逻辑函数的卡诺图化简法

合集下载

逻辑函数的卡诺图化简法

逻辑函数的卡诺图化简法

[例]已知:真值表如下,写出 已知:真值表如下, 该逻辑函数和其反函数的标 准与或式 解:由题可知: 由题可知:
F = XY Z + XY Z + XY Z + XYZ
= m0 + m2 + m5 + m7
= ∑ ( 0 ,2 ,5 ,7 ) m
∴ F =
QF + F = 1
∑ m (1, 3 , 4 , 6 )
例如 CD AB 00 01 11 10 00 1 1 1 1 01 1 1 11 1 1 10 1 1 1 1 8 个相邻项合并消去 3 个变量 A ABCD+ABCD=ABD ABCD+ABCD=ABD ABCD+ABCD +ABCD+ABCD =ACD +ACD =AD
2 个相邻项合并消去 4 个变量, 个相邻项合并消去 个变量, 1 个变量,化简结果 2 个变量, 化简结果为相同变量相与。 化简结果为相同变量相与。 为相同变量相与。 为相同变量相与。
3. 已知一般表达式画函数卡诺图 的卡诺图。 [例] 已知 Y = AD + AB ( C + BD ) ,试画出 Y 的卡诺图。 解:(1) 将逻辑式转化为与或式 ) (2) 作变量卡诺图 ) Y = AD + AB + (C + BD ) (3) 根据与或式填图 ) = AD + AB + CBD CD 00 01 11 10 AB 1 1 00 01 11 10 1 1 1 1 1 1
[例 ]
Y = ABC + ABC + ABC + ABC
合并最小项 三个圈最小项分别为: 三个圈最小项分别为:

逻辑函数的卡诺图表示和卡诺图化简法省公开课获奖课件市赛课比赛一等奖课件

逻辑函数的卡诺图表示和卡诺图化简法省公开课获奖课件市赛课比赛一等奖课件
01 0 0 1 0
11 0 0 1 1 10 0 1 1 1
例:将F(A、B、C、D) ACD AB BCD ABC AC
化为最简与非—与非式。 CD
解:
ACD
AB
00 01 11 10
00 01
1 1
1 0
0 m104,m15 1 两1次填1
AB
11 1 1 1 1
10 0 1 1 1
B CD AC
ABC
1.卡诺图化简逻辑函数旳原理 : 具有相邻性旳最小项能够合并,并消去不同旳因子,
合并旳成果为这些项旳公因子.
(1)2个相邻旳最小项结合,2项能够而合并为1项, 并消去1个不同旳变量。
(2)4个相邻旳最小项结合, 4项能够而合并为1项, 并消去2个不同旳变量。
(3)8个相邻旳最小项结合, 8项能够而合并为1项, 并消去3个不同旳变量。
解: 写成简化形式: F m0 m3 m6 m7 然后填入卡诺图:
例3 画出 Y ABC D ACD AC 旳卡诺图
解:直接填入
CD 00 01 11 10
AB
00 0 0 1 0
01 0 0 1 0
11 0 0 1 1
10 0 1 1 1
CD 00 01 11 10
AB
00 0 0 1 0
总之, 2n 个相邻旳最小项结合,2n 项能够而合并为1
项,能够消去n个不同旳变量。
化简根据
2n项相邻,并构成一种矩形组, 2n项能够而合并为 1项,消去n个因子,合并旳成果为这些项旳公因子。
利用卡诺图化简旳规则
相邻单元格旳个数必须是2n个,并构成矩 形组时才能够合并。
CD 00 01 11 10
诺图

逻辑函数的卡诺图法化简

逻辑函数的卡诺图法化简

精品课件
26
输入变量ABC取值为001、010、100时,
逻辑函数Y有确定的值,根据题意,有任一命令(正 转、反转和停止)时为1,否则为0。
反变 函换 数为
CD BD
CD
AB
00 01 11 10
Y AB AC BD CD AB
00 1
0
1
1
01 1
0
0
1
11 0
0
0
0
10 0
0
1
1
AC
精品课件
13
4、卡诺图的性质
(1)任何两个(21个)标1的相邻最小项,可以合并为一项, 并消去一个变量(消去互为反变量的因子,保留公因子)。
AB C
但是,若 F= ABCD+ABC+BC+ABC ,显然,该函数式
难于找到相邻项。
精品课件
1
2.4.2 逻辑函数的标准式——最小项表达 式
问题的提出:逻辑函数 F= ABC+ABC ,之所以易于看出它们 的乘积项是逻辑相邻项,是因为它们的每一个乘积项中都包 含了所有的变量。而F= ABCD+ABC+BC+ABC,每个乘积项没有 包含所有的变量,所以逻辑相邻关系不直观。于是引入了最 小项的概念。
15
AB CD
00 01 11 10
00 0
1
1
0
01 1 0 0 1
11 1
0
0
1 AD
10 0 1 1 0
BD
AB CD
00 01 11 10
00 1
0
0
1
01 0
1
1
0
11 0

