a 在[)1,+∞上严格递增, 所以()I a 在1a =处达到最小值. 七.解 取0ε>充分小,2222:S x y z εε++=,由高斯公式,得()32222Sxdydz ydzdx zdxdyI xy z++=++⎰⎰SS S εε-=++⎰⎰⎰⎰⎰⎰()32222S xdydz ydzdx zdxdy xy zε++=++⎰⎰31S xdydz ydzdx zdxdy εε=++⎰⎰()31111V dxdydz εε=++⎰⎰⎰3314343πεπε=⋅⋅=.八.证明 设(),sin f x y x =,(),xye g x y x y-=+,显然()0,2A f x y dx ≤⎰,对每一个[]0,1y ∈,(),g x y 关于x 单调递减,()10,g x y x<≤,关于[]0,1y ∈一致的有()lim ,0x g x y →+∞=, 由狄利克雷判别法,知()()0,,f x y g x y dx+∞⎰关于[]0,1y ∈是一致收敛的, 即得0sin xyx e dx x y+∞-+⎰在[]0,1上一致收敛.九.解 设()()2,cos F x y xy xy =+-,显然,有()0,10F =,()(),1sin y F x y x xy =+,()0,110y F =≠,由隐函数存在定理,存在0δ>,存在[],δδ-上的连续可微的函数()y y x =,()01y =,满足()(),0F x y x ≡,[],x δδ∈-,()(),2sin x F x y x y xy =+,()()()()(),2sin ,1sin x y F x y x y xy y x F x y x xy +'=-=-+,当0x δ<<,(0δ>充分小)时,有()0y x '<,()y x 在[]0,δ上严格单调递减;当0x δ-<<时,有()0y x '>,()y x 在[],0δ-上严格单调递增, (4)()0,10xF =,由于每一充分接近1的y ,1y <, 存在x ,x -,使得(),0F x y =,(),0F x y -=,所以上述方程在点()0,1的充分小邻域内,不能确定函数()x x y =,()10x =. 对1y >,方程()2cos x y xy +=无解.。
武汉大学近二十年数学分析考研真题

其中 N > 0 为一常数,且逐点有 fn (x) → f (x) (当 n → +∞ )。证明: (1) f (x) 在[a,b] 上连续。
(2) fn (x)→ f (x) 。
6.设
f
(x,
y)
=
⎪⎪⎧ g ( x, ⎨
y ) sin
⎪0,
⎪⎩
1, x2 + y2
(x, y) ≠ (0,0)
,证明
+
1 32
−
1 4
+
1 52
+"+
1 (2n −1)2
−
1 2n
+ " 是否收敛?为什么?
∑ 3.求级数 ∞ ⎜⎛1 + 1 ⎟⎞n(n+1) x n 的收敛区域。
n=1 ⎝ n ⎠ 4.求函数 f (x, y, z) = xyz 在条件 x + y = 1 及 x − y + z 2 = 1下的极值。
∫+∞⎡
lim
n→+∞
−∞⎢⎣
f
⎜⎛ ⎝
y
+
1 n
⎟⎞ − ⎠
f
⎤ ( y)⎥⎦dy
=
0。
3.设 f (x, y) 为连续函数,且当 (x, y) ≠ (0,0) 时,f (x, y) > 0 ,及满足 f (cx,cy) = cf (x, y) ,
∀c > 0 。证明存在α , β > 0 ,使得α x2 + y 2 ≤ f (x, y) ≤ β x2 + y 2 。
其中
∆u
=
∂2u ∂x 2
+
2005年高考数学试题(湖北等)的分析及评价

2005年高考数学试题(湖北等 )的分析及评价武汉市教育科学研究院 孔峰一、总体评价:2005年高考数学试题(湖北卷)严格依据教育部《数学科考试大纲》的各项要求,在遵循“有利于高校选拔人才、有助于中学实施素质教育、有助于高校扩大办学自主权”原则的基础上,融入了新课程新大纲的理念,试题立意新颖,选材不拘一格。
与2004年全国其他独立命题省市试卷相比,试卷的结构、采用的题型和配备的题量,题型的分值比例等方面保持相对稳定。
与2004年全国新课程卷及2004年湖北卷的结构及考查内容更吻合一些,且比2004年湖北卷对新课程新大纲的整体把握与理解更加成熟,整份试卷从数学知识、思想方法、学科能力出发,多层次多角度地考查了学生的数学素养和学习潜能,对考生能力、知识灵活运用及综合运用提出了比较高的要求,尤其值得注意的是,对新增加内容的知识的考查、知识的灵活运用考查,以及在运用新增加内容知识去处理实际问题的实践能力的考查均提出了较高的要求,因此我们考生在高考复习中需引起足够重视和研究,订做到与时俱进。
二、2005年高考数学试题的特点今年,我省高考数学命题在2004年平稳过渡的基础上,站在新课程评价理念的高度,稳中求新、稳中求活。
在继续深化能力立意、倡导通性通法、坚持数学应用、加大新增知识的考查力度等各个方面又作了进一步的实践、探索、深化与创新。
审视试卷,笔者感悟到白纸黑字间的灵性的跳动,令人回味,试题命题呈现出诸多亮点,对我们高考复习有很多有益的启示。
1、立足基础,突出能力,考查思维的灵活性无论在选择题、填空题,还是解答题中均有许多试题突出对基础知识的考查。
但其中一些基础试题在强调基础知识的同时,试题对能力的考查也十分突出,可以从多方面去思考,体现了思维的灵活性。
不同能力的学生处理方式不同,体现了不同的思维水平和数学思维品质。
例1 (高考理科第7题文科第10题)若sin α+cos α=tan α (0<α<2π),则α∈A.⎪⎭⎫⎝⎛6,0π B. ⎪⎭⎫⎝⎛4,6ππ C. ⎪⎭⎫⎝⎛3,4ππ D. ⎪⎭⎫⎝⎛2,3ππ 本题以方程的形式出现,似乎应该求出角α,但这只是一种表象,透过现象看本质,选择支是角α的范围,于是只需角α的一个三角不等式,由此联想大家熟知的基本结论:当α是锐角时,sin α+cos α>1.于是tan α>1,答案选C 。
武汉大学2005年攻读硕士学位研究生入学考试试题

武汉大学2005年攻读硕士学位研究生入学考试试题科目名称:大地测量学基础科目代号:879――――――――――――――――――――――――――――――――――注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。
一、名词解释(每小题5分,共50分)1、正高2、底点纬度3、重力基准4、、地球正常重力位5、似大地水准面6、总地球椭球7、大地线8、波道曲率改正9、大气垂直折光 10、大地主题正算二、计算与论述(每小题8分,共40分)1、已知P点的垂线偏差为:ξ=+1.0"、η=-1.0",P点至Q 带你的大地方位角为90°,由观测Q的高度角为45°,试计算PQ方向的垂线偏差改正?2、在一般的情况下相对法截弧是不重合的,为什么?(用有关公式来论证)3、当大地线长度短于50公里时,可以认为大地线的平面投影曲线的长度S等于其弦长度D,为什么?4、试比较椭球面上某一点的子午圈曲率半径M、卯酉圈曲率半径N和平均曲率半径R三者的大小?在什么情况下三者相等?(用相关公式来证明)5、精密水准测量时,奇数站的观测程序为:后、前、前、后,而偶数站的观测程序为:前、后、后、前,这样做可以消除或减弱哪些误差?三、简答题(每小题8分,共40分)1、简述1980年国家大地坐标系建立的原则?2、精密测角时,由于外界条件的影响会引起各种误差,请写出这些误差影响的名称?3、试写出高斯投影应满足的三个条件?4、精密水准测量时,为减弱温度变化对i角的影响应该采取哪些措施?5、试述1954年北京坐标系与1980年国家大地坐标系的主要区别?四、综述题(每小题10分,共20分)1、试述由电磁波测距仪测出的两点之间的距离初值,需加哪些改正才能改化为高斯平面上的直线距离(写出改化的步骤以及有关改正的名称)?2、综述我国大地测量已取得的成就!。
武汉大学《数学分析》《高等代数》历年考研真题(2009-2018汇总)

