纺织品的易燃性与纺织品阻燃途径

合集下载

织物燃烧性能测试简介

织物燃烧性能测试简介

织物燃烧性能测试简介织物燃烧性能测试简介1.纺织品的燃烧特性:纺织物的燃烧是一个复杂的过程。

它们的易燃性除了纤维的化学组成以外还和织物结构以及织物上染料等物质的性质有关。

对于普通的服用纺织品,材料本身的性能是其燃烧特性的决定因素。

纤维按燃烧性能一般分为:(1)不燃性:玻璃纤维、石棉、钢铁纤维等。

(2)难燃性:聚氯乙烯,聚丙烯腈等(3)可燃性:羊毛,蚕丝,涤纶、尼龙等(4)易燃性:纤维素纤维(如棉、黏胶等),硝化纤维素高性能耐火耐燃纤维适用于防护服的制备,对于可燃或易燃的纤维织成的织物则需要进行阻燃整理。

阻燃整理是对纺织品进行某些化学处理,使其遇火不易燃烧,或一燃即熄的处理方式。

2.纺织品的阻燃整理:纺织品的阻燃机理有以下几种:(1)覆盖论:某些阻燃剂在温度较高的情况下(>500℃),能在纤维表面形成覆盖层,而具有隔绝作用,除了阻碍氧气的供应外,还可以阻止可燃性气体向外扩散的作用,从而达到阻燃的目的。

如硼砂-硼酸。

(2)气体论:阻燃剂在燃烧的温度下,分解出不燃性气体如CO2、HCl、H2O等,将可燃性气体的浓度冲淡到能产生火焰的浓度以下。

(3)热论:观点一:阻燃剂在高温下发生吸热变化如熔融和升华,从而有阻止燃烧蔓延的作用;观点二:阻燃剂能使纤维迅速散热,使织物达不到燃烧的温度;(4)催化脱水论:阻燃剂的存在,改变了纤维的热裂解机理,使纤维在裂解温度前而大量脱水或发生交联作用,使可燃性气体和挥发性液体的量大大减少,而使固体碳量大大增加,这样有焰燃烧就会得到抑制。

