有机化学人名反应-0.

合集下载

基础有机化学人名反应

基础有机化学人名反应

引言概述:基础有机化学是研究有机化合物的物理性质、化学性质、结构和合成方法的科学。

在有机化学领域,人名反应是一种重要的化学反应类别。

人名反应是以其发现者或主要贡献者的名字来命名的有机化学反应。

本文将介绍几个常见的基础有机化学人名反应,包括居里尔莫梅托反应、格里尼亚反应、梅林反应、勒纳-约翰逊反应和沃尔弗-克希尔反应。

正文内容:一、居里尔莫梅托反应1.居里尔莫梅托反应的概述和历史背景2.反应机理和关键步骤的详细解释3.应用和实例:居里尔莫梅托反应在有机合成中的应用领域和反应条件4.优势和局限性:居里尔莫梅托反应的优势以及在特定情况下的局限性5.进一步发展和改进:对居里尔莫梅托反应的未来发展和改进的前景进行讨论二、格里尼亚反应1.格里尼亚反应的基本原理和应用2.反应机理和关键步骤的详细解释3.不同类型的格里尼亚试剂的制备方法和特点4.格里尼亚反应在有机合成中的应用实例5.格里尼亚反应的改进和未来发展方向三、梅林反应1.梅林反应的概述和历史背景2.反应机理和关键步骤的详细解释3.梅林反应在合成有机化合物和天然产物中的应用4.梅林反应与其他反应的比较和优势5.对梅林反应未来研究和改进的展望四、勒纳-约翰逊反应1.勒纳-约翰逊反应的基本原理和历史背景2.反应机理和关键步骤的详细解释3.不同类型的勒纳-约翰逊试剂的制备方法和特点4.勒纳-约翰逊反应在有机合成中的应用实例5.对勒纳-约翰逊反应的改进和发展方向的讨论五、沃尔弗-克希尔反应1.沃尔弗-克希尔反应的概述和历史背景2.反应机理和关键步骤的详细解释3.沃尔弗-克希尔反应在药物合成中的应用4.不同类型的沃尔弗-克希尔试剂的制备方法和特点5.对沃尔弗-克希尔反应的改进和未来发展前景的展望总结:基础有机化学的人名反应是有机化学领域中的重要组成部分,各个人名反应都有其独特的反应机理和应用领域。

本文详细介绍了居里尔莫梅托反应、格里尼亚反应、梅林反应、勒纳-约翰逊反应和沃尔弗-克希尔反应的概述、反应机理、应用和改进方向。

有机化学人名反应大全

有机化学人名反应大全

一、Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R′I >R′Br >R′Cl。

除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。

当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。

本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。

除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理2 进行的分子内重排反应:一般认为是按 SN反应实例二、Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。

反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。

反应实例三、Baeyer----Villiger反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。

因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。

反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。

人名命名的化学反应

人名命名的化学反应

人名命名的化学反应
以下是一些以人名命名的化学反应的例子:
1. 阿尔多利反应(Aldol reaction),以俄国化学家阿尔多利(Aldol)的名字命名,描述了碳-碳键的形成,是有机合成中常用的反应之一。

2. 伯克利-哈特利反应(Berkeley-Hartley reaction),以美国化学家伯克利(Berkeley)和哈特利(Hartley)的名字命名,用于合成含有苯环的化合物。

3. 格里格纳德反应(Grignard reaction),以法国化学家格里格纳德(Grignard)的名字命名,该反应用于合成碳-碳键和碳-金属键,是有机合成中的重要工具。

4. 巴尔-温克勒反应(Balz-Schiemann reaction),以德国化学家巴尔(Balz)和温克勒(Schiemann)的名字命名,用于合成芳香胺的重要反应。

