电路的等效变换、电阻的串联和并联
第二章电阻电路的等效变换
ab
20 100 60
120 60
ab 20 100
100 Rab=70
ab
20 100 60
40
例2 求: Rab
5
15 6
a 20
b
缩短无
电阻支路
7
6
Rab=10
4 a b
15
10
20
5
a
15 b
7 6 6 4 a
b
15 7
3
例6
求: Rab c
对称电路 c、d等电位
R
R
R
c R
a R
断路 a
+a
2 +
U
6V –
(a)
b
3 9V +
(b)
解: a
+
+a U b
a +
3A 2 U
3A 3 U
b
(a)
b
(b)
例1: 求下列各电源等效变换
+a
3A 1 U
解:
(c)
b
a
+
1 +
U
3V –
(c)
b
+a
2A 5 U
(d) b
a
+
5 -
U
10V +
(d)
b
例2: 试用电压源与电流源等效变换的方法,计算2
2.1 概述
1 一些概念
1)电阻电路 仅由电源和线性电阻构成的电路。
2)等效的概念:
若结构、元件参数不相同的两部分电路N1、N2,具 有相同的电压、电流关系,则称它们彼此等效。
i
02第二章电阻电路的等效变换
i1
'
1 i12
'
R1
R31
R3 i3 R2
R12 R23
i3 i31
'
'
3
i2
2
i23
'
i2
'
2
3
(a)
(b)
设在它们对应端子间有相同的电压u12、 u23 、 u31。 如果它们彼此等效,那么流入对应端子的电流必须分别相 ' ' ' 等。应当有: i1 i1 , i2 i2 , i3 i3
解:
Req 40 // 40 30 // 30 // 30
40 30 30 2 3
40
30
Req
40
30
30
30
例4.
100 的电阻与120V的电源串联,为了使电阻上的功率不超过 100W,至少应再串入多大的电阻R?电阻R上消耗的功率是多少?
i
120V
R
解: 未接电阻R时 2 120 p 144 100W 100
KVL
Req R1 R2 .... Rn RK K 1
n
电阻 Req 称串联电阻的等效电阻。 等效电阻与这些串联电阻所引起的作用完全一样。 这种替代称等效替代。
结论: 串联电路的总电阻等于各分电阻之和。
3. 功率关系
p1 R1 i
2
p2 R2 i
2
.....
2
2
pn Rn i
(1)
i3 i31 i23
' ' '
1
i1
R1
对Y ,端子间的电压分别为:
高等教育出版社第六版《电路》第2章_电阻电路的等效变换课件
n
顺之者正,逆之者负。
2、串联: is1 is2
isn
is = is1= is2 = isn is
(1)电流相同的电流源能串联,但每个电源中的电压不确定。 (2)电流不相等,则不能串联,否则,违背KCL。 3、电流源is 和R、 us的串联: us is + – + u1 – R 注意:电压变化了。
第二章 电阻电路的等效变换
§2-1 引言
线性电路:由线性无源元件(R、L、C·)、线性受控 · · 源和独立电源组成。 线性电阻电路:由线性电阻、线性受控源和独立电源组成。 直流电路:独立电源为直流电源的线性电阻电路。
§2-2 电路的等效变换
一、等效的概念:
R R R1 §2-2 电路的等效变换 1 1 R2 i + R4 u R _ 3 ,
解:用电源变换法。受控源和独立源一样可以进行电源转换。 R i R _ + uR_ i R + uR + + ic + uc _ uS R _uS _
uc Ric 2 2 uR 4uR
Ri + Ri + uc = us
2uR 4uR us us uR 2V 6 在进行电源变换时,为避免出错控制量一般不要转换掉!
