微分方程建模案例1

合集下载

微分方程建模基本方法

微分方程建模基本方法

容器内含盐量为
x x (t )
,
x ( 0 ) 10

t dt
容器中的含盐量的改变量为
dx x 100 t 2 dt
dx

x x (t )
满足的微分方程为
2x dx 100 t dt x ( 0 ) 10
解之得
x 10
5 2
(100 t )
1 y'
这是不显含
的二阶微分方程,并有初值条件:
,y ( 0 ) 0
y (0 ) 0
解此初值问题,可得导弹运行的曲线方程为
y 5 8
4
(1 x )
5
5 12
6
(1 x )
5
5 24

x 1

y
5 24
,即当乙舰航行到点 (1 , 5 /24 )
处时被导弹击中。
解 设导弹的轨迹曲线为
导弹位于点
P ( x, y)
y y ( x ) ,并设经过时间 t
,乙舰位于点 Q (1, v t ) 。
0
由于导弹头始终对准乙舰,故此时直线PQ就是导弹 的轨迹曲线弧OP在点P处的切线,即有
y' v0t y 1 x
亦即
v 0 t (1 x ) y ' y
(三)模拟近似法
例3 (给药方案)
给药方案:每次注射剂量多大,间隔时间多长
一室模型:将整个肌体看作一个房室,称中心室, 室内的血液浓度是均匀的。 问题:
设所研究药物的最小有效浓度 c
1
10
,最大治疗
浓度
c 2 25 ( g / ml )

微积分方法建模1飞机的降落曲线--数学建模案例分析

微积分方法建模1飞机的降落曲线--数学建模案例分析

第二章 微积分方法建模现实对象涉及的变量多是连续的,所以建立连续模型是很自然的,而连续模型一般可以用微积分为工具求解,得到的解析解便于进行理论分析,于是有些离散对象,如人口的演变过程,也可以构造连续模型。

当我们描述实际对象的某些特性随时间(或空间)而演变的过程,分析它的变化规律,预测它的未来性态时,通常要建立对象的动态模型。

建模时首先要根据建模目的和对问题的具体分析作出简化假设,然后按照对象内在的或可以类比的其它对象的规律列出微分方程,求出方程的解并将结果翻译回实际对象,就可以进行描述、分析或预测了。

§1 飞机的降落曲线根据经验,一架水平飞行的飞机,其降落曲线是一条三次抛物线(如图)。

在整个降落过程中,飞机的水平速度保持为常数u ,出于安全考虑,飞机垂直加速度的最大绝对值不得超过10/g (这里g 是重力加速度)。

已知飞机飞行高度h (飞临机场上空时),要在跑道上O 点着陆,应找出开始下降点0x 所能允许的最小值。

一、 确定飞机降落曲线的方程设飞机的降落曲线为d cx bx ax y +++=23由题设有 h x y y ==)(,0)0(0。

由于曲线是光滑的,所以y(x)还要满足0)(,0)0(0='='x y y 。

将上述的四个条件代入y 的 表达式⎪⎪⎩⎪⎪⎨⎧=++='=+++==='==023)()(0)0(0)0(020*******c bx ax x y hd cx bx ax x y c y d y 得 ,0,0,3,22030===-=d c x h b x ha飞机的降落曲线为 )32(23020x x x x h y --= 二、 找出最佳着陆点飞机的垂直速度是y 关于时间t 的导数,故dt dx x x x x h dt dy )66(2020--= 其中dtdx 是飞机的水平速度,,u dt dx = 因此 )(60220x x x x hu dt dy --= 垂直加速度为)12(6)12(6020202022--=--=x x x hu dt dx x x x hu dt y d 记 ,)(22dt y d x a =则126)(0202-=x x x hu x a ,[]0,0x x ∈ 因此,垂直加速度的最大绝对值为 2026)(max x hu x a = []0,0x x ∈设计要求 106202g x hu ≤,所以gh u x 600⋅≥ (允许的最小值) 例如:小时/540km u =,m h 1000=,则0x 应满足:)(117378.9100060360010005400m x =⨯⨯≥ 即飞机所需的降落距离不得小于11737米。

数学建模微分方程模型

数学建模微分方程模型

忽略i0 s s0 i0 s ln 0 s0
1
ln s0 ln s s0 s
< >
模型4
被传染人数的估计
SIR模型
记被传染人数比例 x s0 s 1 x 1 s x ln(1 ) 0 s0 i0 s ln 0 s0 s0 i0 0, s0 1
<
>
§2 传染病模型
问题
• 描述传染病的传播过程 • 分析受感染人数的变化规律
• 预报传染病高潮到来的时刻
• 预防传染病蔓延的手段 • 按照传播过程的一般规律, 用机理分析方法建立模型
< >
模型1 假设 建模
已感染人数 (病人) i(t)
• 每个病人每天有效接触 (足以使人致病)人数为
i(t t ) i(t ) i(t )t
病人可以治愈!
< >
(日接触率) tm
模型3 传染病无免疫性——病人治愈成
SIS 模型 为健康人,健康人可再次被感染
增加假设 3)病人每天治愈的比例为 ~日治愈率 建模
N[i(t t ) i(t )] Ns(t )i(t )t Ni(t )t
di i (1 i ) i dt i (0) i0
0
消去dt /
SIR模型
D {( s, i ) s 0, i 0, s i 1} 在D内作相轨线 i ( s) 的图形,进行分析
D 0
<
1
s
>
模型4
相轨线 i ( s) 及其分析
SIR模型
i ( s ) ( s 0 i0 ) s 1

微分方程建模案例

微分方程建模案例

微分方程建模案例微分方程是数学中的一种重要工具,它被广泛应用于各个领域的建模和问题求解中。

下面将以一个具体的案例来介绍微分方程建模的过程,并通过求解微分方程来解决实际问题。

案例:生物种群的增长模型在生态学中,研究生物种群的增长是一个重要的课题。

种群的增长速度与种群中的个体数量有关。

如果种群中个体数量增加的速度与当前个体数量成正比,可以建立如下的微分方程模型:$$\frac{dN}{dt} = rN$$其中,$N$表示种群的个体数量,$t$表示时间,$r$表示增长的速率。

这个微分方程描述了种群个体数量随时间变化的规律。

解:首先,我们需要求解上述微分方程,得到种群个体数量随时间的函数关系。

这是一个一阶线性常微分方程,我们可以使用分离变量的方法求解。

将微分方程变形为:$$\frac{dN}{N} = rdt$$将方程两边同时积分,得到:$$\int \frac{dN}{N} = \int rdt$$经过积分运算,得到:$$\ln N = rt + C$$其中,$C$为积分常数。