5. 诺贝尔反应(Nobel reaction),以瑞典化学家诺贝尔
(Nobel)的名字命名,描述了硝基化合物的还原反应。

这些人名命名的化学反应代表了不同领域中科学家的贡献,通过命名反应来纪念他们的工作。

这些反应在化学研究和有机合成中发挥着重要的作用,并且持续影响着化学领域的发展。

有机化学人名反应大全

有机化学人名反应大全

一.Arbuzov 反响亚磷酸三烷基酯作为亲核试剂与卤代烷感化,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反响时,其活性次序为:R′I >R′Br >R′Cl.除了卤代烷外,烯丙型或炔丙型卤化物.a-卤代醚.a- 或 b-卤代酸酯.对甲苯磺酸酯等也可以进行反响.当亚酸三烷基酯中三个烷基各不雷同时,老是先脱除含碳原子数起码的基团.本反响是由醇制备卤代烷的很好办法,因为亚磷酸三烷基酯可以由醇与三氯化磷反响制得:假如反响所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基雷同(即 R' = R),则Arbuzov 反响如下:这是制备烷基膦酸酯的经常运用办法.除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能产生该类反响,例如:反响机理一般以为是按 S N2 进行的分子内重排反响:反响实例二.Arndt-Eister 反响酰氯与重氮甲烷反响,然后在氧化银催化下与水共热得到酸.反响机理重氮甲烷与酰氯反响起首形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)产生重排得烯酮(3),(3)与水反响生成酸,若与醇或氨(胺)反响,则得酯或酰胺.反响实例三.Baeyer----Villiger反响反响机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁徙到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时产生O-O键异裂.是以,这是一个重排反响具有光学活性的3---苯基丁酮和过酸反响,重排产品手性碳原子的枸型保持不变,解释反响属于分子内重排:不合错误称的酮氧化时,在重排步调中,两个基团均可迁徙,但是照样有必定的选择性,按迁徙才能其次序为:醛氧化的机理与此类似,但迁徙的是氢负离子,得到羧酸.反响实例酮类化合物用过酸如过氧乙酸.过氧苯甲酸.间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边拔出一个氧原子生成响应的酯,个中三氟过氧乙酸是最好的氧化剂.这类氧化剂的特色是反响速度快,反响温度一般在10~40℃之间,产率高.四.Beckmann重排肟在酸如硫酸.多聚磷酸以及能产生强酸的五氯化磷.三氯化磷.苯磺酰氯.亚硫酰氯等感化下产生重排,生成响应的代替酰胺,如环己酮肟在硫酸感化下重排生成己内酰胺:反响机理在酸感化下,肟起首产生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁徙到缺电子的氮原子上,所形成的碳正离子与水反响得到酰胺.迁徙基团假如是手性碳原子,则在迁徙前后其构型不变,例如:反响实例五.Birch还原芬芳化合物用碱金属(钠.钾或锂)在液氨与醇(乙醇.异丙醇或仲丁醇)的混杂液中还原,苯环可被还原成非共轭的1,4-环己二烯化合物.反响机理起首是钠和液氨感化生成溶剂化点子,然后苯得到一个电子生成自由基负离子(Ⅰ),这是苯环的л电子系统中有7个电子,加到苯环上谁人电子处在苯环分子轨道的反键轨道上,自由基负离子仍是个环状共轭系统,(Ⅰ)暗示的是部分共振式.(Ⅰ)不稳固而被质子化,随即从乙醇中牟取一个质子生成环己二烯自由基(Ⅱ).(Ⅱ)在取得一个溶剂化电子改变成环己二烯负离子(Ⅲ),(Ⅲ)是一个强碱,敏捷再从乙醇中牟取一个电子生成1,4-环己二烯.环己二烯负离子(Ⅲ)在共轭链的中央碳原子上质子化比末尾碳原子上质子快,原因尚不清晰.反响实例代替的苯也能产生还原,并且经由过程得到单一的还原产品.例如六.Bouveault---Blanc还原脂肪族羧酸酯可用金属钠和醇还原得一级醇.α,β-不饱和羧酸酯还原得响应的饱和醇.芬芳酸酯也可进行本反响,但收率较低.本法在氢化锂铝还原酯的办法发明以前,广泛地被运用,非共轭的双键可不受影响.反响机理起首酯从金属钠获得一个电子还原为自由基负离子,然后从醇中牟取一个质子改变成自由基,再从钠得一个电子生成负离子,清除烷氧基成为醛,醛再经由雷同的步调还原成钠,再酸化得到响应的醇.反响实例醛酮也可以用本法还原,得到响应的醇:七.Bucherer反响萘酚及其衍生物在亚硫酸或亚硫酸氢盐存鄙人和氨进行高温反响,可得萘胺衍生物,反响是可逆的.反响时如用一级胺或二级胺与萘酚反响则制得二级或三级萘胺.如有萘胺制萘酚,可将其参加到热的亚硫酸氢钠中,再参加碱,经煮沸除去氨而得.反响机理本反响的机理为加成清除进程,反响的第一步(无论从哪个偏向开端)都是亚硫酸氢钠加成到环的双键上得到烯醇(Ⅱ)或烯胺(Ⅵ),它们再进行下一步互变异构为酮(Ⅲ)或亚胺(Ⅳ):反响实例八.苯基羟胺(N-羟基苯胺)和稀硫酸一路加热产生重排成对-氨基苯酚:在H2SO4-C2H5OH(或CH3OH)中重排生成对-乙氧基(或甲氧基)苯胺:其他芳基羟胺,它的环上的o-p位上未被代替者会起类似的重排.例如,对-氯苯基羟胺重排成2-氨基-5-氯苯酚:反响机理反响实例九.Berthsen,A.Y 吖啶合成法二芳基胺类与羧酸在无水ZnCl2存鄙人加热起缩合感化,生成吖啶类化合物.反响机理反响机理不详反响实例十.Cannizzaro 反响凡α位碳原子上无生动氢的醛类和浓NaOH或KOH水或醇溶液感化时,不产生醇醛缩合或树脂化感化而起歧化反响生成与醛相当的酸(成盐)及醇的混杂物.此反响的特点是醛自身同时产生氧化及还原感化,一分子被氧化成酸的盐,另一分子被还原成醇:脂肪醛中,只有甲醛和与羰基相连的是一个叔碳原子的醛类,才会产生此反响,其他醛类与强碱液,感化产生醇醛缩合或进一步变成树脂状物资.具有α-生动氢原子的醛和甲醛起首产生羟醛缩合反响,得到无α-生动氢原子的β-羟基醛,然后再与甲醛进行交叉Cannizzaro反响,如乙醛和甲醛反响得到季戊四醇:反响机理醛起首和氢氧根负离子进行亲核加成得到负离子,然后碳上的氢带着一对电子以氢负离子的情势转移到另一分子的羰基不克不及碳原子上.反响实例十一.Chichibabin 反响杂环碱类,与碱金属的氨基物一路加热时产生胺化反响,得到响应的氨基衍生物,如吡啶与氨基钠反响生成2-氨基啶,假如α位已被占领,则得γ-氨基吡啶,但产率很低.本法是杂环上引入氨基的轻便有用的办法,广泛实用于各类氮杂芳环,如苯并咪唑.异喹啉.丫啶和菲啶类化合物均能产生本反响.喹啉.吡嗪.嘧啶.噻唑类化合物较为艰苦.氨基化试剂除氨基钠.氨基钾外,还可以用代替的碱金属氨化物:反响机理反响机理还不是很清晰,可能是吡啶与氨基起首加成,(Ⅰ),(Ⅰ)转移一个负离子给质子赐与体(AH),产生一分子氢气和形成小量的2-氨基吡啶(Ⅱ),此小量的(Ⅱ)又可以作为质子的赐与体,最后的产品是2-氨基吡啶的钠盐,用水分化得到2-氨基吡啶:反响实例吡啶类化合物不轻易进行硝化,用硝基还原法制备氨基吡啶甚为艰苦.本反响是在杂环上引入氨基的轻便有用的办法,广泛实用于各类氮杂芳环,如苯并咪唑.异喹啉.吖啶和菲啶类化合物均能产生本反响.十二.Claisen酯缩合反响含有α-氢的酯在醇钠等碱性缩合剂感化下产生缩合感化,掉去一分子醇得到β-酮酸酯.如2分子乙酸乙酯在金属钠和少量乙醇感化下产生缩合得到乙酰乙酸乙酯.二元羧酸酯的分子内酯缩合见Dieckmann缩合反响.反响机理乙酸乙酯的α-氢酸性很弱(pK a-24.5),而乙醇钠又是一个相对较弱的碱(乙醇的pK a~15.9), 是以,乙酸乙酯与乙醇钠感化所形成的负离子在均衡系统是很少的.但因为最后产品乙酰乙酸乙酯是一个比较强的酸,能与乙醇钠感化形成稳固的负离子,从而使平衡朝产品偏向移动.所以,尽管反响系统中的乙酸乙酯负离子浓度很低,但一形成后,就不竭地反响,成果反响照样可以顺遂完成.经常运用的碱性缩合剂除乙醇钠外,还有叔丁醇钾.叔丁醇钠.氢化钾.氢化钠.三苯甲基钠.二异丙氨基锂(LDA)和Grignard试剂等.反响实例假如酯的α-碳上只有一个氢原子,因为酸性太弱,用乙醇钠难于形成负离子,须要用较强的碱才干把酯变成负离子.如异丁酸乙酯在三苯甲基钠感化下,可以进行缩合,而在乙醇钠感化下则不克不及产生反响:两种不合的酯也能产生酯缩合,理论上可得到四种不合的产品,称为混杂酯缩合,在制备上没有太大意义.假如个中一个酯分子中既无α-氢原子,并且烷氧羰基又比较生动时,则仅生成一种缩合产品.如苯甲酸酯.甲酸酯.草酸酯.碳酸酯等.与其它含α-氢原子的酯反响时,都只生成一种缩合产品.现实上这个反响不限于酯类自身的缩合,酯与含生动亚甲基的化合物都可以产生如许的缩合反响,这个反响可以用下列通式暗示:十三.Claisen—Schmidt反响一个无氢原子的醛与一个带有氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存鄙人产生缩合反响,并掉水得到不饱和醛或酮:反响机理反响实例十四.Claisen 重排烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚.当烯丙基芳基醚的两个邻位未被代替基占满时,重排重要得到邻位产品,两个邻位均被代替基占领时,重排得到对位产品.对位.邻位均被占满时不产生此类重排反响.交叉反响试验证实:Claisen重排是分子内的重排.采取 g-碳14C 标识表记标帜的烯丙基醚进行重排,重排后 g-碳原子与苯环相连,碳碳双键产生位移.两个邻位都被代替的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连.反响机理Claisen 重排是个协同反响,中央经由一个环状过渡态,所以芳环上代替基的电子效应对重排无影响.从烯丙基芳基醚重排为邻烯丙基酚经由一次[3,3]s 迁徙和一次由酮式到烯醇式的互变异构;两个邻位都被代替基占领的烯丙基芳基酚重排时先经由一次[3,3]s 迁徙到邻位(Claisen 重排),因为邻位已被代替基占领,无法产生互变异构,接着又产生一次[3,3]s 迁徙()到对位,然后经互变异构得到对位烯丙基酚.代替的烯丙基芳基醚重排时,无论本来的烯丙基双键是Z-构型照样E-构型,重排后的新双键的构型都是E-型,这是因为重排反响所经由的六员环状过渡态具有稳固椅式构象的缘故.反响实例Claisen 重排具有广泛性,在醚类化合物中,假如消失烯丙氧基与碳碳相连的构造,就有可能产生Claisen 重排.十五.Clemmensen 还原醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:此法只实用于对酸稳固的化合物.对酸不稳固而对碱稳固的化合物可用还原.反响机理本反响的反响机理较庞杂,今朝尚不很清晰.反响实例十六.Combes 喹啉合成法Combes合成法是合成喹啉的另一种办法,是用芳胺与1,3-二羰基化合物反响,起首得到高产率的β-氨基烯酮,然后在浓硫酸感化下,羰基氧质子化后的羰基碳原子向氨基邻位的苯环碳原子进行亲电进攻,关环后,再脱水得到喹啉.