PNP双极型晶体管的设计之欧阳家百创编

合集下载

P型和N型半导体之欧阳德创编

P型和N型半导体之欧阳德创编

P型和N型半导体如果杂质是周期表中第Ⅲ族中的一种元素──受主杂质,例如硼或铟,它们的价电子带都只有三个电子,并且它们传导带的最小能级低于第Ⅳ族元素的传导电子能级。

因此电子能够更容易地由锗或硅的价电子带跃迁到硼或铟的传导带。

在这个过程中,由于失去了电子而产生了一个正离子,因为这对于其它电子而言是个“空位”,所以通常把它叫做“空穴”,而这种材料被称为“P”型半导体。

在这样的材料中传导主要是由带正电的空穴引起的,因而在这种情况下电子是“少数载流子”。

如图1所示。

N型半导体如果掺入的杂质是周期表第V族中的某种元素──施主杂质,例如砷或锑,这些元素的价电子带都有五个电子,然而,杂质元素价电子的最大能级大于锗(或硅)的最大能级,因此电子很容易从这个能级进入第Ⅳ族元素的传导带。

这些材料就变成了半导体。

因为传导性是由于有多余的负离子引起的,所以称为“N”型。

也有些材料的传导性是由于材料中有多余的正离子,但主要还是由于有大量的电子引起的,因而(在N型材料中)电子被称为“多数载流子”。

如图2所示。

P型和N型半导体的应用由P型半导体或N型半导体单体构成的产品有热敏电阻器、压敏电阻器等电阻体。

由P型与N型半导体结合而构成的单结半导体元件,最常见的是二极管;此外,FET也是单结元件。

PNP或NPN以及形成双结的半导体就是晶体管。

(1)用于LEDLED在20世纪60年代诞生后就被认定是荧光灯管、灯泡等照明设备的终结者,甚至有人认为LED将会开创一个新的照明时代,最终出现在所有需要照明的场合。

LED的工作原理和我们常见的白炽灯、荧光灯完全不同,LED从本质上来说是一种半导体器件。

LED的核心部分是由P型半导体和N型半导体组成的晶片,在P型半导体和N型半导体的交界面就会出现一个具有特殊导电性能的薄层,也就是常说的PN结(P N Junction Transistors)。

PN结可以对P型半导体和N型半导体中多数载流子的扩散运动产生阻力,当对PN结施加正向电压时,电流从LED的阳极流向阴极,而在PN结中少数载流子与多数载流子进行复合,多余的能量就会转变成光而释放出来。

