初三数学反比例函数的专项培优 易错 难题练习题(含答案)及详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学反比例函数的专项培优易错难题练习题(含答案)及详细答案
一、反比例函数
1.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等
于0的常数)的图象在第一象限交于点A(1,n).求:
(1)一次函数和反比例函数的解析式;
(2)当1≤x≤6时,反比例函数y的取值范围.
【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,
∴b=1,
∴一次函数解析式为:y=x+1,
∵点A(1,n)在一次函数y=x+b的图象上,
∴n=1+1,
∴n=2,
∴点A的坐标是(1,2).
∵反比例函数的图象过点A(1,2).
∴k=1×2=2,
∴反比例函数关系式是:y=
(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,
∴当1≤x≤6时,反比例函数y的值:≤y≤2
【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.
2.如图,在平面直角坐标系中,反比例函数y= 的图象与一次函数y=ax+b的图象交于点
A(﹣2,3)和点B(m,﹣2).
(1)求反比例函数和一次函数的解析式;
(2)直线x=1上有一点P,反比例函数图象上有一点Q,若以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,直接写出点Q的坐标.
【答案】(1)解:∵点A(﹣2,3)在反比例函数y= 的图形上,
∴k=﹣2×3=﹣6,
∴反比例函数的解析式为y=﹣,
∵点B在反比例函数y=﹣的图形上,
∴﹣2m=﹣6,
∴m=3,
∴B(3,﹣2),
∵点A,B在直线y=ax+b的图象上,
∴,
∴,
∴一次函数的解析式为y=﹣x+1
(2)解:∵以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,
∴AB=PQ,AB∥PQ,
设直线PQ的解析式为y=﹣x+c,
设点Q(n,﹣),
∴﹣ =﹣n+c,
∴c=n﹣,
∴直线PQ的解析式为y=﹣x+n﹣,
∴P(1,n﹣﹣1),
∴PQ2=(n﹣1)2+(n﹣﹣1+ )2=2(n﹣1)2,
∵A(﹣2,3).B(3,﹣2),
∴AB2=50,
∵AB=PQ,
∴50=2(n﹣1)2,
∴n=﹣4或6,
∴Q(﹣4. )或(6,﹣1)
【解析】【分析】(1)先利用待定系数法求出反比例函数解析式,进而求出点B的坐标,再用待定系数法求出直线解析式;(2)先判断出AB=PQ,AB∥PQ,设出点Q的坐标,进而得出点P的坐标,即可求出PQ,最后用PQ=AB建立方程即可得出结论.
3.如图,已知点D在反比例函数y= 的图象上,过点D作x轴的平行线交y轴于点B (0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC= .
(1)求反比例函数y= 和直线y=kx+b的解析式;
(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;
(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.
【答案】(1)解:∵A(5,0),
∴OA=5.
∵,
∴,解得OC=2,
∴C(0,﹣2),
∴BD=OC=2,
∵B(0,3),BD∥x轴,
∴D(﹣2,3),
∴m=﹣2×3=﹣6,
∴,
设直线AC关系式为y=kx+b,
∵过A(5,0),C(0,﹣2),
∴,解得,
∴;
(2)解:∵B(0,3),C(0,﹣2),∴BC=5=OA,
在△OAC和△BCD中
∴△OAC≌△BCD(SAS),
∴AC=CD,
∴∠OAC=∠BCD,
∴∠BCD+∠BCA=∠OAC+∠BCA=90°,
∴AC⊥CD;
(3)解:∠BMC=45°.
如图,连接AD,
∵AE=OC,BD=OC,AE=BD,
∴BD∥x轴,
∴四边形AEBD为平行四边形,
∴AD∥BM,
∴∠BMC=∠DAC,
∵△OAC≌△BCD,
∴AC=CD,
∵AC⊥CD,
∴△ACD为等腰直角三角形,
∴∠BMC=∠DAC=45°.