反响机理在氨基的间位有强的邻.对位定位基团消失时,关环反响轻易产生;但当强邻.对位定位基团消失于氨基的对位时,则不轻易产生关环反响.反响实例十七.Cope清除反响叔胺的N-氧化物(氧化叔胺)热解时生成烯烃和N,N-二代替羟胺,产率很高.现实上只需将叔胺与氧化剂放在一路,不需分别出氧化叔胺即可持续进行反响,例如在湿润的二甲亚砜或四氢呋喃中这个反响可在室温进行.此反响前提平和.副反响少,反响进程中不产生重排,可用来制备很多烯烃.当氧化叔胺的一个烃基上二个β位有氢原子消失时,清除得到的烯烃是混杂物,但是 Hofmann 产品为主;如得到的烯烃有顺反异构时,一般以 E-型为主.例如:反响机理这个反响是E2顺式清除反响,反响进程中形成一个平面的五员环过度态,氧化叔胺的氧作为进攻的碱:要产生如许的环状构造,氨基和β-氢原子必须处于统一侧,并且在形成五员环过度态时,α,β-碳原子上的原子基团呈重叠型,如许的过度态须要较高的活化能,形成后也很不稳固,易于进行清除反响.反响实例十八.Cope重排1,5-二烯类化合物受热时产生类似于 O-烯丙基重排为 C-烯丙基的重排反响()反响称为Cope重排.这个反响30多年来引起人们的广泛留意.1,5-二烯在150—200℃单独加热短时光就轻易产生重排,并且产率异常好.Cope重排属于周环反响,它和其它周环反响的特色一样,具有高度的立体选择性.例如:内消旋-3,4-二甲基-1,5-己二烯重排后,得到的产品几乎全体是(Z, E)-2,6辛二烯:反响机理Cope重排是[3,3]s-迁徙反响,反响进程是经由一个环状过渡态进行的协同反响:在立体化学上,表示为经由椅式环状过渡态:反响实例十九.Curtius 反响酰基叠氮化物在惰性溶剂中加热分化生成异氰酸酯:异氰酸酯水解则得到胺:反响机理反响实例二十.Crigee,R 反响1,2-二元醇类的氧化产品因所用的氧化剂的种类而不合.用K2Cr2O7或KMnO4氧化时生成酸类.用特别氧化剂四乙醋酸铅在CH3COOH或苯等不生动有机溶剂中缓和氧化,生成二分子羰基化合物(醛或酮).氧化反响也可以在酸催化剂(三氯醋酸)存鄙人进行.本反响被广泛地运用于研讨醇类构造及制备醛.酮类,产率很高.反响机理反响进程中师长教师成环酯中央产品,进一步C--C键裂开成醛或酮.酸催化的场合,反响过程可以用下式暗示:反响实例二十一.Dakin反响酚醛或酚酮类用H2O2在NaOH存鄙人氧化时,可将分子中的-CHO基或CH3CO-基被-OH基所置换,生成相对应的酚类.本反响可运用以制备多远酚类.反响机理反响实例二十二.Elbs反响羰基的邻位有甲基或亚甲基的二芳基酮,加热时产生环化脱氢感化,生成蒽的衍生物:因为这个反响平日是在回流温度或高达400-450 °C的温度规模内进行,不必催化剂和溶剂,直到反响物没有水放出为止,在如许的高温前提下,一部分原料和产品产生碳化,部分原料酮被释放出的水所裂解,烃基产生清除或降解以及分子重排等副反响,致使产率不高.反响机理本反响的机理尚不清晰.反响实例二十三.Edvhweiler-Clarke 反响在过量甲酸存鄙人,一级胺或二级胺与甲醛反响,得到甲基化后的三级胺:甲醛在这里作为一个甲基化试剂.反响机理反响实例二十四.将一元酚类或类似化合物用过硫酸钾在碱性溶液中氧化羟基引入在原有羟基的对位或邻位,生成二元酚类.分子中的醛基或双键等都不影响.产率约20~48%.过硫酸钾的水溶液在加热时放出氧:芳伯胺类如用本试剂氧化时,变成硝基化合物.反响机理反响实例二十五.Favorskii重排a-卤代酮在氢氧化钠水溶液中加热重排生成含雷同碳原子数的羧酸;如为环状a-卤代酮,则导致环缩小.如用醇钠的醇溶液,则得羧酸酯:此法可用于合成张力较大的四员环.反响机理反响实例二十六.Friedel-Crafts烷基化反响芳烃与卤代烃.醇类或烯类化合物在Lewis催化剂(如AlCl3,FeCl3, H2SO4,H3PO4, BF3, HF等)存鄙人,产生芳环的烷基化反响.卤代烃反响的生动性次序为:RF > RCl > RBr > RI ; 当烃基超出3个碳原子时,反响进程中易产生重排.反响机理起首是卤代烃.醇或烯烃与催化剂如三氯化铝感化形成碳正离子:所形成的碳正离子可能产生重排,得到较稳固的碳正离子:碳正离子作为亲电试剂进攻芳环形成中央体s-络合物,然后掉去一个质子得到产生亲电代替产品:反响实例二十七.Friedel-Crafts酰基化反响芳烃与酰基化试剂如酰卤.酸酐.羧酸.烯酮等在Lewis酸(通经常运用无水三氯化铝)催化下产生酰基化反响,得到芬芳酮:这是制备芬芳酮类最重要的办法之一,在酰基化中不产生烃基的重排.反响机理反响实例二十八.Fries 重排酚酯在Lewis酸存鄙人加热,可产生酰基重排反响,生成邻羟基和对羟基芳酮的混杂物.重排可以在硝基苯.硝基甲烷等溶剂中进行,也可以不必溶剂直接加热进行.邻.对位产品的比例取决于酚酯的构造.反响前提和催化剂等.例如,用多聚磷酸催化时重要生成对位重排产品,而用四氯化钛催化时则重要生成邻位重排产品.反响温度对邻.对位产品比例的影响比较大,一般来讲,较低温度(如室温)下重排有利于形成对位异构产品(动力学掌握),较高温度下重排有利于形成邻位异构产品(热力学掌握).反响机理反响实例二十九.Fischer,O-Hepp,E重排N-亚硝基芳胺用盐酸或氢溴酸或其乙醇溶液处理时氨基氮上的亚硝基转移到芳核上去形成p-亚硝基芳胺(对位重排):平日产生对位重排,但在奈系化合物中如N-亚硝基-N-加基-2-奈胺则产生邻位重排成1-亚硝基化合物:反响机理在HCl存鄙人,N-亚硝基化合物起首解离成仲胺及NOCl然落后行亚硝基化:三十.Gabriel合成法邻苯二甲酰亚胺与氢氧化钾的乙醇溶液感化改变成邻苯二甲酰亚胺盐,此盐和卤代烷反响生成N-烷基邻苯二甲酰亚胺,然后在酸性或碱性前提下水解得到一级胺和邻苯二甲酸,这是制备纯净的一级胺的一种办法.有些情形下水解很艰苦,可以用肼解来代替:反响机理邻苯二甲酰亚胺盐和卤代烷的反响是亲核代替反响,代替反响产品的水解进程与酰胺的水解类似.反响实例三十一.Gattermann反响重氮盐用新制的铜粉代替亚铜盐(见)作催化剂,与浓盐酸或氢溴酸产生置换反响得到氯代或溴代芳烃:本法长处是操纵比较简略,反响可在较低温度下进行,缺陷是其产率一般较低.反响实例三十二.Gattermann-Koch 反响芬芳烃与等分子的一氧化碳及氯化氢气体在加压和催化剂(三氯化铝及氯化亚铜)存鄙人反响,生成芬芳醛:反响机理反响实例三十三.Gomberg-Bachmann 反响芬芳重氮盐在碱性前提下与其它芬芳族化合物偶联生成联苯或联苯衍生物:反响机理反响实例三十四.Hantzsch 合成法两分子b-羰基酸酯和一分子醛及一分子氨产生缩合反响,得到二氢吡啶衍生物,再用氧化剂氧化得到吡啶衍生物.这是一个很广泛的反响,用于合成吡啶同系物.反响机理反响进程可能是一分子b-羰基酸酯和醛反响,另一分子b-羰基酸酯和氨反响生成b-氨基烯酸酯,所生成的这两个化合物再产生Micheal加成反响,然后掉水关环生成二氢吡啶衍生物,它很溶液脱氢而芳构化,例如用亚硝酸或铁氰化钾氧化得到吡啶衍生物:反响实例三十五.Haworth 反响萘和丁二酸酐产生然后按尺度的办法还原.关环.还原.脱氢得到多环芬芳族化合物.反响实例三十六.Hell-Volhard-Zelinski 反响羧酸在催化量的三卤化磷或红磷感化下,能与卤素产生a-卤代反响生成a-卤代酸:本反响也可以用酰卤作催化剂.反响机理反响实例三十七.Hinsberg反响伯胺.仲胺分别与对甲苯磺酰氯感化生成响应的对甲苯磺酰胺沉淀,个中伯胺生成的沉淀能溶于碱(如氢氧化钠)溶液,仲胺生成的沉淀则不溶,叔胺与对甲苯磺酰氯不反响.此反响可用于伯仲叔胺的分别与判定.三十八.Hofmann烷基化卤代烷与氨或胺产生烷基化反响,生成脂肪族胺类:因为生成的伯胺亲核性平日比氨强,能持续与卤代烃反响,是以本反响不成防止地产生仲胺.叔胺和季铵盐,最后得到的往往是多种产品的混杂物.用大过量的氨可防止多代替反响的产生,从而可得到优越产率的伯胺.反响机理反响为典范的亲核代替反响(S N1或S N2)反响实例三十九.Hofmann清除反响季铵碱在加热前提下(100--200°C)产生热分化,当季铵碱的四个烃基都是甲基时,热分化得到甲醇和三甲胺:假如季铵碱的四个烃基不合,则热分化时老是得到含代替基起码的烯烃和叔胺:四十.Hofmann重排(降解)酰胺用溴(或氯)在碱性前提下处理改变成少一个碳原子的伯胺:反响机理反响实例四十一.Houben-Hoesch 反响酚或酚醚在氯化氢和氯化锌等Lewis酸的存鄙人,与腈感化,随落后行水解,得到酰基酚或酰基酚醚:反响机理反响机理较庞杂,今朝尚未完整解释反响实例四十二.Hunsdieecker 反响湿润的羧酸银盐在四氯化碳中与卤素一路加热放出二氧化碳,生成比原羧酸少一个碳原子的卤代烃:X = Br , Cl , I反响机理反响实例四十三.Kiliani氯化增碳法糖在少量氨的存鄙人与氢氰酸加成得到a-羟基腈,经水解得到响应的糖酸,此糖酸极易改变成内酯,将此内酯在含水的乙醚或水溶液顶用钠汞齐还原,得到比本来的糖多一个碳原子的醛糖.反响实例四十四.Knoevenagel 反响含生动亚甲基的化合物与醛或酮在弱碱性催化剂(氨.伯胺.仲胺.吡啶等有机碱)存鄙人缩合得到a,b-不饱和化合物.反响机理反响实例四十五.Koble 反响脂肪酸钠盐或钾盐的浓溶液电解时产生脱羧,同时两个烃基互相偶联生成烃类:假如运用两种不合脂肪酸的盐进行电解,则得到混杂物:反响机理反响实例四十六.Koble-Schmitt 反响酚钠和二氧化碳在加压下于125-150 ºC反响,生成邻羟基苯甲酸,同时有少量对羟基苯甲酸生成:反响产品与酚盐的种类及反响温度有关,一般来讲,运用钠盐及在较低的温度下反响重要得到邻位产品,而用钾盐及在较高温度下反响则重要得对位产品:邻位异构体在钾盐及较高温度下加热也能改变成对位异构体:反响机理反响机理今朝还不太清晰.反响实例四十七.Kolbe,H.Syntbexis of Nitroparsffini合成将含等摩尔的α-卤代羧酸与亚硝酸钠或钾的水溶液加热时,生成-硝基脂肪酸钠中央体,持续加热起分化感化,掉去CO2改变成硝基烷类及NaHCO3.本办法仅可实用于小量制备碳原子数在以下的硝基烷类(特别合适于制备硝基甲烷及硝基乙烷).而b-卤代羧酸与亚硝酸钾感化生成产品不克不及放出CO2,故不克不及产生此反响.反响实例四十八.Leuckart 反响醛或酮在高温下与甲酸铵反响得伯胺:除甲酸铵外,反响也可以用代替的甲酸铵或甲酰铵.反响机理反响中甲酸铵一方面供给氨,另一方面又作为还原剂.反响实例四十九.Lossen 反响或其酰基化物在单独加热或在碱.脱水剂(如五氧化二磷.乙酸酐.亚硫酰氯等)存鄙人加热产生重排生成异氰酸酯,再经水解.脱羧得伯胺:本重排反响后来有过反响机理本重排反响的反响机理与 ..机理相类似,也是形成异氰酸酯中央体:在重排步调中,R的迁徙和离去基团的离去是协同进行的.当R是手性碳原子时,重排后其构型保持不变:反响实例五十.Mannich 反响含有a-生动氢的醛.酮与甲醛及胺(伯胺.仲胺或氨)反响,成果一个a-生动氢被胺甲基代替,此反响又称为胺甲基化反响,所得产品称为Mannich碱.。