逻辑函数的卡诺图化简法

逻辑函数的卡诺图化简法
首先讨论三变量(A、B、C)函数卡诺图的画 法。
① 3变量的卡诺图 有23个小方块;
相邻 相邻
② 几何相邻的必须
逻辑相邻:变量的 取值按00、01、11、 10的顺序(循环码 ) 排列 。
图1-11 三变量卡诺图的画法
2021/8/13
11
不 相邻
相邻
相邻
图1-12 四变量卡诺图的画法
正确认识卡诺 图的“逻辑相邻”: 上下相邻,左右相 邻,并呈现“循环 相邻”的特性,它 类似于一个封闭的 球面,如同展开了 的世界地图一样。
A因BB此C是N个三变变量量共函有数2的N个最最小小项项吗。?
2021/8/13
4
最小项的定义:对于N个变量,如果P是一个含有N 个因子的乘积项,而且每一个变量都以原变量或者反 变量的形式,作为一个因子在P中出现且仅出现一次, 那么就称P是这N个变量的一个最小项。
表1-17 三变量最小项真值表
2021/8/13
5
(2)最小项的性质
①对于任意一个最小项,只有一组变量取值使它 的值为1,而变量取其余各组值时,该最小项均为0;
②任意两个不同的最小项之积恒为0; ③变量全部最小项之和恒为1。
2021/8/13
6
最小项也可用“mi” 表示,下标“i”即最小 项的编号。编号方法:把最小项取值为1所对应的 那一组变量取值组合当成二进制数,与其相应的十 进制数,就是该最小项的编号。
ABC ABC AC
(A B)C ABC AC
AC BC ABC AC
(2) 根据与或表达式画出卡诺图,如下
图所示。
2021/8/13
17
BC
A
00 01 11 10
0
11 1

用卡诺图化简逻辑函数

用卡诺图化简逻辑函数

1.4 用卡诺图化简逻辑函数本次重点内容1、卡诺图的画法与性质2、用卡诺图化简函数 教学过程 应用卡诺图化简 一、卡诺图逻辑函数可以用卡诺图表示。

所谓卡诺图,就是逻辑函数的一种图形表示。

对n 个变量的卡诺图来说,有2n 个小方格组成,每一小方格代表一个最小项。

在卡诺图中,几何位置相邻(包括边缘、四角)的小方格在逻辑上也是相邻的。

二、最小项的定义及基本性质: 1、最小项的定义在n 个变量的逻辑函数中,如乘积项中包含了全部变量,并且每个变量在该乘积项中或以原变量或以反变量的形式但只出现一次,则该乘积项就定义为该逻辑函数的最小项。

通常用m 表示最小项,其下标为最小项的编号。

编号的方法是:最小项的原变量取1,反变量取0,则最小项取值为一组二进制数,其对应的十进制数便为该最小项的编号。

如最小项C B A 对应的变量取值为000,它对应十进制数为0。

因此,最小项C B A 的编号为m 0,如最小项C B A 的编号为m 4,其余最小项的编号以此类推。

2、最小项的基本性质:(1)对于任意一个最小项,只有一组变量取值使它的值为1,而其余各种变量取值均使它的值为0。

(2)不同的最小项,使它的值为1的那组变量取值也不同。

(3)对于变量的任一组取值,全体最小项的和为1。

图1.4.1分别为二变量、三变量和四变量卡诺图。

在卡诺图的行和列分别标出变量及其状态。

变量状态的次序是00,01,11,10,而不是二进制递增的次序00,01,10,11。

这样排列是为了使任意两个相邻最小项之间只有一个变量改变(即满足相邻性)。

小方格也可用二进制数对应于十进制数编号,如图中的四变量卡诺图,也就是变量的最小项可用m0, m1,m2,……来编号。

01 0100011110 01ABCABCDBA0001111000011110m m m mm m m mm mm m01230112233mmmmmmmmmmmmmmmm456789101112131415图1.4.1 卡诺图二、应用卡诺图表示逻辑函数应用卡诺图化简逻辑函数时,先将逻辑式中的最小项(或逻辑状态表中取值为1的最小项)分别用1填入相应的小方格内,其它的则填0或空着不填。

逻辑函数的卡诺图化简法

逻辑函数的卡诺图化简法

逻辑函数的卡诺图化简法逻辑函数的卡诺图化简法由前面的学习得知,利用代数法可以使逻辑函数变成较简单的形式。

但要求熟练掌握逻辑代数的基本定律,而且需要一些技巧,特别是经化简后得到的逻辑表达式是否是最简式较难确定。

运用卡诺图法可以较简便的方法得到最简表达式。

但首先需要了解最小项的概念。

一、最小项的定义及其性质1.最小项的基本概念由A、B、C三个逻辑变量构成的许多乘积项中有八个被称为A、B、C的最小项的乘积项,它们的特点是1. 每项都只有三个因子2. 每个变量都是它的一个因子3. 每一变量或以原变量(A、B、C)的形式出现,或以反(非)变量(A、B、C)的形式出现,各出现一次一般情况下,对n个变量来说,最小项共有2n个,如n =3时,最小项有23=8个2.最小项的性质为了分析最小项的性质,以下列出3个变量的所有最小项的真值表。