【解析】【分析】(1)由正切定义可求C坐标,进而由BD=OC求出D坐标,求出反比例函数解析式;由A、C求出直线解析式;(2)由条件可判定△OAC≌△BCD,得出AC=CD,∠OAC=∠BCD,进而AC⊥CD;(3)由已知可得AE=OC,BD=OC,得出AE=BD,再加平行得四边形AEBD为平行四边形,推出△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD为等腰直角三角形,∴∠BMC=∠DAC=45°.
4.如图,已知A是双曲线y= (k>0)在第一象限内的一点,O为坐标原点,直线OA交双曲线于另一点C,当OA在第一象限的角平分线上时,将OA向上平移个单位后,与双曲线在第一象限交于点M,交y轴于点N,若 =2,
(1)求直线MN的解析式;
(2)求k的值.
【答案】(1)解:∵OA在第一象限的角平分线上,
∴直线OA的解析式为y=x,
∴将OA向上平移个单位后,N(0,),
可设直线MN的解析式为y=x+b,
把N(0,)代入,可得b= ,
∴直线MN的解析式为y=x+
(2)解:如图所示,过A作AB⊥y轴于B,过M作MD⊥y轴于D,则∠MDN=∠ABO=90°,
由平移可得,∠MND=∠AOB=45°,
∴△MDN∽△ABO,
∴ = =2,
设A(a,a),则AB=a,
∴MD= a=DN,
∴DO= a+ ,
∴M( a, a+ ),
∵双曲线经过点A,M,
∴k=a×a= a×( a+ ),
解得a=1,
∴k=1.
【解析】【分析】(1)第一三象限角平分线为y=x,向上平移为y=x+b,可求出N点坐标,代入y=x+b,即可求出;(2)通过作垂线构造相似三角形,即△MDN∽△ABO,把A、M坐标代入解析式即可求出a,进而求出k.
5.如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.
(1)当m=4,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
【答案】(1)①当x=4时,
∴点B的坐标是(4,1)
当y=2时,由得得x=2
∴点A的坐标是(2,2)
设直线AB的函数表达式为
∴解得
∴直线AB的函数表达式为
②四边形ABCD为菱形,理由如下:如图,
由①得点B(4,1),点D(4,5)
∵点P为线段BD的中点
∴点P的坐标为(4,3)
当y=3时,由得,由得,
∴PA= ,PC=
∴PA=PC
而PB=PD
∴四边形ABCD为平行四边形
又∵BD⊥AC
∴四边形ABCD是菱形
(2)四边形ABCD能成为正方形
当四边形ABCD时正方形时,PA=PB=PC=PD(设为t,t≠0),
当x=4时,
∴点B的坐标是(4,)
则点A的坐标是(4-t,)
∴,化简得t=
∴点D的纵坐标为
则点D的坐标为(4,)
所以,整理得m+n=32
【解析】【分析】(1)①分别求出点A,B的坐标,运用待定系数法即可求出直线AB的表达示;
②由特殊的四边形可知,对角线互相垂直的是菱形和正方形,则可猜测这个四边形是菱形或是正方形,先证明其为菱形先,则需要证明四边形ABCD是平行四边形,运用“对角线互相平分的四边形是平行四边形”的判定定理证明会更好些;再判断对角线是否相等,若不相等则不是正方形;(2)要使m,n有具体联系,根据A,B,C,D分别在两个函数图象,且
由正方形的性质,可用只含m的代数式表示出点D或点C的坐标代入y= ,即可得到只关于m和n的等式.
6.阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。
对于任意正实数a、b,可作如下变形a+b= = - + = + ,
又∵≥0,∴ + ≥0+ ,即≥ .
(1)根据上述内容,回答下列问题:在≥ (a、b均为正实数)中,若ab为定值p,则a+b≥ ,当且仅当a、b满足________时,a+b有最小值.
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a, DB=2b, 试根据图形验证≥ 成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.