PNP双极型晶体管的设计

PNP双极型晶体管的设计

目录之阳早格格创做1.课程安排脚段与任务 (2)2.安排的真量 (2)3.安排的央供与数据 (2)4.物理参数安排 (3)4.1各区掺纯浓度及相关参数的预计 (3)4.2 集电区薄度Wc的采用 (6)4.3 基区宽度WB (6)4.4 扩集结深 (10)4.5 芯片薄度战品量 (10)4.6 晶体管的横背安排、结构参数的采用 (10)5.工艺参数安排 (11)5.1 工艺部分纯量参数 (11)5.2 基区相关参数的预计历程 (11)5.3收射区相关参数的预计历程 (13)5.4氧化时间的预计 (14)6.安排参数归纳 (16)7.工艺过程图 (17)8.死产工艺过程 (19)9.版图 (28)10.心得体验 (29)11.参照文件 (30)PNP单极型晶体管的安排1、课程安排脚段与任务《微电子器件与工艺课程安排》是继《微电子器件物理》、《微电子器件工艺》战《半导体物理》表里课之后开出的有关微电子器件战工艺知识的概括应用的课程,使咱们系统的掌握半导体器件,集成电路,半导体资料及工艺的有关知识的必不可少的要害关节.脚段是使咱们正在认识晶体管基础表里战制制工艺的前提上,掌握晶体管的安排要领.央供咱们根据给定的晶体管电教参数的安排指标,完毕晶体管的纵背结构参数安排→晶体管的图形结构安排→资料参数的采用战安排→制定真动工艺规划→晶体管各参数的检测要领等安排历程的锻炼,为进止微电子器件安排、集成电路安排挨下需要的前提.2、安排的真量安排一个匀称掺纯的pnp型单极晶体管,使T=300K 时,β=120,VCEO=15V,VCBO=80V.晶体管处事于小注进条件下,最大集电极电流为IC=5mA.安排时应尽管减小基区宽度调制效力的效用.3、安排的央供与数据(1)相识晶体管安排的普遍步调战安排准则.(2)根据安排指标安排资料参数,包罗收射区、基区战集电区掺纯浓度NE, NB,战NC,根据各区的掺纯浓度决定少子的扩集系数,迁移率,扩集少度战寿命等.4.根据主要参数的安排指标决定器件的纵背结构参数,包罗集电区薄度Wc,基础宽度Wb,收射区宽度We战扩集结深Xjc,收射结结深Xje等.5.根据扩集结深Xjc,收射结结深Xje等决定基区战收射区预扩集战再扩集的扩集温度战扩集时间;由扩集时间决定氧化层的氧化温度、氧化薄度战氧化时间.6.根据安排指标决定器件的图形结构,安排器件的图形尺寸,画制出基区、收射区战金属交战孔的光刻版图.(6)根据现有工艺条件,制定仔细的工艺真施规划.4、物理参数安排4.1 各区掺纯浓度及相关参数的预计打脱电压主要由集电区电阻率决断.果此,集电区电阻率的最小值由打脱电压决断,正在谦脚打脱电压央供的前提下,尽管落矮电阻率,并适合安排其余参量,以谦脚其余电教参数的央供.对付于打脱电压较下的器件,正在靠近雪崩打脱时,集电结空间电荷区已扩展至匀称掺纯的中延层.果此,当集电结上的偏偏置电压靠近打脱电压V时,集电结可用突变结近似,对付于Si器件打脱电压为,由此可得集电区纯量浓度为:由安排的央供可知C-B结的打脱电压为:根据公式,可算出集电区纯量浓度:普遍的晶体管各区的浓度要谦脚NE>>NB>NC,根据往常的体味可与:即各区的纯量溶度为:图1 室温下载流子迁移率与掺纯浓度的函数关系(器件物理P55)根据图1,得到少子迁移率:根据公式可得少子的扩集系数:图??掺纯浓度与电阻率的函数关系(器件物理P????)根据图,可得到分歧纯量浓度对付应的电阻率:图????少子寿命与掺纯浓度的函数关系(半导体物理P ????)根据图??,可得到各区的少子寿命根据公式得出少子的扩集少度:根据公式供出集电区薄度的最小值为:WC的最大值受串联电阻rcs的节制.删大集电区薄度会使串联电阻rcs减少,鼓战压落VCES删大,果此WC的最大值受串联电阻节制.概括思量那二圆里的果素,故采用WC=8μm4.3 基区宽度WB(1)基区宽度的最大值对付于矮频管,与基区宽度有关的主要电教参数是,果此矮频器件的基区宽度最大值由决定.当收射效用γ≈1时,电流搁大系数,果此基区宽度的最大值可按下式预计:为了使器件加进大电流状态时,电流搁大系数仍能谦脚央供,果而安排历程中与λ=4.根据公式,供得矮频管的基区宽度的最大值为:由公式可瞅出,电流搁大系数β央供愈下,则基区宽度愈窄.为普及二次打脱耐量,正在谦脚β央供的前提下,不妨将基区宽度选的宽一些,使电流正在传输历程中渐渐分别开,以普及二次打脱耐性.(2)基区宽度的最小值为了包管器件仄常处事,正在仄常处事电压下基区千万于不克不迭脱通.果此,对付于下耐压器件,基区宽度的最小值由基区脱通电压决断,此处,对付于匀称基区晶体管,当集电结电压靠近雪崩打脱时,基区一侧的耗尽层宽度为:正在下频器件中,基区宽度的最小值往往还受工艺的节制.则由上述预计可知基区的范畴为:(3)基区宽度的简直安排与PN结二极管的领会类似,正在仄稳战尺度处事条件下,BJT不妨瞅成是由二个独力的PN结形成,它正在仄稳时的结构图如下所示:图4 仄稳条件下的PNP三极管的示企图简直去道,由于,所以E-B耗尽区宽度()可近视瞅做局部位于基区内,又由,得到大普遍C-B耗尽区宽度()位于集电区内.果为C-B结沉掺纯一侧的掺纯浓度比E-B结沉掺纯一侧的浓度矮,所以>.