由此可见,最小项具有下列性质:(1)对于任意一个最小项,只有一组变量取值使得它的值为1,而在变量取其他各组值时,这个最小项的值都是0。

(2)不同的最小项,使它的值为1的那一组变量取值也不同。

(3)对于变量的任一组取值,任意两个最小项的乘积为0。

(4)对于变量的任一组取值,全体最小项之和为1。

3.最小项的编号最小项通常用mi表示,下标i即最小项编号,用十进制数表示。

以ABC为例,因为它和011相对应,所以就称ABC是和变量取值011相对应的最小项,而011相当于十进制中的3,所以把ABC记为m3按此原则,3个变量的最小项二、逻辑函数的最小项表达式利用逻辑代数的基本公式,可以把任一个逻辑函数化成一种典型的表达式,这种典型的表达式是一组最小项之和,称为最小项表达式。

下面举例说明把逻辑表达式展开为最小项表达式的方法。

例如,要将化成最小项表达式,这时可利用的基本运算关系,将逻辑函数中的每一项都化成包含所有变量A、B、C的项,然后再用最小项下标编号来代表最小项,即又如,要将化成最小项表达式,可经下列几步:(1)多次利用摩根定律去掉非号,直至最后得到一个只在单个变量上有非号的表达式;(2)利用分配律除去括号,直至得到一个与或表达式;(3)在以上第5个等式中,有一项AB不是最小项(缺少变量C),可用乘此项,正如第6个等式所示。

(完整版)逻辑函数的卡诺图化简法

(完整版)逻辑函数的卡诺图化简法

第十章 数字逻辑基础补充:逻辑函数的卡诺图化简法1.图形图象法:用卡诺图化简逻辑函数,求最简与或表达式的方法。

卡诺图是按一定规则画出来的方框图。

优点:有比较明确的步骤可以遵循,结果是否最简,判断起来比较容易。

缺点:当变量超过六个以上,就没有什么实用价值了。

公式化简法优点:变量个数不受限制缺点:结果是否最简有时不易判断。

2.最小项(1)定义:是一个包括所有变量的乘积项,每个变量均以原变量或反变量的形式出现一次。

注意:每项都有包括所有变量,每个乘积它中每个变量出现且仅出项1次。

如:Y=F (A ,B ) (2个变量共有4个最小项B A B A B A AB )Y=F (A ,B ,C ) (3个变量共有8个最小项C B A C B A C B A BC A C B AC B A C AB ABC )结论: n 变量共有2n 个最小项。

三变量最小项真值表(2)最小项的性质①任一最小项,只有一组对应变量取值使其值为1: ②任意两个最小项的乘种为零; ③全体最小项之和为1。

(3)最小项的编号:把与最小项对应的变量取值当成二进制数,与之相应的十进制数,就是该最小项的编号,用m i 表示。

3.最小项表达式——标准与或式任何逻辑函数都可以表示为最小项之和的形式——标准与或式。

而且这种形式是惟一的,即一个逻辑函数只有一种最小项表达式。

例1.写出下列函数的标准与或式:Y=F(A,B,C)=AB+BC+CA 解:Y=AB(C +C)+BC(A +A)+CA(B +B)=ABC C B A ABC BC A ABC C AB +++++ =ABC C B A BC A C AB +++ =3567m m m m +++例2.写出下列函数的标准与或式:C B AD AB Y ++=解:))()(C B D A B A Y +++=( ))((C B D B A ++= D C B C A B A B A +++=D C B A D C B A C B A C B A BC A ++++=D C B A D C B A D C B A D C B A D C B A D BC A BCD A ++++++=_ 8014567m m m m m m m ++++++= =)8,7,6,5,4,1,0(m ∑ 列真值表写最小项表达式。

卡诺图化简法

卡诺图化简法

m 0 m 1 m 2 m 3 m 7
m (0,1,2,3,7)
2021/10/10
第6章
9
➢ 已知真值表,写出函数的最小项之和的形式
如果列出了函数的真值表,则只要将函数值为1的那些最 小项相加,便是函数的最小项表达式。
ABC Y
000 0 001 1 010 1 011 1 100 0 101 1 110 0 111 0
18
再如:
AC
BD
ABCDABCDABCDABCD ACD(BB)ACD(BB) CD(AA)CD
2021/10/10
BD
19
性质3:卡诺图中八个相邻1格的最小项可以合并成一个与项, 并 消去三个变量。
综上所述,在 n 个变量卡诺图中,若有2k个1格相邻(k为
0,1,2…,n), 它们可以圈在一起加以合并,合并时可消去
相邻的两个最小项之和可以合并成一项,并消去一个变 量。如:
m 0 m 2 A B C A B C A ( B B ) C A C
第6章
2021/10/10
12
2.卡诺图
◆ 基本知识
卡诺图是由美国工程师卡诺(Karnaugh)首先提出的一种 用来描述逻辑函数的特殊方格图。
在这个方格图中,每一个方格代表逻辑函数的一个最小项, 而且几何相邻(在几何位置上,上下或左右相邻)的小方格具 有逻辑相邻性,即两相邻小方格所代表的最小项只有一个变量 取值不同。
的最简与或表达式
解:1画出函数F 的卡诺图。对于在函数 F 的标准与或表达式中出现
的那些最小项,在其卡诺图的对应小方格中填上1,其余方格不填;
2合并最小项。把图中所有的1格都圈起来,相邻且能够合并在 一起的1 格圈在一个大圈中; 3写出最简与或表达式。对卡诺图中所画每一个圈进行合并,保 留相同的变量,去掉互反的变量。