【答案】(1)a=b
(2)解:有已知得CO=a+b,CD=2 ,CO≥CD,即≥2 .
当D与O重合时或a=b时,等式成立.
(3)解: ,
当DE最小时S四边形ADFE最小.
过A作AH⊥x轴,由(2)知:当DH=EH时,DE最小,
所以DE最小值为8,此时S四边形ADFE= (4+3)=28.
【解析】【分析】(1)根据题中的例子即可直接得出结论。
(2)根据直角三角形的性质得出CO=a+b,CD=,再由(1)中的结论即可得出等号成立时的条件。
(3)过点A作AH⊥x轴于点H,根据S四边形ADFE=S△ADE+S△FDE,可知当DH=EH时DE最小,由此可证得结论。
7.如图,一次函数y=kx+b(k≠0)与反比例函数y= (m≠0)的图象有公共点A(1,a)、D(﹣2,﹣1).直线l与x轴垂直于点N(3,0),与一次函数和反比例函数的图象分别交于点B、C.
(1)求一次函数与反比例函数的解析式;
(2)根据图象回答,x在什么范围内,一次函数的值大于反比例函数的值;
(3)求△ABC的面积.
【答案】(1)解:∵反比例函数经过点D(﹣2,﹣1),
∴把点D代入y= (m≠0),
∴﹣1= ,
∴m=2,
∴反比例函数的解析式为:y= ,
∵点A(1,a)在反比例函数上,
∴把A代入y= ,得到a= =2,
∴A(1,2),
∵一次函数经过A(1,2)、D(﹣2,﹣1),
∴把A、D代入y=kx+b (k≠0),得到:,解得:,∴一次函数的解析式为:y=x+1
(2)解:如图:当﹣2<x<0或x>1时,一次函数的值大于反比例函数的值(3)解:过点A作AE⊥x轴交x轴于点E,
∵直线l⊥x轴,N(3,0),∴设B(3,p),C(3,q),
∵点B在一次函数上,∴p=3+1=4,
∵点C在反比例函数上,∴q= ,
∴S△ABC= BC•EN= ×(4﹣)×(3﹣1)= .
【解析】【分析】由反比例函数经过点D(-2,-1),即可求得反比例函数的解析式;然后求得点A的坐标,再利用待定系数法求得一次函数的解析式;
结合图象求解即可求得x在什么范围内,一次函数的值大于反比例函数的值;
首先过点A作AE⊥x轴交x轴于点E,由直线l与x轴垂直于点N(3,0),可求得点E,B,C的坐标,继而求得答案.
8.如图,已知矩形OABC中,OA=3,AB=4,双曲线y= (k>0)与矩形两边AB、BC分别交于D、E,且BD=2AD
(1)求k的值和点E的坐标;
(2)点P是线段OC上的一个动点,是否存在点P,使∠APE=90°?若存在,求出此时点P 的坐标,若不存在,请说明理由.
【答案】(1)解:∵AB=4,BD=2AD,
∴AB=AD+BD=AD+2AD=3AD=4,
∴AD= ,
又∵OA=3,
∴D(,3),
∵点D在双曲线y= 上,
∴k= ×3=4;
∵四边形OABC为矩形,
∴AB=OC=4,
∴点E的横坐标为4.
把x=4代入y= 中,得y=1,
∴E(4,1);
(2)解:(2)假设存在要求的点P坐标为(m,0),OP=m,CP=4﹣m.
∵∠APE=90°,
∴∠APO+∠EPC=90°,
又∵∠APO+∠OAP=90°,
∴∠EPC=∠OAP,
又∵∠AOP=∠PCE=90°,
∴△AOP∽△PCE,
∴,
∴,
解得:m=1或m=3,
∴存在要求的点P,坐标为(1,0)或(3,0).