4
8! ( K 14 ©) lim an = +∞, y²:
n→∞
Ô! ( K 14 ©) ¼ê
1n
lim n→∞ n
ak = +∞.
k=1
(x2 + y2) sin f (x, y) =
0,
1 , x2 + y2 = 0; x2 + y2
x2 + y2 = 0.
1. ¦ fx(0, 0), fy(0, 0); 2. y²: fx(0, 0), fy(0, 0) 3 (0, 0) ØëY; 3. y²: f (x, y) 3 (0, 0) Œ‡, ¿¦ df (0, 0).
l! ( K 15 ©) z(x, y) ëY
Œ‡, 釩•§
1
∂2z
∂2z ∂2z
1
∂z ∂z
(x2 + y2)2
∂x2
+
2 ∂x∂y
+
∂y2
− (x2 + y2)3
+ ∂x ∂y
= 0.
ŠCþ“† u = xy, v = x − y. 1. ¦“† •§; 2. •ÑCþ“†” :8, ¿`²”
4. OŽ F (α), Ù¥:
eα
x+3α
F (α) = dx
f (x, y)dδ.
D
¦ f (x, y).
Ê! ( K 14 ©) f (x) ´ {(x, y)|x2 + y2 1} þ gëYŒ‡¼ê, …÷v
∂2f ∂x2
+
∂2f ∂y2
= (x2 + y2)2,
Á¦È©
x2+y2 1
x ∂f
2005年高考理科数学试题及答案(湖北)

绝密★启用前2005年普通高等学校招生全国统一考试(湖北卷)数学试题卷(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 满分150分. 考试时间120分钟.第I 部分(选择题 共60分)注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
3.考试结束,监考人员将本试题卷和答题卡一并收回。
一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是 ( )A .9B .8C .7D .62.对任意实数a ,b ,c ,给出下列命题: ①“b a =”是“bc ac =”充要条件; ②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件;④“a <5”是“a <3”的必要条件. 其中真命题的个数是 ( )A .1B .2C .3D .43.=++-i i i 1)21)(1(( )A .i --2B .i +-2C .i -2D .i +2 4.函数|1|||ln --=x e y x 的图象大致是( )5.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163 B .83 C .316 D .38 6.在x y x y x y y x2cos ,,log ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是 ( )A .0B .1C .2D .3 7.若∈<<=+απαααα则),20(tan cos sin( )A .)6,0(πB .)4,6(ππC .)3,4(ππ D .)2,3(ππ 8.若1)11(lim 21=---→x bx a x ,则常数b a ,的值为( )A .4,2=-=b aB .4,2-==b aC .4,2-=-=b aD .4,2==b a9.若x x x sin 32,20与则π<<的大小关系( )A .x x sin 32>B .x x sin 32<C .x x sin 32=D .与x 的取值有关 10.如图,在三棱柱ABC —A ′B ′C ′中,点E 、F 、H 、 K 分别为AC ′、CB ′、A ′B 、B ′C ′的中点,G 为△ABC 的 重心. 从K 、H 、G 、B ′中取一点作为P , 使得该棱柱恰有 2条棱与平面PEF 平行,则P 为 ( ) A .K B .H C .G D .B ′11.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段。
数学分析_各校考研试题及答案

2003南开大学年数学分析一、设),,(x y x y x f w-+=其中),,(z y x f 有二阶连续偏导数,求xy w解:令u=x+y,v=x-y,z=x 则z v u x f f f w ++=;)1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w二、设数列}{n a 非负单增且a a nn =∞→lim ,证明a a a a n n n n n n =+++∞→121][lim解:因为an 非负单增,故有n n n nnn n n n na a a a a 1121)(][≤+++≤由a a n n =∞→lim ;据两边夹定理有极限成立。
三、设⎩⎨⎧≤>+=0,00),1ln()(2x x x x x f α试确定α的取值范围,使f(x)分别满足:(1) 极限)(lim 0x f x +→存在(2) f(x)在x=0连续 (3) f(x)在x=0可导 解:(1)因为)(lim 0x f x +→=)1ln(lim 20x x x ++→α=)]()1(2[lim 221420n nn x x o nx x x x +-++--→+α极限存在则2+α0≥知α2-≥(2)因为)(lim 0x f x -→=0=f(0)所以要使f(x)在0连续则2->α(3)0)0(='-f 所以要使f(x)在0可导则1->α四、设f(x)在R 连续,证明积分ydy xdx y x f l ++⎰)(22与积分路径无关解;令U=22y x+则ydy xdx y x f l ++⎰)(22=21du u f l )(⎰又f(x)在R 上连续故存在F (u )使dF(u)=f(u)du=ydy xdx y x f ++)(22所以积分与路径无关。
(此题应感谢小毒物提供思路) 五、设f(x)在[a,b]上可导,0)2(=+ba f 且Mx f ≤')(,证明2)(4)(a b Mdx x f b a -≤⎰ 证:因f(x)在[a,b]可导,则由拉格朗日中值定理,存在)2)(()2()(),(ba x fb a f x f b a +-'=+-∈ξξ使即有dx ba x f dx x f bab a)2)(()(+-'=⎰⎰ξ222)(4])2()2([)2)((a b M dx b a x dx x b a M dx b a x f bb a ba a ba-=+-+-+≤+-'≤⎰⎰⎰++ξ六、设}{n a 单减而且收敛于0。
数学分析与高等代数考研真题详解--武汉大学卷

−
n+1
n
−
x x x x l xl x xl x =
−
n+ p
n+ p−1 +…+
-
n+1
< 2[
n
2 n+ p
1
+ ... +
−
] 2
1
n +1
l x x l l l x x <
2( − 2 l −1
)
1
1
n
=M
−n
(M=
2− 2 l −1
1)
显然由柯西收敛准则知,对于 ∀ε > 0 , ∃N > 0 ,使得 n>N 时
wwwboss163com博士家园二零一零年二月博士家园系列内部资料数学分析与高等代数考研真题详解武汉大学考研数学专卷目录9501年数学分析试题解答电子版在随书附赠的光盘中2002年招收硕士研究生入学考试数学分析试题2002年招收硕士研究生入学考试数学分析试题解答2002年招收硕士研究生入学考试高等代数试题2002年招收硕士研究生入学考试高等代数试题解答2003年招收硕士研究生入学考试数学分析试题及解答2003年招收硕士研究生入学考试高等代数试题及解答2004年招收硕士研究生入学考试数学分析试题及解答2004年招收硕士研究生入学考试高等代数试题及解答2005年招收硕士研究生入学考试高等代数试题及解答2005年招收硕士研究生入学考试数学分析试题及解答2006年招收硕士研究生入学考试数学分析试题及解答2007基础数学复试题2008年招收硕士研究生入学考试数学分析试题及解答2008年招收硕士研究生入学考试线性代数试题及解答2009年数学分析试题及解答电子版在随书附赠的光盘中2009年高等代数试题及解答电子版在随书附赠的光盘中2009博士家园系列内部资料武汉大学博士家园系列内部资料2002年数学分析答案由归纳法知n123
2005考研数一真题及解析

2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为____________。
(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=.________。
(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________。
(5)设123,,ααα均为3维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B 。
(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________。
二、选择题(本题共8小题,每小题4分,满分32分。
每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n n n x x f 31lim )(+=∞→,则()f x 在),(+∞-∞内(A)处处可导 (B )恰有一个不可导点(C )恰有两个不可导点 (D)至少有三个不可导点(8)设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示"M 的充分必要条件是",N 则必有(A )()F x 是偶函数()f x ⇔是奇函数 (B )()F x 是奇函数()f x ⇔是偶函数(C )()F x 是周期函数()f x ⇔是周期函数 (D )()F x 是单调函数()f x ⇔是单调函数(9)设函数⎰+-+-++=yx y x dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A)2222y ux u ∂∂-=∂∂(B )2222yux u ∂∂=∂∂(C)222yu y x u ∂∂=∂∂∂(D )222x uy x u ∂∂=∂∂∂ (10)设有三元方程ln e 1xz xy z y -+=,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A)只能确定一个具有连续偏导数的隐函数(,)z z x y =(B )可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y = (C )可确定两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y = (D )可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是(A )01≠λ (B )02≠λ (C)01=λ (D)02=λ(12)设A 为(2)n n ≥阶可逆矩阵,交换A 的第1行与第2行得矩阵**.,B A B 分别为,A B 的伴随矩阵,则(A)交换*A 的第1列与第2列得*B (B)交换*A 的第1行与第2行得*B(C )交换*A 的第1列与第2列得*-B (D)交换*A 的第1行与第2行得*-B(13)设二维随机变量(,)X Y 的概率分布为已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A )0.2,0.3a b == (B )0.4,0.1a b == (C)0.3,0.2a b == (D)0.1,0.4a b == (14)设)2(,,,21≥n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则(A))1,0(~N X n (B )22~()nS n χ(C ))1(~)1(--n t SXn (D )2122(1)~(1,1)nii n X F n X=--∑三 、解答题(本题共9小题,满分94分。
2005年湖北高考数学理试题(含答案)