逻辑函数的化简方法

逻辑函数的化简方法

一、公式法化简:是利用逻辑代数的基本公式,对函数进行消项、消因子。

常用方法有:①并项法利用公式AB+AB’=A 将两个与项合并为一个,消去其中的一个变量。

②吸收法利用公式A+AB=A 吸收多余的与项。

③消因子法利用公式A+A’B=A+B 消去与项多余的因子④消项法利用公式AB+A’C=AB+A’C+BC 进行配项,以消去更多的与项。

⑤配项法利用公式A+A=A,A+A’=1配项,简化表达式。

二、卡诺图化简法逻辑函数的卡诺图表示法将n变量的全部最小项各用一个小方块表示,并使具有逻辑相邻性的最小项在几何位置上相邻排列,得到的图形叫做n变量最小项的卡诺图。

逻辑相邻项:仅有一个变量不同其余变量均相同的两个最小项,称为逻辑相邻项。

1.表示最小项的卡诺图将逻辑变量分成两组,分别在两个方向用循环码形式排列出各组变量的所有取值组合,构成一个有2n个方格的图形,每一个方格对应变量的一个取值组合。

具有逻辑相邻性的最小项在位置上也相邻地排列。

用卡诺图表示逻辑函数:方法一:1、把已知逻辑函数式化为最小项之和形式。

2、将函数式中包含的最小项在卡诺图对应的方格中填1,其余方格中填0。

方法二:根据函数式直接填卡诺图。

用卡诺图化简逻辑函数:化简依据:逻辑相邻性的最小项可以合并,并消去因子。

化简规则:能够合并在一起的最小项是2n个。

如何最简:圈数越少越简;圈内的最小项越多越简。

注意:卡诺图中所有的1 都必须圈到,不能合并的1 单独画圈。

说明,一逻辑函数的化简结果可能不唯一。

合并最小项的原则:1)任何两个相邻最小项,可以合并为一项,并消去一个变量。

2)任何4个相邻的最小项,可以合并为一项,并消去2个变量。

3)任何8个相邻最小项,可以合并为一项,并消去3个变量。

卡诺图化简法的步骤:画出函数的卡诺图;画圈(先圈孤立1格;再圈只有一个方向的最小项(1格)组合);画圈的原则:合并个数为2n;圈尽可能大(乘积项中含因子数最少);圈尽可能少(乘积项个数最少);每个圈中至少有一个最小项仅被圈过一次,以免出现多余项。

卡诺图化简逻辑表达式

卡诺图化简逻辑表达式
对于包含多个非门或多个连续的与或 非门的逻辑表达式,卡诺图化简可能 无法得到最简结果。
卡诺图对于大规模逻辑电路的优化效果有限
随着逻辑电路规模的增大,卡诺图的化简过程变得复杂且耗时,难以在实际工程 中应用。
对于大规模逻辑电路,可能需要采用其他优化方法,如布尔代数、门级优化等, 以获得更好的优化效果。
THANKS
感谢观看
卡诺图化简逻辑表达式
• 卡诺图简介 • 卡诺图化简逻辑表达式的方法 • 卡诺图化简逻辑表达式的实例 • 卡诺图与其他化简方法的比较 • 卡诺图的局限性
01
卡诺图简介
卡诺图的定义
• 定义:卡诺图是一种用于表示二进制逻辑函数关系的图形表示 法,通过将逻辑函数输入变量的所有可能取值组合在网格中表 示出来,可以直观地观察到函数的最简形式。
卡诺图与布尔代数化简的比较
布尔代数化简
通过使用逻辑运算(与、或、非)的代数性质,如吸收律、分配律等,对逻辑表达式进 行简化。这种方法需要一定的数学基础,但在处理复杂逻辑表达式时可能较为繁琐。
卡诺图化简
利用图形直观地表示输入变量的所有可能组合,通过排除法简化逻辑表达式。卡诺图化 简简单易懂,不需要复杂的数学运算,特别适合初学者和解决多变量逻辑表达式的化简
问题。
卡诺图与公式化简的比较
公式化简
通过逻辑运算的公式和定理,对逻辑表达式 进行简化。这种方法需要熟练掌握各种逻辑 公式和定理,对于初学者有一定的难度。
卡诺图化简
利用图形化的方式表示输入变量的所有可能 组合,通过排除法简化逻辑表达式。卡诺图 化简直观、易于操作,不需要复杂的公式和 定理,特别适合初学者和解决多变量逻辑表 达式的化简问题。
05
卡诺图的局限性
卡诺图适用范围有限