对应相应的阻燃机理,阻燃整理有三个途径:(1)竭燃法:阻燃剂与纤维素纤维以离子键或共价键结合,使其在纤维中不溶解而获得耐久性阻燃效果。

(2)原液法:将阻燃剂直接加入到纺丝液中。

(3)共聚法:将阻燃剂加入到聚合物链段中,使织物具有耐洗、耐漂、耐汗渍等合格牢度,并不致被皮肤吸收。

印染厂主要采用第一种方法。

3.纺织品阻燃性能的测试纺织品的阻燃性测试有以下几种:(1)织物燃烧性能试验:分为垂直、水平、45度燃烧测试法。

纺织品的抗火性能研究与应用

纺织品的抗火性能研究与应用

纺织品的抗火性能研究与应用在我们的日常生活和工业生产中,纺织品无处不在。

从我们身上穿着的衣物到家居装饰中的窗帘、地毯,再到工业领域中的防护装备和运输工具内饰,纺织品都扮演着重要的角色。

然而,由于纺织品大多为有机材料,具有易燃的特性,一旦发生火灾,可能会迅速燃烧并蔓延,造成严重的人员伤亡和财产损失。

因此,研究纺织品的抗火性能并将其应用于实际生产中具有极其重要的意义。

一、纺织品燃烧的原理要了解纺织品的抗火性能,首先需要明白纺织品燃烧的原理。

纺织品的燃烧是一个复杂的物理和化学过程,主要包括以下几个阶段:1、加热阶段:当纺织品受到外部热源的作用时,温度逐渐升高,水分蒸发,纤维开始软化。

2、热分解阶段:随着温度的进一步升高,纤维中的大分子发生热分解,产生可燃性气体、液体和固体残留物。

3、着火阶段:当可燃性气体与氧气混合达到一定浓度,并在足够的温度和火源作用下,就会发生着火。

4、燃烧传播阶段:一旦着火,火焰会通过热传导、热辐射和热对流等方式向周围的纺织品传播,使燃烧范围不断扩大。

不同种类的纺织品由于其纤维成分、组织结构和添加剂的不同,燃烧特性也会有所差异。

例如,天然纤维如棉、麻等相对容易燃烧,而合成纤维如聚酯、尼龙等在某些情况下可能具有较好的抗火性能。

二、影响纺织品抗火性能的因素1、纤维成分纤维的化学结构和组成是影响纺织品抗火性能的关键因素。

一般来说,含有芳香族结构或具有较高热稳定性的纤维,如芳纶、聚苯并咪唑等,具有较好的抗火性能。

而纤维素纤维如棉、麻等,由于其分子结构中含有大量的羟基,容易燃烧。

2、织物组织结构织物的组织结构也会对其抗火性能产生影响。

紧密的组织结构可以减少空气的渗透,降低氧气供应,从而减缓燃烧速度。

相反,疏松的组织结构则容易使火焰迅速传播。

3、添加剂为了提高纺织品的抗火性能,常常会添加各种阻燃剂。

阻燃剂可以通过吸热、覆盖、稀释氧气、终止燃烧链反应等方式发挥作用。

常见的阻燃剂有无机阻燃剂(如氢氧化铝、氢氧化镁等)和有机阻燃剂(如溴系、磷系阻燃剂等)。

高阻燃性纺织面料的制造工艺和防火性能

高阻燃性纺织面料的制造工艺和防火性能

高阻燃性纺织面料的制造工艺和防火性能引言高阻燃性纺织面料的制造工艺和防火性能在现代社会中具有重要意义。

随着科技的不断发展和人们对安全性的日益关注,高阻燃性纺织面料的需求越来越大。

本文将详细介绍高阻燃性纺织面料的制造工艺和防火性能,为读者提供相关知识和参考。

一、高阻燃性纺织面料的定义和分类1.1 定义高阻燃性纺织面料是指在受到火源照射或暴露在火灾环境中时能抵御火焰的进一步蔓延,降低火灾事故的危害程度和损失的一种特殊面料。