进一步求解,得到:$$N = e^{rt + C}$$根据初始条件,当$t=0$时,$N=N_0$,其中$N_0$为初始种群个体数量。

代入初始条件,解得$C=\ln N_0$,将其代入上述方程,得到最终的解:$$N = N_0e^{rt}$$这个解描述了种群个体数量随时间的增长情况。

接下来,我们来解决一个具体的问题,一个兔子种群的增长情况。

假设初始时刻兔子种群中有100只兔子,增长速率$r=0.02$,那么该种群在未来的10个月内,兔子的数量会如何变化?根据上面的微分方程解,代入初始条件$N_0=100$,$r=0.02$,$t=10$,得到:$$N=100e^{0.02t}$$将$t=10$代入上述方程,可以得到10个月后兔子种群的个体数量:所以,10个月后的兔子种群中大约有122只兔子。

通过这个模型,我们可以预测种群在未来的增长情况,并在实践中应用于生态学、环境保护等领域,为实际问题的决策提供参考。

微分方程建模 个例

微分方程建模 个例

A1
C
C1
分析:1.追击开始后,大家将进入正方 A 形里面,距离将变小,由于追击的规则 及四个人速度和方向的假定,四人还是 在某个正方形的顶点上。 2.会不会出现四个人绕一个圆循环追? 不会!距离会不断缩小最后到一点,就 是正方形的中心。追击曲线是四条指向 D1 中心的螺旋线(可能绕中心几周) 3.坐标架怎么建? D O点在中心,直角坐标架。
2H g
2.二氧化碳的吸收
空气通过盛有CO2的吸收剂的圆柱形器皿,已知它吸收CO2的量与 CO2的浓度及吸收层的厚度成正比,今有含CO28%的空气通过厚度 为10cm的吸收层后浓度为2%,求: (1)若吸收层变为30cm厚,出口浓度是多少? (2)要使出口浓度为1%,应该设多厚的吸收层? 解: 记吸收层厚度为d,等分n份,每小层d/n厘米。入口浓 度为8%,在每小层看吸收量,第一层后被吸收量为: kd k8%d/n,含量变为: 8%(1)
v0t y x(0) 0 y , 就是曲线的切向量, 1 x y (0) 0
Q(1,v0t) 模型里y(t),x(t)都是t的函数,但是三个 变量不好处理,注意我们要求的是y(x)。 P(x,y) O 1 x
(1 x) y y v0t实现了变量t的分离
再建立一个y(t),x(t),t的关系:t时间里导弹已 飞行的距离是可求的。 x 1 y2 dx 5v0t (1 x) y y v0t , x0 0, y0 0
v r (0) 2 2 , (2r cos dx cos dr r sin d dx r sin cos d , , y r sin dy sin dr r cos d dy r cos sin dr d 1 sin cos dx dr r r cos r sin dy

一阶微分方程及其建模方法课件

一阶微分方程及其建模方法课件

微分方程的解为 ( y x)2 Cy( y 2x)3 .
3、一阶线性方程
一阶线性微分方程的标准形式:
dy P( x) y Q( x) dx
当Q( x) 0, 上方程称为齐次的.
当Q( x) 0, 上方程称为非齐次的.
例如 dy y x2 , dx x sin t t 2 , 线性的;
微分方程的阶: 微分方程中出现的未知函数的最 高阶导数的阶数称之. 分类2:
一阶微分方程 F ( x, y, y) 0, y f ( x, y);
高阶(n)微分方程 F ( x, y, y,, y(n) ) 0, y(n) f ( x, y, y,, y(n1) ).
分类3: 线性与非线性微分方程.
( x ux cos u)dx x cos u(udx xdu) 0,
cos udu dx , sin u ln x C, x
微分方程的解为 sin y ln x C . x
例2
求解微分方程
x2
dx xy
y2
dy 2y2
. xy

dy dx
2y2 x2 xy
xy y2
g( y)dy f ( x)dx 可分离变量的微分方程.
例如 dy
4
2x2 y5
4
y 5dy
2 x2dx,
dx
解法 设函数g( y)和 f ( x)是连续的,
g( y)dy f ( x)dx
分离变量法
设函数G( y)和F ( x)是依次为g( y) 和 f ( x) 的原函
数, G( y) F ( x) C 为微分方程的解.
dx
dt
yy 2xy 3, y cos y 1, 非线性的.

理学微分方程建模

理学微分方程建模
用模拟近似法建立微分方程来研究实际问题时必须对 求得的解进行检验,看其是否与实际情况相符或基本相符。 相符性越好则模拟得越好,否则就得找出不相符的主要原 因,对模型进行修改。
Malthus模型与Logistic模型虽然都是为了研究种群数量的 增长情况而建立的,但它们也可用来研究其他实际问题,只要这 些实际问题的数学模型有相同的微分方程即可。
与 以马几尔何萨级斯数模的型方的式预增报长结。果例基如本,相到符25,10例年如,,人1口96达1年2×世10界14个人,
口 约 量 每 即 而 肩数每,3使到上4为发.海排32656年现洋成3年700增两全二年.增6加者部层(,加所净它一M 数生生等几变了即人一以增应倍不物存原乎成。3口倍a.长当Ml0,t太群空因完陆达。6故h率与a两×u大 体 间 ,全地检3l马t61不人s23者..h553时的,就一,查×0模x尔u91可口0也1)1才各有可致每11型s萨07能数模几1,合成限能,人0实5斯个0始量型乎人理员的发且也年际模,终有假相口,之自生按只至上型只保关设同增到间然生马有1只是好9持。的。长总由资存氏69有马不一1.常人尔3率数于源竞模的在萨完平个数斯口约增有及争模型2群善方人型6,为人大限食等计0体的英口站年预2时的物现算总测。尺%在人,,的,另口人活人一实口动口人际数范数的数量围大,
r

dN dt
rN
(3.5)
(3.1)的解为:
N (t)
N er (tt0 ) 0
(3.6)
其中N0=N(t0)为初始时刻t0时的种群数。
马尔萨斯模型的一个显著特点:种群数量翻一番所需 的时间是固定的。
令种群数量翻一番所需的时间为T,则有:
故 T ln 2
2N0 N0erT