逻辑函数的化简方法

逻辑函数的化简方法

逻辑函数的化简方法逻辑函数的化简是数理逻辑中的一个重要概念,它指的是将复杂的逻辑函数表示形式简化为更为简洁的形式。

逻辑函数化简的目的是为了方便逻辑分析、简化逻辑电路的设计和优化等。

在进行逻辑函数的化简时,可以使用多种方法,包括真值表、卡诺图、代数法等。

下面我将介绍一些常用的逻辑函数化简方法。

1. 真值表法:真值表法是一种直观的方法,适用于简单的逻辑函数。

它通过列出逻辑函数的所有可能输入和对应的输出,通过观察输入和输出之间的关系,找出逻辑函数的简化形式。

2. 卡诺图法:卡诺图法是一种图形化的方法,适用于中等规模的逻辑函数。

它将逻辑函数的输入和输出用二进制位表示,并用一个方格来表示逻辑函数的真值。

通过观察方格的分布情况,将含有相同输出的方格组合起来,得到逻辑函数的简化形式。

3. 代数法:代数法是一种基于代数运算的方法,适用于任意规模的逻辑函数。

它利用逻辑函数的布尔代数性质,通过运用逻辑运算规则和化简规则,将逻辑函数逐步化简为最简形式。

逻辑函数的化简过程一般包括以下几个步骤:1. 将逻辑函数的输入和输出用适当的变量表示。

例如,对于一个三输入的逻辑函数,可以用A、B、C来表示输入变量,用F表示输出变量。

2. 根据逻辑函数的真值表或卡诺图,观察输入变量与输出变量之间的关系,找出可能的化简形式。

这一步可以根据特定的方法进行,如真值表中可以用观察方式寻找具有相同输出的输入组合,卡诺图中可以利用方格分布情况找到可以合并的项等。

3. 利用逻辑运算规则和化简规则,将逻辑函数逐步化简。

逻辑运算规则包括与、或、非、异或、与非、或非等运算规则,化简规则包括吸收律、分配律、德摩根定理等。

4. 不断重复第3步,直到无法再进行化简为止。

最终得到逻辑函数的最简形式。

需要注意的是,逻辑函数的化简目标是找到最简形式,而不一定是最简单形式。

最简形式是指逻辑函数无法再进行化简,而最简单形式是指逻辑函数中只包含最少的逻辑门。

总的来说,逻辑函数的化简方法包括真值表法、卡诺图法和代数法等。

《卡诺图化简法》课件

《卡诺图化简法》课件
总结词
卡诺图化简的基本步骤
详细描述
详细阐述卡诺图化简的基本步骤, 包括如何根据逻辑函数绘制卡诺图 、如何根据卡诺图进行化简等。
实例二:复杂的逻辑函数化简
总结词
通过卡诺图化简复杂逻辑函数
01
02
详细描述
选取具有代表性的复杂逻辑函数,如含有多 个变量和复合逻辑运算的函数,利用卡诺图 进行化简,展示化简过程和结果。
优化最小项的排列方式
优化最小项的排列方式,可以减少重复计算和提高化简效率。
THANKS
感谢观看
杂。
约束条件
卡诺图化简法要求逻辑函数在最小 项上的取值必须明确(0或1),对 于含有未知取值的逻辑函数不适用 。
非二进制系统
卡诺图仅适用于二进制逻辑系统, 对于非二进制系统(如三进制、四 进制等)需要其他化简方法。
03
卡诺图化简法的步骤
构造卡诺图
01
02
03
确定变量
首先确定待化简的逻辑函 数的变量,即确定卡诺图 的行数和列数。
注意约束条件
在使用卡诺图化简法时,应考虑约束条件,如输 入变量的取值范围和输出变量的取值范围。
避免重复计算
在化简过程中,应避免重复计算最小项,以提高 化简效率。
如何提高卡诺图化简法的效率
熟悉卡诺图化简法的步骤
熟练掌握卡诺图化简法的步骤,可以更快地完成化简过程。
选择合适的软件工具
使用合适的软件工具,如逻辑模拟软件等,可以提高卡诺图化简法 的效率。
《卡诺图化简法》 PPT课件
目录
• 卡诺图化简法简介 • 卡诺图的构成与特性 • 卡诺图化简法的步骤 • 卡诺图化简法的实例分析 • 卡诺图与其他化简方法的比较 • 卡诺图化简法的实际应用与注意事项

卡诺图化简逻辑函数

卡诺图化简逻辑函数

利用卡诺图化简逻辑函数的方法称为卡诺图化简法或图形化简法。

化简时依据的基本原理就是具有相邻性的最小项可以合并,并消去不同的因子。

由于在卡诺图上几何位置相邻与逻辑上的相邻性是一致的,因而从卡诺图上能直观地找出那些具有相邻性的最小项并将其合并化简。

1.合并最小项的规则(1)若两个最小项相邻,则可合并为一项并消去一对因子。

合并后的结果中只剩下公共因子。

(2)若四个最小项相邻并排列成一个矩形组,则可合并为一项并消去两对因子。

合并后的结果中只包含公共因子。

(3)若八个最小项相邻并且排列成一个矩形组,则可合并为一项并消去三对因子。

合并后的结果中只包含公共因子。

l下图给出了最小项相邻的几种情况最小项相邻的几种情况图(a)(b)两个最小项相邻(c)(d)四个最小项相邻(e)八个最小项相邻至此,可以归纳出合并最小项的一般规则:如果有个最小项相邻(n=1,2,…)并排列成一个矩形组,则它们可以合并为一项,并消去n对因子。

