正弦、余弦函数的图像和性质

合集下载

正弦余弦正切函数图象

正弦余弦正切函数图象
2
1-
643 34 6
y 3 1 3 3 1 3 0
3
3
o
1 -
2
-
3
2
x
2
(2) 描点
2-
(3) 连线
正切函数图像: ytanx,
y
xxR,且 xk2,kZ
思考:
2
正切函数 ytanx
1
图像是否有渐近线?
3 2
2
o
1 2
3 2
x
渐近线方程:
2
xk,(kZ)
2
二、三角函数图象的性质
上平移一个
单位得到的
.●
2
x
y=sinx
(2)按五个关键点列表
x
0
2
3 2
2
cosx 1 0 -1 0 1
-cosx
.y
1
o
-1 ●
-1 0 1 0 -y1= -cosx和
y=cosx 关
. y= cosx x [0,2 ] 于X轴对称 ●
.●
2
.
.3●
2
2

x
y= - cosx x [0, 2]
y=cosx
左移
2
y=cosx y=sinx
余弦曲线
返回目录
二、正弦函数的“五点画图法”
(0,0)、( , 1)、( ,0)、( 3 ,-1)、 (2 ,0)
2
2
y
1


0Hale Waihona Puke 2-1●3
2


2
x
y

1

0
2
-1

正弦函数和余弦函数的图像与性质

正弦函数和余弦函数的图像与性质
x 10, 3 2 , 0, 2 , 3
3. 求最小正周期: (1) f ( x) 3sin x 4cos x (2) f ( x) sin 2 x (3) f ( x) sin 2 x cos 2 x
y cos x , x R 的值域是 [1,1],最大值是 1,最小值是 1.
当 cos x 1时,x 2k (k Z). 当 cos x 1 时,x (2k 1) (k Z).
(2)周期性
一般地,对于函数 f ( x),如果存在一个常数 T (T 0), 使得当 x 取定义域 D 内的任意值时,都有 f ( x T ) f ( x) 成立,那么函数 f ( x) 叫做周期函数,常数 T 叫做函数 f ( x) 的周期。对于一个周期函数 f ( x) 来说,如果在所有的周期中 存在一个最小正数,那么这个最小正数叫做函数 f ( x) 的 最小正周期。
解: 偶函数; (1)
(2) f ( x) cos 2 x,偶函数;

2 (k Z)
(3)sin x 1 x 2k
x

,但 x 可以取 ,即 f ( x)的定义域不关于原点对称, 2 2

f ( x) 是非奇非偶函数。
(4) f ( x)
1 sin 2 x sin x 1 1 sin 2 x sin x 1
5 3 增:k , k (k Z), 减:k , k (k Z) 8 8 8 8
(4) y log 1 2cos x 3
2


3 解: x cos x 2 k , 2 k 2 6 6

正弦余弦函数的图像性质(周期、对称、奇偶)

正弦余弦函数的图像性质(周期、对称、奇偶)



正弦函数y=sinx的图 象
-
-
-
x
-
每隔2π ,图象重复出现
− 6π − 4π
-
y
即对任意x,y = sin x + 2π) sin x ( =
1-1-
− 2π
-
o



如果令f(x)= 如果令 ( )=sinx,则 f(x+2π)= (x) , ( + )=f( )= )= 抽象 f (x +T) = f(x)
y
2
+ kπ,k ∈ Z
(kπ,0),k∈Z , ) ∈
余 弦函 数 y=cosx的 图象 的
1-
− 4π
-
− 2π
-
o
- 1心: 无数个 对称中心:
-
-
x
0 k ( + kπ, )( ∈ z) 2
π
巩固运用
例4、判断下列函数的奇偶 性 5 (1) f( x) 2sin (2x+ π); = 2
-
-
-
-
x
-
正弦余弦函数对称性
正弦函数.余弦函数的图象和性质 正弦函数 余弦函数的图象和性质
y
正弦 函数 y=sinx的 图象 的
1-
− 6π
对称轴: 无数条 对称轴:
x=
− 6π
-
对称轴: 无数条 对称轴: x=kπ, x=kπ,k∈Z
-
− 4π
-
− 2π
-
o
-1 -