2005年高考理科数学湖北卷试题及答案一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的上个选项中,中有一项是符合题目要求的)1.设P 、Q 为两个非空数集,定义集合P+Q={a+b|a ∈P ,b ∈Q}P={0,2,5},Q={1,2,6},则P+Q 中元素的个数是A .9B .8C .7D .6 2.对任意实数a ,b ,c ,给出下列命题:①“a=b ”是“ac=bc ”的充要条件; ②“a+5是无理数”是“a 是无理数”的充要条件; ③“a>b ”是“a 2>b 2”的充分条件; ④“a<5”是“a<3”的必要条件 其中真命题的个数是A .1B .2C .3D .43.ii i ++-1)21)(1(=A .-2-iB .-2+iC .2-iD .2+i4. 函数|1|||ln --=x e y x 的图象大致是 ( )A B C D5.双曲线)0(122≠=-mn ny m x 的离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为A .163 B .83 C .316 D .386.在x y x y x y y x2cos ,,log ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是A .0B .1C .2D .37.若)20(tan cos sin παααα<<=+,则∈αA .(0,6π) B .(6π,4π) C .(4π,3π) D .(3π,2π)8.若1)11(lim 21=---→xbx a x ,则常数a ,b 的值为A .a=-2,b=4B .a=2,b=-4C .a=-2,b=-4D .a=2,b=49.若20π<<x ,则2x 与3sinx 的大小关系:A .2x>3sinxB .2x<3sinxC .2x=3sinxD .与x 的取值有关10.如图,在三棱柱C B A ABC '''-中,点E 、F 、H 、K 分别为C A '、B C '、B A '、C B '' 的中点,G 为ΔABC 的重心从K 、H 、G 、B '中取一点作为P ,使得该棱柱恰有2条棱与平面PEF 平行,则P 为 A .K B .H C .G D .B '11.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,223,250;②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254;④305784111138165192219246270 关于上述样本的下列结论中,正确的是 A .②、③都不能为系统抽样 B .②、④都不能为分层抽样C .①、④都可能为系统抽样D .①、③都可能为分层抽样12.以平行六面体D C B A ABCD ''''-的任意三个顶点为顶点作三角形,从中随机取出两个三角形,则这两个三角形不共面的概率p 为A .385367 B .385376 C .385192 D .38518二、填空题(本大题共4小题,每小题4分 ,共16分把答案填写在答题卡相应的位置上)13.已知向量a=(-2,2),b=(5,k |a+b|不超过5,则k 的取值范围是14.5)212(++xx 的展开式中整理后的常数项等于15.设等比数列{n a }的公比为q ,前n 项和为n S ,若1+n S ,n S ,2+n S 成等差数列,则q 的值为16.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元在满足需要的条件下,最少要花费 元三、解答题(本大题共6小题,共74分解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)已知向量a =(2x ,x+1),b = (1-x ,t)若函数)(x f =a ·b 在区间(-1,1)上是增函数,求t 的取值范围18.(本小题满分12分)在ΔABC 中,已知66cos ,364==B AB ,AC 边上的中线BD=5,求sinA 的值19.(本小题满分12分)某地最近出台一项机动车驾照考试规定:每位考试者一年之内最多有4次参加考试的机会,一量某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9求在一年内李明参加驾照考试次数ξ的分布列和ξ的期望,并求李明在一所内领到驾照的概率20.(本小题满分12分)如图,在四棱锥P —ABC 右,底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,AB=3,BC=1,PA=2,E 为PD 的中点(Ⅰ)求直线AC 与PB 所成角的余弦值;(Ⅱ)在侧面PAB 内找一点N ,使NE ⊥面PAC ,并求出N 点到AB 和AP 的距离21.(本小题满分12分)设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由22.(本小题满分14分)已知不等式][log 21131212n n >+++ ,其中n 为大于2的整数,][log 2n 表示不超过n 2log {n a }的各项为正,且满足111,)0(--+≤>=n n n a n na a b b a ,,4,3,2=n(Ⅰ)证明:][log 222n b ba n +<, ,5,4,3=n ;(Ⅱ)猜测数列{n a }是否有极限?如果有,写出极限的值;(Ⅲ)试确定一个正整数N ,使得当n>N 时,对任意b>0,都有5<n a2005年高考理科数学湖北卷试题及答案参考答案1.B 2.B 3.C 4.D 5.A 6.B7.C 8.C 9.D 10.C 11.D 12.A13.[-6,2] 14.2263 15.-2 16.50017.解法一:依定义ttx x x x t x x x f +++-=++-=232)1()1()(则t x x x f ++-='23)(2,若)(x f 在(-1,1)上是增函数,则在(-1,1)上可设)(x f '≥0∴)(x f '≥0x x t 232-≥⇔在(-1,1)上恒成立考虑函数x x x g 23)(2-=,由于)(x g 的图象是对称轴为31=x ,开口向上的抛物线,故要使x x t 232-≥在(-1,1)上恒成立)1(-≥⇔g t ,即t ≥5而当t ≥5时,)(x f '在(-1,1)上满足)(x f '>0,即)(x f 在(-1,1)上是增函数故t 的取值范围是t ≥5解法二:依定义t tx x x x t x x x f +++-=++-=232)1()1()(,t x x x f ++-='23)(2若)(x f 在(-1,1)上是增函数,则在(-1,1)上可设)(x f '≥0∵)(x f '的图象是开口向下的抛物线,∴当且仅当01)1(≥-='t f ,且05)1(≥-=-'t f 时,)(x f '在(-1,1)上满足)(x f '>0,即)(x f 在(-1,1)上是增函数故t 的取值范围是t ≥518.解法一:设E 为BC 的中点,连接DE ,则DE//AB ,且36221==AB DE ,设BE=x在ΔBDE 中利用余弦定理可得:BED ED BE ED BE BD cos 2222⋅-+=,x x 6636223852⨯⨯++=,解得1=x ,37-=x (舍去)故BC=2,从而328cos 2222=⋅-+=B BC AB BC AB AC ,即3212=AC又630sin =B ,故6303212sin 2=A ,1470sin =A解法二:以B 为坐标原点,BC 为x 轴正向建立直角坐标指法,且不妨设点A 位于第一象限由630sin =B ,则)354,34()s i n 364,c o s 364(==B B BA ,设=(x ,0),则)352,634(x +=由条件得)352()634(||22=++=x BD从而x=2,314-=x (舍去)故354,32(-=CA于是141439809498091698098cos =+⋅++-==A∴1470cos 1sin 2=-=A A解法三:过A 作AH ⊥BC 交BC 于H ,延长BD 到P 使BP=DP ,连接AP 、PC过窗PN ⊥BC 交BC 的延长线于N ,则354,34c o s ===AH B AB HB ,310)354()52(222222=-=-=-=AH BP PN BP BN ,而34==HB CN ,∴BC=BN=CN=2,32=HC ,321222=+=HC AH AC故由正弦定理得6303212sin 2=A ,∴1470sin =A19.解:ξ的取值分别为1,2,3,4ξ=1,表明李明第一次参加驾照考试就通过了,故P (ξ=1)=0.6ξ=2,表明李明在第一次考试未通过,第二次通过了,故P (ξ=2)=(1-0.6)×0.7=0.28ξ=3,表明李明在第一、二次考试未通过,第三次通过了,故P (ξ=3)=(1-0.6)×(1-0.7)×0.8=0.096ξ=4,表明李明在第一、二、三次考试都未通过,故P (ξ=4)=(1-0.6)×(1-0.7)×(1-0.8)=0.024∴李明实际参加考试次数ξ的分布列为∴ξ的期望E ξ=1×0.6+2×0.28+3×0.096+4×0.024=1.544李明在一年内领到驾照的概第为 1-(1-0.6)×(1-0.7)×(1-0.8)×(1-0.9)=0.997620.解法一:(Ⅰ)建立如图所示的空间直角坐标系,则A 、B 、C 、D 、P 、E 的坐标分别为A (0,0,0),B (3,0,0),C (3,1,0),D (0,1,0),P (0,0,2),E (0,21,2)从而AC =(3,1,0),PB =(3,0,-2)设与的夹角为θ,则1473723cos ===θ,∴AC 与PB 1473(Ⅱ)由于N 点在侧面PAB 内,故可设N 点坐标为(x ,0,z ),则1,21,(z x --=由NE ⊥面PAC 可得:⎪⎩⎪⎨⎧=⋅=⋅,0,0即⎪⎪⎩⎪⎪⎨⎧=⋅--=⋅--,0)0,1,3()1,21,(,0)2,0,0()1,21,(z x z x化简得⎪⎩⎪⎨⎧==⇒⎪⎩⎪⎨⎧=+-=-.1,63.0213,01z x x z即N 点的坐标为(63,0,1),从而N 点到AB 、AP 的距离分别为163解法二:(Ⅰ)设AC ∩BD=O ,连OE ,则OE//PB ,∴∠EOA 即为AC 与PB 所成的角或其补角在ΔAOE 中,AO=1,OE=21PB=27,AE=21PD=25,∴14173127245471cos =⨯⨯-+=EOA即AC 与PB 14173(Ⅱ)在面ABCD 内过D 作AC 的垂线交AB 于F ,则6=∠AD F连PF ,则在Rt ΔADF 中DF=33tan ,332cos ===ADF AD AF ADF AD设N 为PF 的中点,连NE ,则NE//DF ,∵DF ⊥AC ,DF ⊥PA ,∴DF ⊥面PAC 从而NE ⊥面PAC∴N 点到AB 的距离=21AP=1,N 点到AP 的距离=2163 21.(Ⅰ)解法一:依题意,可设直线AB 的方程为y=k (x-1)+3,代入λ=+223y x ,整理得:)3()3(2)3(222=--+--+λk x k k x k ①设A (11,y x ),B (22,y x ),则1x ,2x 是方程①的两个不同的根,∴0])3(3)3([422>--+=∆k k λ,②且3221+=+k x x 由N (1,3)是线段AB 的中点,得21x x +=2,∴)3(2+=-k k k 解得k =-1,代入②得12>λ,即λ的取值范围是(12,+∞)于是直线AB 的方程为)1(3--=-x y ,即04=-+y x解法二:设A (11,y x ),B (22,y x ),则有)())((3.3,321212122222121=-++-⇒⎪⎩⎪⎨⎧=+=+y y x x x x y x y x λλ 依题意,212121,y y k x x AB +=∴≠∵N (1,3)是AB 的中点,∴21x x +=2,21y y +=6,从而1-=AB k又由N (1,3)在椭圆内,∴1231322=+⨯>λ,∴λ的取值范围是(12,+∞)直线AB 的方程为)1(3--=-x y ,即4=-+y x(Ⅱ)解法一:∵CD 垂直平分AB ,∴直线CD 的方程为y-3=x-1,即x-y+2=0代入椭圆方程,整理得04442=-++λx x ③又设C (33,y x ),D (44,y x ),CD 的中点为M (00,y x ),则3x ,4x 是方程③的两根,∴3x +4x =-1,且232,200210=+==+=x y x x x ,即M (21-,23)于是由弦长公式可得)3(2||)1(||432-=-⋅-+==λx x kCD ④将直线AB 的方程04=-+y x 代入椭圆方程得16842=-+-λx x ⑤同理可得)12(2||1||212-=-⋅+=λx x k AB ⑥∵当12>λ时,)3(2-λ>)12(2-λ,∴|AB|<|CD|假设存在12>λ,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心点M 到直线AB 的距离为222|42321|2|4|00=-+-=-+=y x d于是,由④⑥⑦式及勾股定理可得2222|2|2321229|2|||||CD AB d MB MA =-=-+=+==λλ故当12>λ时,A 、B 、C 、D 四点均在以M 为圆心,|2CD|为半径的圆上(注:上述解法中最后一步可按如下解法获得:A 、B 、C 、D 共圆⇔ACD 为直角三角形,A 为直角||||||2DN CN AN ⋅=,即)2||)(2||()2||(2d CD d CD AB -+=⑧由⑥式知,⑧式左边=212-λ,由④⑦知,⑧式右边==--=--+-2923)2232)3(2)(2232)3(2(λλλ2∴⑧式成立,即A 、B 、C 、D 四点共圆)解法二:由(Ⅱ)解法一知12>λ,∵CD 垂直平分AB ,∴直线CD 的方程为y-3=x-1,代入椭圆方程,整理得04442=-++λx x ③将直线AB 的方程04=-+y x 代入椭圆方程整理得16842=-+-λx x ⑤解③和⑤式可得21222,1-±=λx ,2314,3-±-=λx ,不妨设A (12211-+λ,12213--λ),C (231---λ,233--λ),D (231-+-λ,233-+λ)∴⎪⎪⎭⎫⎝⎛-+---+-+=23123,23123λλλλ,⎪⎪⎭⎫ ⎝⎛-------+=23123,23123λλλλ,计算可得0=⋅,∴A 在以CD 为直径的圆上又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆(注:也可用勾股定理证明AC ⊥AD )22.(Ⅰ)证法一:∵当n ≥2时,110--+≤<n n n a n na a ,∴na a n a n a n n n n 111111+=++≥---,即n a a n n 1111≥--,于是有211112≥-a a ,311123≥-a a ,…,na a n n 1111≥--,所有不等式两边相加可得na a n 3121111+++≥-由已知不等式知,当n ≥3时有[log 211121n a a n ≥-∵b a <1,∴bn b a n 2][log 211122=+>∴][log 22n b a n +<证法二:设nn f 13121)(+++=,首先利用数学归纳法证不等式,5,4,3,)(1=+≤n bn f ba n(ⅰ)当n=3时,由b f ba a a a a a )3(11223313333112223+=++⋅≤+=+≤,知不等式成立(ⅱ)假设当n=k (k ≥3)时,不等式成立,即bk f ba k )(1+≤,则,)1(1)11)((1)()1()1()1(1)(1)1(1111)1()1(1bk f bb k k f bbb k f k k bk b b k f k k a k k a k a k a k kk k ++=+++=+++++=++⋅++≤+++=+++≤+即当n=k+1时,不等式也成立由(ⅰ)(ⅱ)知,,5,4,3,)(1=+≤n bn f ba n又由已知不等式得,5,4,3,][log 22][log 21122=+=+≤n n b bb n b a n(Ⅱ)有极限,且lim =∞→n n a(Ⅲ)∵][log 2][log 2222n n b b <+,令51][log 22<n ,则有1024210][log log 1022=>⇒>≥n n n ,故取N=1024,可使沁n>N 时,都有5<n a。
2005数学分析解答