【解析】【分析】(1)由矩形OABC中,AB=4,BD=2AD,可得3AD=4,即可求得AD的长,然后求得点D的坐标,即可求得k的值,继而求得点E的坐标;(2)首先假设存在要求的点P坐标为(m,0),OP=m,CP=4﹣m,由∠APE=90°,易证得△AOP∽△PCE,然后由相似三角形的对应边成比例,求得m的值,继而求得此时点P的坐标.
9.在平面直角坐标系中,抛物线经过点,、,,其中、
是方程的两根,且,过点的直线与抛物线只有一个公共点
(1)求、两点的坐标;
(2)求直线的解析式;
(3)如图2,点是线段上的动点,若过点作轴的平行线与直线相交于点,与抛物线相交于点,过点作的平行线与直线相交于点,求的长. 【答案】(1)解:∵x1、x2是方程x2-2x-8=0的两根,且x1<x2,
∴x1=-2,x2=4,
∴A(-2,2),C(4,8)
(2)解:①设直线l的解析式为y=kx+b(k≠0),
∵A(-2,2)在直线l上,
∴2=-2k+b,
∴b=2k+2,
∴直线l的解析式为y=kx+2k+2①,
∵抛物线y= x2②,
联立①②化简得,x2-2kx-4k-4=0,
∵直线l与抛物线只有一个公共点,
∴△=(2k)2-4(-4k-4)=4k2+16k+16=4(k2+4k+4)=4(k+2)2=0,
∴k=-2,
∴b=2k+2=-2,
∴直线l的解析式为y=-2x-2;
②平行于y轴的直线和抛物线y= x2只有一个交点,
∵直线l过点A(-2,2),
∴直线l:x=-2
(3)解:由(1)知,A(-2,2),C(4,8),
∴直线AC的解析式为y=x+4,
设点B(m,m+4),
∵C(4.8),
∴BC= |m-4|= (4-m)
∵过点B作y轴的平行线BE与直线l相交于点E,与抛物线相交于点D,
∴D(m, m2),E(m,-2m-2),
∴BD=m+4- m2, BE=m+4-(-2m-2)=3m+6,
∵DC∥EF,
∴△BDC∽△BEF,
∴,
∴,
∴BF=6 .
【解析】【分析】(1)解一元二次方程即可得出点A,C坐标;(2)先设出直线l的解析式,再联立抛物线解析式,用△=0,求出k的值,即可得出直线l的解析式;(3)设出点B的坐标,进而求出BC,再表示出点D,E的坐标,进而得出BD,BE,再判断出△BDC∽△BEF得出比例式建立方程即可求出BF.
10.
(1)如图1所示,
在中,,,点在斜边上,点在直角边上,若,求证: .
(2)如图2所示,
在矩形中,,,点在上,连接,过点作交 (或的延长线)于点 .
①若,求的长;
②若点恰好与点重合,请在备用图上画出图形,并求的长.
【答案】(1)证明:∵在中,,,
∴,
∴,
∵,
∴,
∴,
∴ .
(2)解:①∵四边形是矩形,
∴,
∴,
∵,
∴,
∴,
∴,
∴,
∵,
∴,,
∴,;
②如图所示,设,由①得,
∴,即,
整理,得:,
解得:,,
所以的长为或 .
【解析】【分析】(1)利用平角的定义和三角形的内角和证明即可证得结论;(2)①仿(1)题证明,再利用相似三角形的性质即可求得结果;②由①得,设,根据相似三角形的性质可得关于x的方程,解方程即可求得结果.
11.如图1,平面直角坐标系中,B、C两点的坐标分别为B(0,3)和C(0,﹣),点A在x轴正半轴上,且满足∠BAO=30°.
(1)过点C作CE⊥AB于点E,交AO于点F,点G为线段OC上一动点,连接GF,将△OFG沿FG翻折使点O落在平面内的点O′处,连接O′C,求线段OF的长以及线段O′C的
最小值;
(2)如图2,点D的坐标为D(﹣1,0),将△BDC绕点B顺时针旋转,使得BC⊥AB于点B,将旋转后的△BDC沿直线AB平移,平移中的△BDC记为△B′D′C′,设直线B′C′与x轴交于点M,N为平面内任意一点,当以B′、D′、M、N为顶点的四边形是菱形时,求点M 的坐标.