x
π
对称中心: 无数个 对称中心:
答: T =

正弦、余弦函数的图像和性质PPT优质课件

正弦、余弦函数的图像和性质PPT优质课件

作三角函数图象
描几点何法法:作查图三的角关函键数是表如得何三利角用函单数位值圆,描中点角(xx的,s正in弦x),线连,线巧. 妙地
如移:动x 到 直3 角查坐表标y系内s,i从n3而确0.8定对6应6的0点 (x,sinx).
y
描点 (3 ,0.866)0
1-
y
P
-Hale Waihona Puke 023 2
2
x
1 -
3
O M 1x
2020/12/10
9
练习:(1)作函数 y=1+3cosx,x∈[0,2π]的简图 (2)作函数 y=2sinx-1,x∈[0,2π]的简图
(1) y
x
2020/12/10
10
四川省天全中学数学组
2005.03
2020/12/10
11
余弦曲线
-
-
y-
1
-
6
4
2
o
-1
2
4
6
由于 ycox scosx)(sin [(x) ]sin x()
几何法:作三角函数线得三角函数值,描点(x,sinx),连线
如: x
3

3
的正弦线 MP ,
平移定点 (x, MP)
2020/12/10
5
函数 y six ,n x 0 ,2图象的几何作法
y
作法: (1) 等分
(2) 作正弦线
1-
P1
p
/ 1
(3) 平移 (4) 连线
6
o1
M -11A
o 6
3
正 弦 函 数、余 弦 函数的图象和性质
2020/12/10
1

正弦函数和余弦函数的图像与性质

正弦函数和余弦函数的图像与性质

10
18
(2) 因为
π < 2 π < 3 π <π ,
23
4

y =sin x
在[ π ,π] 上是减函数,
2
所以 sin 2 π > sin 3 π .
3
4
例8.判断f(x)=xsin(+x)奇偶性
解 函数的定义域R关于原点对称 f (x) xsin( x) xsin x
f (x) (x)sin(x) f (x) f (x) f (x)
y
1
-2 - o 2 3
-1
4 x
定义域
R
值域
[1,1]
x 2k (k Z ) 时
2


ymax=1 x 2k (k Z ) 时
2
ymin= 1
y= 0 x k (k Z)
R [1,1]
x 2k (k Z) 时 ymax=1 x 2k (k Z ) 时 ymin= 1
是减函数。
② 函数y=cos(x+/2),xR ( A )
A 是奇函数; B 是偶函数; C 既不是奇函数也不是偶函数; D 有无奇偶性不能确定。
2 不通过求值,比较下列各组中两个三角函数值的大小:
sin 250 >_ sin 260
cos15 / 8>_ cos14 / 9
cos515 >_ cos530
y
1-
-
o
π 6
π 3
π 2
2π 3
5π 6
π
7 6
4π 3
3π 2
5π 3
11π 6

x
-1 -
图象的最高点: ( π ,1); 2

正弦函数、余弦函数的性质(全)

正弦函数、余弦函数的性质(全)

当且仅当 x 2k, ( k Z) 时 , (cos x)min 1.
y
1
-4 -3
-2
- o
-1

2
3
4
5 6 x
ycox(sxR)
例题
求使函数

y3cos2x( )
取得最大值、最小值的
2
自变量的集合,并写出最大值、最小值。
y
1
3 5 2
而在每个闭区间[ 2k , 3 2k ](k Z )上都是
2
2
减函数,其值从1减小到-1。
探究:余弦函数的单调性 y
1
3 5 2
2 3
2

2
O 3 2 5 3 x
2
2
2
1
当x在区间 [3 , 2 ]、[,0]、[,2 ][3 , 4 ] 上时,
4
5 6 x
y=cosx (xR)
y
1
-4 -3
-2
- o
-1

2
3
4
5 6 x
一.周期性
对于函数f (x),如果存在一个非零常数T,使得 当x取定义域内的每一个值时,都有 f (x+T)=f (x)
那么函数f (x)就叫做周期函数,非零常数T叫做这个 函数的周期。
注:1正、T弦要是函非数零常是数周期函数,2k(kZ且 k0),最小
其值从 1减至-1
五、余弦函数的单调性
y
1
-3 5 -2 3
2
2
o - 2
2
-1
x - … …
2
cosx -1
0

正弦函数和余弦函数的图像与性质.ppt

正弦函数和余弦函数的图像与性质.ppt

, 0), (2 ,1)
2
2
并注意-4 曲线的“凹凸”变化.
课堂练习
1.作函数 y sin x 与 y sin x 1在 [0, 2 ]
上的大致图像. 2.指出1.中各图像与正弦函数图像的位置关系.
3.作函数 y cos x, x [ , ]的大致图像.
4.利用3.解不等式:cos x sin x, x [ , ]
-2
五个关键点:(0, 0), ( ,1), ( , 0), (3 , 1), (2 , 0)
2
2
利用五个关-4键点作简图的方法称为“五点法”
10
三、余弦函数的图像
根据诱导公式
cos
8
x
sin(

x) 可知余弦函数
y

cos
6
x的图像可由
y

2 sin
x
的图像向左平移
2
4
个单位得到.