微分方程型建模实例题

微分方程型建模实例题

一个数学问题都可以用不同的方法来求解的,不同的方法做出来效果不同,效率也不同。

下面就微分方程模型建模展开建模。

下面给出些微分方程建立模型的实例,供大家参考。

1.一个半球状雪堆,其体积融化的速率与半球面面积S成正比,比例系数k > 0。

设融化中雪堆始终保持半球状,初始半径为R且3小时中融化了总体积的7/8,问雪堆全部融化还需要多长时间?2.从致冰厂购买了一块立方体的冰块,在运输途中发现,第一小时大约融化了1/4 (1)求冰块全部融化要多长时间(设气温不变)(2)如运输时间需要2.5小时,问:运输途中冰块大约会融化掉多少?3.一展开角为α的圆锥形漏斗内盛着高度为H的水,设漏斗底部的孔足够大(表面张力不计),试求漏斗中的水流光需要多少时间?4.容器甲的温度为60度,将其内的温度计移入容器乙内,设十分钟后温度计读数为70度,又过十分钟后温度计读数为76度,试求容器乙内的温度。

5.一块加过热的金属块初始时比室温高70度,20分钟测得它比室温高60度,问:(1)2小时后金属块比室温高多少?(2)多少时间后,金属块比室温高10度?6.设初始时容器里盛放着含净盐10千克的盐水100升,现对其以每分钟3升的速率注入清水,容器内装有搅拌器能将溶液迅时搅拌均匀,并同时以每分钟2升的速率放出盐水,求1小时后容器里的盐水中还含有多少净盐?7.某伞降兵跳伞时的总质量为100公斤(含武器装备),降落伞张开前的空气阻力为0.5v,该伞降兵的初始下落速度为0,经8秒钟后降落伞打开,降落伞打开后的空气阻力约为0.6 试球给伞降兵下落的速度v(t),并求其下落的极限速度。

8.1988年8月5日英国人Mike McCarthy创建了一项最低开伞的跳伞纪录,它从比萨斜塔上跳下,到离地179英尺时才打开降落伞,试求他落地时的速度。

9.证明对数螺线r=A 上任一处的切线与极径的夹角的正切为一常数,()10.实验证明,当速度远低于音速时,空气阻力正比与速度,阻力系数大约为0.005。

一阶常微分方程模型

一阶常微分方程模型

年份 1790 1800 1810 1820 1830 1840 1850 1860 1870
实际人口 390 530 720 960 1290 1710 2320 3140 3860
预测值
误差( ) 误差(%) N ( t ) = N 0 e r ( t − t0 )
N 0 = 390
730 1000 1370 1870 2560 3500 4780 1.4 4.2 6.2 9.4 10.3 10.8 23.8
西南交通大学峨眉校区基础课部数学教研组
2009年 制作
一、一阶常微分方程的建模实例
Malthus 人口模型
第一次出现:1789年 第一次出现:1789年,英国人口学家 Malthus(1766-1834)根据 Malthus(1766-1834)根据100年来人口统计资料 根据100年来人口统计资料 提出。 提出。 基本假设: 基本假设: 人口增长率 r 是常数或单位时间内人口增长量与当 时的人口数量成正比。 时的人口数量成正比。 常用假设: 常用假设: 大规模种群的个体数量是时间的连续可微函数。 大规模种群的个体数量是时间的连续可微函数。
Mathematical Modeling Mathematical Modeling Mathematical Modeling Mathematical Modeling Mathematical Modeling Mathematical Modeling Mathematical Modeling Mathematical Modeling
西南交通大学峨眉校区基础课部数学教研组
2009年 制作
一、一阶常微分方程的建模实例
例题1 例题1:人口模型 问题描述
人口的增长是当前世界上引起普遍关注的问题。早 人口的增长是当前世界上引起普遍关注的问题。 18世纪人们就开始进行人口预报工作 世纪人们就开始进行人口预报工作。 在18世纪人们就开始进行人口预报工作。几百年来 建立了许多有关人口问题的模型。 建立了许多有关人口问题的模型。较简单的模型有 Malthus人口模型和 Malthus人口模型和Logistic人口模型。下面分别介 人口模型和Logistic人口模型 人口模型。 绍这两个模型。 绍这两个模型。

7 微分方程-1

7 微分方程-1

研究种群增长的Logistic Logistic微 例2 研究种群增长的Logistic微分方程模型 的动力学行为。 dn/dt= r (1-n) n 的动力学行为。 数值试验( 对不同的初值N0=[0.01 数值试验(1)取r=0.8 对不同的初值Байду номын сангаас0=[0.01 0.2 0.5 0.8] 观察解的变化 。 建立函数文件: 建立函数文件: funlog.m function y=funlog(t,x) y=0.8*x*(1-x); y=0.8*x*(1运行程序: 运行程序: N=[0.01 0.2 0.5 0.8] for i=1:4 x0=N(i); [tt,xx]=ode45('funlog',[0,10],x0); plot(tt,xx),grid, hold on end
练习1 数值实验( 对固定的初值N0=0.1, 练习1:数值实验(2)对固定的初值N0=0.1, N0=0.1 取不同的r=[0.1, 观察Logistic Logistic微 取不同的r=[0.1, 0.8, 1, 2, 5] 观察Logistic微分方 程解的变化 。 练习2 给出下面的Matlab Matlab指令的数学表达 练习2:给出下面的Matlab指令的数学表达 F=@(t,y)[y(2); -y(1)] ode45(F,[0,10],[0,2]) for i=1:5 [t,y]=ode45(F,[0,10],[0,1/i]); plot(y(:,1),y(:,2)),grid,hold on end
附录1. 研究洛伦兹Lorentz Lorentz方程组 附录1. 研究洛伦兹Lorentz方程组 的动力学行为。 的动力学行为。 在一个从底部加热的空气层里, 在一个从底部加热的空气层里, 上升的热空气与下降的冷空气相 互作用形成湍流圈。 互作用形成湍流圈。一个简化的 系统模型包含3个状态变量x 系统模型包含3个状态变量x1对流 环旋转的速度, 环旋转的速度,x2上升与下降气 流的温差, 流的温差,x3垂直温度剖面的线 性偏差,运动方程: 性偏差,运动方程: 对不同的r值数值模拟该动力系统, 对不同的r值数值模拟该动力系统, 以确定解的长期行为。 以确定解的长期行为。 分别考虑 0<r<1; 1<r<1.35; 24.8<r几种情形下的 1.35<r<24.8; 24.8<r几种情形下的 平衡态及其稳定性。 平衡态及其稳定性。