2005数学分析解答D解:112022000111011ln()|ln(1)ln [(1)ln(1)(1)ln ]|2ln 2y yDdxdy dxdy x y dy y x y x y dy ydyy y y y y y ==+++=+-=++-+-+=⎰⎰⎰⎰⎰⎰⎰5、计算第二类曲线积分:22C ydx xdyI x y--=+⎰,22:21C x y +=方向为逆时针。
解:22220022222tan 2222cos ,[0,2)2sin cos cos 222113cos 22cos 2213(2)(1)12arctan 421(2)(1)2311421C x x y ydx xdy I d x y x x x x d x dx x x x x ππθθθπθθθθθθθθ+∞+∞=-∞-∞=⎧⎪∈⎨=⎪⎩---=−−−→=+++-+-++−−−−−→=--++++=-⎰⎰⎰换元万能公式代换226426212dx d x ππ+∞+∞-∞-∞+=-+++⎰6、设a>0,b>0,证明:111b ba ab b ++⎛⎫⎛⎫≥ ⎪⎪+⎝⎭⎝⎭。
证明:1111()1111(1)111()'()1[ln(1)]0()()()b bxb b bbxa a ab f x b b x a a b f b b b a a b f b b b a b a b a b f x Taylor x x x a b f x ++++-⎛⎫⎛⎫⎛⎫≥=+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭+-⎛⎫⎛⎫=+=+ ⎪ ⎪++⎝⎭⎝⎭-⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭---⎛⎫=++-> ⎪+-⎝⎭,构造函数展开可以证明所以递增,从而得证一、 设f(x)为[a,b]上的有界可测函数,且2[,]()0,a b f x dx =⎰证明:f(x)在[a,b]上几乎处处为0。
证明:反证法,假设A={x|f(x)≠0},那么mA>0。
2005年考研数学试题详解及评分参考介绍

