10一元二次方程

合集下载

10道公式法解一元二次方程练习题及答案

10道公式法解一元二次方程练习题及答案

10道公式法解一元二次方程练习题及答案公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二?b?2?4ac2次方程ax?bx?c?0的求根公式:x?。

公式法2a2的步骤:就是把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项为c1.一般地,对于一元二次方程ax2+bx+c=0,当b2-4ac≥0时,它的根是_____ 当b-4ac 2.方程ax2+bx+c=0有两个相等的实数根,则有____ ____ ,?若有两个不相等的实数根,则有_____ ____,若方程无解,则有__________.3.不解方程,判断方程:①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数根的方程有个4.已知一个矩形的长比宽多2cm,其面积为8cm,则此长方形的周长为________.1?x2x2?x?15.当x=_____ __时,代数式与的值互为相反数.426.若方程x-4x+a=0的两根之差为0,则a的值为________.7.若方程3x2+bx+1=0无解,则b应满足的条件是________.8.用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________.9.一元二次方程x2-2x-m=0可以用公式法解,则m=. A.0B.1C.-1D.±110.用公式法解方程4y2=12y+3,得到A.B.y= C.D.11.已知a、b、c是△ABC的三边长,且方程a+2bx-c=0的两根相等,则△ABC为A.等腰三角形 B.等边三角形 C.直角三角形 D.任意三角形12. 用公式法解下列方程:112x2-3x-5=02t2+3=7t x2+x-=03222x??2?0 x?6x?12?0 x=4x+222-3x+22x-24=0 x=x- x+5=02=44x-2=0x+x-35=013. 若规定两数a、b通过“※”运算,得到4ab,即a※b=4ab,例如2※6=4?×2?×6=48求3※5的值;求x※x+2※x-2※4=0中x的值;若无论x是什么数,总有a※x=x,求a的值.用公式法解一元二次方程练习题姓名______________一.填空题。

《一元二次方程》总复习、练习、中考真题【题型解析】

《一元二次方程》总复习、练习、中考真题【题型解析】

一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是 2,且系数不为0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0〕。

注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。

考点2:一元二次方程的解法1.直接开平方法:对形如(x+a〕2=b〔b≥0〕的方程两边直接开平方而转化为两个一元一次方程的方法。

x+a= ± b ∴ x1 =-a+ b x2 =-a- b2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0〕的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a〕2=b 的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b≤0,那么原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是x = - b ± b 2 - 4ac (b2-4ac≥0)。

步骤:①把方程转化为一般形2a式;②确定 a,b,c 的值;③求出 b2-4ac 的值,当 b2-4ac≥0时代入求根公式。

4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:假设ab=0,那么 a=0 或b=0。

步骤是:①将方程右边化为 0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。

5.一元二次方程的考前须知:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0 时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c 的值;②假设b2-4ac<0,那么方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4) 2 =3〔x+4〕中,不能随便约去 x+4。

一元二次方程的解法 PPT课件 10(共6份) 华东师大版

一元二次方程的解法 PPT课件 10(共6份) 华东师大版
21.2 降次——解一元二次方程
第1课时 用直接开平方法解一元二次方程
学习目标
• 1.体会解一元二次方程降次的转化思想. • 2.会利用直接开平方法解形如x2=p或 • (mx+n)2=p(p≥0)的一元二次方程.
创设情景 明确目标
一桶某种油漆可刷的面积为1500dm2,李林用这 桶油漆恰好刷完10个同样的正方体现状的盒子的全 部外表面,你能算出盒子的棱长吗?

46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。

47、小事成就大事,细节成就完美。

48、凡真心尝试助人者,没有不帮到自己的。

49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。

50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。

51、对于最有能力的领航人风浪总是格外的汹涌。

32、肯承认错误则错已改了一半。

33、快乐不是因为拥有的多而是计较的少。

34、好方法事半功倍,好习惯受益终身。

35、生命可以不轰轰烈烈,但应掷地有声。

36、每临大事,心必静心,静则神明,豁然冰释。

37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。

38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。
② 方程(2)与方程(1)有什么不同?怎样将方程 (2)转化为方程(1)的形式?
③方程(3)左右两边有什么特点?怎样达到降次的 目的?
小组讨论2
对于可化为(mx+n)2=p(p≥0)或(ax+b)2=(cx+d)2 的方程,可以用直接开平方发求解吗?

一元二次方程

一元二次方程

知识要点:1、整式方程:方程两边都是关于未知数的整式,这样的方程叫整式方程。

2、一元二次方程:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

3、一元二次方程的一般形式:把20ax bx c ++=(,,a b c 为常数,0a ≠)称为一元二次方程。

1.一元二次方程首先应满足整式方程,分母或根号内带未知数的一律排除。

2.判断是否为一元二次方程须在化简之后才做判断。

3.首项系数不为零,二次项一定存在是考察一元二次方程形式的基本要求。

4、直接开平方法解一元二次方程:形如a(X-b)2+c=d (0a ≠)的一元二次方程可以用直接开平方法。

5、配方法解一元二次方程:20ax bx c ++=可以通过配完全平方式之后化成a(X-b)2 =c 的形式,然后利用直接开平方法求解。

6、公式法解一元二次方程公式法:利用求根公式解一元二次方程的方法叫做公式法。

求根公式:对于一元二次方程20ax bx c ++=(,,a b c 为常数,0a ≠),当240b ac -≥时,它的根是x =, 即1x =2x =240b ac -=时,应把方程的根写成122bx x a==-的形式,说明一元二次方程有两个相等的根,而不是一个根。

7、利用判别式判断一元二次方程根的情况用公式法解一元二次方程时,前提条件是240b ac -≥,那么如果b 2-4ac<0呢?通过求根公式可以看出,这种情况下,2b x a-=无意义,原方程无解。

由此,我们可以根据b 2-4ac 的符号判断一个一元二次方程有没根,有几个根。

b 2-4ac 称为“判别式”,用符号“△”表示。

当△=b 2-4ac>0时,原方程有2个根(有两个不相等的实数根); 当△=b 2-4ac=0时,原方程有1个根(有两个相等的实数根); 当△=b 2-4ac<0时,原方程无根(无实数根,或称原方程无解)。

8、分解因式法:当一元二次方程的一边为0,而另一边易分解成两个一次因式的乘积时,就把这种解一元二次方程的方法称为分解因式法。

10道公式法解一元二次方程练习题及答案

10道公式法解一元二次方程练习题及答案

10道公式法解一元二次方程练习题及答案公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二?b?2?4ac2次方程ax?bx?c?0的求根公式:x?。

公式法2a2的步骤:就是把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项为c1.一般地,对于一元二次方程ax2+bx+c=0,当b2-4ac≥0时,它的根是_____ 当b-4ac 2.方程ax2+bx+c=0有两个相等的实数根,则有____ ____ ,?若有两个不相等的实数根,则有_____ ____,若方程无解,则有__________.3.不解方程,判断方程:①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数根的方程有个4.已知一个矩形的长比宽多2cm,其面积为8cm,则此长方形的周长为________.1?x2x2?x?15.当x=_____ __时,代数式与的值互为相反数.426.若方程x-4x+a=0的两根之差为0,则a的值为________.7.若方程3x2+bx+1=0无解,则b应满足的条件是________.8.用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________.9.一元二次方程x2-2x-m=0可以用公式法解,则m=. A.0B.1C.-1D.±110.用公式法解方程4y2=12y+3,得到A.B.y= C.D.11.已知a、b、c是△ABC的三边长,且方程a+2bx-c=0的两根相等,则△ABC为A.等腰三角形 B.等边三角形 C.直角三角形 D.任意三角形12. 用公式法解下列方程:112x2-3x-5=02t2+3=7t x2+x-=03222x??2?0 x?6x?12?0 x=4x+222-3x+22x-24=0 x=x- x+5=02=44x-2=0x+x-35=013. 若规定两数a、b通过“※”运算,得到4ab,即a※b=4ab,例如2※6=4?×2?×6=48求3※5的值;求x※x+2※x-2※4=0中x的值;若无论x是什么数,总有a※x=x,求a的值.用公式法解一元二次方程练习题姓名______________一.填空题。