[整理]11第十一节数学建模—微分方程的应用举例

[整理]11第十一节数学建模—微分方程的应用举例

第十一节 数学建模—微分方程的应用举例微分方程在几何、力学和物理等实际问题中具有广泛的应用,本节我们将集中讨论微分方程在实际应用中的几个实例. 读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力.分布图示★ 衰变问题 ★ 追迹问题 ★ 自由落体问题 ★ 弹簧振动问题 ★ 串联电路问题 ★ 返回内容要点(1) 衰变问题 (2) 追迹问题 (3) 自由落体问题 (4) 弹簧振动问题 (5) 串联电路问题例题选讲衰变问题例1(E01)镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量,这种现象称为放射性物质的衰变. 根据实验得知,衰变速度与现存物质的质量成正比,求放射性元素在时刻t 的质量.解 用x 表示该放射性物质在时刻t 的质量,则dtdx表示x 在时刻t 的衰变速度,依题意得.kx dtdx-= (1) 它就是放射性元素衰变的数学模型,其中0>k 是比例常数,称为衰变常数,因元素的不同而异.方程右端的负号表示当时间t 增加时,质量x 减少.易求出方程(1)的通解为.ktCe x -=若已知当0t t =时,,0x x =代入通解kt Ce x -=中可得,00kt ex C =则可得到特解,)(00t t k e x x --=它反映了某种放射性元素衰变的规律.注:物理学中,我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期,不同物质的半衰期差别极大.如铀的普通同位素)(238U 的半衰期约为50亿年;通常的镭)(226Ra 的半衰期为1600年,而镭的另一同位素Ra 230的半衰期仅为1小时.半衰期是上述放射性物质的特征,然而半衰期却不依赖于该物质的初始质量,一克Ra 226衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是1600年,正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.追迹问题例2(E02)设开始时甲、乙水平距离为1单位, 乙从A 点沿垂直于OA 的直线以等速0v 向正北行走;甲从乙的左侧O 点出发, 始终对准乙以)1(0>n nv 的速度追赶. 求追迹曲线方程, 并问乙行多远时, 被甲追到.解 设所求追迹曲线方程为).(x y y =经过时刻,t 甲在追迹曲线上的点为),,(y x P 乙在点).,1(0t v B 于是 .1tan 0xyt v y --='=θ (1) 由题设,曲线的弧长OP 为 ⎰='+xt nv dx y 002,1解出,0t v 代入(1),得⎰'+=+'-x dx y ny y x 02.11)1( 整理得.11)1(2y ny x '+=''- 追迹问题的数学模型 设,),(p y x p y '=''='则方程化为 211)1(p np x +='- 或 ,)1(12x n dxp dp -=+两边积分,得|,|ln |1|ln 1)1ln(12C x n p p +--=++ 即 .1112n xC p p -=++ 将初始条件000=='==x x p y 代入上式,得.11=C 于是 ,1112nxy y -='++' (2)两边同乘,12y y '+-'并化简得,112n x y y --='+-' (3)(2)式与(3)式相加得 ,11121⎪⎪⎭⎫ ⎝⎛---='nnx x y 两边积分得 .)1(1)1(121211C x n n x n ny nn nn +⎥⎦⎤⎢⎣⎡-++---=+- 代入初始条件00==x y 得,122-=n nC 故所求追迹曲线为 ),1(1)1(1)1(121211>-+⎥⎦⎤⎢⎣⎡-++---=+-n n n x n n x n n y nn nn 甲追到乙时,即点P 的横坐标,1=x 此时.)1(2-=n n y 即乙行走至离A 点)1(2-n n 个单位距离时被甲追到.自由落体问题例3(E03)一个离地面很高的物体, 受地球引力的作用由静止开始落向地面. 求它落到地面时的速度和所需的时间(不计空气阻力).解 取连结地球中心与该物体的直线为y 轴,其方向铅直向上,取地球的中心为原点O (如图).设地球的半径为,R 物体的质量为,m 物体开始下落时与地球中心的距离为),(R l l >在时刻t 物体所在位置为),(t y y =于是速度为.)(dtdyt v =由万有引力定律得微分方程 ,222y kmM dt y d m -= 即 ,222ykMdt y d -=其中M 为地球的质量,k 为引力常数. 因为当R y =时,g dtyd -=22 (取负号是因此时加速度的方向与y 轴的方向相反).,,22gR kM RkM g ==代入得到,2222ygR dt y d -=初始条件为 ,0l y t ==.00='=t y先求物体到达地面时的速度. 由,v dtdy=得 ,22dy dvv dt dy dy dv dt dv dty d =⋅== 代入并分离变量得dy ygR vdv 22-= .2122C y gR v +=把初始条件代入上式,得 ,221gR C -=于是⎪⎪⎭⎫⎝⎛-=l y gR v 11222.112⎪⎪⎭⎫ ⎝⎛--=l y g R v 式中令,R y =就得到物体到达地面时得速度为.)(2lR l gR v --= 再求物体落到地面所需的时间.,112⎪⎪⎭⎫ ⎝⎛--==l y g R v dt dy,0l y t == 分离变量得 .21dy yl yg l R dt --=由条件,0l y t ==得.02=C.a r c c o s 212⎪⎪⎭⎫ ⎝⎛+-=l y l y ly g l R t 在上式中令,R y =便得到物体到达地面所需得时间为.arccos 212⎪⎪⎭⎫ ⎝⎛+-=l R l R lR g l Rt弹簧振动问题例4(E04)设有一个弹簧, 它的一端固定, 另一端系有质量为m 的物体, 物体受力作用沿x 轴运动, 其平衡位置取为坐标原点(图12-11-3). 如果使物体具有一个初始速度,00≠v 那么物体便离开平衡位置, 并在平衡位置附近作上下振动. 在此过程中, 物体的位置x 随时 间t 变化. 要确定物体的振动规律, 就是要求出函数).(t x x =解 据胡克定律知, 弹簧的弹性恢复力f 与弹簧变形x 成正比:,kx f -=其中0>k (称为弹性系数), 负号表示弹性恢复力与物体位移方向相反. 在不考虑介质阻力的情况下, 由牛顿第二定律αm F =可得kx dt xd m -=22 或 .022=+kx dtx d m (11.9) 方程(11.9)称为无阻尼自由振动的微分方程. 它是一个二阶常系数齐次线性方程.如果物体在运动过程中还受到阻尼介质(如空气、油、水等)的阻力的作用, 设阻力与质点运动的速度成正比, 且阻力的方向与物体运动方向相反, 则有,2dtdx f μ-= 其中0>μ(阻尼系数). 从而物体运动满足方程dt dxkx dtx d m μ--=22 或 .022=++kx dt dxdtx d m μ (11.10)这个方程叫做有阻尼的自由振动微分方程, 它也是一个二阶常系数齐次线性方程.如果物体在振动过程中所受到的外力除了弹性恢复力与介质阻力之外, 还受到周期性的干扰力pt H t G sin )(=的作用, 那么物体的运动方程为,sin 22pt H dt dx kx dtx d m +--=μ即 ,sin 2222pt h x dt dxv dtx d =++ω (11.11) 其中.,,22mHh m k m v ===ωμ 这个方程称为强迫振动的微分方程, 它是一个二阶常系数非齐次线性微分方程.下面就三种情形分别讨论物体运动方程的解.串联电路问题如图12-11-7是由电阻R 、电感L 及电容C (其中R ,L ,C 是常数)串联而成的回路, 0=t 时合上开关, 接入电源电动势),(t E 求电路中任何时刻的电流).(t I根据克希霍夫回路电压定律, 有),(t E CQRI dt dI L=++ 其中RI 为电流在电阻上电降压, 而CQ(Q 为电容器两极板间的电量, 是时间t 的函数)为电容在电感上电压降, dt dI L则为电流在电感上电压降. 由电学知, ,dtdQ I =于是方程成为 )(122t E Q C dt dQ R dtQ d L =++ (11.13)这是一个二阶常系数非齐次线性微分方程. 若当0=t 时, 已知电量为0Q 和电流为,0I 则我们有初始条件:.)0()0(,)0(00I I Q Q Q =='=此时, 能求出方程(11.13)初vi 始问题的解.例5(E05)在图12-11-7的电路中, 设,1,40H L R =Ω= ,10164F C -⨯= t t E 10cos 100)(=且初始电量和电流均为0, 求电量)(t Q 和电流).(t I解 由已知条件知,可得到方程,10cos 1006254022t Q dt dQdt Q d =++其特征方程为 ,0625402=++r r 特征根,15202,1i r ±-=故对应齐次方程的通解为 ).15sin 15cos ()(2120t C t C et Q tc +=-而非齐次方程的特解可设为.10sin 10cos )(t B t A t Q p += 代入方程,并比较系数可得 .69764,69784==B A 所以 .10sin 6410cos 84(6971)()t t t Q p += 从而所求方程的通解为 .10sin 1610cos 21(6974)15sin 15cos ()(2120)t t t C t C e t Q t+++=-利用初始条件,0)0(=Q 得到,069784)0(1=+=C Q .697841-=C又 t C C t C C e dtdQt I t 15sin )2015(15cos )1520[()(212120--++-==-)],10cos 1610sin 21(69740t t +-+由,06976401520)0(21=++-=C C I 得.20914642-=C 于是 ⎥⎦⎤⎢⎣⎡++--=-)10sin 1610cos 21()15sin 11615cos 63(36974)(20t t t t e t Q t[].)10cos 1610sin 21(120)15sin 1306015cos 1920(20911)(20t t t t e t I t +-++-=- 解)(t Q 中含有两部分,其中第一部分[])(0.)15sin 11615cos 63(20911)(20∞→→--=-t t t e t Q t c即当t 充分大时,有).10sin 1610cos 21(6974)()(t t t Q t Q p +=≈ 因此,)(t Q p 称为稳态解.。