3n
= x lim(
n ®¥
3
1 x
3n
+ 1) = x ,故 f (x) = lim n 1 + x
n ®¥
1 n
ì ï 1, =í 3 ï îx ,
x £1 x >1
.
于是有 f -¢( -1) = lim -
- x3 - 1 = -3, x ®1 x +1 1 -1 f -¢(1) = lim = 0, x ®1- x - 1
2005 年 • 第 3 页
郝海龙:考研数学复习大全·配套光盘·2005 年数学试题详解及评分参考
z , Fz¢ = - ln y + e xz x ,于是有 y Fx¢(0,1,1) = 2 ¹ 0 , Fy¢(0,1,1) = -1 ¹ 0 , Fz¢(0,1,1) = 0 . 因此根据隐函数存在定理,由此 可确定相应的隐函数 x = x( y, z ) 和 y = y ( x, z ) . 故选 (D) . Fx¢ = y + e xz z , Fy¢ = x (11) 设 l1 , l 2 是 矩阵 A 的 两 个 不同 的 特征值 , 对 应的 特征 向量分 别 为 a 1 , a 2 ,则 a 1 ,
2005 年 • 第 1 页
(4) 设 W 是由锥面 z =
郝海龙:考研数学复习大全·配套光盘·2005 年数学试题详解及评分参考
整个边界的外侧,则
òò xdydz + ydzdx + zdxdy =
S
.
【答】 应填 (2 - 2)p R 3 . 【解】 由高斯公式,得
2 3 òò xdydz + ydzdx + zdxdy = 3òòò dV =3ò dq ò 4 sin j dj ò r dr = (2 - 2)p R . S W 0 0 0 2p
2005年普通高等学校招生全国统一考试数学及详细解析(湖北卷.文)