一元二次方程10道例题

一元二次方程10道例题

一元二次方程10道例题一、直接开平方法例1:解方程(x - 3)^2=16解析:对于方程(x - 3)^2 = 16,根据直接开平方法,我们得到:x-3=±4当x - 3=4时,x=4 + 3=7;当x-3=-4时,x=- 4+3=-1。

所以方程的解为x_1 = 7,x_2=-1。

二、配方法例2:解方程x^2+6x - 7 = 0解析:在方程x^2+6x-7 = 0中,1. 移项得x^2+6x=7。

2. 配方:在等式两边加上一次项系数一半的平方,即x^2+6x + 9=7 + 9,得到(x + 3)^2=16。

3. 然后用直接开平方法,x+3=±4。

- 当x+3 = 4时,x=1。

- 当x + 3=-4时,x=-7。

所以方程的解为x_1=1,x_2 = - 7。

三、公式法例3:解方程2x^2-5x+3=0解析:对于一元二次方程ax^2+bx + c=0(a≠0),其求根公式为x=(-b±√(b^2 - 4ac))/(2a)。

在方程2x^2-5x + 3=0中,a = 2,b=-5,c = 3。

1. 先计算判别式Δ=b^2-4ac=(-5)^2-4×2×3=25 - 24 = 1。

2. 把a、b、Δ的值代入求根公式,得到x=(5±√(1))/(4)。

- 当取正号时,x=(5 + 1)/(4)=(3)/(2)。

- 当取负号时,x=(5-1)/(4)=1。

所以方程的解为x_1=(3)/(2),x_2 = 1。

四、因式分解法例4:解方程x^2-3x+2=0解析:1. 对x^2-3x + 2进行因式分解,得到(x - 1)(x - 2)=0。

2. 则有x-1=0或者x - 2=0。

- 当x-1=0时,x = 1。

- 当x-2=0时,x=2。

所以方程的解为x_1=1,x_2=2。

例5:解方程6x^2+x - 1=0解析:1. 对6x^2+x - 1进行因式分解,得到(2x + 1)(3x - 1)=0。

10道公式法解一元二次方程练习题

10道公式法解一元二次方程练习题

10道公式法解一元二次方程练习题公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二?b?2?4ac2次方程ax?bx?c?0的求根公式:x?。

公式法2a2的步骤:就是把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项为c1.一般地,对于一元二次方程ax2+bx+c=0,当b2-4ac≥0时,它的根是_____ 当b-4ac 2.方程ax2+bx+c=0有两个相等的实数根,则有____ ____ ,?若有两个不相等的实数根,则有_____ ____,若方程无解,则有__________.3.不解方程,判断方程:①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数根的方程有个4.已知一个矩形的长比宽多2cm,其面积为8cm,则此长方形的周长为________.1?x2x2?x?15.当x=_____ __时,代数式与的值互为相反数.426.若方程x-4x+a=0的两根之差为0,则a的值为________.7.若方程3x2+bx+1=0无解,则b应满足的条件是________.8.用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________.9.一元二次方程x2-2x-m=0可以用公式法解,则m=. A.0B.1C.-1D.±110.用公式法解方程4y2=12y+3,得到A.B.y= C.D.11.已知a、b、c是△ABC的三边长,且方程a+2bx-c=0的两根相等,则△ABC为A.等腰三角形 B.等边三角形 C.直角三角形 D.任意三角形12. 用公式法解下列方程:112x2-3x-5=02t2+3=7t x2+x-=03222x??2?0 x?6x?12?0 x=4x+222-3x+22x-24=0 x=x- x+5=02=44x-2=0x+x-35=013. 若规定两数a、b通过“※”运算,得到4ab,即a※b=4ab,例如2※6=4?×2?×6=48求3※5的值;求x※x+2※x-2※4=0中x的值;若无论x是什么数,总有a※x=x,求a的值.用公式法解一元二次方程练习题姓名______________一.填空题。

一元二次方程的解法十字相乘法

一元二次方程的解法十字相乘法

对于多项式 x2 +(a+b)x+ab
x
a
步骤:
1.竖分二次项与常数项;
x
b
2.交叉相乘,积相加;
3.检验确定,横写因式。
x2 ax+bx=(a+b)x ab
即:x 2+(a+b)x+ab=(x+a)(x+b)
十字相乘法: 借助十字交叉线分解因式的方法
对于二次三项式的分解因式, 借用一个十字叉帮助我们分解因式, 这种方法叫做十字相乘法。
=(x-2)(x+5)
当常数项是负数 时,分解的两个 数异号,其中绝 对值较大数符号 与一次项系数符 号相一致。
因式分解时,不但要 注意首尾分解,而且 需十分注意一次项系 数,才能保证因式分 解的正确性。
练习 因式分解:
(1) x2 + 5x+ 6
(2)
课后练习:分解因式 (x-y)2+(x-y)-6
总结:
二次多项式x2+px+q在分解因式时: 如果常数项q是正数,那么把它分解成两个 同号因数,它们的符号与一次项系数p的符 号相同;
如果常数项q是负数,那么把它分解成两个 异号因数,其中绝对值较大的因数与一次 项系数p的符号相同; 对于分解的两个因数,还要看它们的和是 不是等于一次项系数。
总结:
2.
3.
4.
1.2 一元二次方程的解法
——十字相乘法
复习回顾
一、计算:
(1) (x+1)(x+ 2)
(2)
(3)
(4) 总结:
复习回顾
反过来: (1)
(2)
(3)
(4) 所以:
= (x+1)(x+2)

第10课时 一元二次方程和分式方程的应用-2022年广东中考数学总复习课件

 第10课时 一元二次方程和分式方程的应用-2022年广东中考数学总复习课件

1.随着我国新能源汽车的生产技术不断提升,市场 上某款新能源汽车的价格由今年 3 月份的 270 000 元/ 辆下降到 5 月份的 243 000 元/辆.若价格继续下降,且
月平均降价的百分率保持不变,则预测到今年 7 月份
该款新能源汽车的价格将会(参考数据: 0.9 ≈0.95)
() A.低于 22 万元/辆 C.超过 22 万元/辆
经检验,x=0.18 为方程的解,且符合题意.
答:电动车每行驶 1 千米所需电费为 0.18 元.
14.(2021·上海)现在 5G 手机非常流行,某公司第 一季度总共生产 80 万部 5G 手机,三个月生产情况如 图.
(1)求 3 月份生产了多少部手机? (2)5G 手机速度很快,比 4G 下载速 度每秒多 95 MB,下载一部 1 000 MB 的 电影,5G 比 4G 要快 190 秒,求 5G 手机 的下载速度.
答:5G 手机的下载速度是每秒 100 MB.
15.甲、乙两个工程队均参与某筑路工程,先由甲 队筑路 60 km,再由乙队完成剩下的筑路工程,已知乙
队筑路总长是甲队筑路总长的 4 倍,甲队比乙队多筑 3
路 20 天. (1)求乙队筑路的总长;
(2)若甲、乙两队平均每天筑路长度之比为 5∶8,
求乙队平均每天筑路多少千米.
解:设计划平均每天修建步行道的长度为 x 米,
则采用新的施工方式后平均每天修建步行道的长度为
1.5x 米,
依题意,得1
200 x
-112.50x0
=5,
解得 x=80,
经检验,x=80 是原方程的解,且符合题意.
答:计划平均每天修建步行道的长度为 80 米.
13.小马驾车从 A 地到 B 地,驾驶原来的燃油汽车

一元二次方程(知识归纳+题型突破)(原卷版)-2023-2024学年九年级数学上册单元巧练(人教版)

一元二次方程(知识归纳+题型突破)(原卷版)-2023-2024学年九年级数学上册单元巧练(人教版)