有机化学人名反应

有机化学人名反应

取代反应:1,加特曼反应:加特曼(Gattermann L)发现:用催化量的金属铜代替氯化亚铜或溴化亚铜作催化剂,也可使重氮盐与盐酸或氢溴酸反应制得芳香氯化物或溴化物。

这样进行的反应叫做加特曼反应。

2,加特曼-科赫反应:苯、一氧化碳和氯化氢反应生成苯甲醛,此反应称为加特曼-科赫反应。

3,傅-克反应:芳香化合物芳环上的氢被烷基取代的反应称为傅-克烷基化反应;芳香化合物芳环上的氢被酰基取代的反应称为傅-克酰基化反应;统称傅-克反应。

4,布赫尔反应:萘酚在亚硫酸氢钠存在下与氨作用,转变成相应萘胺的反应称为布赫尔反应。

5,齐齐巴宾反应:吡啶与氨基钠反应,生成α-氨基吡啶,如果α位已被占据,则得γ-氨基吡啶,但产率很低。

这个反应称为齐齐巴宾(Chichibabin)反应。

6,刚穆伯—巴赫曼反应:芳香重氮盐中的芳基在碱性条件下与其它芳香族化合物偶联成联苯或联苯衍生物的反应称为刚穆伯(Gomberg)—巴赫曼(Bachmann)反应。

7,柯尔伯—施密特反应:干燥的酚钠或酚钾与二氧化碳在加温加压下生成羟基苯甲酸的反应称为柯尔伯—施密特(Kolbe-Schmitt)反应。

8,威廉森合成法:在无水条件下,醇钠和卤代烷作用生成醚的反应称为威廉森(Williamson A W)合成法。

9,席曼反应:芳香重氮盐和氟硼酸反应,生成溶解度较小的氟硼酸盐,后者加热分解产生氟苯,这称为席曼(Schiemann)反应。

10,桑德迈耳反应:1884年,桑德迈耳(Sandmeyer T)发现:在氯化亚铜或溴化亚铜的催化下,重氮盐在氢卤酸溶液中加热,重氮基可分别被氯或溴原子取代,生成芳香氯化物或溴化物。

这一反应称为桑德迈耳反应。

11,普塑尔反应:一些重氮盐在碱性条件下或稀酸的条件下可以发生分子内的偶联反应。

这个反应是普塑尔(Pschorr R)在寻找合成菲环的新方法中首先发现的,故称为普塑尔反应。

12,瑞穆尔—悌曼反应:酚与氯仿在碱性溶液中加热生成邻位及对位羟基醛的反应称为瑞穆尔—悌曼(Reimer —Tiemann)反应。

有机化学人名反应总结

有机化学人名反应总结

有机化学人名反应总结是化学的一个重要分支,研究有机化合物的结构、性质、合成和反应机理。

在的发展过程中,许多学者为该领域做出了巨大的贡献,并被用来命名各种有机反应。

以下是几个人名反应的介绍和总结。

沃尔夫-可克斯反应(Wolf-Kishner reaction)沃尔夫和可克斯是这个反应的共同发现者,这个反应是一种将酮或醛还原为相应的烷烃的方法。

该反应的基本步骤包括酮或醛与叔胺在碱性条件下反应,形成次磺酰胺盐。

随后,在高温下,用氨水还原次磺酰胺盐形成烷烃。

这个反应适用于许多酮和醛的还原,而且产率较高。

亲核取代反应(Nucleophilic substitution reaction)亲核取代反应是一类常见的反应,其中一个亲核试剂通过攻击有机物中的一个电子云丰富的原子,将它替换掉。

亲核试剂可以是氢离子(质子)、一个氢的取代基或一个非常活泼的原子或基团,如氯、溴、碘等。

这个反应在有机合成中广泛应用,可以用来合成醇、酯、酰胺等化合物。

格林纳德试剂反应(Grignard reaction)格林纳德试剂反应是一种重要的有机合成方法,被用来合成新的碳-碳键或存在二氢化碳的间接合成。

它的基本步骤是将卤代烃与镁反应,生成格林纳德试剂。

然后,格林纳德试剂与醛、酮、酸、酯等化合物进行反应,形成相应的醇、醚、羧酸、酮等。

格林纳德试剂反应在有机合成中得到广泛应用,尤其是在构建复杂的有机分子骨架中。

Diels-Alder 反应(Diels-Alder reaction)Diels-Alder 反应是一种重要的环加成反应,其中烯丙烃与二烯或炔烃通过热力学控制和反应物的轨道的对称性控制形成一个六元环。

这个反应在天然产物的全合成、药物合成和高分子材料的合成中得到广泛应用。

Diels-Alder 反应的核心是“四加二”环加成反应,反应条件和底物结构的变化可以使反应具有选择性和灵活性。

柴维克斯基反应(Chichibabin reaction)柴维克斯基反应是一种将氨基化合物转化为吡嗪或嘧啶的方法。

有机化学中的人名反应

有机化学中的人名反应

O C H + HCHO NaOH
CH2 OH + HCO2
Cannizzaro反应
具有α-活泼氢原子的醛和甲醛首先发生羟醛缩合反应,得到无α-活泼氢 原子的β-羟基醛,然后再与甲醛进行交叉Cannizzaro反应,如乙醛和甲 醛反应得到季戊四醇:
HCHO + CH3CHO NaOH C CH2OH 4 + HCO2
人名反应
Koble-Schmitt 反应
酚钠和二氧化碳在加压下于125-150 ºC反应,生成邻羟基苯甲酸,同时有 少量对羟基苯甲酸生成
Gabriel合成法
邻苯二甲酰亚胺与氢氧化钾的乙醇溶液作用转变为 邻苯二甲酰亚胺盐,此盐和卤代烷反应生成N-烷基 邻苯二甲酰亚胺,然后在酸性或碱性条件下水解得 到一级胺和邻苯二甲酸,这是制备纯净的一级胺的 一种方法
GO
Clemmensen还原法
醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:
O C
Zn-Hg HCl
CH2
+
H2O
此法只适用于对酸稳定的化合物。对酸不稳定而对碱稳定的化合物可用 Wolff-Kishner-黄鸣龙反应还原。
GO
Wolff-Kishner还原法
醛类或酮类在碱性条件下与肼作用,羰基被还原为亚甲基:
感谢您的聆听
Diels-Alder反应
含有一个活泼的双键或叁键的化合物(亲双烯体)与共轭二烯类化合物(双
烯体)发生1,4-加成,生成六员环状化合物:
R1 R3
R1 R3
+
R4 R2
R4 R2
Diels-Alder 反应
这个反应极易进行并且反应速度快,应用范围极广泛,是合成环状 化合物的一个非常重要的方法。