合并后的结果中仅包含这些最小项的公共因子。

2.卡诺图化简法的步骤用卡诺图化简逻辑函数时可按如下步骤进行:(1)将函数化为最小项之和的形式。

(2)画出表示该逻辑函数的卡诺图。

(3)找出可以合并的最小项。

(4)选取化简后的乘积项。

选取的原则:n这些乘积项应包含函数式中所有的最小项(应覆盖卡诺图中所以的1)n所用的乘积项数目最少,即可合并的最小项组成的矩形组数目最少n每个乘积项包含因子最少,即各可合并的最小项矩形组中应包含尽量多的最小项例1:用卡诺图化简法将式化简为最简与—或函数式解:首先画出表示函数y的卡诺图,如图通过合并最小项,得出结果,左图:右图:注:l在填写y的卡诺图时,并不一定要将y化为最小项之和的形式。

l需要找出可以何并的最小项,将可能合并的最小项用线圈出,有时存在多种可能合并最小项的方案,所以有时一个逻辑函数的化简结果不是唯一的。

例2:用卡诺图法将化为最简与—或逻辑式解:首先画出y的卡诺图,然后把可能合并的最小项圈出,并按照前面所述的原则选择化简与—或式中的乘积项最后得到结果l补充说明:在以上的两个例子中,我们都是通过合并卡诺图中的1来求得化简结果的。

14 逻辑函数的卡诺图化简法

14 逻辑函数的卡诺图化简法

Y ABC D ACD AC
例:试将逻辑函数
展为最小项之和的形式。
《数字电子技术》
1.4 逻辑函数的卡诺图化简法
三、逻辑函数的“最大项之积”形式——标准“或与”表
达式 证明:任何一个逻辑函数都可以化成最大项之积的标 准形式。 例:试将逻辑函数
Y ABC BC
化为最大项之积的标准形式。
(4)任意两个最小项的乘积为0; (5)具有相邻性的两个最小项之和可以合并成一项 并消去一对因子。 2、最大项 在n变量函数中,若M为n个变量之和,且这n个变 量均以原变量或反变量的形式在M中出现一次,则称M 为该组变量的最大项。
《数字电子技术》
1.4 逻辑函数的卡诺图化简法
表1-4-2
三变量最大项编号表
(4)任意两个最大项之和为1;
(5)只有一个变量不同的两个最大项的乘积等于 各相同变量之和。
《数字电子技术》
1.4 逻辑函数的卡诺图化简法
二、逻辑函数的“最小项之和”形式——标准“与或”表 达式
A A 1
利用基本公式 ,可将任何一个逻辑函
数化为最小项之和的标准形式。这种标准形式在逻辑函数
的化简以及计算机辅助分析和设计中得到了广泛的应用。
《数字电子技术》
1.4 逻辑函数的卡诺图化简法
③ 圈的个数应尽可能少,因为一个圈对应一个与
项,即与项最少; 例:
CD AB CD
00 1 0 0 0
01 1 1 0 0
1.4 逻辑函数的卡诺图化简法
§1.4
逻辑函数的卡诺图化简法
§1.4.1 逻辑函数的两种标准形式 任何一个逻辑函数均可化成“最小项之和”与“最大 项之积”这两种标准形式。 一、最小项和最大项定义 1、最小项 在n变量逻辑函数中,若m为包含n个因子的乘积项, 而且这n个变量均以原变量或反变量的形式在m中出现一 次,则称m为该组变量的最小项。

逻辑函数的卡诺图化简法

逻辑函数的卡诺图化简法

卡诺图化简的依据
CD + ABCD = ABD
^CD + ABCD =
ABD A BD + ABD = AD
ABD + ABD = AD
AD+AD=D
卡诺图化简的依据
利用卡诺图化简的依据是:
_____丿 ____________________________________________________________
逻辑代数基础
华中科技大学 罗杰
逻辑函数的卡诺图化简法
卡诺图化简法
什么是卡诺 图?
如何用卡诺图 A如何用卡
1来表示逻辑函 数?
诺图化简 逻辑函数?
卡诺图化简法
■如何用卡诺图7 化; 简逻辑函数呢?
包含以下内容: -化简逻辑函数的依据是什么? -化简的步骤是什么?
卡诺图化简的依据
卡诺图化简的依据
括上、下底相邻,
左、右边相邻和
四角两两相邻。M
同一方格,但新增的
向兩團由一■由亜1看=1
丄 I™U. I IJI kiTrl • I • r 1 1 f_jA
I"
LJLLI LEU I ALL IJ
新的方格。
一个包围圈的 方 格数要尽可 能多, 包围圈的 数目要 可能少。
•具有相邻性的最小项可以合并,并消去不同的因子。 •由于卡诺图具有循环相邻的特性,且几何位置相邻的最小 项
在逻辑上也必然是相邻的,从卡诺图上能直观地找出那 些具
有相邻性的最小项并将其合并化简。
卡诺图化简法的步骤
卡诺图舀 化简法的步骤
卡诺图化简法的步骤
化简的步骤
按 最,=J 小 项 表 达 式 填 卡 诺图,凡式中存在的 最.=J 小 项 , 其 对 应 方 格
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