它具有阻燃性能和防火性能,可以作为防护服、防火窗帘、消防救援装备等方面的材料。

1.2 分类根据纺织面料的原材料和处理工艺,高阻燃性纺织面料可以分为以下几类: -高阻燃棉纺织面料:采用阻燃剂处理的棉纺织面料,具有良好的阻燃性能和柔软性。

- 高阻燃涤纶纺织面料:采用阻燃剂处理的涤纶纺织面料,具有较高的阻燃性能和耐热性。

- 高阻燃维纶纺织面料:采用阻燃剂处理的维纶纺织面料,具有优异的阻燃性能和耐化学药品的性能。

二、高阻燃性纺织面料的制造工艺高阻燃性纺织面料的制造工艺对于其防火性能和使用寿命具有重要影响。

下面将介绍主要的制造工艺。

2.1 纤维选材选择合适的纤维材料是制造高阻燃性纺织面料的首要任务。

常用的纤维材料包括棉、涤纶、维纶等。

这些纤维材料具有良好的可纺性和阻燃性能,能够满足高阻燃性纺织面料的特殊要求。

2.2 阻燃处理阻燃处理是制造高阻燃性纺织面料的关键步骤。

常用的阻燃剂包括单一阻燃剂和复合阻燃剂。

阻燃剂可以通过溶液浴、喷涂、浸渍等多种方式加入到纤维材料中,使纤维具有一定的阻燃性能。

2.3 纺织加工纺织加工是将阻燃纤维材料加工成面料的过程,包括纺纱和织造两个环节。

纺纱是将纤维材料进行纺织加工,制成粗纱;织造是将粗纱经过织机织造成纺织面料。

在纺织加工过程中,需要充分考虑纤维的阻燃性能和强度,确保面料的质量和使用寿命。

2.4 加工后处理加工后处理是为了进一步提高高阻燃性纺织面料的防火性能和性能稳定性。

纺织品阻燃机理简述

纺织品阻燃机理简述

纺织品阻燃机理简述随着现代化科学技术的发展、纺织工业的进步,纺织品种类不断增多,其应用范围不断扩展延伸到人们生产、生活的各个方面。

但纺织品材料一般都易燃或可燃,容易引发火灾事故。

因此研究纺织品的阻燃机理就变得必不可少了。

所谓“阻燃”,并非阻燃整理后的纺织品在接触火源时不会燃烧,而是使织物在火中尽可能降低其可燃性,减缓蔓延速度,不形成大面积燃烧,离开火焰后,能很快自熄,不再续燃或阴燃。

1.纤维材料的燃烧与阻燃原理:合成纤维的燃烧是材料和高温热源接触,吸收热量后发生热解反应,热解反应生成易燃气体,易燃气体在氧存在的条件下,发生燃烧,燃烧产生的热量被纤维吸收后,又促进了纤维继续热解和进一步燃烧,形成一个循环。

对此人们提出了阻燃的基本原理:减少(或者基本没有)热分解气体的生成,阻碍气相燃烧的基本反应,吸收燃烧区域的热量,稀释和隔离空气等。

2.阻燃剂的阻燃机理:纤维用阻燃剂有:铝镁氢氧化物、含硼化合物、卤硼化合物、卤系阻燃剂、磷系阻燃剂等。

不同阻燃剂的阻燃机理有很大的区别。

概括起来主要有以下几种。

2.1覆盖机理在可燃材料中加入阻燃剂后,阻燃剂在高温下可在聚合物表面形成一层玻璃状或稳定泡沫覆盖层以隔热、隔绝空气,起到阻止热传递、减少可燃性气体释放和隔绝氧的作用从而达到阻燃目的。

阻燃剂形成隔离膜的方式有两种,一是阻燃剂降解产物促进纤维表面脱水炭化,进而形成结构更趋稳定的交联状固体物质或炭化层,炭化层能阻止聚合物进一步热裂解,还能阻止其内部的热分解产物进入气相参与燃烧过程。

含磷阻燃剂对含氧聚合物的阻燃作用即是通过此种方式实现的。

二是阻燃剂在燃烧温度下分解成不挥发的玻璃状物质包覆在聚合物表面起隔离膜的作用,硼系和卤化磷类阻燃剂具有类似特征。

2.2不燃性气体窒息机理阻燃剂受热分解出现不燃性气体,将纤维燃烧分解出来的可燃性气体浓度冲淡到能产生火焰浓度以下,同时稀释燃烧区内的氧浓度,阻止燃烧继续进行,又由于气体的生成和热对流带走了一部分热,从而达到阻燃作用。