有机合成人名反应及机理

有机合成人名反应及机理

有机合成人名反应及机理
有机合成中有很多重要的反应,这些反应的机理大多数都是经过
详细论证的。

下面具体介绍几个重要的反应及其机理。

1. 化学家霍夫曼发明了非常有用的反应,叫做“霍夫曼降解反应”。

这个反应可以用来从胺中制备出烷基卤化物。

具体反应步骤是:首先将胺和次氯酸钠混合,然后将水加入混合液中,这样就可以生成
亚氯酰胺。

接下来,将氢氧化钠加入混合液中,反应会生成氯化胺和
氢氧化钠。

最后,烷基化剂加入反应混合物中,生成的产物就是烷基
化合物。

2. 另一个非常重要的有机反应称为“Suzuki–Miyaura偶联反应”,这个反应可以用来将芳香化合物和烯丙基铜或锂互相连接。


个反应的机理是:首先,碘化物和芳基卤化物混合,这样就可以形成
碘化芳基化合物。

然后,在其上添加烯丙基铜或锂,这样就可以连接
两种芳香化合物。

最后,加入铜催化剂来促进反应的进行。

3. 最后一个重要的反应是“Diazo反应”,这个反应可以用来制
备罕见的化合物,并且这个反应的机理也比较简单。

首先,从亚硝酸
和苯甲酸中制备出叠氮化物。

接下来,将目标化合物与叠氮化物混合,这样就可以生成新的化合物。

这个反应的一个很好的例子是,将间苯
二酚转化成二苯基二烯。

以上三个反应是有机合成中非常常见的反应,掌握这些反应及其
机理可以为有机合成研究提供非常有用的指导。

有机化学中国人名反应

有机化学中国人名反应

有机化学中国人名反应中国人名反应是指以中国有机化学家的名字命名的有机化学反应。

这些反应通常是由这些化学家发现或发展,并且对有机化学领域的发展做出了重要贡献。

以下将介绍几个著名的中国人名反应。

1. 曾光明反应曾光明反应是由中国有机化学家曾光明教授于1981年首次报道的一种重要的合成方法。

该反应以金属有机化合物为催化剂,能够将酮类化合物与硅醚反应,形成相应的醇类化合物。

曾光明反应在有机合成中具有广泛的应用,可以高效地构建C-O键,是合成醇类化合物的重要工具。

2. 毛宗回反应毛宗回反应是由中国有机化学家毛宗回教授于1978年首次报道的一种重要的合成方法。

该反应以金属有机化合物为催化剂,能够将酮类化合物与有机硅化合物反应,生成相应的醇类化合物。

毛宗回反应在有机合成中广泛应用,具有高效、高选择性和环境友好等优点,被广泛用于合成复杂有机分子。

3. 李盛骏反应李盛骏反应是由中国有机化学家李盛骏教授于20世纪80年代中期首次报道的一种重要的合成方法。

该反应以金属有机化合物为催化剂,能够将炔烃与醛类化合物反应,形成相应的α,β-不饱和醛类化合物。

李盛骏反应在有机合成中具有重要的应用价值,可以高效地构建C-C键和C=O键,是合成复杂有机分子的重要工具。

4. 王立群反应王立群反应是由中国有机化学家王立群教授于1992年首次报道的一种重要的合成方法。

该反应以过渡金属催化剂为催化剂,能够将酮类化合物与炔烃反应,形成相应的烯醇类化合物。

王立群反应在有机合成中具有广泛的应用,可以高效地构建C-C键和C-O键,是合成天然产物和药物分子的重要工具。

5. 陈茵反应陈茵反应是由中国有机化学家陈茵教授于20世纪70年代末首次报道的一种重要的合成方法。

该反应以金属有机化合物为催化剂,能够将酮类化合物与酸类化合物反应,形成相应的酯类化合物。

陈茵反应在有机合成中具有重要的应用价值,可以高效地构建C-C键和C-O键,是合成酯类化合物的重要工具。

《有机化学人名反应》课件

《有机化学人名反应》课件

人名反应的定义与重要性
定义
人名反应是指以科学家或化学家的名字命名的有机化学反应。这些反应通常具 有独特性、重要性或实用性。
重要性
人名反应是化学领域中的重要知识,掌握这些反应有助于理解有机化学的基本 原理,提高解决实际问题的能力。同时,人名反应也是化学领域中科学研究的 成果,体现了人类对化学反应的深入认识和探索。
一种重要的烷基化反应
详细描述
Friedel-Crafts反应是一种在芳香化合 物中引入烷基的亲电取代反应。通常 在路易斯酸(如AlCl3)催化下进行, 该反应广泛应用于有机合成中。
Wittig 反应
总结词
制备烯烃的经典方法
详细描述
Wittig反应是一种通过磷酸酯和醛之间的反应制备烯烃的方法。该反应涉及一个五元环 过渡态,生成具有特定立体化学特征的烯烃。
ቤተ መጻሕፍቲ ባይዱ
在材料科学中的应用
材料科学是一个跨学科的领域,涉及材料的设计、制备、性 能和应用。人名反应在材料科学中的应用主要涉及新型材料 的合成和改性。
通过人名反应,可以合成出具有优异性能和功能的新型材料 ,如高分子材料、陶瓷材料、复合材料等。这些材料在能源 、环境、信息等领域具有广泛的应用前景,为科技进步和社 会发展提供重要支持。
亲电取代反应
总结词
亲电取代反应是一种有机化学反应,其中亲电试剂进攻并取代反应物分子中的某 个基团。
详细描述
这类反应通常发生在苯环、芳香烃和杂环化合物的反应中,其中亲电试剂具有正 电性,能够进攻富电子的碳原子。常见的亲电取代反应包括:EAS reaction、 Elimination reaction等。
详细描述
这类反应通常发生在烯烃、炔烃和芳香烃的反应中,其中加成试剂能够与不饱和键结合形成新的键。 常见的加成反应包括:Diels-Alder reaction、Addition reaction等。

有机化学人名反应大全

有机化学人名反应大全

一、Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R′I >R′Br >R′Cl。

除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。

当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。

本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。

除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理2 进行的分子内重排反应:一般认为是按 SN反应实例二、Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。

反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。

反应实例三、Baeyer----Villiger反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。

因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。

反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。

有机人名反应讲解

有机人名反应讲解

有机人名反应讲解有机人名反应是一种基于人名命名的有机化学反应,通常是由某个化学家或科学家首次发现和提出的。

这些反应在有机化学中非常重要,因为它们是构建复杂有机分子的重要工具。

以下是一些著名的有机人名反应的讲解:1. 付克(傅瑞德尔)反应 (Friedel-Crafts Reaction):这是一个在路易斯酸(如氯化铝)催化下,在芳香烃中引入卤素和硝基等基团的过程。

这个反应由法国化学家查尔斯·傅瑞德尔和美国化学家詹姆斯·E·克雷夫特在19世纪末和20世纪初发现。

2. 珀金反应 (Perkin Reaction):这是一个由英国化学家威廉·珀金在19世纪末发现的反应,涉及芳香醛和酸酐在酸催化下缩合生成酯,并伴随有烯烃的生成。

3. 沃尔夫-凯惜纳-梅尔斯反应 (Wolff-Kishner-Mellor Reaction):这个反应由德国化学家卡尔·沃尔夫、美国化学家赫尔曼·梅尔斯和英国化学家约翰·凯惜纳在20世纪初发现。

它涉及将醛或酮的羰基转化为醇或烃的过程,通常使用氢氰酸和硫酸作为反应试剂。

4. 布特列洛夫反应 (Butlerov Reaction):这是由俄国化学家亚历山大·布特列洛夫在19世纪末发现的反应,涉及将醛或酮与醇在酸催化下缩合,生成环状酯的反应。