一元二次方程(知识归纳+题型突破)1、理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程.2、会用一元二次方程根的判别式判别方程是否有实根及两个实根是否相等.3、了解--元二次方程的根与系数的关系.4、能根据具体问题的实际意义,检验方程解的合理性.1.一元二次方程的相关概念(1)定义:只含有一个未知数,且未知数的最高次数是2的整式方程.(2)一般形式:ax 2+bx +c =0(a ≠0),其中ax 2、bx 、c 分别叫做二次项、一次项、常数项,a 、b 、c 分别称为二次项系数、一次项系数、常数项.2.一元二次方程的解法(1)直接开平方法:形如(x +m )2=n (n ≥0)的方程,可直接开平方求解.(2)因式分解法:可化为(ax +m )(bx +n )=0的方程,用因式分解法求解.(3)公式法:一元二次方程ax 2+bx +c =0的求根公式为x b 2-4ac ≥0).(4)配方法:当一元二次方程的二次项系数为1,一次项系数为偶数时,也可以考虑用配方法.3.根的判别式(1)当Δ=24b ac ->0时,原方程有两个不相等的实数根.(2)当Δ=24b ac -=0时,原方程有两个相等的实数根.(3)当Δ=24b ac -<0时,原方程没有实数根.4.列一元二次方程解应用题(1)解题步骤:①审题;②设未知数;③列一元二次方程;④解一元二次方程;⑤检验根是否有意义;⑥作答.(2)应用模型:一元二次方程经常在增长率问题、面积问题等方面应用.①平均增长率(降低率)问题:公式:b =a (1±x )n ,a 表示基数,x 表示平均增长率(降低率),n 表示变化的次数,b 表示变化n 次后的量;②利润问题:利润=售价-成本;利润率=利润/成本×100%;③传播、比赛问题:④面积问题:a.直接利用相应图形的面积公式列方程;b.将不规则图形通过割补或平移形成规则图形,运用面积之间的关系列方程.注意:运用一元二次方程解决实际问题时,方程一般有两个实数根,则必须要根据题意检验根是否有意义.题型一一元二次方程的解【例1】(2023春·浙江温州·八年级校考期中)已知关于x 的一元二次方程210ax bx ++=有一个根是x m =,则方程20x bx a ++=有一个根是()A .x m =B .x m=-C .1x m=D .1x m=-巩固训练:1.(2023·全国·九年级专题练习)若关于x 的一元二次方程()223790m x x m -++-=的一个根为0,则m 的值为()A .3B .0C .3-D .3-或32.(2023春·山东东营·八年级东营市实验中学校考期中)若m 是一元二次方程220x x --=的一个根,则代数式222m m -的值为()A .0B .2C .2-D .43.(2023春·山东济宁·八年级济宁学院附属中学校考期中)已知m 是一元二次方程2520x x --=的一个根,则代数式220235m m -+的值是()A .2020B .2021C .2022D .20234.(2023·全国·九年级专题练习)已知关于x 的一元二次方程20ax bx c ++=,若0a b c ++=,则此方程必有一个根为()A .0B .1C .-1D .±15.(2023春·浙江宁波·八年级校考阶段练习)若关于x 的一元二次方程()2200ax bx a ++=≠有一根为2023x =,则一元二次方程()212a x bx b -+-=-必有一根为()A .2021B .2022C .2023D .20246.(2023春·山东泰安·八年级统考期中)若2250x x --=的一个解为a ,则()()231a a a a -+-的值为()A .5B .4CD .5-7.(2022秋·上海静安·八年级上海市民办扬波中学校考期中)若1x =-是方程230x mx --=的一个根,则m 的值为.8.(2023·全国·九年级专题练习)(2023·山东枣庄·统考中考真题)若3x =是关于x 的方程26ax bx -=的解,则202362a b -+的值为.9.(2023春·江苏南通·八年级南通田家炳中学校考阶段练习)关于x 的一元二次方程22(1)2230k x x k k -+--+=的一个根为0,则k =.10.(2023·四川·九年级专题练习)先化简,再求值2211121x x x x x ⎛⎫+-÷ ⎪+++⎝⎭,其中x 的值是方程2230x x --=的根.题型二一元二次方程的解法【例2】(2023秋·河南许昌·九年级许昌市第一中学校联考期末)下面是小明同学解一元二次方程2223x x -=的过程,请认真阅读并完成相应的任务.2223x x -=.解:二次项系数化为1,得2312x x -=,第一步移项,得2312x x -=,第二步配方,得239124x x -+=,第三步变形,得2312x ⎛⎫-= ⎪⎝⎭,第四步开方,得312x -=±,第五步解得112x =,252x =,第六步(1)上面小明同学的解法中运用“配方法”将一元二次方程“降次”为两个一元一次方程,体现的数学思想是______,其中“配方法”依据的一个数学公式是______;(2)上述解题过程,从第______步开始出现错误,请写出正确的解答过程.【例3】(2023春·北京门头沟·八年级统考期末)阅读材料,并回答问题:小明在学习一元二次方程时,解方程2230x x --=的过程如下:解:∵2a =,1b =-,3c =-①∴()()2241423b ac =-=--⨯⨯-∆②124230=-=-<③∴此方程无解问题:(1)上述过程中,从步开始出现了错误(填序号);(2)发生错误的原因是:;(3)在下面的空白处,写出正确的解答过程.【例4】(2023·全国·九年级专题练习)按要求解方程(1)21(2603y -=(直接开平方法);(2)231220x x --=(配方法);260x --=(公式法)(4)21(2)12x x -=-(因式分解法)(5)2(35)5(35)60x x ---+=(换元法)【例5】(2023春·陕西咸阳·八年级统考期末)先阅读下面的内容,再解答问题.【阅读】例题:求多项式2224m mn n +++的最小值.解:()()2222224244m mn n m mn n m n +++=+++=++,∵()20m n +≥,∴()244m n ++≥∴多项式2224m mn n +++的最小值是4(1)请写出例题解答过程中把一个三项二次式转化为一个二项式的平方运用的公式是______;(2)求多项式2224230x xy y -+-+的最大值.巩固训练1.(北京市石景山区2022-2023学年八年级下学期期末数学试题)解方程243x x -=,下列用配方法进行变形正确的是()A .2(2)19x -=B .2(4)7x -=C .2(2)4x -=D .2(2)7x -=2.(2022秋·上海奉贤·八年级校考期中)用配方法解一元二次方程282x x -=-时,在方程两边应同时加上()A .4B .8C .16D .643.(2023·全国·九年级专题练习)用配方法解方程2410x x +-=,配方后得到的方程()A .2(2)5x +=B .2(2)5x -=C .2(4)3x +=D .2(4)3x -=4.(2023春·浙江杭州·八年级统考期末)用配方法解一元二次方程2290x x --=配方后可变形为()A .()2110x -=B .()2110x +=C .()218x -=-D .()218x +=-5.(2023春·山东威海·八年级统考期末)用配方法解方程2610x x --=,若配方后结果为2()x m n -=,则n 的值为()A .10-B .10C .3-D .96.(2022秋·山西太原·九年级校考阶段练习)在解方程22410x x ++=时,对方程进行配方,图1是小思做的,图2是小博做的,对于两人的做法,说法正确的是()A .两人都正确B .小思正确,小博不正确C .小思不正确,小博正确D .两人都不正确7.(2023秋·山西长治·九年级统考期末)用配方法解一元二次方程289x x -=时,变形正确的是()A .2(4)9x -=B .2(4)9x +=C .2(4)25x -=D .2(4)25x +=8.(2022秋·天津滨海新·九年级校考期中)若()()160x y x y ++--=,则x y +的值是()A .2B .3C .2-或3D .2或3-9.(2023秋·湖南湘西·九年级统考期末)一元二次方程2830x x +-=配方后可化为.10.(2022秋·甘肃平凉·九年级校考阶段练习)已知实数x 满足2220()(23)x x x x ----=,则代数式22020x x -+的值为.11.(2022秋·上海青浦·八年级校考期中)用配方法解一元二次方程:22510x x +-=12.(2023春·安徽合肥·八年级统考期末)用配方法解方程:()()311x x -+=.13.(2022秋·上海徐汇·八年级上海市徐汇中学校考期中)解方程:23270x x --=14.(2022秋·天津津南·九年级校考期中)选取最恰当的方法解方程:(1)()2214x +=(2)23648x x -=15.(2023春·黑龙江哈尔滨·八年级哈尔滨市萧红中学校考阶段练习)用指定的方法解下列方程(1)26160x x +-=(配方法)(2)21090x x ++=(公式法)16.(2023春·辽宁大连·八年级统考期末)解方程:(1)22310x x -+=(用公式法)(2)2470x x --=(用配方法)17.(2022秋·湖北荆州·九年级校考期中)请用指定方法解下列方程:(1)公式法:2120x x +-=;(2)因式分解法:241440x -=.18.(2023春·山东威海·八年级统考期末)按指定方法解方程:(1)()()223143x x -=+;(因式分解法)(2)22330x x --=.(配方法)题型三一元二次方程根的判别式【例6】(2023春·山东济宁·八年级济宁学院附属中学校考期中)已知关于x 的方程()()221200mx m x m +-+=≠.