逻辑函数的卡诺图化简法
逻辑函数的卡诺图化简法
由前面的学习得知,利用代数法可以使逻辑函数变成较简单的形式。

但要求熟练掌握逻辑代数的基本定律,而且需要一些技巧,特别是经化简后得到的逻辑表达式是否是最简式较难确定。

运用卡诺图法可以较简便的方法得到最简表达式。

但首先需要了解最小项的概念。

一、最小项的定义及其性质
1.最小项的基本概念
由A、B、C三个逻辑变量构成的许多乘积项中有八个
被称为A、B、C的最小项的乘积项,它们的特点是 1. 每项都只有三个因子
2. 每个变量都是它的一个因子
3. 每一变量或以原变量(A、B、C)的形式出现,或以反(非)变量(A、B、C)的形式出现,各出现一次
一般情况下,对n个变量来说,最小项共有2n个,如n=3 时,最小项有23=8个
2.最小项的性质
为了分析最小项的性质,以下列出3个变量的所有最
小项的真值表。

由此可见,最小项具有下列性质:
(1)对于任意一个最小项,只有一组变量取值使得它的值为1,而在变量取其他各组值时,这个最小项的值都是0。

(2)不同的最小项,使它的值为1的那一组变量取值也不同。

(3)对于变量的任一组取值,任意两个最小项的乘积为0。

(4)对于变量的任一组取值,全体最小项之和为1。

3.最小项的编号
最小项通常用mi表示,下标i即最小项编号,用十进制数表示。

以ABC为例,因为它和011相对应,所以就称ABC 是和变量取值011相对应的最小项,而011相当于十进制中的3,所以把ABC记为m3 按此原则,3个变量的最小项
二、逻辑函数的最小项表达式
利用逻辑代数的基本公式,可以把任一个逻辑函数化成一种典型的表达式,这种典型的表达式是一组最小项之和,称为最小项表达式。

下面举例说明把逻辑表达式展开为最小项表达式的方法。

例如,要将化成最小项表达式,这时可利用的基本运算关系, 将逻辑函数中的每一项都化成包含所有变量A、B、C的项,然后再用最小项下标编号来代表最小项,即
又如,要将化成最小项表达式,可经下列几步:
(1)多次利用摩根定律去掉非号,直至最后得到一个只在单个变量上有非号的表达式;
(2)利用分配律除去括号,直至得到一个与或表达式;
(3)在以上第5个等式中,有一项AB不是最小项(缺少变量C),可用乘此项,正如第6个等式所示。