1
2
2
-10
3-5
0
2
1
-2
余弦函数的值域是[1,1] -4
当且仅当 x 2k , k Z 时, -6
余弦函数取得最大值1;-8
5
2
35
x10
2
yP
OM x
当且仅当 x 2k , k-10 Z 时,
余弦函数取得最小值-1-1.2例1.求下列函数的源自大值与最小值,及取到最值6
课堂练习答案
12
1. y sin x, x [0, 2 ] y4
10
x
0
2

3 2
2
2 8
5
-10

正弦函数余弦函数的图像与性质

正弦函数余弦函数的图像与性质

三角函数在物理学中的应用
振动与波动
正弦和余弦函数是描述简谐振动和波动的基本函 数,广泛应用于声学、光学等领域。
交流电
交流电的电压和电流是时间的正弦或余弦函数, 用于驱动各种电器设备。
磁场与电场
在电磁学中,正弦和余弦函数用于描述磁场和电 场的分布和变工程中的许多振动问题都可以用 正弦和余弦函数来描述,如桥梁 振动、车辆振动等。
周期性
正弦函数具有周期性, 其周期为2π。
奇偶性
正弦函数是奇函数,满 足sin(-x) = -sin(x)。
余弦函数的定义
定义
余弦函数是三角函数的另一种形式,定义为直角三角形中锐角的邻边与斜边的比值,记作 cos(x)。
周期性
余弦函数也具有周期性,其周期为2π。
奇偶性
余弦函数是偶函数,满足cos(-x) = cos(x)。
奇偶性
总结词
正弦函数是奇函数,而余弦函数是偶 函数。
详细描述
奇函数满足$f(-x) = -f(x)$,偶函数满 足$f(-x) = f(x)$。对于正弦函数, $sin(-x) = -sin(x)$;对于余弦函数, $cos(-x) = cos(x)$。
最值与振幅
总结词
正弦函数和余弦函数都具有最大值和最小值,这取决于它们的振幅。
正弦函数余弦函数的图像与性质
目录
• 正弦函数与余弦函数的定义 • 正弦函数与余弦函数的图像 • 正弦函数与余弦函数的性质 • 正弦函数与余弦函数的应用 • 正弦函数与余弦函数的扩展知识
01 正弦函数与余弦函数的定 义
正弦函数的定义
定义
正弦函数是三角函数的 一种,定义为直角三角 形中锐角的对边与斜边 的比值,记作sin(x)。

1.4.1-1.4.2 正弦函数、余弦函数的图像与性质

1.4.1-1.4.2 正弦函数、余弦函数的图像与性质

例 1 求下列函数的周期. (1)y=sin2x+π3 (x∈R); (2)y=|sin 2x| (x∈R). (2)作出 y=|sin 2x|的图象.
由图象可知,y=|sin 2x|的周期为π2. 小结 对于形如函数 y=Asin(ωx+φ),ω≠0 时的周期求法常直 接利用 T=|2ωπ|来求解,对于 y=|Asin ωx|的周期情况常结合图象 法来求解.
1.4.1正弦函数的图象 与性质
第二课时
1.了解周期函数、周期、最小正周期的定义. 2.会求函数y=Asin(ωx+φ)的周期. 3.掌握函数y=sin x的奇偶性,会判断简
单三角函数的奇偶性.
定义 图

sin
cos
tan
单位圆中
y
P(x,y) 。
α
O
A(1,0) x
y
x
y x
温故知新
一般地
解 ∵f(x)的最小正周期是 π, ∴f53π=f53π-2π=f-π3. ∵f(x)是 R 上的偶函数, ∴f-π3=fπ3=sin π3= 23.∴f53π= 23.
小结 解决此类问题关键是综合运用函数的周期性和奇偶性, 把自变量 x 的值转化到可求值区间内.
练习 若 f(x)是以π2为周期的奇函数,且 f π3=1, 求 f -56π 的值.
练习 1. 求下列函数的周期. (1)y=cos 32π-23x; (2)y=sin-12x+π3.
解 (1)y=-sin 23x,T=22π=3π. 3
(2)y=sin12x-3π,T=21π×12=2π. 2
例 2 定义在 R 上的函数 f(x)既是偶函数又是周期函数,若 f(x)的 最小正周期是 π,且当 x∈0,π2时,f(x)=sin x,求 f53π的值.