其余注意到是基区宽度,是基区中准中性基区宽度;也便是道,对付于PNP晶体管,有:其中战分别是位于N型区内的E-B战C-B耗尽区宽度,正在BJT领会中指的便是准中性基区宽度.E-B结的内修电势为:C-B结的内修电势为:根据公式,E-B结正在基区一边的耗尽层宽度为:∵,不妨当成单边突变结处理CB结正在基区一边的耗尽层薄度为:对付于准中性基区宽度W,与基区宽度,则考证其与值的准确性,根据公式有:解得的β靠近于安排的央供,切合安排指标,所以基区宽度为,谦脚条件.4.4 扩集结深正在晶体管的电教参数中,打脱电压与结深关系最为稀切,它随结深变浅,直率半径减小而落矮,果而为了普及打脱电压,央供扩集结深一些.但是另一圆里,结深却又受条宽节制,由于基区聚集电荷减少,基区渡越时间删少,灵验特性频次便下落,果此,常常采用:反射结结深为集电结结深为4.5 芯片薄度战品量本安排采用的是电阻率为的P型硅,晶背是<111>.硅片薄度主要由集电结深、集电区薄度、衬底反扩集层薄度决断.共时扩集结深本去不真足普遍,正在丈量硅片薄度时也存留一定缺面.果此正在采用硅片薄度时必须留有一定的的余量.衬底薄度要采用适合,若太薄,则易碎,且阻挡易加工;若太薄,则芯片热阻过大.果此,正在工艺支配历程中,普遍硅片的薄度皆正在300um以上,但是末尾要减薄到150~200um.硅片的品量指标主假如央供薄度匀称,电阻率切合央供,以及资料结构完备、缺陷少等.4.6 晶体管的横背安排、结构参数的采用(1)横背安排举止晶体管横背安排的任务,是根据晶体管主要电教参数指目标央供,采用符合的几许图形,决定图形尺寸,画制光刻版图.晶体管的图形结构种类繁琐:从电极摆设上区别,有蔓延电极战非蔓延电极之分;从图形形状瞅,有圆形、梳状、网格、覆盖、菱形仄分歧的几许图形.稠稀的图形结构各有其特性.此次安排的晶体管不过一般的晶体管,对付图形结构不特天的央供,所以不过采与一般的单条形结构.三极管剖里图如图5,三极管俯视图如图6.图5:三极管剖里图图6:三极管俯视图(2)基区战收射区里积收射区里积与基区里积与.5、工艺参数安排5.1 工艺部分纯量参数纯量元素磷(P)硼(B)表1硅中磷战硼的与(微电子工艺前提119页表5-1) 5.2 基区相关参数的预计历程PNP基区的磷预扩集的温度与1080℃,即1353K.单位里积纯量浓度:由上述表1可知磷正在硅中有:为了便当预计,与由公式,得出基区的预扩集时间:??????氧化层薄度氧化层薄度的最小值由预扩集(??????K)的时间t????????????s去决断的,且遵循余缺面分集,并根据假设可供,由一些相关资料可查出磷(P)正在温度??℃时正在中的扩集系数:思量到死产本量情况,基区氧化层薄度与为6000.PNP基区的磷再扩集的温度那里与1200℃.由一些相关资料可查出磷的扩集系数:由于预扩集的结深很浅,可将它忽略,故,由再扩集结深公式:,而且,故可整治为:即PNP收射区的硼预扩集的温度那里与950℃,即1223K.单位里积纯量浓度:由上述表1可知硼正在硅中有:为了便当预计,与由公式,得出收射区的预扩集时间:氧化层薄度的最小值由预扩集(1353K)的时间t=1683s去决断的,且遵循余缺面分集,并根据假设可供,由一些相关资料可查出硼(B)正在温度950℃时正在中的扩集系数:思量到死产本量情况,基区氧化层薄度与为7000.PNP基区的磷再扩集的温度那里与1170℃,即1443K,则由于预扩集的结深很浅,可将它忽略,故,由再扩集结深公式:,而且,故可整治为:即5.4 氧化时间的预计由前里得出基区氧化层薄度是6000,不妨采与搞氧-干氧-搞氧的工艺,将6000的氧化层的调配成如下的比率举止氧化工艺:搞氧:干氧:搞氧=1:4:1即先搞氧1000(0.1um),再干氧4000(0.4um),再搞氧1000(0.1um)与搞氧战干氧的氧化温度为1200℃,由图7可得出:搞氧氧化1000的氧化层薄度需要的时间为:干氧氧化4000的氧化层薄度需要的时间为:所以,基区总的氧化时间为:图7 氧化时间与氧化薄度的关系图由前里得出收射区氧化层薄度是7000,不妨采与搞氧-干氧-搞氧的工艺,将7000的氧化层的调配成如下的比率举止氧化工艺:搞氧:干氧:搞氧=1:5:1即先搞氧1000(0.1um),再干氧5000(0.5um),再搞氧1000(0.1um)与搞氧战干氧的氧化温度为1200℃,由图7可得出:搞氧氧化1000的氧化层薄度需要的时间为:干氧氧化5000的氧化层薄度需要的时间为:所以,收射区总的氧化时间为:6、安排参数归纳采与中延硅片,其衬底的电阻率为7的P型硅,采用<111>晶背.相关参数集电区C基区B收射区E各区纯量浓度少子迁移率1300330150少子扩集系数电阻率少子寿命扩集少度结深/W()里积(2)1200600100扩集温度(℃)战时间预扩集/950℃, 1683再扩集/1200℃,90501170℃,8700氧化层薄度()/60007000氧化时间/先搞氧氧化20.4分钟,后干氧氧化16.2分钟,再搞氧氧化20.4分钟,共氧化57分钟.表2 安排参数总表7、工艺过程图PNP晶体管死产总的工艺过程图如下:8、死产工艺过程8.1 硅片荡涤1.荡涤本理:a. 表面活性剂的删溶效用:表面活性剂浓度大于临界胶束浓度时会正在火溶液中产死胶束,能使不溶大概微溶于火的有机物的溶解度隐著删大.b.表面活性剂的潮干效用:固-气界里消得,产死固-液界里c.起渗透效用;利用表面活性剂的潮干性落矮溶液的表面弛力后,再由渗透剂的渗透效用将颗粒托起,包裹起去.