5. 迪尔斯-阿尔德反应 (Diels-Alder Reaction):这是一个由德国化学家奥托·迪尔斯和英国化学家罗纳德·奥多·阿尔德在20世纪初发现的反应,涉及共轭二烯烃和烯酮之间的环加成反应,生成一个四环化合物。

6. 霍夫曼消除反应 (Hofmann Elimination):这是由德国化学家阿道夫·霍夫曼在19世纪末发现的反应,涉及季铵碱加热时消除氢氧化铵的反应,生成烯烃。

7. 柏金反应 (Perkin Reaction):这个反应类似于珀金反应,但使用了不同的酸酐和酚类化合物作为反应物,生成相应的酯和酮类化合物。

中国人名字命名的化学反应

中国人名字命名的化学反应

中国人名字命名的化学反应一、赵明反应赵明反应是一种有机合成反应,以中国化学家赵明的名字命名。

该反应是一种将芳香醛和胺反应生成相应的胺酮的方法。

该反应通常在碱性条件下进行,以加速反应速率。

赵明反应在药物合成和有机合成中具有重要的应用价值。

二、李娜反应李娜反应是一种有机合成反应,以中国网球选手李娜的名字命名。

该反应是一种将芳香胺和醛反应生成相应的亚胺的方法。

该反应通常在酸性条件下进行,以提高反应的选择性和产率。

李娜反应在药物合成和材料科学中得到广泛应用。

三、王刚反应王刚反应是一种有机合成反应,以中国化学家王刚的名字命名。

该反应是一种将酮和醛反应生成相应的烯酮的方法。

该反应通常在氧气存在下进行,以提高反应的效率和产率。

王刚反应在天然产物合成和有机合成中具有重要的应用价值。

四、张丽反应张丽反应是一种有机合成反应,以中国化学家张丽的名字命名。

该反应是一种将醛和亚胺反应生成相应的醛胺的方法。

该反应通常在中性条件下进行,以避免副反应的发生。

张丽反应在药物合成和有机合成中得到广泛应用。

五、刘强反应刘强反应是一种有机合成反应,以中国化学家刘强的名字命名。

该反应是一种将酮和酸反应生成相应的酸酯的方法。

该反应通常在酸性条件下进行,以促进反应的进行。

刘强反应在有机合成和材料科学中具有重要的应用价值。

六、陈秀反应陈秀反应是一种有机合成反应,以中国化学家陈秀的名字命名。

该反应是一种将苯胺和酮反应生成相应的亚胺的方法。

该反应通常在碱性条件下进行,以提高反应的速率和产率。

陈秀反应在药物合成和有机合成中得到广泛应用。

七、杨勇反应杨勇反应是一种有机合成反应,以中国化学家杨勇的名字命名。

该反应是一种将芳香酮和胺反应生成相应的酰胺的方法。

该反应通常在酸性条件下进行,以促进反应的进行。

杨勇反应在药物合成和材料科学中具有重要的应用价值。

八、吴丽反应吴丽反应是一种有机合成反应,以中国化学家吴丽的名字命名。

该反应是一种将酮和胺反应生成相应的胺酮的方法。

有机化学系列之一〔人名反应〕

有机化学系列之一〔人名反应〕

无水乙醚 H2O有机化学系列之一〔人名反应〕1.纽曼投影式:相邻两个碳原子的键轴,由前面一个碳原子往后透视,较远的碳原子用圆圈表示,较近的碳原子用圆心表示,碳原子所连的原子或基团按相对的角度与碳原子相连。

2.马氏加成:烯烃与卤代烃反应,H 原子加在H 原子多的碳原子上,卤素原子加在H 原子少少的碳原子上。

反马氏加成:在过氧化物(H 2O 2)的作用下,加成结果与马氏加成相反3.札依采夫规则:卤代烷脱卤代氢反应中,卤原子主要和相邻含氢少的碳原子上的氢脱去卤化氢。

4.威廉姆逊反映:卤代烷与醇钠生成醚RX+NaOR'→ROR '+NaX5.格利雅试剂:R-Mg-X R-X+Mg R-Mg-XR-Mg-X+R'-X R-R'+MgX 2 R-Mg-X+CO 2 R-CO-O-Mg-X RCOOH <生成羧酸>6.武慈反应:将两个含卤原子的化合物连接起来CH 3CH 2Br+2Na+CH 3CH 2Br CH 3(CH 2)4CH 3+2NaBr7.瓦尔登反转:(双分子亲核取代)SN 2标志性反应反式消除反应:(双分子消除反应)E 2标志性反应8.卢卡斯反应:试剂:浓盐酸+无水ZnCl 2 鉴别 伯 仲 叔醇伯 无反应仲 R 2CHCl 数分钟后浑浊叔 R 3CHCl 立即浑浊9.吐纶试剂组成:AgNO 3,NH 3•H 2O (实质:<[Ag(NH 3)2]+>)反应物:醛和酮现象:Ag↓10.斐琳试剂:组成:A:CuSO 4 B:NaOH;酒石酸钠反应物:芳香醛现象:砖红↓11.班尼狄克试剂:组成:A:CuSO 4 B:Na 2CO 3; 柠檬酸钠Zn-Hg 浓HCl 反应物:芳香醛 现象:砖红↓12.克莱门森还原:羰基还原成为亚甲基(Zn-Hg;浓HCl )R RC =O CH 2 (H)R ′(H)R ′13.开息尔-武尔夫-黄鸣龙还原法:醛酮还原成烃<开息儿—武尔夫>R R R C=OC=N-NH 2 CH 2 +N 2 (H)R ′ (H)R ′ (H)R ′<黄鸣龙>R RC=O CH 2 +N 2(H)R ′ (H)R ′14.康尼查罗反应:不含α-H 的醛(例如 HCHO )在在浓碱的作用下一部分被氧化成羧酸盐,另一部分被还原成醇<岐化反应>15.希夫试剂:SO 2+品红溶液<无色> 鉴别甲醛醛+希夫试剂→紫红色→加入H 2SO 4 <只有甲醛不褪色> 鉴别甲醛16.克莱森酯缩合2 CHO+NaOH COONa+ CH 2OH17.兴斯堡反应:分离鉴别 伯 仲 叔胺R-NH 2 溶解 R-NH-R ′ + SO 2Cl SO2-N-R ″R-N-R ″ 不反应R ′18.霍夫曼降解:酰胺与溴(氯)在碱性溶液作用下可脱去酰胺分子中的羰基,生成比酰胺少一个碳原子的伯胺R-CO-NH 2—(Br 2;NaOH)→R -NH 2N H 2NH C 2H 5ONa 高压釜,密封,180ºC NH 2NH 2,NaOH 三甘醇 ′19.哈沃斯透视式:用立体形式表示费歇尔投影式20.莫力许反应:所有糖都能和浓H2SO4和α-萘酚反应生成紫色物质,用以鉴别碳水化合物。

(完整版)经典有机人名反应

(完整版)经典有机人名反应

有机化学人名反应1.拜耳维利格Baeyer----Villiger 反应(p317)反应机理(不要求)过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。

因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。

反应实例2.康尼查罗Cannizzaro 反应(p321)凡α位碳原子上无活泼氢的醛类和浓NaOH或KOH水或醇溶液作用时,不发生醇醛缩合或树脂化作用而起歧化反应生成与醛相当的酸(成盐)及醇的混合物。

此反应的特征是醛自身同时发生氧化及还原作用,一分子被氧化成酸的盐,另一分子被还原成醇:脂肪醛中,只有甲醛和与羰基相连的是一个叔碳原子的醛类,才会发生此反应,其他醛类与强碱液,作用发生醇醛缩合或进一步变成树脂状物质。

具有α-活泼氢原子的醛和甲醛首先发生羟醛缩合反应,得到无α-活泼氢原子的β-羟基醛,然后再与甲醛进行交叉Cannizzaro反应,如乙醛和甲醛反应得到季戊四醇:反应机理醛首先和氢氧根负离子进行亲核加成得到负离子,然后碳上的氢带着一对电子以氢负离子的形式转移到另一分子的羰基不能碳原子上。

反应实例3.克莱森许密特Claisen—Schmidt 反应(交叉羟醛缩合)(p314)一个无氢原子的醛与一个带有氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存在下发生缩合反应,并失水得到不饱和醛或酮:反应机理反应实例3.Claisen 重排烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。

当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。

有机人名反应(pdf版)