i2
i3
i3
u31 u23 R31 R23
R1u23 R3u12 R1R2 R2 R3 R3 R1 R1R2 R2 R3 R3 R1
R2u31 R1u23 R1R2 R2 R3 R3 R1 R1R2 R2 R3 R3 R1
由Y : R R R2 R3 R3 R1 R12 1 2 R3 R1R2 R2 R3 R3 R1 R23 R1 R R R2 R3 R3 R1 R31 1 2 R2
电阻电路的等效变换
R2 R3 R23 = R2 + R3 + R1 R3 R1 R31 = R3 + R1 + R2
R12 = R1 + R2 +
R1 R2 R3
R12 R1 R2 R23
R2 R3 R23 = R2 + R3 + R1 R3 R1 R31 = R3 + R1 + R2
用电导表示
G1 = G2 = G3 = G 12 G 12 G 12 G 12 G 31 + G 23 + G 31 G 23 G 12 + G 23 + G 31 G 31 G 23 + G 23 + G 31
1/3kΩ 1/3kΩ
R
E
1kΩ
R
1kΩ 3kΩ R
四 理想电压源和理想电流源的串并联
一、理想电压源的串、并联 理想电压源的串、 + uS1 _ + uSn _ I + 5V _ + 5V _ + 5V _ I 并联 电压相同的电压源 才能并联, 才能并联,且每个 电源中流过的电流 不确定。 不确定。 uS _ + 串联 uS=∑ uSk ∑ ( 注意参考方向 注意参考方向)
Ri
u = uS – Ri i i = uS/Ri – u/Ri
i = iS – Gi u
等效的条件 iS= uS /Ri , Gi = 1/Ri
由电压源变换为电流源: 由电压源变换为电流源: i + uS _ + u _ iS 转换 Gi
i + u _
Ri
is =
由电流源变换为电压源: 由电流源变换为电压源: i iS + 转换 Gi u _
串联和并联电路及等效电阻
等效电阻的定义
等效电阻是指一个电阻或电阻网络的输出电压或电流与另一个电阻或电阻网络的输 出电压或电流相等时,这两个电阻或电阻网络可以互相替换。
等效电阻具有相同的输入电压和电流,但内部结构可能不同。
等效电阻的概念在电路分析和设计中非常重要,可以帮助简化电路分析和计算。
等效电阻的计算方法
串联等效电阻
的增加而减小。
实验结论
并联电路中,总电压保 持不变,总电流等于各
支路电流之和。
等效电阻的测量与计算等源自电阻定义在电路中,两个或多个电阻可 以等效为一个电阻,其阻值等
于各电阻阻值之和或之积。
等效电阻的测量方法
使用万用表测量等效电阻的阻 值。
等效电阻的计算方法
根据串并联电路的特性,利用 欧姆定律计算等效电阻的阻值 。
串联和并联电路及等效电
BIG DATA EMPOWERS TO CREATE A NEW
ERA
阻
• 串联电路 • 并联电路 • 等效电阻 • 串联和并联电路的比较 • 实验与演示
目录
CONTENTS
01
串联电路
BIG DATA EMPOWERS TO CREATE A NEW
ERA
串联电路的定义
当两个或多个电阻串联连接时, 总电阻等于各个电阻之和。公式 为:R_eq = R1 + R2 + ... + Rn。
并联等效电阻
当两个或多个电阻并联连接时,总 电阻的倒数等于各个电阻倒数之和。 公式为:1/R_eq = 1/R1 + 1/R2 + ... + 1/Rn。
星形等效电阻
将三角形连接的三相电阻等效为星 形连接的三个单相电阻,每个单相 电阻的值为原三角形连接的三相电 阻的平均值。
电路理论
例:
如图所示, 用一个满刻度偏转
电流为50μA, 电阻Rg为2kΩ的表头制成 量程为 50mA的直流电流表, 应并联多大 的分流电阻R2? 解:由题意已知, I1=50μA,
R1=Rg=2000Ω, I=50mA, 由分流公式得:
R2 50 50 103 2000 R2
解得
R2 2.002
解:图中(a)、(b)、(c)图经过星-三角等效变换, 可得到图(d)、(e)、(f)所示的对应电路。
例:求电压Uab
10
a
8
4A
+
10
U ab
b
a
5
2
4A
+
U ab
b
Req
例 :
图示电路中, 已知Us=225V, R0=1Ω, R1=40Ω,
R2=36Ω, R3=50Ω, R4=55Ω, R5=10Ω, 试求各电阻的电流。
u
-
Rp
iS
诺顿电路
电流源电流方向指向电压源正极性端
例1:求图示二端电路的等效电路。
+ 10V 2Ω
5A
2
方向关系和数值关系同等重要!