具备极强渗透力的活性剂分子可深进硅片表里与吸附物之间,起劈开的效用,活性剂分子将颗粒托起并吸附于硅片表面上,落矮表面能.颗粒周围也吸附一层活性剂分子,预防颗粒再重积.通过对付传染物举止化教腐蚀、物理渗透战板滞效用,达到荡涤硅片的脚段.硅片荡涤液是指不妨与消硅片表面沾污物的化教试剂大概几种化教试剂配制的混同液.时常使用硅片荡涤液有:8.2 氧化工艺二氧化硅不妨紧紧天依附正在硅衬底表面,具备极宁静的化教性战电绝缘性,果此,二氧化硅不妨用去动做器件的呵护层战钝化层,以及电本能的断绝、绝缘资料战电容器的介量膜.二氧化硅的另一个要害本量,对付某些纯量(如硼、磷、砷等)起到掩蔽效用,进而不妨采用扩集;正是利用那一本量,并分散光刻战扩集工艺,才死少起去仄里工艺战超大规模集成电路.制备二氧化硅的要领很多,但是热氧化制备的二氧化硅掩蔽本领最强,是集成电路工艺最要害的工艺之一.由于热死少制制工艺设备简朴,支配便当,SiO2膜较致稀,所以采与热氧化二氧化硅制备工艺.热死少的要领是将硅片搁进下温炉内,正在氧气氛中使硅片表面正在氧化物量效用下死少SiO2薄层,氧化气氛可为火汽,干氧大概搞氧.真验标明,火汽氧化法:死少速率最快,但是死成的SiO2层结构疏紧,表面有乌面战缺陷,含火量多,对付纯量特天是磷的掩蔽以力较好,所以正在器件死产上皆不采与火汽氧化法.(1)搞氧法: 死少速率最缓,但是死成的SiO2膜结构致稀,搞燥,匀称性战重复性佳,掩蔽本领强,钝化效验佳,SiO2膜表面与光刻胶交战良佳,光刻时阻挡易浮胶.(2)干氧法:死少速率介于前二者之间,死少速率可通过炉温大概火浴温度举止安排.使用机动性大,干氧法死少的SiO2膜,虽然致稀性略好于搞氧法死少的SiO2膜,但是其掩蔽本领战钝化效验皆能谦脚普遍器件死产的央供,较超过的强面是SiO2表面与光刻胶交战不良,光刻时简单爆收浮胶.死产中采与与少补短的要领,充分利用干氧战搞氧的便宜,采与搞氧—干氧—搞氧接替的要领.根据迪我战格罗妇模型,热氧化历程须经历如下历程:(1)氧化剂从气体内里以扩集形式脱过滞流层疏通到SiO2-气体界里,其流稀度用F1表示,流稀度定义为单位时间通过单位里积的粒子数.(2)氧化剂以扩集办法脱过SiO2层(忽略漂移的效用),到过SiO2-Si界里,其流稀度用F2表示.(3)氧化剂正在Si表面与Si反应死成SiO2,流稀度用F3表示.(4)反应的副产品离开界里.氧化的致稀性战氧化层薄度与氧化气氛(氧气、火气)、温度战睦压有稀切关系.应用于集成电路掩蔽的热氧化工艺普遍采与搞氧→干氧→搞氧工艺制备.(1)开氧化炉,并将温度设定倒750--850℃,开氧气流量2降/分钟;(2)挨开洁化台,将荡涤佳的硅片拆进石英舟,而后,将石英舟颠覆恒温区.并开初降温;(3)达到氧化温度后,安排氧气流量3降/分钟,并开初计时,决定搞氧时间.正在开初搞氧的共时,将干氧火壶加热到95-98℃.搞氧完毕后,坐时开干氧流量计,坐时加进干氧化.共时关关搞氧流量计,决定干氧时间;(4)干氧完毕,开搞氧流量计,安排氧气流量3降/分钟,并开初计时,决定搞氧时间;(5)搞氧完毕后,开氮气流量计,安排氮气流量3降/分钟,并开初落温,落温时间30分钟;(6)将石英舟推出,并正在洁化台内将硅片与出,共时,检测氧化层表面情景战薄度;(7)关氧化炉,关气体.丈量薄度的要领很多,有单光搞涉法、电容—压电法、椭圆偏偏振光法、腐蚀法战比色法等.正在细度不下时,可用比色法去简朴推断薄度.比色法是利用分歧薄度的氧化膜正在黑光笔直映照下会浮现出分歧颜色的搞涉条纹,进而大概推断氧化层的薄度.光刻工艺是加工制制集成电路微图形结构的关键工艺技能,起源于印刷技能中的照相制版.是正在一个仄里(硅片)上,加工产死微图形.光刻工艺包罗涂胶、曝光、隐影、腐蚀等工序.集成电路对付光刻的基础央供犹如下几个圆里:(1)下辨别率:一个由10万元件组成的集成电路,其图形最小条宽约为3um,而由500万元件组成的集成电路,其图形最小条宽为1.5--2um,百万以上元件组成的集成电路,其图形最小条宽≤1um,果此,集成度普及则央供条宽越细,也便央供光刻技能的图形辨别率越下.条宽是光刻火仄的标记,代表集成电路死少的火仄.(2)下敏捷度:敏捷度是指光刻机的感光速度,集成电路央供产量要大,果此,曝光时间应短,那便央供光刻胶的敏捷度要下.矮缺陷:如果一个集成电路芯片上出现一个缺陷,则所有芯片将做废,集成电路制制历程包罗几十讲工序,其中光刻工序便有10多次,果此,央供光刻工艺缺陷尽管少,可则,便无法治制集成电路.细稀的套刻对付准:集成电路的图形结构需要多此光刻完毕,屡屡曝光皆需要相互套准,果此集成电路对付光刻套准央供非常下,其缺面允许为最小条宽的10%安排.集成电路所用的光刻胶有正胶战背胶二种:正性光刻胶常常由碱溶性酚醛树脂、光敏阻溶剂及溶剂等组成,光敏剂可使光刻胶正在隐影液中溶解度减小,但是曝光将使光敏阻溶剂领会,使光刻胶溶解度大大减少而被隐掉,已曝光部分由于溶解度小而留住.背性光刻胶战正性光刻胶好异,背性光刻胶正在曝光前能溶于隐影液,曝光后,由于光化反应接链成易溶大分子而留住,已曝光部分溶于隐影液而去掉.由此完毕图形复制.本次采与正光刻胶.1. 准备:A) 开前烘,脆膜烘箱,前烘温度设定95℃,脆膜温度为120℃.B) 涂胶前15分钟开开图胶洁化台,安排转速,以谦脚死产央供.C) 光刻前30分钟,开开光刻机汞灯.D) 开开腐蚀恒温槽,温度设定40℃E) 荡涤胶瓶战吸管,并倒佳光刻胶.F) 荡涤掩膜版(基区光刻掩膜版),并正在洁化台下吹搞2. 