(1)求证:无论m 取何值,这个方程总有实数根;(2)若等腰ABC 的底边长1a =,另两边b 、c 恰好是这个方程的两个根,求ABC 的周长.巩固训练1.(2023·吉林·统考中考真题)一元二次方程2520x x -+=根的判别式的值是()A .33B .23C .17D2.(2023春·北京昌平·八年级统考期末)下列方程中有两个不相等的实数根的方程是()A .2440x x -+=B .2510x x --=C .2230x x -+=D .2220x x -+=3.(2022秋·天津滨海新·九年级校考期中)关于x 的方程()220x m x m +++=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定4.(2022秋·上海徐汇·八年级上海市徐汇中学校考期中)下列二次三项式在实数范围内一定能因式分解的是()A .223x x ++B .222x x m --C .22x x m--D .22345x xy y -+5.(2022秋·山西临汾·九年级统考期末)关于x 的方程2320ax x +-=有实数根,则a 的取值范围是()A .98≥-a B .98≥-a 且0a ≠C .98a >-D .98a >-且0a ≠6.(2022秋·河南南阳·九年级南阳市第三中学校考阶段练习)方程()21210m x x ---=有两个实数根,则m 的取值范围()A .34m -≤≤且12m ≠B .4m ≤且12m ≠C .34m -≤<D .34m -≤<且12m ≠7.(2023春·浙江绍兴·八年级统考期末)已知()1a a >是关于x 的方程20x bx b a -+-=的实数根.下列说法:①此方程有两个不相等的实数根;②当1a t =+时,一定有1b t =-;③b 是此方程的根;④此方程有两个相等的实数根.上述说法中,正确的有()A .①②B .②③C .①③D .③④8.(2023秋·河南许昌·九年级许昌市第一中学校联考期末)对于实数a ,b ,定义新运算:2a b ab b =-※,若关于x 的方程1x k =※有两个相等的实数根,则k 的值是()A .4B .4-C .14D .14-9.(湖北省荆州市2022-2023学年九年级上学期期中数学试题)对于实数u 、v 定义一种运算“*”为:*u v uv v =+.若关于x 的方程1*(*)4x a x =-有两个相等的实数根,求满足条件的实数a 的值为.10.(2023·贵州·统考中考真题)若一元二次方程2310kx x -+=有两个相等的实数根,则k 的值是.11.(北京市石景山区2022-2023学年八年级下学期期末数学试题)已知关于x 的一元二次方程22210x kx k +-=-.(1)请判断这个方程根的情况;(2)若该方程有一个根小于1,求k 的取值范围.12.(2022秋·上海奉贤·八年级校考期中)已知关于x 的方程()()212110k x k x k +--+-=(1)当k 取什么值时,方程只有一个根?(2)若方程有两个不相等的实数根,求k 的取值范围.题型四一元二次方程的实际应用【例7】(北京市石景山区2022-2023学年八年级下学期期末数学试题)某工厂由于采用新技术,生产量逐月增加,原来月产量为2000件,两个月后增至月产量为3000件.若设月平均增长率为x ,则下列所列的方程正确的是()A .2000(1)3000x +=B .22000(1)3000x +=C .22000(1%)3000x +=D .20002000(1)3000x ++=【例8】(2022秋·山西吕梁·九年级校考阶段练习)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支.已知1个主干长出的枝干和小分支的总数是72,则这种植物每个枝干长出小分支的个数是()A .9B .8C .7D .6【例9】(2023春·八年级单元测试)如图,在Rt ABC 中,90B Ð=°,8AB =cm ,6BC =cm ,动点P 由点A 出发沿AB 方向向点B 匀速移动,速度为1cm/s ,动点Q 由点B 出发沿BC 方向向点C 匀速移动,速度为2cm/s .动点P ,Q 同时从A ,B 两点出发,当PBQ 的面积为152cm 时,动点P ,Q 的运动时间为s .【例10】(2022秋·上海青浦·八年级校考期中)为助力攻坚脱贫,某村村委会在网上直播销售该村优质农产品礼包,已知其3月份的销售量达到400包,若农产品礼包每包的进价25元,原售价为每包40元,该村在今年4月进行降价促销,经调查发现,若农产品礼包每包降价1元,销售量可增加5袋,当农产品礼包每包降价多少元时,这种农产品在4月份可获利4620元?巩固训练1.(2023·全国·九年级专题练习)广东春季是流感的高发时期,某校4月初有一人患了流感,经过两轮传染后,共25人患流感,假设每轮传染中平均每人传染x 人,则可列方程()A .2125x x ++=B .225x x +=C .()2125x +=D .()125x x x ++=2.(2022秋·陕西咸阳·九年级统考期中)有一人感染了某种病毒,若不及时控制就会传染其他人,假设每轮传染中平均一个人传染了x 个人,经过两轮传染后共有64人感染,则x 的值是()A .8B .7C .6D .53.(重庆市开州区2022-2023学年九年级上学期期末数学试题)李师傅去年开了一家商店,今年1月份开始盈利,2月份盈利2400元,4月份盈利达到3456元,若设2月到4月每月盈利的平均增长率为x ,则可列方程为()A .22400(1)3456x +=B .22400(1)3456x -=C .()2400123456x +=D .()2400123456x -=4.(2023春·河北沧州·九年级校考阶段练习)国家卫健委临床检验中心数据,因疫情防控需求,全国新冠病毒核酸检测实验室数量从2020年的2081家,增长至2022年的1.31万家,如果这两年核酸检测实验室的年平均增长率为x ,则下列方程正确的是()A .342.08110(1) 1.3110x ⨯+=⨯B .3242.08110(1) 1.3110x ⨯+=⨯C .2081(12)13100x ⨯+=D .22081(12)13100x ⨯+=5.(2023·黑龙江·统考中考真题)如图,在长为100m ,宽为50m 的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是23600m ,则小路的宽是()A .5mB .70mC .5m 或70mD .10m6.(2023·全国·九年级专题练习)如图,在一张长宽分别为50cm 和30cm 的长方形纸板上剪去四个边长为cm x 的小正方形,并用它做成一个无盖的小长方体盒子,若要使长方体盒子的底面积为2300cm ,求x 的值,根据题意,可列得的方程为()A .()()5030300x x --=B .()()502302300x x --=C .()()50230300x x --=D .215004300x -=7.(2023·江苏无锡·统考中考真题)《九章算术》中提出了如下问题:今有户不知高、广,竿不知长短,横之不出四尺,从之不出二尺,邪之适出,问户高、广、邪各几何?这段话的意思是:今有门不知其高宽:有竿,不知其长短,横放,竿比门宽长出4尺:竖放,竿比门高长出2尺:斜放,竿与门对角线恰好相等.问门高、宽和对角线的长各是多少?则该问题中的门高是尺.8.(2023秋·江西萍乡·九年级统考期末)某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客尽可能多得实惠的前提下,商家还想获得6080元的利润,则该商品的销售定价为元.9.(2023春·八年级单元测试)在ABC 中,90ABC ∠=︒,4cm AB =,3cm BC =,动点P ,Q 分别从点A ,B 同时开始移动(移动方向如图所示),点P 的速度为1cm/s 2,点Q 的速度为1cm/s ,点Q 移动到点C 后停止,点P 也随之停止移动,若使PBQ 的面积为2154cm ,则点P 运动的时间是s .10.(2023春·山东德州·八年级校考阶段练习)如图,90AOB ∠=︒,36cm =OA ,12cm OB =,一个小球从点A 出发沿着AO 方向滚向点O ,另一小球立即从点B 出发,沿BC 匀速前进拦截小球,恰好在点C 处截住了小球.若两个小球滚动的速度相等,则另一个小球滚动的路程BC 是cm .11.(2023春·重庆渝北·八年级礼嘉中学校考期末)今年春季是甲流病毒的高发期.为了遏制甲流病毒的传播,建议市民朋友们在公共场合要佩戴口罩,现在,有一个人患了甲流,经过两轮传染后共有81个人患了甲流.(1)每轮传染中平均一个人传染了几个人?(2)某药房最近售出了100盒口罩.已知售出的95N 医用口罩的数量不超过普通医用口罩的4倍,每盒95N 医用口罩的单价为15元,每盒普通医用口罩的价格为10元,则售出95N 医用口罩和普通医用各多少盒时,总销售额最多?请说明理由.12.(2023·广东阳江·统考一模)自2023年1月以来,甲流便肆虐横行,成为当前主流流行疾病.某一小区有1位住户不小心感染了甲流,由于甲流传播感染非常快,小区经过两轮传染后共有121人患了甲流.(1)每轮感染中平均一个人传染几人?(2)如果按照这样的传播速度,经过三轮传染后累计是否超过1500人患了甲流?13.(2023春·安徽安庆·八年级安庆市石化第一中学校考期末)我市某超市于今年年初以每件30元的进价购进一批商品.当商品售价为40元时,一月份销售250件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到360件.设二、三这两个月的月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加6件,当商品降价多少元时,商场获利1950元?14.