实际电源两种模型间的等效变换常用于对电路进行化简。
例2:求图示二端网络的最简等效电路。
+
2
30
14
50V
20
1A
+
42V
等效电路
例3:用电源模型等效变换的方法求图(a)所示电路的 电流I1和I2。
一、电阻星形 ( Y) 和三角形 (Δ)连接的等效变换 (Y-Δ等效变换)
Y形联结
形联结
a
R1
Rac
电阻的串、并联及复杂电路等效
电路中有两处或两处以上接地线,则除了影响电路中各点的
电势外,还将改变电路结构,接地点之间认为是接在同一点 . 2.电路等效的常用方法
( 1 ) 电流分支法:先将各节点标上字母,判定各支路
元件的电流方向,按电流流向,自左向右将各元件、节点、 分支逐一画出,加工整理即可. ( 2 ) 等势点排列法:标出节点字母,判断出各节点电 势的高低,将各节点按电势高低自左向右排列,再将各节点
能力升华
电路等效简化的原则与方法 例 对图53-1甲、乙所示的电路进行简化,并指出各电
表测量的对象.
甲 图53-1
乙
【解析】用等效电路法分析时,要考虑到安培表的内阻 是很小的,分压作用小,在电流表上几乎没有电压降.对于
图53-1甲,R1的一端与R2、R3的一端通过
相连,可认为R1、
R2、R3的一端等势,同理R1、R2、R3的另一端通过 也是等势的,故R1、R2、R3并联,
(2)并联电路的总电阻小于其中任意 一个电阻 . 任意一个电阻变大时,并联 的总电阻变 大 .
(3)串联电路电流相等,具有分压作 用;并联电路电压相等,具有分流作用.
(4)无论是串联还是并联,其总功率 都等于各个用电器的功率之和,即 P 总 =P1+P2+…+Pn.
二、简单的电路分析 1.首先将电路等效成由几部分组成的串 联电路,按串联电路的特点将电压、功率分 配到各部分. 2.再对具有支路的某一部分按并联电路 的特点,将电流、功率分配到各支路. 3.在分析电路中物理量变化时,应先分 析电阻值不变的那部分电路,再由串、并联 电路的特点分析电阻值变化的那部分电路.
即: . (5)串联电路功率与电阻成 正比 ,即:
Pn P1 P2 I2 R1 R2 Rn Un U1 U 2 I R1 R2 Rn
电阻串、并联电路的等效变换
解: (4) 根据欧姆定律
U 125 I A 10A R 12.5
(5) 根据分流公式
R34 5 I1 I 10A 5A R2 R34 55
R2 5 I2 I 10A 5A R2 R34 55
7
应用:降压、限流、调节电压等。
1
I + I1 U – I + U – I2
2.电阻的并联 特点: (1)各电阻的首、尾分别相连; (2)各电阻两端的电压相同; (3)等效电阻的倒数等于各电阻倒数之和; 1 1 1 R2
I + I1 U – I + U – R I2 R1 R2
(4)并联电阻上电流的分配与电阻成反比。 两电阻并联时的分流公式:
U R2 R1 1 I1 I R1 R1 R2 R1 R2 I R1 R2
R1 I2 I R1 R2
应用:分流、调节电流等。
3
3.电阻的混联 既有串联又有并联的连接方式。 如下图所示:
4
【例1】有一混联电路,R1=10Ω ,R2=5Ω ,R3= 2Ω ,R4=3Ω,电源电压U=125V,求:电流I、 I1 R I 1、 I 2 。 2 I R1 AR R B 3 4 + U I2 – 解: (1) R3和R4可等效成一个电阻R34 R34 = R3+R4 =(2+3)Ω=5Ω I1 R
2
I R1
+ U –
A R B 34 I2
5
解: (2) R2和R34可等效成一个电阻RAB I R1 A RAB B
+ U –
R2 R34 5 5 RAB 2.5 R2 R34 5 5
(3) R1和RAB可等效成一个电阻R I R + U – R = R1+RAB =(10+2.5)Ω=12.5Ω
电路课件第2章
i1∆ =u12∆ /R12 – u31∆ /R31 ∆ ∆ ∆ (3) i2∆ =u23∆ /R23 – u12∆ /R12 ∆ ∆ ∆ i3∆ =u31∆ /R31 – u23∆ /R23 ∆ ∆ ∆ (1)
根据等效条件,比较式(3)与式 与式(1),得由Y接→∆接的变换结果 接的变换结果: 根据等效条件,比较式(3)与式(1),得由Y接→∆接的变换结果: R 1R 2 G 1G 2 R 12 = R 1 + R 2 + G 12 = R3 G1 + G 2 + G 3