涂胶:光刻工艺采与转动涂胶法,涂胶前设定佳予匀转速战时间,甩搞速度战时间.将氧化完毕大概扩集完毕的硅片搁正在涂胶头上,滴上光刻胶举止涂胶,央供胶里匀称、无缺陷、无已涂天区.3. 前烘将涂佳光刻胶的硅片搁进前烘烘箱,并计时,前烘完毕后将硅片与出,4. 对付准将掩膜版上正在光刻机上,并举止图形套准.5. 曝光将套准后的硅片顶紧,查看套准缺面、查看曝光时间,确认无误后,举止曝光.6. 隐影此采与浸泡隐影,分别正在1#隐影液,2#隐影液隐3-5分钟,而后正在定影液定影3-5分钟,之后正在甩搞机中甩搞,正在隐微镜下查看是可合格,可则,返工.7. 脆膜正在隐影查看合格后将硅片搁进脆膜烘箱举止脆膜,设定脆膜时间.8. 腐蚀将脆膜佳的硅片准备腐蚀,最先确认氧化层薄度,预计腐蚀时间.而后举止腐蚀,腐蚀后冲火10分钟,甩搞后正在隐微镜下查看是可腐蚀搞洁,若已腐蚀搞洁继承腐蚀.9. 去胶硅片腐蚀完毕后,正在3#液中将光刻胶去掉,并浑洗搞洁,工艺中断.8.4 磷扩集工艺(基区扩集)(1)扩集是微瞅粒子的一种极为普遍的热疏通形式,百般分散器件战集成电路制制中的固态扩集工艺简称扩集,磷扩集工艺是将一定数量的磷纯量掺进到硅片晶体中,以改变硅片本去的电教本量.磷扩集是属于替位式扩集,采与预扩集战再扩集二步扩集法,(2)预扩集磷纯量浓度分集圆程为:表示恒定表面浓度(纯量正在预扩集温度的固溶度),D1为预扩集温度的扩集系数,x表示由表面算起的笔直距离(cm),他为扩集时间.此分集为余缺面分集.(3)再扩集(主扩集)磷再扩集为有限表面源扩集,纯量浓度分集圆程为:其中Q为扩集进硅片纯量总量:D2为主扩集(再分集)温度的扩集系数.纯量分集为下斯分别.8.4.2 工艺步调1.准备:开扩集炉,并将温度设定倒700--750℃,开氮气流量3降/分钟.本真验采与液态源扩集,源温用矮温恒温槽脆持正在5℃以内.2.硅片荡涤:荡涤硅片(睹荡涤工艺)将荡涤佳的硅片甩搞.3.将从石英管中与出石英舟,将硅片拆正在石英舟上,并将石英舟推到恒温区.4.安排温控器,使温度达到预扩集温度800℃,安排氧气安排氧气流量为3降/分钟,并开初计时,根据工艺条件举止搞氧.5.搞氧完毕后,开氮气流量计,按工艺条件安排氮气氧气比率,而后,开通源阀,使通泉源量达到工艺央供,并开初计时.6.通源完毕后,关关通泉源量计,脆持氮气、氧气流量举止吹气,吹气完毕后,安排氮气流量3降/分钟,关关氧气流量计,共时安排扩集炉温控器,举止落温30分钟.之后,推出石英舟,与出硅片,漂去磷硅玻璃,浑洗搞洁后,检测R□值用四探针法举止丈量.7.将预扩集硅片用2#液荡涤,浑洗搞洁甩搞.8.与出再扩集石英舟,将甩搞的硅片拆进石英舟,并将石英舟推到恒温区.9.安排温控器,使温度达到再扩集温度1250℃,安排氧气流量3降/分钟,并开初计时,根据工艺条件举止搞氧11分钟.10.正在开初搞氧共时,将干氧火壶加热到95-98℃.搞氧完毕后,开干氧流量计,坐时加进干氧化.共时关关搞氧流量计.根据工艺条件举止干氧36分钟.11.干氧完毕,开搞氧流量计,安排氧气流量3降/分钟,并根据工艺条件决定搞氧时间为11分钟.12.搞氧完毕后,开氮气流量计,流量3降/分钟,根据工艺条件,决定氮气时间328分钟.13.氮气完毕后,主扩集中断,安排温控器落温,氮气流量稳定,时间30分钟.14.落温完毕后,推出石英舟,与出硅片,检测氧化层薄度、匀称性,漂去氧化层,浑洗搞洁后,检测R□值,结深(磨角法大概者SEM法),β值.15.将扩集后的硅片接光刻工艺,光刻完毕后,检测打脱电压、β值.16、根据真测β值,与工艺央供举止比较,如果不谦脚工艺条件,重新预计再扩集时间,并制定再扩集工艺条件,至到达到安排央供.磷扩集工艺真验中断.8.5 硼扩集工艺(收射区扩集)扩集是微瞅粒子的一种极为普遍的热疏通形式,百般分散器件战集成电路制制中的固态扩集工艺简称扩集,硼扩集工艺是将一定数量的硼纯量掺进到硅片晶体中,以改变硅片本去的电教本量.硼扩集是属于替位式扩集,采与预扩集战再扩集二个扩集完毕.(1)预扩集硼纯量浓度分集圆程为:表示恒定表面浓度(纯量正在预扩集温度的固溶度),D1为预扩集温度的扩集系数,x表示由表面算起的笔直距离(cm),他为扩集时间.此分集为余缺面分集.(2)再扩集(主扩集)硼再扩集为有限表面源扩集,纯量浓度分集圆程为:其中Q为扩集进硅片纯量总量:D2为主扩集(再分集)温度的扩集系数.纯量分集为下斯分集.1. 工艺准备A) 开扩集炉,并将温度设定到750--850℃,开氮气流量3降/分钟.B) 荡涤源瓶,并倒佳硼源(固态源,由氧化硼与其余宁静的氧化物压制而成).C) 开涂源洁化台,并安排佳涂源转速.2. 硅片荡涤:荡涤硅片(睹荡涤工艺),将荡涤佳的硅片甩搞.3. 将荡涤搞洁、甩搞的硅片涂上硼源.4. 从石英管中与出石英舟,将硅片拆正在石英舟上,并将石英舟推到恒温区.安排温控器,使温度达到预扩集温度950℃,并开初计时,时间是1345秒(约22分钟).5. 预扩集完毕后,推出石英舟,与出硅片,漂去硼硅玻璃,浑洗搞洁后,检测R□值,用四探针法举止丈量.6.将预扩集硅片用2#液荡涤,浑洗搞洁甩搞.7.与出再扩集石英舟,将甩搞的硅片拆进石英舟,并将石英舟推到恒温区.安排温控器,使温度达到再扩集温度1200℃,安排氧气流量3降/分钟,并开初计时,前里已算。