正弦函数、余弦函数的图像和性质

正弦函数、余弦函数的图像和性质
-
图象的最高点 图象的最高点 与x轴的交点 轴的交点
x
1-
( 0 ,1 ) (2π ,1)
-1
o
-1 -
π
6
π
3
π
2
2π 3
5π 6
π
7π 6
4π 3
3π 2
5π 3
11 π 6
π ( π ,0 ) (32 ,0) 2π 2 图象的最低点 (π ,−1) 图象的最低点
-
应用“ 例1.应用“五点法”作图。 应用 五点法”作图。
π
π
例2.分别利用函数的图像和三角函数 先两种方法,求下列不等式的解集:
1 (1) sin x ≥ ; 2 1 5π (2) cos x ≤ (0 < x ≤ ); 2 2
例3.判断y = cos x + 1, x ∈ [0,2π ]与下列 直线交点的个数: 3 ( )y = 2; (2) y = ; (3) y = 0. 1 2


y
1-
数、 图

图象的最高点 ( ,1) 图象的最高点 2 与x轴的交点 轴的交点
( 0 , 0 ) (π , 0 ) (2π ,0)
x
π
-
-1
o
-1 -
π
6
π
3
π
2
2π 3
5π 6
π
7π 6
4π 3
3π 2
5π 3
11 π 6

图象的最低点 (32 ,−1 图象的最低点 π )
简图作法 (1) 列表 列出对图象形状起关键作用的五点坐标) 列表( (2) 描点 定出五个关键点) 描点( y (3) 连线 用光滑的曲线顺次连结五个点) 连线(

正余弦函数的图像与性质

正余弦函数的图像与性质

结合图象可得:
3 π π 3 x∈-5,- π∪- , ∪ π,5. 2 2 2 2
探要点、究所然
例 3 在同一坐标系中,作函数 y=sin x 和 y=lg x 的图象,根据图象判断 出方程 sin x=lg x 的解的个数.
解 建立坐标系 xOy,先用五点法画出函数 y=sin x,x∈[0,2π]的图象,再 依次向左、右连续平移 2π 个单位,得到 y=sin x 的图象. 1 描出点 ,-1 ,(1,0),(10,1)并用光滑曲线连接得到 y=lg x 的图象,如图 10
-
,1)
,1)
y
五点作图法
1-
o
-1 -

6

3

2
2 3
5 6

7 6
4 3
3 2
5 3
11 6
2
x
-
简图作法 (1) 列表(列出对图象形状起关键作用的五点坐标) (2) 描点(定出五个关键点) (3) 连线(用光滑的曲线顺次连结五个点) x y=sinx 0 0

2

0
3 2
( , 1)

2 , 0)
3 ( , 0) 2
与x轴的交点: (
-
余弦函数的图象
(五点作图法) (1) 列表
x y
(2) 描点 (3) 连线
1
y
0 1
2
0
1

3 2
0
2 1
o
-1
-

2

3 2
2
x
y=cosx,x [0,2π]
2、余弦函数的图像
定义域 xR 值

正余弦函数图像及性质

正余弦函数图像及性质
函数 y sin x, x R 的图象。
y
1_
4 3 2 o

_
-1
2
3
正弦曲线
4 x
3.函数 y cos x, x R 的图象:
由诱导公式 y cos x sin( x )可以看出:
余弦函数
y

cos
x,
x

R
与函数
2
y
sin(
x
例题讲解:
例.用“五点法”作出函数y 1 sin x, x 0,2 的简图。
解:(1)按五个关键点列表:
x
0
2

3 2
2
sin x 0 1 0 1 0
sin x 1 1 2 1 0 1
(2)描点,连线
2y
1
0
1
2

x 3 2
2巩固Biblioteka 习:1.作函数 y cos x, x 0,2 的简图。
正弦函数、余弦函数的图象和性质 (一)
1. sin a, cos a, tan a 的几何意义是什么?
y
T
1P
A
oM 1 x
正弦线MP 余弦线OM 正切线AT
2.如何用描点法作出函数 y x2 2x的图象?
(1)列表
x
1 0 1 2 3
y
y x2 2x 3 0 1 0 3
(2) 描点 (3)连线
0
2