§2-6 实际电源的两种模型及其等效变换
I
一、电压源
+
E
+
U
- RL
-
由图: 由图 U = E - IRo
R0
电压源模型
U 电压源外特性如图: 电压源外特性如图: 若 R0<< RL 理想电压源 : U = E
电压源外特性
E I
理想电压源(恒压源) 理想电压源(恒压源):
I + E _ + U _ U E I
2.1 2.2 2.3 2.4 2.5
引言 电路的等效变换 电路的等效变换 电阻的串联和并联 电阻 Y-∆ 联接的等效变换 电压源、电流源的串联和并联
2.6 实际电源的模型及其等效变换 实际电源的模型及其等效变换 2.7 输入电阻
重点: ♦ 重点:
电阻的串、并联; 1. 电阻的串、并联; 2. Y—∆ 变换; ∆ 变换; 电压源和电流源的等效变换; 3. 电压源和电流源的等效变换;
R =3 Y R ∆
当R12 = R23 =R31 =R∆ 时:
1 R = R Y ∆ 3
对图示电路求总电阻R 例:对图示电路求总电阻 12
《电工》教案第五讲电阻电路的串、并联等效变换和星形
第五讲 电阻电路的串、并联等效变换和星形—三角形等效变换 电压源与电流源的等效变换;时间:2学时重点和难点:无源电路的等效化简。
目的:让学生掌握电阻的连接方式及等效计算、变换;掌握电源的等效变换方法和无源电路的等效化简。
教学方法:多媒体演示、课堂讲授主要教学内容:一、电阻的串、并联等效变换1、电阻的串联:1)串联等效电阻图示为n 个电阻的串联等效电路,其特点是电路没有分支,通过各电阻的电流相同。
根据KVL 和欧姆定律有 n u u u u +++= 21i R i R i R n +++= 21()i R R R n ++=21Ri =其中 :∑==+++==n k k n R R R R i u R 121 R 称为n 个串联电阻的等效电阻。
可见,串联电阻的等效电阻等于各个串联电阻之和,其等效条件是在同一电压作用下电流保持不变。
图a )、(b )两个电路的内部结构虽然不同,但是,它们在a 、b 端钮处的u 、i 关系却完全相同,即它们在端钮处对外显示的伏安特性是相同的,所以称图(b )为图(a )的等效电路,这种替代称为等效变换。
2)串联电路分压公式在电阻串联电路中,各电阻上的电压为u RR i R u k k k == 可见,电路中各个串联电阻的电压与电阻值成正比,上式称为串联电路分压公式。
3)串联电路功率222221Ri i R i R i R ui p n =+++==上式表明,n 个电阻串联吸收的总功率,等于各个电阻吸收的功率之和,等于等效电阻吸收的功率。
2、电阻的并联1)并联等效电阻图所示电路为n 个电阻的并联电路,其特点是各并联电阻两端具有相同的电压,即互相并联的各电阻接在同一对节点之间。
根据KCL 和欧姆定律有n i i i i +++= 21u G u G u G n +++= 21u G G G n )(21+++=Gu =其中 :∑==+++==n k k n G G G G u i G 121 或写成: ∑==+++=n k kn R R R R R 12111111 上式称为n 个并联电阻的等效电导,其倒数为等效电阻。
第二章 电阻电路的等效变换
4
Rab=10
15 10
a b
a b
7
20
15
3
返 回
上 页
下 页
例 2-8 求图 2-5电路 a b 端的等效电阻。
Req (2 // 2 (4 // 4 2) // 4) // 3 (1 4 // 4) // 3 1.5
21
复习
1、电阻的串联 等效电阻、分压
23
例2-4 图2-7所示电路每个电阻都是2Ω, 求a, b两端的等效电阻
解:
c
d
e
根据电路的对称性, 可知 c, d, e三点等电位, 故可用导线短接。
8 2 8 2 16 3 3 2 Req [(2//1) 2]// 2//1 2 // 2 8 2 3 3 15 3 3
26
R12 ( R23 + R31 ) R12 + R23 + R31
i1
i1
i3
i2
i3
i2
R12 R31 R12 + R23 + R31 R23 R12 R12 + R23 + R31 R31 R23 R12 + R23 + R31
27