由此可见,任一个逻辑函数都可化成为唯一的最小项表达式。

三、用卡诺图表示逻辑函数
1.卡诺图的引出
一个逻辑函数的卡诺图就是将此函数的最小项表达式
中的各最小项相应地填入一个特定的方格图内,此方格图
称为卡诺图。

卡诺图是逻辑函数的一种图形表示。

下面从讨论一变量卡诺图开始,逐步过渡到多变量卡
诺图。

大家知道,n个变量的逻辑函数有2n 个最小项,因此
一个变量的逻辑函数有两个最小项。

比如有一个变量D,其逻辑函数L的最小项表达式为:
其中D和是两个最小项,分别记为m1和m0,即
m0=D,m1=D。

这两个最小项可用两个相邻的方格来表示,
如下图所示。

方格上的D和分别表示原变量和非变量。

为了简明起见,非变量可以不标出,只标出原变量D。

但是还可以进一步简化,也就是将m0,m1 只用其下标编号来表示。

若变量的个数为两个,则最小项个数为22=4项,函数
的最小项表达式为
由于有4个最小项,可用4个相邻的方格来表示。

这4个方格可以由折叠了的1变量卡诺图展开来获得,如下图所示,变量D标在图的底下,标的规律符合展开的规律,即中间两格底下为D,两边的两格底下为。

而变量C可标在展开后新的两个方格的顶上,以保持左边的第一格仍为m0 项,即维持展开前两方格最小项序号不改变。

由图中可看到一个规律:新的方格内最小项的编号比对应的原方格增加了2n-1
=22-1=2。

按照这个规律折叠时,方格1 后面为方格3,方格0后面为方格2,展开后即得图示的2变量卡诺图。

综上所述,可归纳“折叠展开”的法则如下:
①新增加的方格按展开方向应标以新变量。

②新的方格内最小项编号应为展开前对应方格编号加
2n-1。

按照同样的方法,可从折叠的2变量卡诺图展开获得3变量卡诺图。

3变量逻辑函数L(B,C, D)应有8个最小项,
可用8个相邻的方格来表示。

新增加的4个方格按展开方向应标以新增加的变量B(以区别于原来的变量C、D)。

而且,新增加的方格内最小项的编号为展开前对应方格编号加2n-1=23-1=4,这样即可获得3变量卡诺图如下:
同理,可得4变量卡诺图,如下图所示。

在使用时,只要熟悉了卡诺图上各变量的取值情况(即方格外各变量A、B、C、D 等取值的区域),就可直接填入对应的最小项。

将上图中的数码编号与最小项的编号——对应,可以得到下面这种形式的卡诺图。

2.卡诺图的特点
上面所得各种变量的卡诺图,其共同特点是可以直接观察相邻项。

也就是说,各小方格对应于各变量不同的组合,而且上下左右在几何上相邻的方格内只有一个因子有差别,这个重要特点成为卡诺图化简逻辑函数的主要依据。

在卡诺图水平方向的同一行里,最左和最右端的方格也是符合上述相邻规律的,例如,m4和m6 的差别仅在C 和。

同样,垂直方向同一列里最上端和最下端两个方格也是相邻的,这是因为都只有一个因子有差别。

这个特点说明卡诺图呈现
循环邻接的特性。

3.已知逻辑函数画卡诺图
根据逻辑函数的最小项表达式和卡诺图的一般形式,就可以得到相应的卡诺图。

例如,要画出逻辑函数的卡诺图时,可根据4变量卡诺图,对上列逻辑函数最小项表达式中的各项,在卡诺图相应方格内填入1,其余填入0,即可得到如下图所示的L的卡诺图。

例:画出
的卡诺图
解:
(1)利用摩根定律,可以将上式化简为:(2)因上式中最小项之和为L,故对L中的各最小项,在卡诺图相应方格内应填入0,其余填入1,即得下图所示的卡诺图。

四、用卡诺图化简逻辑函数
1.化简的依据
我们知道,卡诺图具有循环邻接的特性,若图中两个
相邻的方格均为1,则这两个相邻最小项的和将消去一个变量。

比如4变量卡诺图中的方格5和方格7,它们的逻辑加是,项消去了变量C,即消去了相邻方格中不相同的那个因子。

若卡诺图中4个相邻的方格为1,则这4个相邻的最小项的和将消去两个变量,如上述4变量卡诺图中的方格2、3、7、6,它们的逻辑加是
消去了变量B和D,即消去相邻4个方格中不相同的那两个因子
,这样反复应用的关系,就可使逻辑表达式得到简化。

这就是利用卡诺图法化简逻辑函数的某本原理。

2.化简的步骤
用卡诺图化简逻辑函数的步骤如下:
(1)将逻辑函数写成最小项表达式。

(2)按最小项表达式填卡诺图,凡式中包含了的最小项,其对应方格填1,其余方格填0。

(3)合并最小项,即将相邻的1方格圈成一组(包围圈),每一组含2n 个方格,对应每个包围圈写成一个新的乘积项。

(4)将所有包围圈对应的乘积项相加。

有时也可以由真值表直接填卡诺图,以上的(1)、(2)两步就合为一步。

画包围圈时应遵循以下原则:
(1)包围圈内的方格数必定是2n个,n 等于
0、1、2、3、…。

(2)相邻方格包括上下底相邻,左右边相邻和四角相邻。

(3)同一方格可以被不同的包围圈重复包围,但新增包围圈中一定要有新的方格,否则该包围圈为多余。

(4)包围圈内的方格数要尽可能多,包围圈的数目要尽可能少。

化简后,一个包围圈对应一个与项(乘积项),包围圈越大,所得乘积项中的变量越少。

实际上,如果做到了使每个包围圈尽可能大
,结果包围圈个数也就会少,使得消失的乘积项个数也越多,就可以获得最简的逻辑函数表达式。

下面通过举列来熟悉用卡诺图化简逻辑函数的方法。

例: 一个逻辑电路的输入是4个逻辑变量
A、B、C、D,它的真值表如下,用卡诺图法求化简的
与一或表达式及与非一与非表达式。

解:
(1)由真值表画出卡诺图,如下图所示。

(2)画包围圈合并最小项,得简化的与一或表达式。

(3)求与非一与非表达式。

二次求非然后利用摩根定律得
利用卡诺图表示逻辑函数式时,如果卡诺图中各小方格被1占去了大部分,虽然可用包围1的方法进行化简,但由于要重复利用1项
,往往显得零乱而易出错。

这时采用包围0的方法化简更为简单。

即求出非函数再对求非,其结果相同,下面举例说明。

例:化简下列逻辑函数解:
(1)由L画出卡诺图,如图所示。

(2)用包围1的方法化简,如下图所示,得
所以有:
(3)用包围0的方法化简,如图所示,
根据图得到:,两边去反后可得:
两种方法得到的结果是相同的。

实际中经常会遇到这样的问题,在真值表内对应于变量的某些取值下,函数的值可以是任意的,或者这些变量的取值根本不会出现,这些变量取值所对应的最小项称为无关项或任意项。

无关项的意义在于,它的值可以取0或取1,具体取什么值,可以根据使函数尽量得到简化而定。

相关文档
最新文档