pcb板电路原理图分模块解析之欧阳德创编

pcb板电路原理图分模块解析之欧阳德创编

PCB板电路原理图分模块解析前面介绍了电路图中的元器件的作用和符号。

一张电路图通常有几十乃至几百个元器件,它们的连线纵横交叉,形式变化多端,初学者往往不知道该从什么地方开始,怎样才能读懂它。

其实电子电路本身有很强的规律性,不管多复杂的电路,经过分析可以发现,它是由少数几个单元电路组成的。

好象孩子们玩的积木,虽然只有十来种或二三十种块块,可是在孩子们手中却可以搭成几十乃至几百种平面图形或立体模型。

同样道理,再复杂的电路,经过分析就可发现,它也是由少数几个单元电路组成的。

因此初学者只要先熟悉常用的基本单元电路,再学会分析和分解电路的本领,看懂一般的电路图应该是不难的。

按单元电路的功能可以把它们分成若干类,每一类又有好多种,全部单元电路大概总有几百种。

下面我们选最常用的基本单元电路来介绍。

让我们从电源电路开始。

一、电源电路的功能和组成每个电子设备都有一个供给能量的电源电路。

电源电路有整流电源、逆变电源和变频器三种。

常见的家用电器中多数要用到直流电源。

直流电源的最简单的供电方法是用电池。

但电池有成本高、体积大、需要不时更换(蓄电池则要经常充电)的缺点,因此最经济可靠而又方便的是使用整流电源。

电子电路中的电源一般是低压直流电,所以要想从220 伏市电变换成直流电,应该先把 220 伏交流变成低压交流电,再用整流电路变成脉动的直流电,最后用滤波电路滤除脉动直流电中的交流成分后才能得到直流电。

有的电子设备对电源的质量要求很高,所以有时还需要再增加一个稳压电路。

因此整流电源的组成一般有四大部分,见图 1 。

其中变压电路其实就是一个铁芯变压器,需要介绍的只是后面三种单元电路。

二、整流电路整流电路是利用半导体二极管的单向导电性能把交流电变成单向脉动直流电的电路。

( 1 )半波整流半波整流电路只需一个二极管,见图 2 ( a )。

在交流电正半周时 VD 导通,负半周时 VD 截止,负载 R 上得到的是脉动的直流电( 2 )全波整流全波整流要用两个二极管,而且要求变压器有带中心抽头的两个圈数相同的次级线圈,见图 2( b )。

pcb板电路原理图分模块解析之欧阳数创编

pcb板电路原理图分模块解析之欧阳数创编

PCB板电路原理图分模块解析前面介绍了电路图中的元器件的作用和符号。

一张电路图通常有几十乃至几百个元器件,它们的连线纵横交叉,形式变化多端,初学者往往不知道该从什么地方开始,怎样才能读懂它。

其实电子电路本身有很强的规律性,不管多复杂的电路,经过分析可以发现,它是由少数几个单元电路组成的。

好象孩子们玩的积木,虽然只有十来种或二三十种块块,可是在孩子们手中却可以搭成几十乃至几百种平面图形或立体模型。

同样道理,再复杂的电路,经过分析就可发现,它也是由少数几个单元电路组成的。

因此初学者只要先熟悉常用的基本单元电路,再学会分析和分解电路的本领,看懂一般的电路图应该是不难的。

按单元电路的功能可以把它们分成若干类,每一类又有好多种,全部单元电路大概总有几百种。

下面我们选最常用的基本单元电路来介绍。

让我们从电源电路开始。

一、电源电路的功能和组成每个电子设备都有一个供给能量的电源电路。

电源电路有整流电源、逆变电源和变频器三种。

常见的家用电器中多数要用到直流电源。

直流电源的最简单的供电方法是用电池。

但电池有成本高、体积大、需要不时更换(蓄电池则要经常充电)的缺点,因此最经济可靠而又方便的是使用整流电源。

电子电路中的电源一般是低压直流电,所以要想从220 伏市电变换成直流电,应该先把 220 伏交流变成低压交流电,再用整流电路变成脉动的直流电,最后用滤波电路滤除脉动直流电中的交流成分后才能得到直流电。