【答案】(1)解:如图1中,
∵∠AOB=90°,∠OAB=30°,
∴∠CBE=60°,
∵CE⊥AB,
∴∠CEB=90°,∠BCE=30°,
∵C(0,- ),
∴OC= ,OF=OC•tan30°= ,CF=2OF=3 ,
由翻折可知:FO′=FO= ,
∴CO′≥CF-O′F,
∴C O′≥ ,
∴线段O′C的最小值为
(2)解:①如图2中,当B′D′=B′M=BD= 时,可得菱形MND′B′.
在Rt△AMB′中,AM=2B′M=2 ,
∴OM=AM-OA=2 -3 ,
∴M(3 -2 ,0).
②如图3中,当B′M是菱形的对角线时,由题意B′M=2OB=6,此时AM=12,OM=12-3
,可得M(3 -12,0).
③如图4中,当B′D′是菱形的对角线时,由∠D′B′M=∠DBO
可得,所以B′M=
则在RT△AM B′中,AM=2B′M= ,所以OM=OA-AM=3 - ,所以M(3 - ,0).
④如图5中,当MD′是菱形的对角线时,MB′=B′D′= ,可得AM=2 ,OM=OA+AM=3 +2 ,所以M(3 +2 ,0).
综上所述,满足条件的点M的坐标为(3 +2 ,0)或(3 -12,0)或(3 -
,0)或(3 +2 ,0)
【解析】【分析】(1)根据直角三角形的两锐角互余求出∠CBE的度数,由垂直的定义可求出∠BCE的度数,由点C的坐标求出OC的长,再在Rt△OCF中,利用解直角三角形求出OF的长;然后利用折叠的性质,可得到FO′的长,然后根据CO′≥CF-O′F,可求出线段O′C的最小值。
(2)分四种情况讨论:①如图2中,利用勾股定理求出B′M的长,可得到B′D′=B′M=BD 时,可得菱形MND′B′.,再求OM的长,就可得点M的坐标;②如图3中,当B′M是菱形的对角线时,由题意可知B′M=2OB=6,再求出AM,OM的长,可得点M的坐标;③如图4中,当B′D′是菱形的对角线时,由∠D′B′M=∠DBO;利用解直角三角形求出B′M、AM、OM的长,从而可求出点M的坐标;④如图5中,当MD′是菱形的对角线时,可得到MB′=B′D′,再求出AM ,OM的长,然后可得到点M的坐标,综上所述,可得到符合题意的点M的坐标。
12.如图,已知直线y=﹣2x+6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上
(1)求抛物线的解析式;
(2)在(1)中抛物线的第三象限图象上是否存在一点P,使△POB≌△POC?若存在,求出点P的坐标:若不存在,请说明理由.
【答案】(1)解:由y=﹣2x+6=0,得x=3
∴B(3,0).
∵A(1,4)为顶点,
∴设抛物线的解析为y=a(x﹣1)2+4,解得a=﹣1.
∴y=﹣(x﹣1)2+4=﹣x2+2x+3;
(2)解:存在.
当x=0时,y=﹣x2+2x+3=3,
∴C(0,3).
∵OB=OC=3,OP=OP,
∴当∠POB=∠POC时,△POB≌△POC.
作PM⊥x轴于M,作PN⊥y轴于N,则∠POM=∠PON=45°.
∴PM=PN.
设P(m,m),则m=﹣m2+2m+3,解得m=.
∵点P在第三象限,
∴P(,).
【解析】【分析】(1)根据待定系数法求解析式即可;(2)先确定出点C坐标,然后根据△POB≌△POC建立方程,求解即可。