(北京市石景山区2022-2023学年八年级下学期期末数学试题)如图,矩形草地ABCD 中,16AB =m ,10AD =m ,点O 为边AB 中点,草地内铺了一条长和宽分别相等直角折线甬路(PO PQ =,OM QN =),若草地总面积(两部分阴影之和)为2132m ,求甬路的宽.15.(2022秋·上海奉贤·八年级校考期中)如图,正方形ABCD 分割成两个小正方形和两个长方形.(1)若正方形ABCD 边长为10,正方形BFPE 的面积是正方形PGDH 的一半,求正方形BFPE 的边BF 的长.(2)若正方形ABCD 面积为10,设BF x =,四边形APGD 的面积为y ,求y 关于x 的函数解析式,并写出定义域.(3)四边形APGD 的面积是否能够等于正方形ABCD 面积的一半,如果能,请求出BF 长,如果不能请说明理由.16.(2023春·江苏南通·八年级统考期末)某学校在“美化校园,幸福学习”活动中,计划利用如图所示的直角墙角(阴影部分,两边足够长),用20m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,AD 两边).75m,求AB的长;(2)若在直角墙角内点P处有一棵桂花树,且到墙CD的距离为12m,若要将这棵树围在矩形花园内(含边100m若能,求出AB的长;若不能,请说明理由.界,不考虑树的粗细),问该花园的面积能否为217.(2023·山东东营·统考中考真题)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为6402m的羊圈?(2)羊圈的面积能达到6502m吗?如果能,请你给出设计方案;如果不能,请说明理由.18.(2022秋·山西晋城·九年级统考期末)某公园中有一块长为32米,宽为20米的矩形花坛,现在要在花坛中间修建一条如图所示的文化长廊,已知长廊的宽度均相等,且横纵相交成直角,若要使花坛的种植面积为540平方米,问长廊的宽度应为多少米?19.(辽宁省辽阳市2022-2023学年九年级上学期期末数学试题)今年元旦期间,某网络经销商进购了一批节日彩灯,彩灯的进价为每条40元,当销售单价定为52元时,每天可售出180条,为了扩大销售,决定采取适当的降价措施,经调查:销售单价每降低1元,则每天可多售出10条.若设这批节日彩灯的销售单价为x(元),每天的销售量为y(条).(1)求每天的销售量y(条)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这批节日彩灯每天所获得的利润为2000元?20.(2023春·浙江金华·八年级义乌市绣湖中学教育集团校联考期中)某水果店以相同的进价购进两批樱桃,第一批80千克,每千克16元出售;第二批60千克,每千克18元出售,两批车厘子全部售完,店主共获利960元.(1)求樱桃的进价是每千克多少元?(2)该水果店一相同的进价购进第三批樱桃若干,第一天将樱桃涨价到每千克20元出售,结果仅售出40千克;为了尽快售完第三批樱桃,第二天店主决定在第一天售价的基础上降价促销,若在第一天售价基础上每降价1元,第二天的销售量就在第一天的基础上增加10千克.到第二天晚上关店时樱桃售完,店主销售第三批樱桃获得的利润为850元,求第二天樱桃的售价是每千克多少元?21.(2023春·安徽阜阳·八年级统考期末)2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价-进货价)类别价格A款钥匙扣B款钥匙扣进货价(元/件)3025销售价(元/件)4537(1)网店第一次用850元购进A、B两款钥匙扣共30件,求两款钥匙扣分别购进的件数?(2)冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?22.(2023春·浙江宁波·八年级统考期末)第19届亚运会即将在杭州举行,某商店购进一批亚运会纪念品进行销售,已知每件纪念品的成本是30元,如果销售单价定为每件40元,那么日销售量将达到100件.据市场调查,销售单价每提高1元,日销售量将减少2件.(1)若销售单价定为每件45元,求每天的销售利润;(2)要使每天销售这种纪念品盈利1600元,同时又要让利给顾客,那么该纪念品的售价单价应定为每件多少元?23.(2023春·江苏无锡·八年级统考期末)服装店购进一批甲、乙两种款型的时尚T恤衫,甲种款型共用了10400元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的2倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)该服装店第一个月甲种款型的T恤衫以200元/件的价格售出20件、乙种款型的T恤衫以250元/件的价格售出10件;为了促销,第二个月决定对甲、乙两种款式的T恤衫都进行降价a元销售,其中甲种款型的T恤衫的销售量增加4a件、乙种款型的T恤衫的销售增加a件,结果第二个月的销售总额比第一个月的销售总额增加了1000a元,求第二个月的销售利润.24.(2022秋·陕西咸阳·九年级统考期中)今年某村农产品喜获丰收,该村村委会在网上直播销售A、B两种优质农产品礼包.(1)已知今年7月份销售A 种农产品礼包256包,8、9月该礼包十分畅销,销售量持续走高,在售价不变的基础上,9月份的销售量达到400包.若设8、9两个月销售量的月平均增长率为x ,求x 的值;(2)若B 种农产品礼包每包成本价为16元,当售价为每包30元时,每月销量为200包.为了尽快减少库存,该村准备在10月进行降价促销,经调查发现,若B 种农产品礼包每包每降价1元,月销售量可增加20包,当B 种农产品礼包每包降价多少元时,该村销售B 种农产品礼包在10月份可获利2860元?25.(2023春·山东济南·八年级统考期末)如图,在ABC 中,90B Ð=°,6cm AB =,8cm BC =点P 从A 开始沿边AB 向点B 以1cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.点P ,Q 同时出发,当点Q 运动到点C 时,两点停止运动,设运动时间为t 秒.(1)填空:BQ =______cm ,PB =______cm ;(用含t 的代数式表示);(2)当t为几秒时,PQ 的长度等于(3)是否存在某一时刻t ,使四边形APQC 的面积等于ABC 面积的23?如果存在,求出t 的值,如果不存在,请说明理由.26.(2022秋·广东广州·九年级校考阶段练习)如图,在Rt ABC △中,90C ∠=︒,6cm AC =,8cm BC =.点P 、Q 同时由A 、C 两点出发,分别以1cm 和2cm s 的速度沿线段AC 、CB 匀速移动,当一点到达终点时,另一点也停止移动.(1)设经过t 秒,用含t 的代数式表示PC 、CQ .PC =______、CQ =______.(2)几秒后,PCQ △的面积是ABC 面积的1327.(2020秋·广东惠州·九年级惠州一中校考阶段练习)如图,在长方形ABCD 中,10cm AB =,12cm BC =,点P 从点A 开始沿边AB 向终点B 以2cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以3cm/s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:BQ =______cm ,PB =______cm (用含t 的代数式表示)(2)当t 为何值时,PQ 的长度等于10cm ?(3)是否存在t ,使得五边形APQCD 的面积等于278cm ?若存在,请求出t 的值;若不存在,请说明理由.28.(2022春·广西梧州·八年级校考期中)如图,在ABC ∆中,90B Ð=°,6cm AB =,8cm BC =点P 从A 开始沿边AB 向点B 以1cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.点P ,Q 同时出发,当点Q 运动到点C 时,两点停止运动,设运动时间为t 秒.(1)填空:BQ =___________cm ,PB =___________cm ;(用含t 的代数式表示)(2)当t 为几秒时,PQ 的长度等于8cm ?(3)是否存在某一时刻t ,使四边形APQC 的面积等于ABC 面积的23?如果存在,求出t 的值,如果不存在,请说明理由,29.(2023春·江苏泰州·八年级统考期末)问题:“某工程队准备修建一条长3000米的下水管道,由于采用新的施工方式,________________,提前2天完成任务,求原计划每天修建下水管道的长度?”条件:(1)实际每天修建的长度比原计划多25%;(2)原计划每天修建的长度比实际少75米.在上述的2个条件中选择1个________________(仅填序号)补充在问题的横线上,并完成解答.30.(2023春·重庆北碚·八年级西南大学附中校考期中)甲、乙两工程队合作完成某修路工程,该工程总长为4800米,原计划32小时完成.甲工程队每小时修路里程比乙工程队的2倍多30米,刚好按时完成任务.(1)求甲工程队每小时修的路面长度;(2)通过勘察,地下发现大型溶洞,此工程的实际施工里程比最初的4800米多了1000米,在实际施工中,m )小时;甲工程队的修路速度比原计划每乙工程队修路效率保持不变的情况下,时间比原计划增加了(25小时下降了3m米,而修路时间比原计划增加m小时,求m的值.31.(重庆市开州区2022-2023学年九年级上学期期末数学试题)随着人们对健康生活的追求,全民健身意识日益增强,徒步走成为人们锻炼的日常,中老年人尤为喜爱.(1)张大伯徒步走的速度是李大伯徒步走的1.2倍,张大伯走5分钟,李大伯走10分钟,共走800米,求张大伯和李大伯每分钟各走多少米?(2)天气好,天色早,张大伯和李大伯锻炼兴致很浓,又继续走,与(1)中相比,张大伯的速度不变,李大伯的速度每分钟提高了2a米,时间都各自多走了10a分钟,结果两人又共走了6900米,求a的值.。