有的电子设备对电源的质量要求很高,所以有时还需要再增加一个稳压电路。

因此整流电源的组成一般有四大部分,见图 1 。

其中变压电路其实就是一个铁芯变压器,需要介绍的只是后面三种单元电路。

二、整流电路整流电路是利用半导体二极管的单向导电性能把交流电变成单向脉动直流电的电路。

( 1 )半波整流半波整流电路只需一个二极管,见图 2 ( a )。

在交流电正半周时 VD 导通,负半周时 VD 截止,负载 R 上得到的是脉动的直流电( 2 )全波整流全波整流要用两个二极管,而且要求变压器有带中心抽头的两个圈数相同的次级线圈,见图 2 ( b )。

电路图符号大全之欧阳术创编

电路图符号大全之欧阳术创编

电路图形大全时间:2021.02.02 创作:欧阳术一、图形二极管表示符号:D变容二极管表示符号:D双向触发二极管表示符号:D稳压二极管表示符号:ZD,D桥式整流二极管表示符号:D肖特基二极管隧道二极管光敏二极管或光电接收二极管发光二极管表示符号:LED光敏三极管或光电接收三极管表示符号:Q,VT单结晶体管(双基极二极管)表示符号:Q,VT复合三极管表示符号:Q,VTPNP型三极管表示符号:Q,VTPNP型三极管表示符号:Q,VTNPN型三极管表示符号:Q,VT带阻尼二极管及电阻NPN型三极管表示符号:Q,VTIGBT 场效应管表示符号:Q,VT带阻尼二极管IGBT 场效应管表示符号:Q,VT稳压二极管表示符号:ZD,D隧道二极管双色发光二极管表示符号:LEDNPN型三极管表示符号:Q,VT带阻尼二极管NPN型三极管表示符号:Q,VT接面型场效应管P-JFET接面型场效应管N-JFET 场效应管增强型P-MOS场效应管耗尽型P-MOS场效应管耗尽型N-MOS电阻电阻器或固定电阻表示符号:R电位器表示符号:VR,RP,W可调电阻表示符号:VR,RP,W电位器表示符号:VR,RP,W三脚消磁电阻表示符号:RT二脚消磁电阻表示符号:RT压敏电阻表示符号:RZ,VAR光敏电阻CDS电容(有极性电容)表示符号:电容(有极性电容)表示符号:C电容(无极性电容)表示符号:C四端光电光电耦合器表示符号:IC,N六端光电光电耦合器表示符号:IC,N 场效应管增强型N-MOS电阻电阻器或固定电阻表示符号:R可调电阻表示符号:VR,RP,W热敏电阻表示符号:RT可调电容表示符号:C单向可控硅(晶闸管) 双向可控硅(晶闸管)双向可控硅(晶闸管)晶振石英晶体振荡器表示符号:X石英晶体滤波器表示符号:X双列集成电路表示符号:IC或U 运算放大器倒相放大器AND gate 非门NAND gate与非门 NOR gate 或非门保险管表示符号:F变压器表示符号:T永久磁铁电感表示符号:L继电器继电器晶振石英晶体振荡器表示符号:X单列集成电路表示符号:IC或UOR gate 或门保险管表示符号:F带铁芯电感线圈表示符号:L线路输入端子电池或直流电源AC交流恒流源按键开关表示符号:S双极开关扬声器电池或直流电源电流源特别重要的DC直流公共接地端恒压源信号源 GND公共接地端二、电工电路图符号大全电流表 PA电压表 PV有功电度表 PJ无功电度表 PJR频率表 PF相位表 PPA最大需量表(负荷监控仪) PM 功率因数表 PPF有功功率表 PW无功功率表 PR无功电流表 PAR声信号 HA光信号 HS指示灯 HL红色灯 HR绿色灯 HG黄色灯 HY蓝色灯 HB白色灯 HW连接片 XB插头 XP插座 XS端子板 XT电线,电缆,母线 W直流母线 WB插接式(馈电)母线 WIB 电力分支线 WP照明分支线 WL应急照明分支线 WE 电力干线 WPM照明干线 WLM应急照明干线 WEM滑触线 WT合闸小母线 WCL控制小母线 WC信号小母线 WS闪光小母线 WF事故音响小母线 WFS 预告音响小母线 WPS 电压小母线 WV事故照明小母线 WELM 避雷器 F熔断器 FU快速熔断器 FTF跌落式熔断器 FF限压保护器件 FV电容器 C电力电容器 CE正转按钮 SBF反转按钮 SBR停止按钮 SBS紧急按钮 SBE试验按钮 SBT复位按钮 SR限位开关 SQ接近开关 SQP手动控制开关 SH时间控制开关 SK液位控制开关 SL湿度控制开关 SM压力控制开关 SP速度控制开关 SS温度控制开关,辅助开关 ST 电压表切换开关 SV电流表切换开关 SA整流器 U可控硅整流器 UR控制电路有电源的整流器 VC 变频器 UF变流器 UC逆变器 UI电动机 M异步电动机 MA同步电动机 MS直流电动机 MD绕线转子感应电动机 MW 鼠笼型电动机 MC电动阀 YM电磁阀 YV防火阀 YF排烟阀 YS电磁锁 YL跳闸线圈 YT合闸线圈 YC气动执行器 YPA,YA电动执行器 