纺织品的防火性能研究

纺织品的防火性能研究

纺织品的防火性能研究一、引言随着现代社会的发展,人们对纺织品的防火性能要求越来越高。

纺织品在日常生活中广泛应用,但由于其易燃性,一旦发生火灾事故,往往会造成严重的人员伤亡和财产损失。

因此,对纺织品的防火性能进行研究具有重要意义。

本文将对纺织品的防火性能进行深入研究,以期为改进纺织品的防火性能提供科学依据。

二、纺织品的易燃特性1. 火灾事故中纺织品引发火势蔓延迅速在实际生活中,我们常常可以观察到一旦着火的纺织品很快蔓延开来,并迅速引起整个场所起火。

这是因为许多常见的纤维材料如棉花、麻、丝等都具有较高易燃性。

2. 火灾事故中毒烟产生量大除了易燃特性外,许多纤维材料在着火时还会产生大量有毒气体和有害物质。

这些毒烟会对人体造成严重的伤害,增加火灾事故的危险程度。

三、纺织品防火技术的研究进展1. 纺织品阻燃剂的应用纺织品阻燃剂是目前应用较广泛的一种纺织品防火技术。

它可以通过改变纤维材料的化学结构,使其具有较高的耐高温性能和抗氧化性能,从而降低其易燃性。

2. 纳米材料在纺织品防火中的应用近年来,随着纳米技术的发展,一些研究人员开始将纳米材料引入到纺织品防火中。

通过在纤维表面涂覆一层具有抗高温和隔离氧气功能的纳米材料,可以有效提升纤维材料对火灾扩散和蔓延的抵抗能力。

3. 纤维结构改进除了引入新型材料外,改变传统纤维结构也是提高纺织品防火性能的重要途径。

例如,在棉花等易燃纤维中加入一定比例的阻燃纤维,可以显著提高纺织品的防火性能。

四、纺织品防火性能测试方法1. 纺织品燃烧性能测试通过对纺织品样品进行燃烧实验,可以评估其在火灾中的燃烧特性。

常用的测试方法包括垂直燃烧试验、水平燃烧试验和氧指数测定等。

2. 纤维材料阻隔气体和毒气的性能测试通过对纤维材料进行毒气释放实验,可以评估其在着火时产生有害物质的量。

同时,还可以通过对纤维材料进行气体渗透实验,评估其对有害气体扩散的阻隔效果。

五、影响纺织品防火性能的因素1. 纤维材料本身特性不同类型的纤维材料具有不同的物理和化学特性,因此其防火性能也会有所差异。

纺织品的防火性能研究与应用

纺织品的防火性能研究与应用

纺织品的防火性能研究与应用在我们的日常生活中,纺织品无处不在,从衣物、床上用品到窗帘、沙发面料等。

然而,这些与我们密切接触的纺织品在某些情况下可能会成为火灾的隐患。

因此,对纺织品防火性能的研究具有极其重要的意义。

纺织品为何容易引发火灾呢?首先,许多纺织品的原材料本身就具有可燃性。

比如常见的棉、麻、羊毛等天然纤维,以及聚酯纤维、锦纶等化学纤维,在遇到明火或高温时都可能燃烧。

其次,纺织品通常具有较大的表面积,能够与空气充分接触,这为燃烧提供了充足的氧气。

再者,一些纺织品在加工过程中可能会添加各种助剂,这些助剂也可能增加其可燃性。

为了提高纺织品的防火性能,研究人员采取了多种方法。

其中,最常见的是对纺织品进行化学处理。

通过在纤维或织物表面施加防火剂,可以改变其燃烧特性。

防火剂的作用机制多种多样,有的可以在燃烧时形成隔热层,阻止热量传递;有的能够捕捉自由基,中断燃烧反应;还有的可以促进碳化,减少可燃气体的生成。

另一种方法是对纺织品进行结构设计。

例如,采用紧密的织物组织结构可以减少空气的渗透,从而降低燃烧速度。

或者使用多层复合结构,将防火性能好的材料与普通纺织品结合,提高整体的防火能力。

在实际应用中,不同领域对纺织品防火性能的要求也各不相同。