一元二次方程的解法教学反思10篇

一元二次方程的解法教学反思10篇

一元二次方程的解法教学反思10篇精华一元二次方程的解法教学反思10篇作为一名优秀的人民教师,我们要在教学中快速成长,在写教学反思的时候可以反思自己的教学失误,那么写教学反思需要注意哪些问题呢?以下是小编为大家整理的一元二次方程的解法教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。

一元二次方程的解法教学反思1一元二次方程是九年级上册第二单元内容,是今后学习二次函数的基础,是初中数学教材的一个重要内容。

一、课前思考。

1、学生基础。

在七八年级学生已经学习过一元一次方程、二元一次方程组、分式方程的知识,有着很好的解题基础。

2、教学重点应放在解题方法上,让学生通过观察发现每一种解法的特征,是学生能够根据特征选择合适的解题方法。

3、应注意培养学生的解题技能,解题速度、解题的准确率,特别是利用配方法界一元二次方程时,必须让学生区分方程的配方与式子配方的不同。

4、每节课必须实行小测验,可根据题的难易水准不同,将题量控制在3——5道之间。

二、教学过程中学生出现的主要问题。

1、学生不善于观测,特别是在将四种方法全部学习完之后,学生不能很好的选择合适的方法。

例如:能用直接开平方的题,确将其展开再配方;能利用十字相乘法分解因式的,却选择公式法等。

2、对符号处理的不准确,贴别是一个负的无理分数和一个分数相加时,总是将负号放在分数线的前面。

3、十字相乘法中,常数项分解为两个数相乘时,出现符号错误。

4、用配方法计算时错误率较高。

5、用公式法计算时,没有将b2——4ac的.结果放在根号下。

三、教后反思1、今后在将四种方法讲完之后,要用两节课的时间实行综合练习,第一节课能够采用让学生练习解题的方式,第二节课能够采用让学生说解法、让学生找解题错误之处方法实行。

2、增加小测验的力度,能够将题量减小,次数增加。

这样不但能够增加学生的信心,也能够通过持续的重复,增强学生的熟练水准。

3、为了让学生学会选择合适的方法解题,能够采用同桌互相按要求出题的方法,达到学生对各种解法特征的目的。

《一元二次方程》各节知识点及典型例题

《一元二次方程》各节知识点及典型例题

第二章 一元二次方程第一节 一元二次方程 第二节 一元二次方程的解法 第三节 一元二次方程的应用 第四节 一元二次方程根与系数的关系 五大知识点:1、一元二次方程的定义、一元二次方程的一般形式、一元二次方程的解的概念及应用2、一元二次方程的四种解法(因式分解法、开平方法和配方法、配方法的拓展运用、公式法)3、根的判别式4、一元二次方程的应用(销售问题和增长率问题、面积问题和动态问题)5、一元二次方程根与系数的关系(韦达定理)【课本相关知识点】1、一元二次方程:只含有 未知数,并且未和数的 是2,这样的整式方程叫做一元二次方程。

2、能使一元二次方程 的未知数的值叫做一元二次方程的解(或根)3、一元二次方程的一般形式:任何一个一元二次方程经过化简、整理都可以转化为 的形式,这个形式叫做一元二次方程的一般形式。

其中ax 2是 ,a 是 ,bx 是 ,b 是 ,c是常数项【典型例题】【题型一】应用一元二次方程的定义,求字母的值例1、当a 为何值时,关于x 的方程(a-1)x |a|+1+2x-7=0是一元二次方程?【题型二】一元二次方程解的应用例1、关于x 的一元二次方程(a-1)x 2+x+|a|-1=0的一个根是0,则实数a 的值为( )A .-1B .0C .-1D .-1或1例2、已知多项式ax 2-bx+c ,当x=1时,它的值是0;当x=-2时,它的值是1(1)试求a+b 的值(2)直接写出关于x 的一元二次方程ax 2+bx+c=0的一个根【题型三】一元二次方程拓展开放型题例1、已知关于x 的方程(k 2-1)x 2-(k+1)x-2=0(1)当k 取何值时,此方程为一元一次方程?并求出此方程的根(2)当k 取何值时,此方程为一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数、常数项。

巩 固 练 习1、下列方程中,是一元二次方程的为( )A. x 2= -1B. 2x (x-1)+1=2x 2C. x 2+3x=2x D. ax 2+bx+c-0 2、已知关于x 的方程mx 2+(m-1)x-1=2x 2-x ,当m 取什么值时,这个方程是一元二次方程?3、若关于x 的一元二次方程(a-2)x 2是一元二次方程,则a 的取值范围是4、把方程 (x-1)2-3x (x-2)=2(x+2)+1化成一般形式,并写出它的二次项系数、一次项系数和常数项5、若a 是方程x 2-3x+1=0的一个根,求2a 2-5a-2+231a +的值 6、若关于x 的方程ax 2+bx+c=0(a ≠0)中,abc 满足a+b+c=0和a-b+c=0,则方程的根是( )A. 1,0B. -1,0C. 1,-1D. 1,27、已知x=1是一元二次方程ax 2+bx-40=0的一个解,且a ≠b ,求2222a b a b --的值【课本相关知识点】(一)1、利用因式分解的方法实现“降次”,把解一元二次方程转化为解一元一次方程的方法,叫做因式分解法。