微分方程建模

微分方程建模

火箭质量( 吨 ) / 149 77 65 火箭质量 ( 当然若燃料的价钱很便宜 60
而推进器的价钱很贵切且 制作工艺非常复杂的话, 制作工艺非常复杂的话, 由于工艺的复杂性及每节火箭 也可选择二级火箭。 也可选择二级火箭。 都需配备一个推进器, 都需配备一个推进器,所以使 用四级或四级以上火箭是不合 算的, 算的,三级火箭提供了一个最 好的方案。 好的方案。
类似地,可以推算出三级火箭: 类似地,可以推算出三级火箭:
υ3 = u ln
m1 + m2 + m3 + mP m + m3 + mP m + mP • 2 • 3 λ m1 + m2 + m3 + mP λ m2 + m3 + mP λ m3 + mP
3
在同样假设下: 在同样假设下:
Wn +1 W2 W3
n+1 W
n1 2
[ − )] λ k (1 n[λ m1 + W− λ )]L+λ kn + (1m λ+ W n +1 1 + 2 λ m2 W3 λ n
记 W1 Wn 可以解出最优结构设计应满足: 可以解出最优结构设计应满足: = ,L ,υ 一定的条件下,k1 = k2 = L = k最小 k1 , 在 一定的条件下,求使 k …k n 问题化为, W = kn 求使k1 2 问题化为 W n n
R
得: k=gR2
2
r2
故引力: 故引力:
R F = mg r
假设(ii)
卫星所受到的引力也就是它作匀速圆周运动的向心力 mυ 2 故又有: 故又有: F = 从而: υ = R g 从而:

数学建模的微分方程方法

数学建模的微分方程方法
数学建模的 微分方程方法
主讲人:杨和
2017.7.24-25
许多有趣的实际问题都包含着随时间发展 的过程。动态模型常被用于表现这些过程的演 变。动态模型建模时首先要根据建模目的和对 问题的具体分析作出简化假设,然后按照对象 内在的或可以类比的其他对象的规律列出微分 方程,接着求解微分方程并将微分方程的解翻 译回实际对象,最后就可以进行描述、分析、 预测和控制实际对象了。
变量:t = 从现在到出售的时间(天) w = 猪的重量(磅) p = 猪的价格(美元/磅) C = 饲养 t 天的花费(美元) 图1-1 售猪问题的 R = 售出猪的收益(美元) 第一步的结果 P = 净收益(美元) 假设:w = 200+5t p = 0.65-0.01t 注意:第一部分 三个阶段(变量 C = 0.45t 、假设、目标) R = p· w 的确定不需要按 P = R-C 特定的顺序。 t≥ 0 目标:求P的最大值
由 x = (7 − 500r) / 25r 给出,对r > 0.014 ,在[0,+∞)上
都有 f ‘ (x)<0,最佳售猪时间为x=0。
图1-6给出了r = 0.015的情况
f(x) 130 120 110 100 90 0
y=−0.075x2 − 0.2x+130
130 125 120 115 110 105 100
p美 元 0 . 65美 元 0 . 01美 元 ( )( )( )( t 天 ) 磅 磅 磅 天
0 . 45美 元 (C 美 元 ) ( )( t 天 ) 天 p美 元 ( R美 元 ) ( )( w 磅 ) 磅
( P 美 元 ) ( R 美 元 ) (C 美 元 )
把变量的单位带进去,可以检查所列式子是否有意义。