1
y
y cos x, x0,2 1
0
1
2

x 3 2
2
x 3 2
2
返回
1
.. 2 1 0 1. 2 x

6.1(3)正弦函数和余弦函数的图像和性质

6.1(3)正弦函数和余弦函数的图像和性质
2、一般地,函数 y=asinx+bcosx可以 化简为:
(3) y 3 sin x cos x
(4) y 2 sin x 3 sin x 2 (5) y sin x 3 sin x cos x
y a b sin x
2 2
3、换元法
4、降次公式法
2
三、例题与练习
例1 、 求函数 y 2 sin(3x )的最大值和最小值, 3 并求使其取得最大值、 最小值的x的集合. 2k 解:当3x 2k 即x (k Z )时, 3 2 3 18 ymin 2 3 2k 7 当3x 2k 即x (k Z )时, 3 2 3 18 ymax 2 2k 7 取得最大值的x的集合是{x x ,k Z }; 3 18 2k 取得最小值的x的集合是{x x ,k Z }. 3 18

6 并求使其取得最大 值和最小值的x的集合. 解:当2 x 2k 即x k (k Z )时,ymin 2
6 12 5 ymax 4 当2 x 2k 即x k (k Z )时, 6 12 5 取得最大值的x的集合是{x x k ,k Z }; 12 取得最小值的x的集合是{x x k
ex1、求y 1 3 cos(2 x

)的最大值和最小值,


12
,k Z }.
例2、 求下列函数的值域. 2 2 (1) y sin x cos x (2) y sin x cos x
1、将函数化为 y=Asin(ωx+φ)或 y=Acos(ωx+φ) 的形式即可求出函 数的最值或值域.

正弦函数、余弦函数的图象和性质

正弦函数、余弦函数的图象和性质


7 6
4 3
3 2
5 3
11 6
2
x
-
图象的最低点 ( ,1)
4.8 正弦函数.余弦函数的图象和性质
例1.画出下列函数的简图
(1)y=sinx+1, x∈[0,2π]
(2)y=-cosx , x∈[0,2π] 解:(2 1)列表
xx
cos x x 01 sin sin cosx x 1 1 -1
2。用平移诱变法,由正弦图象平移得到佘弦 函数图象,这不是新问题,在函数一章学习 平移作图时,就使用过,请同学多作比较。 应该说明的是平移量是不唯一的,方向也可 左可右。
单位 :蠡县南庄实验中学 网址 :
;
/
y sin x, x [0,2 ]
2
2 2
xx
y cos x, x [0,2 ]
4.8 正弦函数.余弦函数的图象和性质
练习:(1)作函数 y=1+3cosx,x∈[0,2π]的简图 (2)作函数 y=2sinx-1,x∈[0,2π]的简图
(1) y
x
总结提炼
1。本节课介绍了四种作函数图象的方 法,其中五点作图法最常用,要牢记五 个关键点的选取特点。
-1
o
-1 -
6


2
3
2 3
5 6

7 6
4 3
2
x

简图作法 (1) 列表(列出对图象形状起关键作用的五点坐标) (2) 描点(定出五个关键点) (3) 连线(用光滑的曲线顺次连结五个点)
-
图象的最低点 ( 3 ,1)
2
4.8 正弦函数.余弦函数的图象和性质
利用变换法作余弦函数的图像
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-1
o
6
3
2
2 3
5 6
7 6
4 3
3 2
5 3
11 6
2
x
-1 -
-
-
y
作法:(1) 等分
(2) 作余弦线பைடு நூலகம்
1-
(3) 竖立、平移
P1
p1/
y
-
-
(4) 连线
o1
M-1 1A
o
6
3
2
2 3
5 6
7 6
4 3
3 2
5 3
11 6
2 x
-y1 -
y
Q1
1-
Q2
-
o1 M2 M1-1
-
o
6
3
2
2 3
正 弦 函 数、余 弦 函数的图象和性质
天中数学组 制作
复习回顾:
1. sinα、cosα、tanα的几何意义.
y
想一想?
T
1P
o M 1A
x
正弦线MP 余弦线OM 正切线AT
正弦线、余弦线的特点演示
三角问题
几何问题
进入
2.用描点法作出函数图象的主要步骤是怎样的?
(1) 列表
x0
6
y0
1 2
y sin x, x 0,2
如移:动x 到 直3 角查坐表标y系内s,in从3 而 确0.8定6对60应的点 (x,sinx).
y
描点
(
3
,0.8660
)
1-
y
P
0
2
3
1-
O M 1x
-
3 2
2
x
几何法:作三角函数线得三角函数值,描点(x, sin x),连线
如: x
3