同理,令i1=0, 可得: R23 ( R12 + R31 ) R2 + R3 = R12 + R23 + R31 同理,令i2=0, 可得:
25
二、 等效变换:保证伏安特性相同
对应端口电压、电流分别相等
i1
u12 = f1 ( i1 , i2 , i3 ) u23 = f 2 ( i1 , i2 , i3 ) u31 = f3 (i1 , i2 , i3 )
第二章 电阻电路的等效变换
R R2 R1 R3 4 2 6 12
由图(b)电路可求得电阻RL的电流和电压分别为:
i uS 15V 1A R RL 12 3
u RLi 3 1A 3V
例2-3电路如图2-7(a)所示。已知iS1=10A, iS2=5A, iS3=1A, G1=1S, G2=2S和G3=3S,求电流i1和i3。
u2
R3i1
(R2
R3
)i2
对电阻三角形联接的三端网络,外加两个电流源i1 和i2,将电流源与电阻的并联单口等效变换为一个
电压源与电阻的串联单口,得到图(b)电路,由此得
到
i12
R31i1 R23i2 R12 R23 R31
uu12
R31i1 R31i12 R31 (i1 i12 ) R23i12 R23i2 R23 (i2 i12 )
例2-2 图(a)所示电路。已知uS1=10V, uS2=20V, uS3=5V, R1=2, R2=4, R3=6和RL=3。求电阻RL的电流和电压。
解:为求电阻RL的电压和电流,可将三个串联的电压 源等效为一个电压源,其电压为
uS uS2 uS1 uS3 20V 10V 5V 15V
R3
R12
R23 R31 R23
R31
(2 13)
由此 解得
R2
R12
R12 R23 R23
R31
(2 14)
R2
R3
R23 (R12
R31 )
电阻电路变换
§2-3 电阻的串联和并联
一. 电阻串联
Req R1 R2 Rn Rk
def
n
k,
Req Rk
k 1
Rk u k Rk i u Req
二. 电阻并联
Geq G1 G2 Gn Gk
k , Geq Gk ,
ik
def
n
第2章
电阻电路的等效变换
主要内容
1.电路等效变换的概念; 2.电阻的串联和并联; 3.电阻的Y- 等效变换; 4.电压源、电流源的串联和并联; 5.电源的等效变换; 6. 输入电阻。
§2-1 引言
线性电阻电路: 线性电阻 + 线性受控源 + 独立电源
时不变线性电路: 时不变线性无源元件 + 线性受控源 + 独立电源
说明:
① 与电压源 uS 并联的任何一条支路(iS ,R 和一般支路)均 可仅用 uS 替代;
② 与电流源 iS 串联的任何一条支路(uS ,R 和一般支路)均 可仅用 iS 替代;
③ 电压源串联电阻可与电流源并联电阻相互等效
§2-6
实际电源的两种模型及其等效变换
一. 实际电源的伏安特性
二. 实际电源的两种电路模型
例2-2:求下图所示电桥电路中电流 I .
解:利用等效变换公式可得最后等效电路如右上图,则
10 3 . 5 70 I A 3.5 // 5.5 0.25 3.5 5.5 43
利用等效变换求总电阻 (例2-2 PP38)。
§2-5
电压源、电流源的串联和并联
一. 电压源串联 当 n 个电压源串联时,可用一个电压源等效替代
Req 1 , Rk 1 Geq Gk
电阻电路等效变换
u31
i2
R1 R2
R1 R2 R3
R3 R1
u23
R1 R2
R3 R2 R3
R3 R1
u12
i3
R1 R2
R2 R2 R3
R3 R1
u31
R1 R2
R1 R2 R3
R3 R1
u23
18
对于电路
i12
u12 R12
i23
u23 R23
i1'
i31
Rsh 1k
14
当K与2相接时分流电阻为R2+R3 ,可测10mA的电流
Ig
I2
( R2
R2 R3 R3 ) (R1
Rg )
I2
R2 R3 Rsh Rg
10A 10m A R2 R3
Ig
RgIg
111.11 1000
R2+R3 =11 .11
R3
R2 R1
R1i1=R2i2 且 R4i4=R3i3
i1=i4 i2=i3
i1 R1 c
R4 i4
a
Ig
b
R2
R3
i2
d +
i3
则: R1 R2 或 R4 R3
根据平衡电桥的特点:
R1R3=R2R4
uS 电桥平衡条件