微分方程建模案例1

微分方程建模案例1

微分方程建模案例1微分方程建模案例1微分方程是数学中的一个重要分支,它可以用来描述自然界中很多现象和问题的变化规律。

在实际问题的建模中,微分方程起到了至关重要的作用。

本文将介绍一个微分方程建模的案例,以帮助读者更好地理解微分方程的应用。

案例1:放烟花问题描述:小明在庆祝活动中放了一颗烟花。

烟花在起飞后爆炸,产生鲜艳的火花,并逐渐消散。

请问如何用微分方程来描述烟花燃烧和消散的过程?解决思路:我们可以用烟花高度和火花数量来描述烟花的燃烧和消散过程。

假设烟花的高度为h(t),火花的数量为n(t),其中t表示时间。

高度的变化:根据物理知识,烟花往上升的时候速度越来越慢,最后停止在一些高度。

因此,我们可以通过速度来描述高度的变化。

根据牛顿第二定律,物体的加速度等于物体所受到的合力除以物体的质量。

考虑到重力和空气阻力的存在,烟花受到的合力可以表示为:mg - kv,其中m是烟花的质量,g是重力加速度,k是阻力系数,v是烟花的下降速度。

根据牛顿第二定律可得:m・h''(t) = mg - kv(t)火花数量的变化:一颗烟花燃烧后会产生一定数量的火花,这些火花在空气中逐渐消散。

假设火花的数量随时间的变化满足指数衰减规律,即火花数量每过一段时间t0会减少到原来的1/2、因此,火花数量的变化可以用指数衰减方程来描述:n'(t)=-k1n(t)整理得到微分方程组:m・h''(t) = mg - kv(t)n'(t)=-k1n(t)其中m、g、k、k1为常数。

求解微分方程:对于高度的微分方程,我们可以使用常系数线性微分方程的求解方法来求解。

我们可以根据初始条件来确定h(t)的具体形式。

对于火花数量的微分方程,它是一个一阶线性微分方程,可以使用变量分离法来求解。

我们可以根据初始条件来确定n(t)的具体形式。

讨论和应用:通过以上微分方程组的求解,我们可以得到小明放的烟花的高度和火花数量随时间变化的具体函数形式。

微分方程建模案例

微分方程建模案例

微分方程建模案例微分方程是一种描述自然现象和数学模型中变化规律的数学工具。

它广泛应用于物理学、生物学、经济学等领域,能够帮助研究者解释和预测系统的行为。

接下来,我们将介绍一个微分方程建模的案例,以帮助读者更好地理解和应用微分方程。

案例背景:假设我们要研究一个自然保护区中的狼和兔子的数量变化。

该自然保护区面积有限,为了研究物种的动态平衡以及影响因素对其数量的影响,我们需要建立一个微分方程模型。

问题分析:在自然保护区中,狼以兔子为食物,而兔子则面临被捕食的风险。

因此,我们可以推测狼的数量对于兔子的数量产生压力,并且预测狼的数量与兔子的数量之间存在其中一种关系。

模型建立:假设R(t)表示时间t时刻的兔子的数量,W(t)表示时间t时刻的狼的数量。

为了建立一个微分方程模型,我们需要引入一些假设。

1.兔子的繁殖速率与兔子当前的数量成正比,同时也会受到狼的捕食速率的影响。

我们假设兔子繁殖率为α,捕食速率为β,兔子数量的增长速率与当前兔子的数量和受捕食的比例有关。

因此,兔子数量的增长速率可以表示为αR(t)-βW(t)R(t)。

2.狼的数量的变化与狼的死亡率和捕食率有关。

我们假设狼的死亡率为δ,捕食率为γ,狼的数量的变化率可以表示为-δW(t)+γW(t)R(t)。

综上所述,我们可以得到一个微分方程模型:dR(t)/dt = αR(t) - βW(t)R(t)dW(t)/dt = -δW(t) + γW(t)R(t)模型求解与分析:通过求解该微分方程模型,我们可以得到兔子和狼数量随时间变化的解析解。