有机人名反应(pdf版)
18
1574. [7] J. Gal. et al., J. Org. Chem ., 1974, 39, 418.
参见 : Pictet-Spengler 合成法
Bouveault-Blanc 还原
反应机理
反应实例
19
参考文献
[1] L. Bouveault, G. Blanc, Compt. Rend., 1903, 136, 1676; 1903, 137, 60328; Chem. Zentr., 1903, II, 418; Bull. Soc. Chim. France, 1903, 29, 787; 1904, 31, 666, 1203; 1906, 35, 629. [2] L. Bouveault, R. Locquin, Compt. Rend., 1905, 140, 1593, 1669. [3] Org.Syn., II, 1943, 154, 372; [4] N. S. Isaacs, Reactive Intermediate in Organic Chemistry, John Wiley & Sons, 1974, p370,.
G Gabriel 合成法 Gattermann 反应 Gattermann-Koch 反应 Gomberg-Bachmann 反应
4
H Hantzsch 合成法 Haworth 反应 Hell-Volhard-Zelinski 反应 Hinsberg 反应 Hofmann 烷基化 Hofmann 消除反应 Hofmann 重排 Houben-Hoesch 反应 Hunsdiecker 反应
Arndt-Eister 反应
反应机理
10
反应实例
参考文献

100种有机化学人名反应(有机化学)

100种有机化学人名反应(有机化学)

1. ArndtEistert反应醛、酮与重氮甲烷反应失去氮并重排成多一个CH2基的相应羰基化合物这个反应对于环酮的扩环反应很重要。

OCH2N2O-CH2NNN2重排O2. BaeyerVilliger氧化应用过氧酸使酮氧化成酯。

反应中在酮的羰基和相邻的碳原子之间引人一个氧原子。

如由樟脑生成内酯OCH3CH3CH3OOCH3CH3H2SO5有时反应能生成二或多过氧化物但环状酮转变为内酯能得到单一的预期产物。

合适的酸为过硫酸Caro’s 酸、过氧苯甲酸、三氟过氧乙酸。

除环酮外无环的脂肪、芳香酮也可发生此反应。

二酮生成酸酐类、α、β不饱和酮得到烯醇酯类。

3. Bechamp还原可用于工业制备在铁、亚铁盐和稀酸的作用下芳香族硝基化合物能还原成相应的芳香胺。

C6H5-NO2 2Fe 6HCl C6H5-NH2 2FeCl3 2H2O。

当某些盐FeCl2、FeCl3、FeSO4、CaCl2等存在时所用酸无论是过量还是少量甚至在中性溶液中都能够进行这种还原。

此方法适用于绝大部分各种不同结构的芳香族化合物有时也用来还原脂肪族硝基化合物。

4. Beckmann重排醛肟、酮肟用酸或路易斯酸处理后最终产物得酰胺类。

单酮肟重排仅得一种酰胺混酮肟重排得两种混合酰胺。

但一般质子化羟基的裂解和基团R的转移是从相反的位置同时进行的。

NOHRRRNHRONRROHRNHRO 无论酯酮肟和芳酮肟都会发生此反应。

环酮肟重排得内酰胺这在工业生产上很重要利用此反应可帮助决定异构酮肟的结构。

5. Beyer喹啉类合成法芳香伯胺与一分子醛及一分子甲基酮在浓盐酸或ZnCl2存在下反应生成喹啉类化合物。

NH2NHRRHNRRRCHORCOCH3HCl H2这是对Doebner-Miller喹啉合成法的改进。

Doebner-Miller合成法由芳胺和不饱和醛或酮反应得到喹啉衍生物。

NH2NHCH3HNCH3 H2CH3O2CH3CHO 6. Blanc氯甲基化反应芳香族化合物苯、萘、蒽、菲、联苯及衍生物在ZnCl2或NH4Cl、AlCl3、SnCl4、H2SO4、H3PO4 存在下用甲醛和极浓盐酸处理发生芳香化合物的氯甲基化反应。

有机化学人名反应

有机化学人名反应

有机化学人名反应取代反应:1,加特曼反应:加特曼(GattermannL)发现:用催化量的金属铜代替氯化亚铜或溴化亚铜作催化剂,也可使重氮盐与盐酸或氢溴酸反应制得芳香氯化物或溴化物。

这样进行的反应叫做加特曼反应。

2,加特曼-科赫反应:苯、一氧化碳和氯化氢反应生成苯甲醛,此反应称为加特曼-科赫反应。

3,傅-克反应:芳香化合物芳环上的氢被烷基取代的反应称为傅-克烷基化反应;芳香化合物芳环上的氢被酰基取代的反应称为傅-克酰基化反应;统称傅-克反应。

4,布赫尔反应:萘酚在亚硫酸氢钠存在下与氨作用,转变成相应萘胺的反应称为布赫尔反应。

5,齐齐巴宾反应:吡啶与氨基钠反应,生成-氨基吡啶,如果位已被占据,则得-氨基吡啶,但产率很低。

这个反应称为齐齐巴宾(Chichibabin)反应。

6,刚穆伯—巴赫曼反应:芳香重氮盐中的芳基在碱性条件下与其它芳香族化合物偶联成联苯或联苯衍生物的反应称为刚穆伯(Gomberg)—巴赫曼(Bachmann)反应。

7,柯尔伯—施密特反应:干燥的酚钠或酚钾与二氧化碳在加温加压下生成羟基苯甲酸的反应称为柯尔伯—施密特(Kolbe-Schmitt)反应。

8,威廉森合成法:在无水条件下,醇钠和卤代烷作用生成醚的反应称为威廉森(WilliamonAW)合成法。

9,席曼反应:芳香重氮盐和氟硼酸反应,生成溶解度较小的氟硼酸盐,后者加热分解产生氟苯,这称为席曼(Schiemann)反应。

10,桑德迈耳反应:1884年,桑德迈耳(SandmeyerT)发现:在氯化亚铜或溴化亚铜的催化下,重氮盐在氢卤酸溶液中加热,重氮基可分别被氯或溴原子取代,生成芳香氯化物或溴化物。

这一反应称为桑德迈耳反应。

11,普塑尔反应:一些重氮盐在碱性条件下或稀酸的条件下可以发生分子内的偶联反应。

这个反应是普塑尔(PchorrR)在寻找合成菲环的新方法中首先发现的,故称为普塑尔反应。

12,瑞穆尔—悌曼反应:酚与氯仿在碱性溶液中加热生成邻位及对位羟基醛的反应称为瑞穆尔—悌曼(Reimer—Tiemann)反应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(拜耳)Baeyer----Villiger 反应过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。

因此,这是一个重排反应1)这个反应的氧化剂一般下是用过酸,如过氧乙酸,过氧苯甲酸,间氯过氧苯甲酸或者三氟过氧乙酸。

其中三氟过氧乙酸是最好的氧化剂。

(其他氧化剂也可以,参考文献)(2)这类氧化剂的特点是反应速率快,反应温度一般在10~40℃,产率高。

具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:2. (贝克曼) Beckmann 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。

迁移基团如果是手性碳原子,则在迁移前后其构型不变。

3.((意)坎尼扎罗)Cannizzaro 反应凡α位碳原子上无活泼氢的醛类和浓NaOH或KOH水或醇溶液作用时,不发生醇醛缩合或树脂化作用而起歧化反应生成与醛相当的酸(成盐)及醇的混合物。

此反应的特征是醛自身同时发生氧化及还原作用,一分子被氧化成酸的盐,另一分子被还原成醇:脂肪醛中,只有甲醛和与羰基相连的是一个叔碳原子的醛类,才会发生此反应,其他醛类与强碱液,作用发生醇醛缩合或进一步变成树脂状物质。

醛首先和氢氧根负离子进行亲核加成得到负离子,然后碳上的氢带着一对电子以氢负离子的形式转移到另一分子的羰基不能碳原子上。

4.Chibabin 反应杂环碱类,与碱金属的氨基物一起加热时发生胺化反应,得到相应的氨基衍生物,如吡啶与氨基钠反应生成2-氨基啶,如果α位已被占据,则得γ-氨基吡啶,但产率很低。

本法是杂环上引入氨基的简便有效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、丫啶和菲啶类化合物均能发生本反应。

喹啉、吡嗪、嘧啶、噻唑类化合物较为困难。

氨基化试剂除氨基钠、氨基钾外,还可以用取代的碱金属氨化物。

反应机理可能是吡啶与氨基首先加成,(Ⅰ),(Ⅰ)转移一个负离子给质子给予体(AH),产生一分子氢气和形成小量的2-氨基吡啶(Ⅱ),此小量的(Ⅱ)又可以作为质子的给予体,最后的产物是2-氨基吡啶的钠盐,用水分解得到2-氨基吡啶:5.(克莱森)Claisen 酯缩合反应含有α-氢的酯在醇钠等碱性缩合剂作用下发生缩合作用,失去一分子醇得到β-酮酸酯。