在消防领域,消防员的防护服需要具备极高的防火性能,能够在高温火焰中长时间保护消防员的身体免受伤害。

这种防护服通常采用特殊的防火纤维和多层复合结构,并经过严格的测试和认证。

在建筑领域,窗帘、地毯等纺织品也需要满足一定的防火标准。

特别是在公共场所,如商场、酒店、医院等,防火性能不合格的纺织品可能会导致火灾迅速蔓延,造成严重的人员伤亡和财产损失。

在航空航天领域,纺织品的防火性能更是至关重要。

飞机内部的座椅面料、地毯等不仅要防火,还要重量轻、耐磨损。

因此,研究人员不断开发新型的防火材料和技术,以满足航空航天领域的特殊需求。

然而,提高纺织品的防火性能并非一帆风顺,还面临着一些挑战。

纺织品的引燃性能研究

纺织品的引燃性能研究

纺织品的引燃性能研究引言纺织品的引燃性能研究对于保障人们的生命财产安全具有重要意义。

纺织品的燃烧能否迅速蔓延是衡量其安全性的一个重要指标。

因此,研究纺织品的引燃性能,揭示纺织品的燃烧机理,并探索提高其燃烧安全性的方法,是当前纺织品科学与工程领域的研究热点。

一、纺织品的引燃机理1. 纺织品的燃烧过程纺织品在燃烧过程中主要经历着干燥、热分解、燃烧三个阶段。

在干燥阶段,纺织品内的水分被蒸发,表面形成炭化层;在热分解阶段,纤维材料开始分解并生成燃气;在燃烧阶段,燃气与空气中的氧气发生反应,产生火焰、烟雾等。

2. 纺织品的引燃特性纺织品的引燃特性主要包括引燃延迟时间、火焰扩散速度、烟雾生成量等指标。

引燃延迟时间是指纺织品受热后到开始燃烧所需的时间;火焰扩散速度是指火焰在表面或纺织品内的传播速度;烟雾生成量是指纺织品燃烧产生的烟雾的多少。

二、纺织品的引燃性能评价方法1. 极限氧指数(LOI)极限氧指数(Limiting Oxygen Index, LOI)是评价材料燃烧性能的一种重要指标。

LOI值越高,表示材料的燃烧性能越好,即在空气中燃烧所需的最低氧气浓度越高。

2. 热释放速率(HRR)热释放速率是评价材料燃烧过程中火焰扩散的速度和热能释放的量的指标。

热释放速率曲线可以通过热释放速率仪(HRR)得到,可以用来分析材料的燃烧特性。

3. 热分解性能分析纺织品的热分解性能可以通过差热分析(Differential ScanningCalorimetry, DSC)等仪器得到。

热分解性能分析可以揭示纺织品的热稳定性以及在燃烧过程中释放热能的特点,为纺织品的燃烧行为提供理论支持。

三、提高纺织品的燃烧安全性方法1. 添加阻燃剂阻燃剂是一种能够降低材料燃烧性能的添加剂,通过在纺织品中添加阻燃剂可以降低其燃烧速度和烟雾生成量。

2. 改变纺织品的结构通过改变纺织品的结构,如增加纺丝密度、改变纤维形状等,可以减少纺织品的引燃时间和火焰扩散速度,提高其燃烧安全性。

纺织品的阻燃性能研究

纺织品的阻燃性能研究

纺织品的阻燃性能研究纺织品的阻燃性能研究摘要:纺织品作为一种常见的材料,在日常生活中以及一些特殊行业中广泛应用。

然而,由于其易燃性,纺织品在火灾事故中往往成为重要的火源之一。

因此,对纺织品的阻燃性能进行研究具有重要的理论和实践意义。

本文通过综述阻燃纺织品的研究进展,分析了纺织品燃烧机理、阻燃机理以及阻燃剂的作用机制。

最后,本文对纺织品的阻燃性能研究进行总结,并展望了未来的发展方向。

关键词:纺织品、阻燃性能、燃烧机理、阻燃机理、阻燃剂1. 引言纺织品是一种由天然或合成纤维组成的产品,其在日常生活中应用广泛。