九年级上册数学《一元二次方程》单元综合检测含答案

九年级上册数学《一元二次方程》单元综合检测含答案
9.已知x、y都是实数,且(x2+y2)(x2+y2+2)﹣3=0,那么x2+y2的值是()
A. ﹣3B.1C. ﹣3或1D. ﹣1或3
【答案】B
【解析】
试题解析:∵(x2+y2)(x2+y2+2)-3=0,
∴(x2+y2)2+2(x2+y2)-3=0,
解得:x2+y2=-3或x2+y2=1
∵x2+y2>0
【答案】D
【解析】
【分析】
根据一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),其中a,b,c分别叫二次项系数,一次项系数,常数项可得答案.
【详解】一元二次方程 整理成一般形式为:x2﹣2x﹣1=0,二次项系数、一次项系数、常数项分别是1、﹣2、﹣1.
故选D.
【点睛】本题考查了一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.
人教版数学九年级上学期
《一元二次方程》单元测试
【考试时间:90分钟 分数:100分】
1.下列方程中,是关于x的一元二次方程的是()
A.ax2+bx+c=0(a,b,c为常数)B.x2﹣x﹣2=0
C. ﹣2=0D.x2+2x=x2﹣1
2.一元二次方程x2﹣2x=1的二次项系数、一次项系数、常数项分别是()
(1)求证:无论m取任何实数,此方程总有两个不相等的实数根;
(2)设x2+mx+m﹣2=0的两个实数根为x1,x2,若y=x12+x22+4x1x2,求出y与m的函数关系式;

一元二次方程与二次函数知识点总结归纳

一元二次方程与二次函数知识点总结归纳
配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.
(3)公式法

公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

2.一元二次方程有四个特点:
(1)含有一个未知数;
(2)且未知数次数最高次数是2;
(3)是整式方程。要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。如果能整理为 ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。
(4)将方程化为一般形式:ax2+bx+c=0时,应满足(a≠0)
一元二次方程 的求根公式:
(4)因式分解法
因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
根的判别式:一元二次方程 中, 叫做一元二次方程 的根的判别式,通常用“ ”来表示,即
如果方程 的两个实数根是 ,那么 , 。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
1.定义:一般地,如果 是常数, ,那么 叫做 的二次函数.
2.二次函数 的性质
(1)抛物线 的顶点是坐标原点,对称轴是 轴.
(2)函数 的图像与 的符号关系.
|
①当 时 抛物线开口向上 顶点为其最低点;
②当 时 抛物线开口向下 顶点为其最高点.
(3)顶点是坐标原点,对称轴是 轴的抛物线的解析式形式为 .

110道一元二次方程计算题及答案

110道一元二次方程计算题及答案

110道一元二次方程计算题及答案(2)x^2+6x-27=0 答案:x1=3 x2=-9(3)x^2-2x-80=0 答案:x1=-8 x2=10(4)x^2+10x-200=0 答案:x1=-20 x2=10(5)x^2-20x+96=0 答案:x1=12 x2=8(6)x^2+23x+76=0 答案:x1=-19 x2=-4(7)x^2-25x+154=0 答案:x1=14 x2=11(8)x^2-12x-108=0 答案:x1=-6 x2=18(9)x^2+4x-252=0 答案:x1=14 x2=-18(10)x^2-11x-102=0 答案:x1=17 x2=-6(11)x^2+15x-54=0 答案:x1=-18 x2=3(12)x^2+11x+18=0 答案:x1=-2 x2=-9(13)x^2-9x+20=0 答案:x1=4 x2=5(14)x^2+19x+90=0 答案:x1=-10 x2=-9(15)x^2-25x+156=0 答案:x1=13 x2=12(16)x^2-22x+57=0 答案:x1=3 x2=19(17)x^2-5x-176=0 答案:x1=16 x2=-11(18)x^2-26x+133=0 答案:x1=7 x2=19(19)x^2+10x-11=0 答案:x1=-11 x2=1(20)x^2-3x-304=0 答案:x1=-16 x2=19(21)x^2+13x-140=0 答案:x1=7 x2=-20(22)x^2+13x-48=0 答案:x1=3 x2=-16(24)x^2+28x+171=0 答案:x1=-9 x2=-19(25)x^2+14x+45=0 答案:x1=-9 x2=-5(26)x^2-9x-136=0 答案:x1=-8 x2=17(27)x^2-15x-76=0 答案:x1=19 x2=-4(28)x^2+23x+126=0 答案:x1=-9 x2=-14(29)x^2+9x-70=0 答案:x1=-14 x2=5(30)x^2-1x-56=0 答案:x1=8 x2=-7(31)x^2+7x-60=0 答案:x1=5 x2=-12(32)x^2+10x-39=0 答案:x1=-13 x2=3(33)x^2+19x+34=0 答案:x1=-17 x2=-2(34)x^2-6x-160=0 答案:x1=16 x2=-10(35)x^2-6x-55=0 答案:x1=11 x2=-5(36)x^2-7x-144=0 答案:x1=-9 x2=16(37)x^2+20x+51=0 答案:x1=-3 x2=-17(38)x^2-9x+14=0 答案:x1=2 x2=7(39)x^2-29x+208=0 答案:x1=16 x2=13(40)x^2+19x-20=0 答案:x1=-20 x2=1(41)x^2-13x-48=0 答案:x1=16 x2=-3(42)x^2+10x+24=0 答案:x1=-6 x2=-4(43)x^2+28x+180=0 答案:x1=-10 x2=-18(44)x^2-8x-209=0 答案:x1=-11 x2=19(45)x^2+23x+90=0 答案:x1=-18 x2=-5(46)x^2+7x+6=0 答案:x1=-6 x2=-1(48)x^2+5x-50=0 答案:x1=-10 x2=5(49)x^2+13x-14=0 答案:x1=1 x2=-14(50)x^2-23x+102=0 答案:x1=17 x2=6(51)x^2+5x-176=0 答案:x1=-16 x2=11(52)x^2-8x-20=0 答案:x1=-2 x2=10(53)x^2-16x+39=0 答案:x1=3 x2=13(54)x^2+32x+240=0 答案:x1=-20 x2=-12(55)x^2+34x+288=0 答案:x1=-18 x2=-16(56)x^2+22x+105=0 答案:x1=-7 x2=-15(57)x^2+19x-20=0 答案:x1=-20 x2=1(58)x^2-7x+6=0 答案:x1=6 x2=1(59)x^2+4x-221=0 答案:x1=13 x2=-17(60)x^2+6x-91=0 答案:x1=-13 x2=7(61)x^2+8x+12=0 答案:x1=-2 x2=-6(62)x^2+7x-120=0 答案:x1=-15 x2=8(63)x^2-18x+17=0 答案:x1=17 x2=1(64)x^2+7x-170=0 答案:x1=-17 x2=10(65)x^2+6x+8=0 答案:x1=-4 x2=-2(66)x^2+13x+12=0 答案:x1=-1 x2=-12(67)x^2+24x+119=0 答案:x1=-7 x2=-17(68)x^2+11x-42=0 答案:x1=3 x2=-14(69)x^20x-289=0 答案:x1=17 x2=-17(70)x^2+13x+30=0 答案:x1=-3 x2=-10(72)x^2+4x-60=0 答案:x1=-10 x2=6(73)x^2+27x+170=0 答案:x1=-10 x2=-17(74)x^2+27x+152=0 答案:x1=-19 x2=-8(75)x^2-2x-99=0 答案:x1=11 x2=-9(76)x^2+12x+11=0 答案:x1=-11 x2=-1(77)x^2+17x+70=0 答案:x1=-10 x2=-7(78)x^2+20x+19=0 答案:x1=-19 x2=-1(79)x^2-2x-168=0 答案:x1=-12 x2=14(80)x^2-13x+30=0 答案:x1=3 x2=10(81)x^2-10x-119=0 答案:x1=17 x2=-7(82)x^2+16x-17=0 答案:x1=1 x2=-17(83)x^2-1x-20=0 答案:x1=5 x2=-4(84)x^2-2x-288=0 答案:x1=18 x2=-16(85)x^2-20x+64=0 答案:x1=16 x2=4(86)x^2+22x+105=0 答案:x1=-7 x2=-15(87)x^2+13x+12=0 答案:x1=-1 x2=-12(88)x^2-4x-285=0 答案:x1=19 x2=-15(89)x^2+26x+133=0 答案:x1=-19 x2=-7(90)x^2-17x+16=0 答案:x1=1 x2=16(91)x^2+3x-4=0 答案:x1=1 x2=-4(92)x^2-14x+48=0 答案:x1=6 x2=8(93)x^2-12x-133=0 答案:x1=19 x2=-7(94)x^2+5x+4=0 答案:x1=-1 x2=-4(96)x^2+3x-4=0 答案:x1=-4 x2=1(97)x^2-13x+12=0 答案:x1=12 x2=1(98)x^2+7x-44=0 答案:x1=-11 x2=4(99)x^2-6x-7=0 答案:x1=-1 x2=7 (100)x^2-9x-90=0 答案:x1=15 x2=-6 (101)x^2+17x+72=0 答案:x1=-8 x2=-9 (102)x^2+13x-14=0 答案:x1=-14 x2=1 (103)x^2+9x-36=0 答案:x1=-12 x2=3 (104)x^2-9x-90=0 答案:x1=-6 x2=15 (105)x^2+14x+13=0 答案:x1=-1 x2=-13 (106)x^2-16x+63=0 答案:x1=7 x2=9 (107)x^2-15x+44=0 答案:x1=4 x2=11 (108)x^2+2x-168=0 答案:x1=-14 x2=12 (109)x^2-6x-216=0 答案:x1=-12 x2=18 (110)x^2-6x-55=0 答案:x1=11 x2=-5 (111)x^2+18x+32=0 答案:x1=-2 x2=-16。