对于一个给定的初值条件,我们可以通过数值方法(如欧拉法、龙格-库塔法等)求解微分方程模型,并绘制兔子和狼的数量随时间变化的图像。

在模型的分析过程中,我们可以通过改变模型中的参数(如α、β、δ和γ)来分析它们对系统行为的影响。

通过研究模型的稳定点、极限环等特征,我们可以得出关于狼和兔子数量变化的结论。

总结:这个案例展示了微分方程建模的过程,通过建立微分方程模型,我们可以研究和预测自然保护区中狼和兔子数量的变化规律。

数学建模微分方程的应用举例

数学建模微分方程的应用举例

数学建模——微分方程的应用举例分布图示★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题模型 ★追迹问题内容要点一、衰变问题例1 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t 的质量.解 用x 表示该放射性物质在时刻t 的质量, 则dtdx表示x 在时刻t 的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为.kx dtdx-= (8.1) 这是一个以x 为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中0>k 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t 增加时, 质量x 减少.解方程(8.1)得通解.ktCex -=若已知当0t t =时, ,0x x =代入通解kt Ce x -=中可得,00kt e x C -= 则可得到方程(8.1)特解,)(00t t k e x x --=它反映了某种放射性元素衰变的规律.注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素(U 238)的半衰期约为50亿年;通常的镭(Ra 226)的半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始量, 一克Ra 226衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.二、 逻辑斯谛方程:逻辑斯谛方程是一种在许多领域有着广泛应用的数学模型, 下面我们借助树的增长来建立该模型.一棵小树刚栽下去的时候长得比较慢, 渐渐地, 小树长高了而且长得越来越快, 几年不见, 绿荫底下已经可乘凉了; 但长到某一高度后, 它的生长速度趋于稳定, 然后再慢慢降下来. 这一现象很具有普遍性. 现在我们来建立这种现象的数学模型.如果假设树的生长速度与它目前的高度成正比, 则显然不符合两头尤其是后期的生长情形, 因为树不可能越长越快; 但如果假设树的生长速度正比于最大高度与目前高度的差, 则又明显不符合中间一段的生长过程. 折衷一下, 我们假定它的生长速度既与目前的高度,又与最大高度与目前高度之差成正比.设树生长的最大高度为H (m), 在t (年)时的高度为h (t ), 则有)]()[()(t h H t kh dtt dh -= (8.2) 其中0>k 是比例常数. 这个方程为Logistic 方程. 它是可分离变量的一阶常数微分方程.下面来求解方程(8.2). 分离变量得,)(kdt h H h dh=-两边积分,)(⎰⎰=-kdt h H h dh得 ,)]ln([ln 11C kt h H h H+=-- 或,21kHt H C kHt e C e hH h ==-+故所求通解为,11)(22kHtkHt kHt CeH e C He C t h -+=+= 其中的⎪⎪⎭⎫ ⎝⎛>==-0112H C e C C C 是正常数. 函数)(t h 的图象称为Logistic 曲线. 图8-8-1所示的是一条典型的Logistic 曲线, 由于它的形状, 一般也称为S 曲线. 可以看到, 它基本符合我们描述的树的生长情形. 另外还可以算得.)(lim H t h t =+∞→这说明树的生长有一个限制, 因此也称为限制性增长模式.注: Logistic 的中文音译名是“逻辑斯谛”. “逻辑”在字典中的解释是“客观事物发展的规律性”, 因此许多现象本质上都符合这种S 规律. 除了生物种群的繁殖外, 还有信息的传播、新技术的推广、传染病的扩散以及某些商品的销售等. 例如流感的传染、在任其自然发展(例如初期未引起人们注意)的阶段, 可以设想它的速度既正比于得病的人数又正比于未传染到的人数. 开始时患病的人不多因而传染速度较慢; 但随着健康人与患者接触, 受传染的人越来越多, 传染的速度也越来越快; 最后, 传染速度自然而然地渐渐降低, 因为已经没有多少人可被传染了.下面举两个例子说明逻辑斯谛的应用.人口阻滞增长模型 1837年, 荷兰生物学家V erhulst 提出一个人口模型00)(),(y t y by k y dtdy=-= (8.3)其中b k ,的称为生命系数.我们不详细讨论这个模型, 只提应用它预测世界人口数的两个有趣的结果.有生态学家估计k 的自然值是0.029. 利用本世纪60年代世界人口年平均增长率为2%以及1965年人口总数33.4亿这两个数据, 计算得,2=b 从而估计得:(1)世界人口总数将趋于极限107.6亿. (2)到2000年时世界人口总数为59.6亿.后一个数字很接近2000年时的实际人口数, 世界人口在1999年刚进入60亿. 新产品的推广模型 设有某种新产品要推向市场, t 时刻的销量为),(t x 由于产品性能良好, 每个产品都是一个宣传品, 因此, t 时刻产品销售的增长率,dtdx与)(t x 成正比, 同时, 考虑到产品销售存在一定的市场容量N , 统计表明dtdx与尚未购买该产品的潜在顾客的数量)(t x N -也成正比, 于是有)(x N kx dtdx-= (8.4)其中k 为比例系数. 分离变量积分, 可以解得kNtCeNt x -+=1)( (8.5)由,)1()1(,)1(2322222kNt kNt kNt kNt kNt Ce Ce e N Ck dt x d Ce ke CN dt dx -----+-=+= 当N t x <)(*时, 则有,0>dt dx 即销量)(t x 单调增加. 当2)(*N t x =时, ;022=dt x d 当2)(*N t x >时, ;022<dt x d 当2)(*Nt x <时, 即当销量达到最大需求量N 的一半时, 产品最为畅销, 当销量不足N 一半时, 销售速度不断增大, 当销量超过一半时, 销售速度逐渐减少.国内外许多经济学家调查表明. 许多产品的销售曲线与公式(8.5)的曲线(逻辑斯谛曲线)十分接近. 根据对曲线性状的分析, 许多分析家认为, 在新产品推出的初期, 应采用小批量生产并加强广告宣传, 而在产品用户达到20%到80%期间, 产品应大批量生产; 在产品用户超过80%时, 应适时转产, 可以达到最大的经济效益.三、价格调整模型在本章第一节例3已经假设, 某种商品的价格变化主要服从市场供求关系. 一般情况下,商品供给量S 是价格P 的单调递增函数, 商品需求量Q 是价格P 的单调递减函数, 为简单起见, 分别设该商品的供给函数与需求函数分别为P P Q bP a P S βα-=+=)(,)( (8.6)其中βα,,,b a 均为常数, 且.0,0>>βb当供给量与需求量相等时, 由(8.6)可得供求平衡时的价格baP e +-=βα 并称e P 为均衡价格.一般地说, 当某种商品供不应求, 即Q S <时, 该商品价格要涨, 当供大于求, 即Q S >时, 该商品价格要落. 因此, 假设t 时刻的价格)(t P 的变化率与超额需求量S Q -成正比, 于是有方程)]()([P S P Q k dtdP-= 其中,0>k 用来反映价格的调整速度.将(8.6)代入方程, 可得)(P P dtdPe -=λ (8.7) 其中常数,0)(>+=k b βλ方程(8.7)的通解为t e Ce P t P λ-+=)(假设初始价格,)0(0P P =代入上式, 得,0e P P C -=于是上述价格调整模型的解为t e e e P P P t P λ--+=)()(0由于0>λ知, +∞→t 时, .)(e P t P →说明随着时间不断推延, 实际价格)(t P 将逐渐趋近均衡价格e P .四、人才分配问题模型每年大学毕业生中都要有一定比例的人员留在学校充实教师队伍, 其余人员将分配到国民经济其他部门从事经济和管理工作. 设t 年教师人数为),(1t x 科学技术和管理人员数目为),(2t x 又设1外教员每年平均培养α个毕业生, 每年人教育、科技和经济管理岗位退休、死亡或调出人员的比率为βδδ),10(<<表示每年大学生毕业生中从事教师职业所占比率),10(<<δ于是有方程111x x dt dx δαβ-= (8.8) 212)1(x x dtdx δβα--= (8.9) 方程(8.8)有通解t e C x )(11δαβ-=(8.10)若设,)0(101x x =则,101x C =于是得特解te x x )(101δαβ-= (8.11)将(8.11)代入(8.9)方程变为tex x dtdx )(1022)1(δαββαδ--=+ (8.12) 求解方程(8.12)得通解t te x eC x )(122)1(δαβδββ---+= (8.13)若设,)0(202x x =则,110202x x C ⎪⎪⎭⎫⎝⎛--=ββ于是得特解 tt ex e x x x )(101020211δαβδββββ--⎪⎪⎭⎫ ⎝⎛-+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--= (8.14) (8.11)式和(8.14)式分别表示在初始人数分别为)0(),0(21x x 情况, 对应于β的取值, 在t 年教师队伍的人数和科技经济管理人员人数. 从结果看出, 如果取,1=β即毕业生全部留在教育界, 则当∞→t 时, 由于,δα>必有+∞→)(1t x 而,0)(2→t x 说明教师队伍将迅速增加. 而科技和经济管理队伍不断萎缩, 势必要影响经济发展, 反过来也会影响教育的发展. 如果将β接近于零. 则,0)(1→t x 同时也导致,0)(2→t x 说明如果不保证适当比例的毕业生充实教师选择好比率β, 将关系到两支队伍的建设, 以及整个国民经济建设的大局.五、追迹问题设开始时甲、乙水平距离为1单位, 乙从A 点沿垂直于OA 的直线以等速0v 向正北行走; 甲从乙的左侧O 点出发, 始终对准乙以)1(0>n mv 的速度追赶. 求追迹曲线方程, 并问乙行多远时, 被甲追到.解 设所求追迹曲线方程为).(x y y =经过时刻t , 甲在追迹曲线上的点为),,(y x P 乙在点).,1(0t v B 于是有,1tan 0xyt v y --='=θ (8.15) 由题设, 曲线的弧长OP 为,1002t nv dx y x='+⎰解出t v 0代入(8.15), 得.11)1(02⎰'+=+'-x dx y ny y x 两边对x 求导, 整理得.11)1(2y ny x '+=''- 这就是追迹问题的数学模型.这是一个不显含y 的可降阶的方程, 设p y x p y ''=''='),(, 代入方程得211)1(p np x +='- 或 ,)1(12x n dxp dp -=+两边积分, 得|,|ln |1|ln 1)1ln(12C x np p +--=++即 .1112nxC p p -=++ 将初始条件00||==='x x p y 代入上式, 得.11=C 于是,1112nxy y -='++' (8.16) 两边同乘,12y y '+-'并化简得,112n x y y --='+-' (8.17)(8.16)与(8.17)式相加, 得,11121⎪⎭⎫ ⎝⎛---='n n x x y两边积分, 得.)1(1)1(121211C x n n x n ny nn nn +⎥⎦⎤⎢⎣⎡-++---=+-代入初始条件0|0==x y 得,122-=n nC 故所求追迹曲线方程为 ),1(11)1(1)1(2211>-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+-=-+n n n n x n x n y n n n n甲追到乙时, 即曲线上点P 的横坐标,1=x 此时.12-=n n y 即乙行走至离A 点12-n n个单位距离时被甲追到.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M
P Q
l
mg
图3-1
例2 我方巡逻艇发现敌方潜水艇。与此同时敌方潜水艇也发现了
我方巡逻艇,并迅速下潜逃逸。设两艇间距离为60哩,潜水艇最 大航速为30节而巡逻艇最大航速为60节,问巡逻艇应如何追赶潜 水艇。
这一问题属于对策问题,较为复杂。讨论以下简单情形:
敌潜艇发现自己目标已暴露后,立即下潜,并沿着直 线方向全速逃逸,逃逸方向我方不知。
所以金属杆各处温度T(x)满足的微分方程: o
x
这是一个两阶常系数线 性方程,很容易求解
T
(x)