2005年普通高等学校招生全国统一考试数学及详细解析(湖北卷.文)绝密★启用前2005年普通高等学校招生全国统一考试(湖北卷)数学试题卷(文史类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 满分150分. 考试时间120分钟.第I 部分(选择题共60分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效.3.考试结束,监考人员将本试题卷和答题卡一并收回.一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若 }6,2,1{=Q ,则P+Q 中元素的个数是()A .9B .8C .7D .6解:集合P 中和集合Q 中各选一个元素可组成的组合数为11339C C ?=其对应的和有一个重复:0+6=1+5, 故P+Q 中的元素有8个,选(B)2.对任意实数a ,b ,c ,给出下列命题:①“b a =”是“bc ac =”充要条件;②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件;④“a <5”是“a <3”的必要条件. 其中真命题的个数是() A .1 B .2 C .3 D .4解:①是假命题,∵由ac=bc 推不出a=b ;②是真命题;③是假命题;④是真命题,∵“a <3”?“a <5”,选(B) 3.已知向量a =(-2,2),b =(5,k ).若|a +b |不超过5,则k 的取值范围是()A .[-4,6] B .[-6,4] C .[-6,2] D .[-2,6]解:∵22222||28252(102)134a b a b ab k k k k +=++=+++-+=++ ,由题意得k 2+4k+-12≤0,解得-6≤k ≤2,即k 的取值范围为[-6,2],选(C) 4.函数|1|||ln --=x e y x 的图象大致是()解:|1|||ln --=x e y x =111,1101,x x x x x x-+=≥-+<5.木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的()A .60倍B .6030倍C .120倍D .12030倍解:设木星的半径为r 1,地球的半径为r 2由题意得3132r r =,则木星的表面积∶地球的表面积=2311223221120r r r r r r =?===,选(C) 6.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为()A .163 B .83 C .316 D .38 解:抛物线x y 42=的焦点为(1,0),∴1,2,m n ?+=?=得m=14,n=34,∴mn=316,选(A)7.在x y x y x y y x 2c o s ,,l o g,222====这四个函数中,当1021<<<="">)()()2(2121x f x f x x f +>+恒成立的函数的个数是()A .0B .1C .2D .3解:∵当1021<<<="">,121222log log 22x x x x++>∴>即当1021<<<="" 2x,="" bdsfid="180" p="" x="" 时,使log="">()()2(2121x f x f x x f +>+恒成立,其它3个函数都可以举出反例当1021<<<="">)()()2(2121x f x f x x f +>+不成立(这里略),选(B) 8.已知a 、b 、c 是直线,β是平面,给出下列命题:①若c a c b b a //,,则⊥⊥;②若c a c b b a ⊥⊥则,,//;③若b a b a //,,//则ββ?;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直. 其中真命题的个数是() A .1 B .2 C .3 D .4 解:①③④⑤是假命题,②是真命题,选(A)9.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是()A .168 B .96 C .72 D .144 解:本题主要关键是抓连续编号的2张电影票的情况,可分四种情况:情况一:连续的编号的电影票为1,2;3,4;5,6,这时分法种数为222432C P P 情况二:连续的编号的电影票为1,2;4,5,这时分法种数为222422C P P 情况三:连续的编号的电影票为2,3;4,5;这时分法种数为222422C P P 情况四:连续的编号的电影票为2,3;5,6,这时分法种数为222422C P P综上, 把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是222432C P P +3222422C P P =144(种) 10.若∈<<=+απαααα则),20(tan cos sin()A .)60(πB .)4,6(ππ C .)3,4(ππ D .)2,3(ππ解:∵sin α+cos α)4πα+∈),∴排除(A),(B),当α=4π时,tan α=1,sin α+cos α,这时sin α+cos α≠tan α,∴选(C) 11.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是() A .3B .2C .1D .0解:y '=3x 2-8,由题意得0<3x 2-8<13x <<或3x -<<,其中整x 的可取值为0个,选(D) 12.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是() A .②、③都不能为系统抽样 B .②、④都不能为分层抽样 C .①、④都可能为系统抽样 D .①、③都可能为分层抽样解:①②不是系统抽样,可能为分层抽样; ③可能为系统抽样,也可能为分层抽样:④既非系统抽样也不是分层抽样,综上选(D)第Ⅱ卷(非选择题共90分)注意事项:第Ⅱ卷用0.5毫米黑色的签字或黑色墨水钢笔直接答在答题卡上.答在试题卷上无效. 二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在答题卡相应位置上. 13.函数x x x x f ---=4lg 32)(的定义域是 . 解:x 必须满足402030x x x ->??-≥??-≠?解之得,∴函数x x x x f ---=4lg 32)(的定义域是{x|3<x<4或2≤x<3}< bdsfid="271" p=""></x<4或2≤x<3}<>14.843)1()2(xx x x ++-的展开式中整理后的常数项等于 .解: 342()x x -的通项公式为341241442()()(2)r r r r r rr T C x C x x --+=-=-,令12-4r=0,r=3,这时得342()x x -的展开式中的常数项为3342C -=-32, 81()x x+的通项公式为8821881()k k k k kk T C x C x x --+==,令8-2k=0,k=4,这时得81()x x +的展开式中的常数项为48C =70,∴843)1()2(xx x x ++-的展开式中整理后的常数项等于3815.函数1cos |sin |-=x x y 的最小正周期与最大值的和为 .解: 函数1cos |sin |-=x x y 的最小正周期为2π,∵1sin 2sin 02|sin |cos 1sin 2sin 02x x x x x x ?≥??=?-的最大值为12,∴1cos |sin |-=x x y 的最大值为12-,∴1cos |sin |-=x x y 的最小正周期与最大值的和为122π-. 16.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元. 在满足需要的条件下,最少要花费元. 三、解答题:本大题共6小题,共74分,解答时应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量x f t x x x ?=-=+=)(),,1(),1,(2若函数在区间(-1,1)上是增函数,求t 的取值范围. 18.(本小题满分12分)在△ABC 中,已知63,31cos ,3tan ===AC C B ,求△ABC 的面积.19.(本小题满分12分)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且.)(,112211b a a b b a =-=(Ⅰ)求数列}{n a 和}{n b 的通项公式;(Ⅱ)设nnn b a c =,求数列}{n c 的前n 项和T n . 20.(本小题满分12分)如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1.(Ⅰ)求BF的长;(Ⅱ)求点C到平面AEC1F的距离.21.(本小题满分12分)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p 1=0.8,p 2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字). 22.(本小题满分14分)设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由.2005年普通高等学校招生全国统一考试数学试题(文史类)参考答案一、选择题:本题考查基本知识和基本运算,每小题4分,满分16分.1.B 2.B 3.C 4.D 5.C 6.A 7.B 8.A 9.D 10.C 11.D 12.D 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分.13.)4,3()3,2[? 14.38 15.212-π 16.500 三、解答题17.本小题主要考查平面向量数量积的计算方法、利用导数研究函数的单调性,以及运用基本函数的性质分析和解决问题的能力.解法1:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.23)(2t x x x f ++-='则.0)()1,1(,)1,1()(≥'--x f x f 上可设则在上是增函数在若,23)(,)1,1(,230)(22x x x g x x t x f -=--≥?≥'∴考虑函数上恒成立在区间,31)(=x x g 的图象是对称轴为由于开口向上的抛物线,故要使x x t 232-≥在区间(-1,1)上恒成立?.5),1(≥-≥t g t 即.)1,1()(,0)()1,1()(,5上是增函数在即上满足在时而当->'-'≥x f x f x f t5≥t t 的取值范围是故.解法2:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.0)()1,1(,)1,1()(.23)(2≥'--++-='x f x f t x x x f 上可设则在上是增函数在若)(x f ' 的图象是开口向下的抛物线,时且当且仅当05)1(,01)1(≥-=-'≥-='∴t f t f.5.)1,1()(,0)()1,1()(≥->'-'t t x f x f x f 的取值范围是故上是增函数在即上满足在18.本小题主要考查正弦定理、余弦定理和三角形面积公式等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力.解法1:设AB 、BC 、CA 的长分别为c 、a 、b ,.21cos ,23sin ,60,3tan ==∴==B B B B 得由应用正弦定理得又,322cos 1sin 2=-=C C 8232263sin sin =?==B C b c ..3263332213123sin cos cos sin )sin(sin +=?+?=+=+=∴C B C B C B A 故所求面积.3826sin 21+==A bc S ABC 解法3:同解法1可得c=8. 又由余弦定理可得.64,,364,32321236330sin sin sin sin ,sin sin .12030,900,60.64,64.0108,21826454,cos 222122222+=<-=>=?=?>?==<<∴<<=-=+==+-∴??-+=-+=a a B b A B b a B b A a A C B a a a a a a B ac c a b 故舍去而得由所得即故所求面积.3826sin 21+==B ac S ABC 19.本小题主要考查等差数列、等比数列基本知识和数列求和的基本方法以及运算能力.解:(1):当;2,111===S a n 时 ,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 设{b n }的通项公式为.41,4,,11=∴==q d b qd b q 则故.42}{,4121111---=?-=n n n n n n b b q b b 的通项公式为即(II ),4)12(422411---=-==n n nn nn n b a c]4)12(4)32(454341[4],4)12(45431[13212121nn n n n n n n T n c c c T -+-++?+?+?=-++?+?+=+++=∴-- 两式相减得].54)56[(91]54)56[(314)12()4444(2131321+-=∴+-=-+++++--=-n n n n n n n T n n T20.本小题主要考查线面关系和空间距离的求法等基础知识,同时考查空间想象能力和推理运算能力.解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. 又∵AF ∥EC 1,∴∠FAD=∠C 1EH.∴Rt △ADF ≌Rt △EHC 1. ∴DF=C 1H=2..6222=+=∴DF BD BF(Ⅱ)延长C 1E 与CB 交于G ,连AG ,则平面AEC 1F 与平面ABCD 相交于AG . 过C 作CM ⊥AG ,垂足为M ,连C 1M ,由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC ,且AG ?面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到平面AEC 1F 的距离..113341712317123,17121743cos 3cos 3,.17,1,2211221=+==∴=?===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CGBGCC EB 知由从而可得由解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0),A (2,0,0), C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ). ∵AEC 1F 为平行四边形,62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF F z z EC F AEC =--=∴∴=∴-=-=∴∴(II )设1n 为平面AEC 1F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然=+?+?-=+?+=?=?02020140,0,011y x y x n n 得由 ??-==∴=+-=+.41,1,022,014y x x y 即111),3,0,0(n CC CC 与设又=的夹角为a ,则.333341161133cos 1111=++==α ∴C 到平面AEC 1F 的距离为.11334333343cos ||1=?==αCC d 21.本小题主要考查概率的基础知识和运算能力,以及运用概率的知识分析和解决实际问题能力.解:(I )在第一次更换灯泡工作中,不需要换灯泡的概率为,5 1p 需要更换2只灯泡的概率为;)1(213125p p C -(II )对该盏灯来说,在第1、2次都更换了灯泡的概率为(1-p 1)2;在第一次未更换灯泡而在第二次需要更换灯泡的概率为p 1(1-p 2),故所求的概率为);1()1(2121p p p p -+-=(III )至少换4只灯泡包括换5只和换4只两种情况,换5只的概率为p 5(其中p 为(II )中所求,下同)换4只的概率为415p C (1-p ),故至少换4只灯泡的概率为.34.042.34.04.06.056.06.07.08.02.0,3.0,8.0).1(45322141553只灯泡的概率为年至少需要换即满时又当=??+=∴=?+===-+=p p p p p p C p p22.本小题主要考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力.(I )解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得.0)3()3(2)3(222=--+--+λk x k k x k ①设是方程则212211,),,(),,(x x y x B y x A ①的两个不同的根,0])3(3)3([422>--+=?∴k k λ ②)3,1(.3)3(2221N k k k x x 由且+-=+是线段AB 的中点,得 .3)3(,12221+=-∴=+k k k x x 解得k=-1,代入②得,λ>12,即λ的取值范围是(12,+∞). 于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即解法2:设则有),,(),,(2211y x B y x A.0))(())((33,32121212122222121=+-++-=+=+y y y y x x x x y x y x λλ 依题意,.)(3,212121y y x x k x x AB ++-=∴≠.04),1(3).,12(.12313,)3,1(.1,6,2,)3,1(222121=-+--=-+∞∴=+?>-==+=+∴y x x y AB N k y y x x AB N AB 即的方程为直线的取值范围是在椭圆内又由从而的中点是λλ(II )解法1:.02,13,=---=-∴y x x y CD AB CD 即的方程为直线垂直平分代入椭圆方程,整理得.04442=-++λx x ③是方程则的中点为又设43004433,),,(),,(),,(x x y x M CD y x D y x C ③的两根,).23,21(,232,21)(21,10043043-=+=-=+=-=+∴M x y x x x x x 即且于是由弦长公式可得).3(2||)1(1||432-=-?-+=λx x kCD ④将直线AB 的方程代入椭圆方程得,04=-+y x.016842=-+-λx x ⑤同理可得.)12(2||1||212-=-?+=λx x k AB ⑥.||||.,)12(2)3(2,12CD AB <∴->->λλλ时当假设在在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为.2232|42321|2|4|00=-+-=-+=y x d ⑦于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ 故当12>λ时,A 、B 、C 、D 四点均在以M 为圆心,2||CD 为半径的圆上.(注:上述解法中最后一步可按如下解法获得:A 、B 、C 、D 共圆?△ACD 为直角三角形,A 为直角即|,|||||2DN CN AN ?=?).2||)(2||()2||(2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边=.212-λ由④和⑦知,⑧式右边=)2232)3(2)(2232)3(2(--+-λλ ,2122923-=--=λλ ∴⑧式成立,即A 、B 、C 、D 四点共圆解法2:由(II )解法1及12>λ.,13,-=-∴x y CD AB CD 方程为直线垂直平分代入椭圆方程,整理得.04442=-++λx x ③将直线AB 的方程,04=-+y x 代入椭圆方程,整理得.016842=-+-λx x ⑤解③和⑤式可得 .231,2122,4,321-±-=-±-λλx x不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A∴)21233,23123(---+-+-+=λλλλCA)21233,23123(-------+=λλλλ计算可得0=?,∴A 在以CD 为直径的圆上. 又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆.(注:也可用勾股定理证明AC ⊥AD )。
2005年考研数学一试题分析、详解和评注