3
的正弦线
MP,
平移定点 (x, MP)
函数 y sin x, x 0,2 图象的几何作法
3
2 5
236
7 6
4 3
3 2
5 3
11 6
2
3 2
1
3 2
1 2
0
1 2
3 2
1
3 2
1 2
0
(2) 描点 y
1-
-
0
2
1 -
(3) 连线
3 2
2
x
利用三角函数线
1.函数 y sin x, x 0,2 图象的几. 何. 作. 法.
作三角函数图象
描几点何法法:作查图三的角关函键数是表如得何三利角用函单数位值圆,描中点角(xx的,s正in 弦x),线连,线巧. 妙地
y
c
os
x,
x
2
R与函数
y
sin(x
2
),
x
R
2
是同一个函数;余弦函数的图像可以通过正弦曲线向左平移 2
各单位长度而得到.
请单击:返回
-
-
-
-
y
1-
P1
p1/
y
o1
M-1 1A
o
6
3
2
2 3
5
7
6
6
4 3
3 2
5 3
11 6
2 x
-1 -
余弦函数 y cos x, x 0,2 的图象
y
1-
o1
5 6
7 6
4 3
3 2
5 3
11 6
2 x
x
-
-
-1 -
l
-
-
余弦曲线
y
1-
6
4
2
o
-1 -
2
4
6
x
因为终边相同的角的三角函数值相同,所以y=cosx的图象在……,
4,2 , 2 ,0, 0,2 , 2 ,4 , …与y=cosx,x∈[0,2π]的图象相同
请单击:返回
解:(12)列表
x
0
22
scionsxx 10 0 1 -10
sincxosx1 -11 02 11
33 22
22
01 10
00 -11
描点作图
yy
2-
11 - -
y 1ysincxo,sxx, x[0,2[0,2] ]
oo
11- -
2
2
2 323
2
2
xx
y sin x, x [0,2 ]
y cosx, x[0,2 ]
(2) (3)
连描y线点((用定光出滑五的个曲关线键顺点次) 连结五个点)
-
1-
图象的最高点
(0,1) (2 ,1)
与x轴的交点
-1
o
6
-
2
3
2 3
5
7
6
6
4 3
3 5
2
3
11 6
2
x
(
2
,0)
(
3 2
,0)
图象的最低点 ( ,1)
-1 -
例1.画出下列函数的简图
(1)y=sinx+1, x∈[0,2π] (2)y=-cosx , x∈[0,2π]
练习:(1)作函数 y=1+3cosx,x∈[0,2π]的简图 (2)作函数 y=2sinx-1,x∈[0,2π]的简图
(1) y
x
四川省天全中学数学组
2005.03
余弦曲线
-
-
y-
1
-
6
4
2
o
-1
2
4
6
由于 y cosx cos(x) sin[ (x)] sin(x )
所以余弦函数
余弦曲线(平移得到) 余弦曲线(几何作法)
y
(五点作图法)
图象的最高点 ( ,1)
1-
与x轴的交点 2
(0,0) ( ,0) (2 ,0)
-
-1
o
6
3
2
2 3
5 6
7 6
4 3
3 2
5 3
11 6
2
x
图象的最低点
(
3 2
,1)
-1 -
简图作法
(1) 列表(列出对图象形状起关键作用的五点坐标)
P1
6
o1
M-11 A
y
1p1/
作法: (1) 等分 (2) 作正弦线 (3) 平移 (4) 连线
o
6
3
2
2 3
5 6
7 6
4 3
3 2
5 3
11 6
2
x
-1 -
-
-
正弦曲线
y
1-
-
-
6
4
2
o
-1-
2
4
6
x
因为终边相同的角的三角函数值相同,所以y=sinx的图象在……,
4 ,2 , 2 ,0, 0,2 , 2 ,4 , …与y=sinx,x∈[0,2π]的图象相同
相关文档
最新文档