B A
(T
TT3 3)
B
A
设巡逻艇在A处发现位于B处的潜水艇,取极坐标,以B
为极点,BA为极轴,设巡逻艇追赶路径在此极坐标下的方
程为r=r(θ),见图3-2。
ቤተ መጻሕፍቲ ባይዱ
由题意,ds 2 dr,故ds=2dr dt dt
A1 dr
ds

图3-2可看出,(ds)2 (dr)2 (rd )2
θ
B
A
图3-2
故有: 3(dr)2 r2 (d )2
即: dr r d
3

解为:r Ae 3
(3.3) (3.4)
追赶方法如下:
先使自己到极点的距离等于潜艇到极点的距离,然 后按(3.4)对数螺线航行,即可追上潜艇。
例3 一个半径为Rcm的半球形容器内开始时盛满了
水,但由于其底部一个面积为Scm2的小孔在t=0时刻 被打开,水被不断放出。问:容器中的水被放完总共 需要多少时间?
微分方程模型
微分方程建模的几个简单实例
在许多实际问题中,当直接导出变量之间的函数关系较 为困难,但导出包含未知函数的导数或微分的关系式较为 容易时,可用建立微分方程模型的方法来研究该问题,
本节将通过一些最简单的实例来说明微分方程建模的 一般方法。在连续变量问题的研究中,微分方程是十分常 用的数学工具之一。
这是理想单摆应 满足的运动方程
当&&&(t0)glT4s时0in,,θ((0t))=00其0故中有
g
T
g l(3.1)

l
易求(由解3此。.1)即当是可θ一很得个小出两时阶,非sin线θ≈性θl,方4此程时,2,不可
考察(3.1)的近似线性T 方 2程 :g
例1 (理想单摆运动)建立理想单摆运动满足的微
分方程,并得出理想单摆运动的周期公式。
(3.1)的 近似方程
根据(从从牛m3&l&图而顿&.&(&20得3第))g-l1出二的中m0两定g,解不s0阶律为(i难n0微可):看θ分得(出t)方:0=,程θ小0c:o球sω所t(受3.的2)合力为mgsinθ,
解: 以容器的底部O点为 原点,取坐标系如图3.3所示。 令h(t)为t时刻容器中水的高度,现建立h(t)满足的微分 方程。
设的水内即从部:小磨孔擦dd流力ht 出和的表[R0速面.26S度张(R2为力hgh的v)(2]t假),定由下力,学有定:律,在不计水
这是可 (分t) 离0变.6 量2g的h 一阶微分方程,得

20Rghd91tS4
R2 2g
y
R
r
h
O
x
S
图3-3
例4 一根长度为l的金属杆被水平地夹在两端垂直的支架上,一端
的温度恒为T1,另一端温度恒为T2,(T1、T2为常数,T1> T2)。 金属杆横截面积为A,截面的边界长度为B,它完全暴露在空气中, 空气温度为T3,(T3< T2,T3为常数),导热系数为α,试求金属 杆上的温度分布T(x),(设金属杆的导热率为λ)
热传d导t现时象间机内理通:过当距温离差O点在x一处定截范面围的内热时量,为单:位 时AT间'(x里)d由t 温度高
的 比一例d侧系t向数时温与间度介内低质通的有过一的但杆一关距般各由较侧。离情点题细通O况处意且点过下温可金x单+,度以属d位x在也看杆处面同不出导截积一尽,热面的截相因系的热面同金数热量上,属又量与为两:侧的AT温'(差x 成dx正)dt比, 由泰勒公式:如较果大AT这,'(样为x 来简dx考便)d虑起t 问见题,A[,不T '(本考x)题虑T(x)dx]dt
金属杆的微元要这[x建方,x的面+变数的d量x学差分]函在模异方数d型,程tT内当而。(x由为建)。获一模得偏求热微单量为: AT(x)dxdt
同时,微元向空气散发出的热量为: Bdx[T (x) T3]dt
系统处于热平衡状态,故有: AT (x)dxdTt1 Bdlx[T (x) TT32]dt
因体积守衡,0 又[可R2得 (R: h)2]
TdVR 0r.62dSh 2gsh dt dh
易见:
0
3
(2R h h2 )dh
r0.6SR22g(RR h)2
5
故有:
[R
0.6S
(R 2g
h43)2R]hdh32

052.6hS52
相关文档
最新文档