然而,纺织品燃烧时会产生大量烟雾和有毒气体,严重威胁人们的生命财产安全。

因此,研究纺织品的阻燃性能并提高其阻燃性能具有重要的意义。

2. 纺织品燃烧机理纺织品燃烧的机理可以分为三个阶段:热失重阶段、烟雾产生阶段和炭化阶段。

燃烧前,纺织品中的可燃物质在高温下发生热失重,导致纺织品质量减少。

烟雾产生阶段是燃烧过程中产生大量烟雾和有毒气体的阶段。

炭化阶段是纺织品在高温下持续燃烧,形成残留物。

3. 纺织品的阻燃机理纺织品的阻燃机理可以分为化学干扰、物理隔离和吸热三种方式。

化学干扰是通过引入阻燃剂来干扰纺织品的燃烧过程,改变其燃烧特性。

物理隔离是通过增加纺织品的密度和厚度,阻止火焰的传播。

吸热是纺织品在燃烧过程中吸收热量,减缓火焰的扩展速度。

4. 阻燃剂的作用机制阻燃剂是一种可以抑制纺织品燃烧的化学物质。

阻燃剂主要通过引入稳定自由基的物质和增加炭化产物等方式发挥作用。

稳定自由基的物质可以延缓发生自由基链反应的速率,从而减缓燃烧速度。

炭化产物可以减少可燃物质的含量,降低纺织品的燃烧性能。

5. 阻燃纺织品的研究进展近年来,国内外学者对阻燃纺织品进行了广泛研究。

研究内容主要包括阻燃材料的选择、阻燃机理的研究、阻燃性能的评价等方面。

其中,阻燃剂的研究是阻燃纺织品研究的重点和热点之一。

目前,研究人员已经成功合成了一系列具有良好阻燃性能的阻燃剂,并将其应用于纺织品中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( THPC) 体系与化合物的浸轧或浸渍液 ,这些溶
液是水溶液形式的 。本文介绍 THPC 组成的乳
浊 液 , 详 见 W. A. Reeves 等 人 的 美 国 专 利
2810701 。表 1 列出这种浸轧体系的通常组成 。
表 1 THPC 乳浊液状阻燃剂组成
标号 1
组 分 由 THPC、羟甲基蜜胺树脂和尿素形成的不溶 性含磷热固性树脂固体 (次氮 —羟甲基 —磷树
带条阻燃测试结果显示了整理后织物上存在
缺陷 。
表 5 THPC 树脂整理液组成
标号
组 分
质量份额
1 THPC 2 三羟甲基蜜胺树脂 3 尿素 4 三乙醇胺 5 润湿剂 6水
16. 8 10. 1 10. 1 4. 0 1. 0 58. 0
2. 2. 2 示例 2 将示例 1 中 THPC 树脂整理后的织物样品
注 :1) 联邦规程 CCC2T2191b。
2) 织物在皂粉 1 % ,碳酸钠 0. 2 %的溶液中沸煮 3 h 。
3) 135 度与 180 度之间表现为阻燃性 。
处理后的棉织物在阻燃方面存在不足 ,但可在处
2 加有低分解点阻燃剂的 THPC
理时与低分解点阻燃剂一同使用从而使织物具有
很好的阻燃性 。这一工艺在 W. A. Reeves 的美国
10
6. 4 0~8
4
三2( 2 —乙 基 己 烷 ) 磷酸酯
10
7. 4 1~4
5 苯基二吗啉磷酸盐 6 磷酸铵 7 胺基磺酸铵 8 胺基磺酸 9 硫脲
6
2. 3 0~3
6
2. 5
0
6
2. 5 0~3
6
2. 5 0~2
6
2. 5 10~15
无 (织 物 上 只 有
10 THPC 树脂)
-
- 烧尽
注 :180 度角下做带条 (5″×0. 5″) 阻燃测试 ,用火柴在底
与大约 16 份的粉粒状不溶性树脂构成的乳液分 散相 ,这种乳液能够稳定 2 h 以上 。 1. 2. 3 示例 3