Ig =0,可将c、d间开路; ucd =0(等电位),可将c、d短路,最后计算的结果相同。
i3'
21
2)形等效为Y形,有:
R1
第二章 电路分析的等效变换法
R1R2 R2R3 R3R1 R12 R3 R1R2 R2R3 R3R1 R23 R1 R1R2 R2R3 R3R1 R31 R2
i1 =u12 /R12 – u31 /R31
+
+
5V
_
5V
_
_
2.3.2 电流源的串并联 并联: 可等效成一个理想电流源 i S º iS1 iS2 iSk º 串联: º 2A 2A 2A º º 电流相同的理想电流源 才能串联。但每个电流 iS
º iS= iSk (注意参考方向) º
源的端电压无法确定。 º
2. 3. 3 电压源与电流源的串并联 Is
º
º
º
º
º
º
º
º
º
º
º
º
2.3 电源的等效变换
2.3.1 电压源的串并联 + uS1 _ + uSn _ º
º + uS _
º
串联: uS= uSk ( 注意参考方向。一致, 取+;否则,取 - 。) 并联: 电压相同的电压源才 能并联。但每个电压 源的电流无法确定。 º
º I
º
I
º + 5V º
=G1u2+G2u2+ +Gnu2
=p1+ p2++ pn 故可以直接用等效电阻计算并联电路“内部”的总功率。 (对照前面:“对外等效”,对内不一定等效。)
2.1.3 电阻的串并联 要求:弄清楚串、并联的概念。 计算举例: 例1.
4 º 2
3 Req = 4∥(2+3∥6) = 2
第02章 电阻电路的等效变换
i
R0=R , is=us/R
u us Ri
u is R0 R0 i
i
i
i' Ru 0 O
u
is
i
R=R0, us=Ris
所以,如果令
R R0
us R is
电压源、电阻的串联组合与电流源、电阻的并联组合 可以相互等效变换。 i R + + u i +
1
1
R3
3
R1
R2
2 3
R31
R12
R23
2
星接(Y接)
三角接(△接)
R1 R2 R2 R3 R3 R1 R12 R3 R1 R2 R2 R3 R3 R1 R23 R1 R1 R2 R2 R3 R3 R1 R31 R2
三式相加后通分可 得,Δ形连接变Y形 连接的电阻等效变 换关系式为(下页)
例2-2 求电流i 和 i5
④
i5
② ①
③
i5
②
④
① i1
③
等效电阻 R = 1.5Ω
i5
②
④ ③
i = 2A
i1
①
×
i5
-
i1 1A
2 1 - 6 2 1 1
1 A 3
②
*电阻的混联
电阻串并联的组合称为电阻混联。处理混联电路问 题的方法是:利用电阻串联或并联的公式对电路进 行等效变换,将复杂的混联电路转化成简单的电路 。 〖例1-6〗 求图1-19所示电路的等效电阻Rab, 已知图中各电阻的阻值均为20Ω 。
R2
2
3
R31
R12
R23
电路的等效变换
RO
E
+
Uab'
b
-
等效互换的前提:对外的电压电流相等。 即: I=I' Uab = Uab'
(1-13)
电压源 I a Uab b
Is E
Ro
Ro ' Ro
Is
电流源 I' R'
O
a
Uab'
R
O
+ E -
b
E I s Ro' Ro Ro'
(1-14)
a
+
US
+
U
I
RL
_
内阻不变改并联 Us Is = IS R0 内阻不变改串联 Us = Is R0
受控源
• 定义
受控源的电压或电流不象独立源是给 定函数,而是受电路中某个支路的电压 (或电流)的控制。
• 电路图符号
+ –
受控电压源
受控电流源
前面所讲的独立源,向电路提供的电 压或电流是由非电能量提供的,其大 小、方向由自身决定;受控源的电压 或电流不能独立存在,而是受电路中 某个电压或电流的控制,受控源的大 小、方向由控制量决定。当控制量为 零时,受控电压源相当于短路;受控 电流源相当于开路。
电阻并联分流与阻值成反比。
③ 并联电阻的功率分配:
p p1 p2 p1 R2 p2 R1
总功率等于并联电阻消耗功率之和,电阻值 大者功率小。 串联分压,电流相同;并联分流,电压相同。
3.电阻的混联
(1)看电路的结构特点。
(2) 看电压电流关系。 (3) 对电路作变形等效。
第六讲
电路的等效变换
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。