如2分子乙酸乙酯在金属钠和少量乙醇作用下发生缩合得到乙酰乙酸乙酯。

乙酸乙酯的α-氢酸性很弱(pK a-24.5),而乙醇钠又是一个相对较弱的碱(乙醇的pK a~15.9),因此,乙酸乙酯与乙醇钠作用所形成的负离子在平衡体系是很少的。

但由于最后产物乙酰乙酸乙酯是一个比较强的酸,能与乙醇钠作用形成稳定的负离子,从而使平衡朝产物方向移动。

所以,尽管反应体系中的乙酸乙酯负离子浓度很低,但一形成后,就不断地反应,结果反应还是可以顺利完成。

6.(克莱森)Claisen 重排烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。

当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。

对位、邻位均被占满时不发生此类重排反应。

交叉反应实验证明:Claisen重排是分子内的重排。

采用 g-碳 14C 标记的烯丙基醚进行重排,重排后 g-碳原子与苯环相连,碳碳双键发生位移。

两个邻位都被取代的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连。

Claisen 重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响。

从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]s 迁移和一次由酮式到烯醇式的互变异构;两个邻位都被取代基占据的烯丙基芳基酚重排时先经过一次[3,3]s 迁移到邻位(Claisen 重排),由于邻位已被取代基占据,无法发生互变异构,接着又发生一次[3,3]s 迁移(Cope 重排)到对位,然后经互变异构得到对位烯丙基酚。

取代的烯丙基芳基醚重排时,无论原来的烯丙基双键是Z-构型还是E-构型,重排后的新双键的构型都是E-型,这是因为重排反应所经过的六员环状过渡态具有稳定椅式构象的缘故。

7.Cope 消除反应叔胺的N-氧化物(氧化叔胺)热解时生成烯烃和N,N-二取代羟胺,产率很高。

实际上只需将叔胺与氧化剂放在一起,不需分离出氧化叔胺即可继续进行反应,例如在干燥的二甲亚砜或四氢呋喃中这个反应可在室温进行。

此反应条件温和、副反应少,反应过程中不发生重排,可用来制备许多烯烃。

当氧化叔胺的一个烃基上二个β位有氢原子存在时,消除得到的烯烃是混合物,但是Hofmann产物为主;如得到的烯烃有顺反异构时,一般以E-型为主。

例如:这个反应是E2顺式消除反应,反应过程中形成一个平面的五员环过度态,氧化叔胺的氧作为进攻的碱:要产生这样的环状结构,氨基和β-氢原子必须处于同一侧,并且在形成五员环过度态时,α,β-碳原子上的原子基团呈重叠型,这样的过度态需要较高的活化能,形成后也很不稳定,易于进行消除反应。

8.Cope 重排1,5-二烯类化合物受热时发生类似于 O-烯丙基重排为 C-烯丙基的重排反应(Claisen重排)反应称为Cope重排。

这个反应30多年来引起人们的广泛注意。

1,5-二烯在150—200℃单独加热短时间就容易发生重排,并且产率非常好。

Cope重排属于周环反应,它和其它周环反应的特点一样,具有高度的立体选择性。

Cope重排是[3,3]s-迁移反应,反应过程是经过一个环状过渡态进行的协同反应:在立体化学上,表现为经过椅式环状过渡态:9.Curtius 反应酰基叠氮化物在惰性溶剂中加热分解生成异氰酸酯:异氰酸酯水解则得到胺:10.Favorskii (法沃斯基) 重排a-卤代酮在氢氧化钠水溶液中加热重排生成含相同碳原子数的羧酸;如为环状a-卤代酮,则导致环缩小。

如用醇钠的醇溶液,则得羧酸酯反应机理11.Friedel-Crafts 烷基化反应芳烃与卤代烃、醇类或烯类化合物在Lewis催化剂(如AlCl3,FeCl3, H2SO4, H3PO4, BF3, HF 等)存在下,发生芳环的烷基化反应。

卤代烃反应的活泼性顺序为:RF > RCl > RBr > RI ; 当烃基超过3个碳原子时,反应过程中易发生重排。

首先是卤代烃、醇或烯烃与催化剂如三氯化铝作用形成碳正离子:所形成的碳正离子可能发生重排,得到较稳定的碳正离子:碳正离子作为亲电试剂进攻芳环形成中间体s-络合物,然后失去一个质子得到发生亲电取代产物:12.Friedel-Crafts 酰基化反应芳烃与酰基化试剂如酰卤、酸酐、羧酸、烯酮等在Lewis酸(通常用无水三氯化铝)催化下发生酰基化反应,得到芳香酮:这是制备芳香酮类最重要的方法之一,在酰基化中不发生烃基的重排。

13.Fries(弗赖斯)重排酚酯在Lewis酸存在下加热,可发生酰基重排反应,生成邻羟基和对羟基芳酮的混合物。

重排可以在硝基苯、硝基甲烷等溶剂中进行,也可以不用溶剂直接加热进行。

邻、对位产物的比例取决于酚酯的结构、反应条件和催化剂等。

例如,用多聚磷酸催化时主要生成对位重排产物,而用四氯化钛催化时则主要生成邻位重排产物。

反应温度对邻、对位产物比例的影响比较大,一般来讲,较低温度(如室温)下重排有利于形成对位异构产物(动力学控制),较高温度下重排有利于形成邻位异构产物(热力学控制)。

反应机理14.Gabriel(盖布瑞尔)合成法邻苯二甲酰亚胺与氢氧化钾的乙醇溶液作用转变为邻苯二甲酰亚胺盐,此盐和卤代烷反应生成N-烷基邻苯二甲酰亚胺,然后在酸性或碱性条件下水解得到一级胺和邻苯二甲酸,这是制备纯净的一级胺的一种方法。

反应机理邻苯二甲酰亚胺盐和卤代烷的反应是亲核取代反应,取代反应产物的水解过程与酰胺的水解相似。

15.Gattermann-Koch 反应芳香烃与等分子的一氧化碳及氯化氢气体在加压和催化剂(三氯化铝及氯化亚铜)存在下反应,生成芳香醛:反应机理16.Hinsberg(兴斯堡 ) 反应伯胺、仲胺分别与对甲苯磺酰氯作用生成相应的对甲苯磺酰胺沉淀,其中伯胺生成的沉淀能溶于碱(如氢氧化钠)溶液,仲胺生成的沉淀则不溶,叔胺与对甲苯磺酰氯不反应。

此反应可用于伯仲叔胺的分离与鉴定。

17.Hofmann 烷基化卤代烷与氨或胺发生烷基化反应,生成脂肪族胺类:由于生成的伯胺亲核性通常比氨强,能继续与卤代烃反应,因此本反应不可避免地产生仲胺、叔胺和季铵盐,最后得到的往往是多种产物的混合物。

用大过量的氨可避免多取代反应的发生,从而可得到良好产率的伯胺。

反应机理反应为典型的亲核取代反应(S N1或S N2)18.Hofmann(霍夫曼)消除反应季铵碱在加热条件下(100--200°C)发生热分解,当季铵碱的四个烃基都是甲基时,热分解如果季铵碱的四个烃基不同,则热分解时总是得到含取代基最少的烯烃和叔胺:19.Hofmann 重排(降解)酰胺用溴(或氯)在碱性条件下处理转变为少一个碳原子的伯胺:反应机理20.Knoevenagel 反应含活泼亚甲基的化合物与醛或酮在弱碱性催化剂(氨、伯胺、仲胺、吡啶等有机碱)存在下缩合得到a,b-不饱和化合物。

反应机理21.Koble 反应脂肪酸钠盐或钾盐的浓溶液电解时发生脱羧,同时两个烃基相互偶联生成烃类:如果使用两种不同脂肪酸的盐进行电解,则得到混合物:反应机理22.Lossen 反应异羟肟酸或其酰基化物在单独加热或在碱、脱水剂(如五氧化二磷、乙酸酐、亚硫酰氯等)存在下加热发生重排生成异氰酸酯,再经水解、脱羧得伯胺:本重排反应后来有过两种改进方法。

反应机理本重排反应的反应机理与 Hofmann 重排、Curtius 反应、Schmidt 反应机理相类似,也是形成异氰酸酯中间体:在重排步骤中,R的迁移和离去基团的离去是协同进行的。

当R是手性碳原子时,重排后其构型保持不变:23. Mannich 反应含有a-活泼氢的醛、酮与甲醛及胺(伯胺、仲胺或氨)反应,结果一个a-活泼氢被胺甲基取代,此反应又称为胺甲基化反应,所得产物称为Mannich碱。

反应机理24.Michael 加成反应一个亲电的共轭体系和一个亲核的碳负离子进行共轭加成,称为Micheal加成:反应机理25. Oppenauer(沃氏)氧化仲醇在叔丁醇铝或异丙醇铝和丙酮作用下,氧化成为相应的酮,而丙酮则还原为异丙醇。

相关文档
最新文档