配方和配料与示例 1 中的相同 ,但使用表 2 所给出的组分 。在本示例中最终应用配方为 :在 水包油的溶液中加入约 12 份的粉末状不溶性树
测试结果列于表 4 。乳液体系比溶液体系有 更高的树脂接枝率与含磷量 ,从而使得织物具有 相当持久的阻燃性质 。经乳液体系处理的印花织 物随树脂接枝率的增高 ,织物硬度的增加相对小 一些 。整个数据表明 ,乳液体系明显优于溶液体 系。
描述以及测试结果见表 8 。
所述方法制得的聚三烯丙基磷酸酯 ,与 THPC 一
使用聚三烯丙基磷酸酯的结果与示例 2 中所 同以乳液形式应用到斜纹棉织物上 。聚三烯丙基
用其他低分解点阻燃剂结果相似 。所有整理过的 磷酸酯如示例 3 所述首先溶于甲醇2二氯乙烯混
布样都具有阻燃性 。
合溶剂中 ,然后再在 2 %聚乙烯醇水溶液中乳化 。
后1)
后2)
1. 67
1. 86
1. 40
1. 40
-
-
1. 14
124
1. 01
0. 96
-
-
带条阻燃 测试3) / 度
170 135
140 105
-
硬度 / 10 - 4 1b 经向 纬向
4. 8 5. 2 2. 8 33. 5
32. 4
3. 6 6. 2 2. 2 16. 8 12. 2 12. 4
对高的分解点 。接枝了 15 %树脂的 8 oz 斜纹棉 布在空气中加热到 315 ℃,60 s 后开始烧焦并且 没有明显的分解或炭化 。只有在 350 ℃以上持续 加热 40 s 才开始分解 。
具有低分解点的阻燃剂在低于 300 ℃下小于 30 s 发生分解并炭化 。除此之外 ,首选与 THPC 组合使用阻燃剂是上面倒数第 2 组所列出的物
进一步用低分解点阻燃剂处理 ,然后烘干 。 — 32 —
表 6 THPC 树脂整理后的织物测试结果
标号 1 2
3
参 数
树脂接枝率/ % 标准垂直燃烧测试1)
损毁长度/ in 带条阻燃测试2) 180 度角
160 度角
测试结果 16 3. 5
烧尽 烧尽
注 :1) 联邦规程 CCC2T2191b。 2) 5″×0. 5″长条用火柴在底部点燃 。
硬酯酸 油溶性长链醇磺酸盐 g. 水
2 制备不溶性含磷热固性树脂
试剂
示例中的质量份额
1
2
3
15 - 2. 4
9
9 7. 6
7
- 6. 4
3 2. 4 3
15 15 12
2
2
2
2
2
2
30 60 44. 7
a. THPC
180 180 180
b. 羟甲基蜜胺树脂 ,水溶性 69 69 69
c. 水
200 200 200
的各种浓度 。浸轧了 THPC 树脂的布样在 60 ℃
2004 年第 5 期 国外纺织技术 染整
干燥 15 min ,然后用加有 0. 1 %洗涤液的热水充 2. 2. 4 示例 4
分洗涤 ,再漂洗 ,最后烘干 。有关这些实验的其他
在本实验中 ,低分解点的阻燃剂 ,即用示例 3
质 ,即可聚合的烃基醇磷酸酯以及膦腈的中性烃
基醇聚脂 。
加有低分解点阻燃剂的 THPC 既可以溶液 形式又可以乳浊液形式用作浸轧液 。下面的例子
对这些应用方式作了说明 。
2. 2 配方 2. 2. 1 示例 1
8 oz 斜纹棉布浸轧表 5 所列组分的水溶液 , 携液 率 70 %。然 后 将 其 在 85 ℃下 烘 干 并 在 140 ℃下焙烘 5 min 。冷水洗后再热水洗 ,水中加 有 0. 1 %的洗涤剂 ,然后自然晾干 ,所测结果如表 6 所示 。
染整 国外纺织技术 总第 230 期
纺织品的易燃性与纺织品阻燃途径
刘丽雅 译
G.
P.
Nair
等著
彭治汉