2005年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=212lim )(lim22=+=∞→∞→x x x x x f x x , []41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y 【评注】 如何求垂直渐近线、水平渐近线和斜渐近线,是基本要求,应熟练掌握。
这里应注意两点:1)当存在水平渐近线时,不需要再求斜渐近线;2)若当∞→x 时,极限xx f a x )(lim∞→=不存在,则应进一步讨论+∞→x 或-∞→x 的情形,即在右或左侧是否存在斜渐近线。
完全类似例题见《数学复习指南》(理工类)P.192【例7.32】(2) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P , 再由初始条件确定任意常数即可.【详解】 原方程等价为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=【评注】 本题虽属基本题型,但在用相关公式时应注意先化为标准型. 另外,本题也可如下求解:原方程可化为x x xy y x ln 222=+',即 x x y x ln ][22=',两边积分得C x x x xdx x y x +-==⎰332291ln 31ln , 再代入初始条件即可得所求解为.91ln 31x x x y -=完全类似公式见《数学复习指南》(理工类)P.154(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=33. 【分析】 函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n}的方向导数为:γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 因此,本题直接用上述公式即可.【详解】 因为3x x u =∂∂,6y y u =∂∂,9zz u =∂∂,于是所求方向导数为)3,2,1(nu ∂∂=.33313131313131=⋅+⋅+⋅ 【评注】 本题若n=},,{l n m 非单位向量,则应先将其单位化,从而得方向余弦为:,cos 222ln m m ++=α,cos 222ln m n ++=β222cos ln m l ++=α.完全类似例题见《数学复习指南》(理工类)P.330【例12.30】(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π. 【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3=.)221(2sin 3320402R d d d R⎰⎰⎰-=πππθϕϕρρ .【评注】 本题属基本题型,不论是用球面坐标还是用柱面坐标进行计算,均应特别注意计算的准确性,主要考查基本的计算能力.完全类似例题见《数学复习指南》(理工类)P.325【例12.22】(5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B【评注】 本题相当于矩阵B 的列向量组可由矩阵A 的列向量组线性表示,关键是将其转化为用矩阵乘积形式表示。
2005年普通高等学校招生全国统一考试数学及详细解析(全国卷Ⅲ.文)(四川,陕西,云南)

2005年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P(A)+P(B) 如果事件A 、B 相互独立,那么P (A ·B )=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k (1-P)n -k一、选择题:每小题5分,共60分. 1.已知α为第三象限角,则2α所在的象限是 ( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限解:α第三象限,即3222k k k Z πππαπ+<<+∈,∴3224k k k Z παπππ+<<+∈,可知2α在第二象限或第四象限,选D 2.已知过点A(-2,m)和B(m ,4)的直线与直线2x+y-1=0平行,则m 的值为( )A .0B .-8C .2D .10 解:直线2x+y-1=0的一个方向向量为a =(1,-2),(2,4)AB m m =+-,由AB a 即(m+2)×(-2)-1×(4-m)=0,m=-8,选B 3.在8)1)(1(+-x x 的展开式中5x 的系数是 ( )A .-14B .14C .-28D .28解:(x+1)8展开式中x 4,x 5的系数分别为48C ,58C ,∴(x-1)(x+1)8展开式中x 5的系数为 458814C C -=,选B4.设三棱柱ABC-A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,则球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径A .16VB .14VC .13VD .12V解:如图,1111111113A ABCB A BC B AC Q ABC A B C V V V V ----===111B PCQA B CQA B PCA V V V ---=+,∵AF=QC 1,∴APQC 1,APQC 都是平行四边形, ∴111B PCQA B CQA B PCA V V V ---=+=12(11B CQA B PCA V V --+) =1111223ABC A B C V -⋅=11113ABC A B C V -,选C 5.设713=x,则( )A .-2<x<-1B .-3<x<-2C .-1<x<0D .0<x<1解:211337--<<,21x -<<-,选A 6.若ln 2ln 3ln 5,,235a b c ===,则( )A .a <b<cB .c<b<aC .c<a <bD .b<a <c解:由题意得a=lnln ln ∵62353153525105(5)(2)2(2)(3)3=<==<=,∴c<a<b,选C7.设02x π≤≤,sin cos x x =-,则 ( )A .0x π≤≤B .744x ππ≤≤C .544x ππ≤≤ D .322x ππ≤≤sin cos x x =-得|sinx-cosx|=sinx-cosx,又02x π≤<, ∴544x ππ≤≤,选C 8.αααα2cos cos 2cos 12sin 22⋅+ =( )A .tan αB .tan 2αC .1D .12解:22sin 2cos 1cos 2cos 2αααα⋅=+222sin 2cos tan 22cos cos 2ααααα⋅=,选B9.已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到 x 轴的距离为 ( )A .43 B .53C D 解:由120MF MF ⋅=,得MF 1⊥MF 2,不妨设M(x,y)上在双曲线右支上,且在x 轴上方,则有(ex-a)2+(ex+a)2=4c 2,即(ex)2+a 2=2c 2,∵得x 2=53,y 2=23,由此可知M 点到x 选C 10.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 ( )A .2 B C .2 D 1解:由题意可得22b c a=,∵b 2=a 2-c 2e=c a ,得e 2+2e-1=0,∵e>1,解得1,选D 11.不共面的四个定点到平面α的距离都相等,这样的平面α共有 ( )A .3个B .4个C .6个D .7解:共有7个,它们是由四个定点组成的四面体的三对异面直线间的公垂线的三个中垂面;四面体的四条高的四个中垂面,选D12.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数例如,用十六进制表示:E+D=1B ,则A ×B= ( ) A .6E B .72 C .5F D .B0解:∵A=10,B=11,又A ×B=10×11=110=16×6+14,∴在16进制中A ×B=6E,∴选A第Ⅱ卷二.填空题:每小题4分,共(16分)13.经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多12人,按分层抽样方法从全班选出部分学生座 谈摄影,如果选出的5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一 般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多 人.解:设执“不喜欢”的学生为x 人,则执“一般”的学生为(x+12)人,由题意得1123x x =+,x=6,∴执“喜欢”的学生有30人,全班共有人数为12+6+6+30=54(人),∴全班学生中“喜欢”摄影的比全班人数的一半还多3人。
武汉大学考研真题2005数学分析解答

八、在底面半径为a,高为h的正圆锥内作长方体,其一面与圆锥地面重合,对面四个顶点在锥面上,求长方的最大体积。
解:
九、设 , ,在(0,a)内可导,以及在(0,a)内取到最值,且满足f(0)=0,f(a)=a。证明:
1) ;2)
证明:1)命题有问题,取a=1/2,f(x)=5x-8x2
f(0)=0,f(1/2)=1/2
解:(1)绝对收敛性:(主要使用放缩法)
(2)相对收敛性:(A-D判别法)
五、计算 ,其中Γ为曲线
,从z轴的正方向看过去,Γ是反时针方向
解:(利用奇偶性做)
六、设 ,且为连续函数,求证:
证明:(画出函数图像,分两段讨论:)
七、证明含参变量反常积分 上一致收敛,其中δ>0,但是在(0, )内不一定一致收敛。
f(x)在5/16取到最值,但是f(x)-ax只在x=0,x=9/16等于0,与命题1矛盾。
武汉大学
2005年攻读硕士学位研究生入学考试数学分析试题解答
一、设 满足: , ,证明 收敛。
证明:(分析:压缩映像原理)
二、对任意δ> 0。证明级数 在(1,1+δ)上不一致收敛。
证明:(利用反证法,Cauchy收敛准则和定义证明。)
三、设
解,(本题利用莱布尼兹求导法则:)
四、判断级数 的绝对收敛性和相对收敛性
武大硕研数分试题解答