10.十字相乘法解一元二次方程

10.十字相乘法解一元二次方程

-5
2
x2+2x-8=0 (x-2)(x+4)=0 x-2=0或x+4=0 ∴ x1=2 ,x2=-4
1 1
-2
4
∴ x1=5 ,x2=-2
竖分 叉乘 横写
竖分 叉乘 横写
⑴2x2-5x-3=0;
竖分 叉乘 横写
2 1 1 -3
⑵ 3x2+8x-3=0
竖分 叉乘 横写 3 1 -1 3
对于某些一元二次方程ax2+bx+c=0(a≠0),可以尝试运用十字相乘法 解一元二次方程,关键是对ax2+bx+c进行因式分解。 因式分解的操作要点为:竖分、叉乘、横写。
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她
“用好课堂40分钟最重要。我的经验是,哪怕 是再简单的内容,仔细听和不上心,效果肯 定是不一样的。对于课堂上老师讲解的内容, 有的同学觉得很简单,听讲就不会很认真, 但老师讲解往往是由浅入深的,开始不认真, 后来就很难听懂了;即使能听懂,中间也可 能出现一些知识盲区。高考试题考的大多是 基础知识,正就是很多同学眼里很简单的内 容。”常方舟告诉记者,其实自己对竞赛试 题类偏难的题目并不擅长,高考出色的原因
比如形如x2+(a+b)x+ab=0的方程,可以将其变形为(x+a)(x+b)=0后

一元二次方程(讲义)

一元二次方程(讲义)

是一元二次方程的重要组成部分。

方程,只有当时,才叫做一元二次方程。

如果且,它就是一元二次方程了。

解题时遇到字母系数的方程可能出现以下情况:(1)一元二次方程的条件是确定的,如方程(),把它化成一般形式为,由于,所以,符合一元二次方程的定义。

(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。

如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。

(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。

如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。

ax2+bx+c=0 (a≠0)1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。

2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。

1.说出下列一元二次方程的二次项系数、一次项系数、常数项:(1)x2十3x十2=O (2)x2—3x十4=0; (3)3x2-5=0(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。

2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2一、关于一元二次方程概念的题目(一)选择题1.下列方程中有()是一元二次方程(1)(2)(3)(4)(5)(6)(A)(1)(5)(6)(B)(1)(4)(5)(C)(1)(3)(4)(D)(2)(4)(5)2.若方程是关于的一元二次方程,则的取值范围是()(A)(B)(C)或(D)且(二)填空题已知关于的方程当时,方程为一元二次方程,当时,方程为一元一次方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10一元二次方程 1. 两数差是3,这两数的平方和是117,那么这两个数分别为( )
A.9,6. B.9,6或6-,9-.
C.6-,9-. D.不存在.
2. 一个两位数等于它的个位数的平方,且个位数比十位数大3,则这个两位数为( )
A .25
B .36
C .25或36
D .-25 或-36
3. 毕业了,大家都依依不舍,为了美好的记忆,每个人都向其他同学赠送一张照片,全班一共送出2450张照片,则全班一共有 名学生。

4. 已知二次函数212y x bx c =-++,关于x 的一元二次方程2102
x bx c -++=的两个实根是1-和5-,则这个二次函数的解析式为 .
5. 要用一条长为24cm 的铁丝围成一个斜边是10cm 的直角三角形,则两条直角边的长分别为 .
6. 长方形铁片四角各截去一个边长为5c m 的正方形, 而后折起来做成一个没盖的盒子,铁片的长是宽的2倍,做成的盒子容积为1.5 立方分米, 则铁片的长等于 ,宽等于 .
7. 某种品牌的电脑,原价是7 200元/台,经过连续两次降价后,现价是3 528元/台,平均每次降价的百分率为 .
8. 已知x 为实数,且满足015)32(2)32(222=-+++x x x x ,则x x 322+的值为___. 9. 等腰△ABC 中,AB AC =,△ABC 的周长为20,且有2(1)BC AB +=,求△ABC 的腰长和底边长.
10. 一矩形铁片,长是宽的2倍,四角各截去一个相等的小正方形,做成高是5cm ,容积为3300cm 的无盖的长方体盒子,求铁皮的长和宽.
11. 一块矩形耕地的大小尺寸如图所示.要在这块地上沿东西和南北方向分别挖2条和4条水渠,如果每条水渠的宽相等,而且要保证余下的可耕地的面积为9600m 2,那么水渠应挖多宽?
12. 某超市销售一种饮料,平均每天可售出100箱,每箱利润120元。

为了扩大销售,增加利润,超市准备适当降价。

据测算,若每箱降价1元,每天可多售出2箱。

如果要使每天销售饮料获利14000元,问每箱应降价多少元?
14. 经营一批进价为2元一件的小商品,•在市场营销中发现此商品的日销售单价x(元)与日销售量y(件)之间关系为y=-2x+24,而日销售利润P(元)与日销售单价x(元)之间的关系为P=xy-2,当日销售单价为多少时,每日获得利润48元,且保证日销售量不低于10件?
15. 新中国成立后,社会安定,我国人口数量逐年增加,人均资源不足的矛盾日益突出,为实施可持续发展战略,我国把实行计划生育作为一项基本国策,•如果是我国人口数量增长图,试根据图象信息,回答下列问题.
(1)1950年到1990年我国人口增加了_______亿,2000•年我国人口数量为______亿人;(2)实行计划生育政府前我国人口平均每5年增长10%,由于实行了计划生育,•我国从1990年2000年这十年间就少出生了_________亿人;
(3)1990年到2000年这十年间,我国人口平均每5年增长的百分率是多少?(•要求只列方程,不求解).
150m的长方形鸡场,鸡场的一边靠墙(墙长
16. 如图,有一面积为2
35,求鸡场的长与宽各为多少米?
18),另三边用竹篱笆围成,如果竹篱笆的长为m
m。

相关文档
最新文档