1 THPC 乳浊型阻燃剂
1. 1 概述
在 COLOU RA GE 杂志上已发表的文献描述
了可赋予棉织物永久阻燃性能的四羟甲基氯化膦
对照样
5 ( THPC
0
— 30 —
程 ,这和常规的喷墨印花预处理工艺完全一样 ,不 同的仅仅是一些化学品用交联剂和催化剂取代而 已。
除了提高织物抗皱和耐久压烫性能 ,这项技 术还能使酸性染料油墨染棉和其他纤维素织物成 为可能 。用不同化学结构的整套油墨对织物印花 能够节约时间和降低成本 。同时 ,该技术也提供 了一种使用一套油墨解决纤维素/ 聚酰胺和纤维 素/ 蛋白质纤维混纺印花的便利方法 。
1. 4 阻燃处理 4 oz 的印花棉布和 8 oz 的斜纹棉布用作本研
究 。印花和斜纹棉布经上述成分的液体浸轧 ,带 液率分别约为 100 %和 70 %。浸轧后的织物在 90 ℃下烘干 4. 5 min ,140 ℃焙烘 5 min 。焙烘进 一步固化了可聚树脂 。印花和斜纹棉布用两种浸 轧体系处理 。
资料来源 :AA TCC Rev. ,2003 ,(3) ,29~31
2004 年第 5 期 国外纺织技术 染整
表 2 示例所用的成分
1. 3 水溶液配方
标号
组 分
1 用于制备热固性树脂水乳液 的物质
a. THPC b. 羟甲基蜜胺树脂 ,水溶性 c. 尿素 d. 三乙醇胺 e. 有机溶剂 (烃类溶剂) f . 乳化体系 :
氯乙基醚中 ,用过氧化苯甲酰作为催化剂使其发生 聚合 。当聚合物粘度增至从滴液管中滴落 4 ml 所 需时间为反应前溶液所需时间的 4 倍时反应结束。 先用石油醚萃取再除去溶剂后烘干 ,得到固体形式 的聚合物 、聚三烯丙基磷酸酯 。然后将聚合物溶于
体积比为 1∶1 的甲醇 、二氯乙烯混合液中 。 表 8 给出了浸轧液中所用聚三烯丙基磷酸酯
脂) 。 2 粉末状的不溶性含磷热固性树脂 3 与水不混溶的惰性有机液 4 乳化剂
THPC 用作乳浊液体系与通常的溶液体系不
同 。乳浊液体系优于传统的溶液体系 ,它对织物
有更高的树脂接枝率与含磷量 ,因此使织物具有
更好的永久阻燃性能 。 1. 2 乳浊液配方 1. 2. 1 示例 1
这种配方由单体次氮 —羟甲基 —磷树脂造型 反应体和悬浮的不溶性次氮 —羟甲基树脂构成 。
表 8 聚三烯丙基磷酸酯的应用条件以及阻燃测试结果
标号 1
布 样 样品 A
浸轧液中 聚三烯丙 基磷酸酯
/%
15. 3
携液率 续燃时间1) 损毁长度2)
/%
/s
/ in
36
0
3. 1
2 样品 B 13. 5
34
0
3. 4
3 样品 C 7. 7
30
0
3. 1
4 样品 D 4. 6
25
5~10
3. 4
表 7 详细列出了整理以及整理后织物的特性。
表 7 在 THPC 树脂整理过的织物上使用低分解点阻燃 剂的条件以及阻燃效果
标号 低分解点阻燃剂
1
二22 - 乙 基 己 烷 磷 酸氢酯
溶液 织物 续燃 / % 增重/ % 时间/ s
10
7. 6
0
三异 辛 基 硫 代 磷 酸
2酯
10
6. 0
0
3 磷酸三甲苯酯
脂。
表 4 阻燃处理样品测试结果
标 号
试 样
1 印花织物乳液处理 2 印花织物溶液处理 3 印花织物未处理 4 斜纹织物乳液处理 5 斜纹织物溶液处理 6 斜纹织物未处理
树脂接枝率 /%
26. 7 10. 3
相关文档
最新文档