2000年数学分析一.证明:由0<y 0<1及y 1n +=y n (2 -y n )得0<y 1≤(2)y 2(y 00-+)2=1,进而由归纳法易证0<y n 1≤(n=0,1,) .再由y 1n +=y n (2 -y n )得n 1n y y +=2-y n 1≥( n=0,1,) ,于是{y n }为单调上升且有上界数列,因此∞→n lim y n =a 存在.对递归关系y 1n +=y n (2 -y n )两边取极限得a=a(2-a),解得a=1(或a=0舍去),故∞→nli m y n =1.二.证明:由题设知f(x)在[0,+)∞上必有界,设)x (f M ≤.对ε∀>0,有l dt )t (f x1x-⎰=⎰-1dy )l )yx (f (dy L )yx (f )L M (20⎰+-≤ε+dy L )yx (f 1)L M (2⎰+-ε,由L )x (f lim x =+∞→知对上述,0X ,01>∃>ε使得当x>X 1时有2L )x (f ε<-,令X=1X )L M (2ε+,则当x>X 时有dy L )yx (f 1)L M (2⎰+-ε<2ε,于是l dt )t (f x1x-⎰<22εε+=ε.因此+∞→x liml dt )t (f x1x=⎰.三.解:由f(x)=arctgx 知f '(x)=2x11+,f(0)=0,于是由Lagrange 中值公式得arctgx=2)x (1x θ+,从而a r c t g xx a r c t g x x 22-=θ,因arctgxx arctgx x lim20x -+→=30x xarctgxx lim-+→=220x x3x111lim+-+→=31,故31lim 0x =+→θ.四.解:作Lagrange 函数L(x,y,z,λ)=x )1cz by ax (z y 222-+++++λ,并依次令L 对x,y,z,λ的偏导数为零得⎪⎪⎩⎪⎪⎨⎧=-++==+==+==+=01cz by ax L 0c z 2L 0b y 2L 0a x 2L z yx λλλλ,解得⎪⎪⎩⎪⎪⎨⎧++-=++=++=++=----1222122212221222)c b a (2)c b a (c z)c b a (b y)c b a (a x λ易知在题设条件下f 必有最小值,于是f 的最小值为f min =)c b a (1222++.五.解:利用高斯公式有 A=⎰⎰∑++dxdyz dzdx y dydz x222=21I I dv )]c z ()b y ()a x [(2dv )c b a (2dv)z 2y 2x 2(+=-+-+-+++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ由对称性知I 2=0,于是A=2)c b a (r 38dv )c b a (3++=++⎰⎰⎰Ωπ六.证明:因为t ),0[+∞∈时,)1u (eu1t e t sin e 12tu tu 22≥≤≤---,而且111121euedu ue-+∞-∞+-=-=⎰收敛,故由Weierstrass 判别法知含参变量的广义积分⎰+∞-1tutdu sin e2在t ),0[+∞∈中一致收敛从而⎰+∞-0tutdu sin e 2在t ),0[+∞∈中一致收敛.七.证明:由)x (ψ是连续有界函数知,存在M>0,使得)x (ψM ≤, 再由ϕ满足Lipschitz 条件)()(1x y x y n n -+=))(())((1x y x y n n --ϕϕ≤α)()(1x y x y n n --≤≤ nα)()(01x y x y -≤ n α(M+00)(y y -ϕ),于是)x (y )x (y )x (y )x (y )x (y )x (y )x (y )x (y n 1n 2p n 1p n 1p n p n n p n -+-+-≤-+-+-+-+++ ααϕ--+≤1)y )y (M (n000>∀ε ,令N=[ln]ln /)()1(00αϕαεy y M -+-,则当n>N 时,对一切自然数p 及x R ∈有ε<-+)x (y )x (y n p n .由此知{y )x (n }在(-,∞+∞)上一致收敛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)xmin [0, ]
f (x)min
xmin
f
'(t)dt
|
xmin
f
'(t) | dt
1|
0
f
'(t) | dt
(2)xmin [,1]
f (x)min
xmin
f '(t)dt | xmin f '(t) | dt
1| f '(t) | dt
0
七、证明含参变量反常积分
M
时
|
M N
sin xy x xy
x
dxy
|
xM xN
sin x
x
y y
dy
xM xN
sin y
y M
y
x
dy
xM xN
M
1 M x
dy
M 2 MN 1 M
当M 足够大时,上式显然不成立,矛盾。故原命题成立
八、在底面半径为a,高为h的正圆锥内作长方体,其一面与圆锥地面重合,对面 四个顶点在锥面上,求长方体的最大体积。 解:
首先,由于顶点所在的平面和圆锥的交线为一个圆A,四个顶点组成在圆上。
x1
|
+1,对任意的n
N
| xn p xn | 。从而知命题收敛
二、对任意δ
>
0。证明级数
n0
1 xn
在(1,1+δ)上不一致收敛。
证明:(利用反证法,Cauchy收敛准则和定义证明。)
如果级数收敛,
那么对于 0,x (1,1 ), N,当n, M N时
M
nN
1 xn
1 xn
1
(
1 x
)M
N
1
1
1 x
1 xn
只需令x (1, min{1 , n }) (1,1 ), 代入上式,矛盾
从而知非一致收敛
三、设 f (x) 1| x y | sin ydy,求f "(x) 0 解,(本题利用莱布尼兹求导法则:)
F (x, ) b(x) f (x, )dx a(x)
sin
n
|
nM
ln ln n ln n
|
sin
n
|
nM
ln ln n ln n
|
sin
n
|
n
M 2
A 。显然,该级数发散。即不绝对收敛 ln 2n
(2)相对收敛性:(A-D判别法)
<1>{an}收敛于0, bn有界 <2>{an}有界, an收敛 满足上述任意一个条件 anbn收敛
ydy, x (1, ) ydy, x (, 0)
ydy, x [0,1]
x sin
0
ydy 1 x sin x
ydy, x [0,1]
f
'( x)
1, x (1, ) ydy, x (, 0)
0
2sin x, x [0,1] f "(x) 0, x (1, )
F b( ) f (x, )dx f (b( ), ) b( ) f (a( ), ) a( )
a( )
f (x) 1| x y | sin ydy 0
x(x
0
y) sin
f
(x)
1(x y) sin
0
1( y x) sin
0
ydy 1( y x) sin x
2
1)
cos
2 d
2
b2
cos2 d
b2
1
cos 4
2
d
2
b2
六、设 f (x)在[0,1]上变号 ,且为连续函数,求证: min f (x) 1| f '(t) | dt
[0,1]
0
证明:(画出函数图像,分两段讨论:)
利用介值定理,取 [0,1], inf{x | f (x) 0},不难证明f ( ) 0
(此即压缩映像原理证明)以下证明压缩映像原理
利用Cauchy收敛准则,对 ,
n p1
| xn p xn | | xi xi1 | (1 m ... mp1) | xn1 xn | in1
1 mp 1 m
mn1
|
x2
x1
|
mn1 | x2 1 m
x1
|
ln 1 m
取N
|
x2 ln
m
武 汉 大 学2005 年攻读硕士学位研究生入学考试试题解答
一、设{xn}满足: | xn1 xn || qn || xn xn1 | ,| qn | r 1 ,证明{xn}收敛。 证明:(分析:压缩映像原理)
令:m
1 2
r
,则显然|qn
|
m
1
| xn1 xn || qn || xn xn1 | m| xn xn1 |
x 2
x2
y2 y2
z2 2bx
a2
,
z
0, 0
2b
a
,从z轴的正方向看过去,Γ是逆时针方向
解:(利用奇偶性做)
x a2 z2 cos
y
a2 z2 sin , 代入方程得到
z
z
x
y
z
2b cos2 2b cos sin
a2 4b2 cos2
[
2
,
2
]
ddyx dz
dy
|
1 x
M N
sin y (x y)2
dy
M sin ydy
N
1 x
2
M N
1 (x y)2
dy
1 x
M N MN
1
1 。(利用了Cauchy-Schwarz不等式) N
(2) 0
sin xy x(1 y)
dy在[0,
]不一致收敛
反证法:根据Cauchy收敛准则, >0,N , M
N ,当x
4b cos sin d 2 yd
2b(1 2sin2 )d 2(x b)d
8b2 cos sin a2 4b2 cos2
d
4by z
d
I ( y2 z)dx (x 2 yz)dy (x y2 )dz
2 2
xdy,
(利用奇偶性,第一第三个积分为0)
b2
2 2
(cos
n2
sin
n
cos cos
1 2 1
n2
sin
n
1 cos
1
(积化和差)
2
2
lim
n
ln ln n ln n
lim
n
1 ln n
0(L
' Hospital法则)
根据Dirichlet判别法,知该级数收敛
五、计算 I ( y2 z)dx (x 2 yz)dy (x y2 )dz ,其中Γ为曲线
0
sin xy x(1 y)
dy在[,
]
上一致收敛,其中δ>0,但是
在(0, )内不一定一致收敛。 证明:
(1)
0
sin xy x(1 y)
dy
1 x
0
sin x
xy xy
dxy
lim
M
M sin y dy 0 x y
根据定义,
0, N
2 2
, M
N
1
x
|
M N
sin x
y y
0, x (, 0)
四、判断级数 ln ln n sin n 的绝对收敛性和相对收敛性
n2 ln n
解:(1)绝对收敛性:(主要使用放缩法)
首先,不难证明对于n
N,|
sin
n
|
|
sin(n
1)
|
2 sin
1 2
A
当M 足够大的时候, ln ln M 1
nM
|
ln ln n ln n