YE发热器件(电加热) FH照明灯(发光器件) EL空气调节器 EV电加热器加热元件 EE感应线圈,电抗器 L励磁线圈 LF消弧线圈 LA滤波电容器 LL电阻器,变阻器 R电位器 RP热敏电阻 RT光敏电阻 RL压敏电阻 RPS接地电阻 RG放电电阻 RD启动变阻器 RS频敏变阻器 RF限流电阻器 RC光电池,热电传感器 B压力变换器 BP温度变换器 BT速度变换器 BV时间测量传感器 BT1,BK 液位测量传感器 BL温度测量传感器 BH,BM辅助文名称字符号A 电流ACA 交流自动AUTACC 加速ADD 附加ADJ 可调AUX 辅助ASY 异步BBRK 制动BK 黑BL 蓝BW 向后C 控制CW 顺时针CCW 逆时针D 延时(延迟)D 差动D 降DC 直流DEC 减E 接地EM 紧急F 快速FB 反馈FW 正,向前GN 绿H 高IN 输入INC 增IND 感应L 左L 限制L 低LA 闭锁M 主M 中M 中间线MMAN 手动N 中性线OFF 断开ON 接通(闭合)OUT 输出P 压力P 保护PE 保护接地PEN 保护接地与中性线共用PU 不接地保护R 记录R 右R 反RD 红色RRST 复位RES 备用RUN 运转S 信号ST 启动SSET 置位、定位SAT 饱和STE 步进STP 停止SYN 同步T 温度T 时间TE 无噪音(防干扰)接地V 真空V 速度V 电压WH 白YE 黄电气元件符号大全序号元件名称新符号旧符号1 继电器 K J2 电流继电器 KA LJ3 负序电流继电器 KAN FLJ4 零序电流继电器 KAZ LLJ5 电压继电器 KV YJ6 正序电压继电器 KVP ZYJ7 负序电压继电器 KVN FYJ8 零序电压继电器 KVZ LYJ9 时间继电器 KT SJ10 功率继电器 KP GJ11 差动继电器 KD CJ12 信号继电器 KS XJ13 信号冲击继电器 KAI XMJ14 继电器 KC ZJ15 热继电器 KR RJ16 阻抗继电器 KI ZKJ17 温度继电器 KTP WJ18 瓦斯继电器 KG WSJ19 合闸继电器 KCR或KON HJ20 跳闸继电器 KTR TJ21 合闸继电器 KCP HWJ22 跳闸继电器 KTP TWJ23 电源监视继电器 KVS JJ24 压力监视继电器 KVP YJJ25 电压继电器 KVM YZJ26 事故信号继电器 KCA SXJ27 继电保护跳闸出口继电器 KOU BCJ28 手动合闸继电器 KCRM SHJ29 手动跳闸继电器 KTPM STJ30 加速继电器 KAC或KCL JSJ31 复归继电器 KPE FJ32 闭锁继电器 KLA或KCB BSJ33 同期检查继电器 KSY TJJ34 自动准同期装置 ASA ZZQ35 自动重合闸装置 ARE ZCJ36 自动励磁调节装置 AVR或AAVR ZTL37 备用电源自动投入装置 AATS或RSAD BZT38 按扭 SB AN39 合闸按扭 SBC HA40 跳闸按扭 SBT TA41 复归按扭 SBre或SBR FA42 试验按扭 SBte YA43 紧急停机按扭 SBes JTA44 起动按扭 SBst QA45 自保持按扭 SBhs BA46 停止按扭 SBss47 控制开关 SAC KK48 转换开关 SAH或SA ZK49 测量转换开关 SAM CK50 同期转换开关 SAS TK51 自动同期转换开关 2SASC DTK52 手动同期转换开关 1SASC STK53 自同期转换开关 SSA2 ZTK54 自动开关 QA55 刀开关 QK或SN DK56 熔断器 FU RD57 快速熔断器 FUhs RDS58 闭锁开关 SAL BK59 信号灯 HL XD60 光字牌 HL或HP GP61 警铃 HAB或HA JL62 合闸接触器 KMC HC63 接触器 KM C64 合闸线圈 Yon或LC HQ65 跳闸线圈 Yoff或LT TQ66 插座 XS67 插头 XP68 端子排 XT69 测试端子 XE70 连接片 XB LP71 蓄电池 GB XDC72 压力变送器 BP YB73 温度变送器 BT WDB74 电钟 PT75 电流表 PA76 电压表 PV77 电度表 PJ78 有功功率表 PPA79 无功功率表 PPR80 同期表 S81 频率表 PF82 电容器 C83 灭磁电阻 RFS或Rfd Rmc84 分流器 RW85 热电阻 RT86 电位器 RP87 电感(电抗)线圈 L88 电流互感器 TA CT或LH89 电压互感器 TV PT或YH 10KV电压互感器 TV SYH 35KV电压互感器 TV UYH 110KV电压互感器 TV YYH90 断路器 QF DL91 隔离开关 QS G92 电力变压器 TM B93 同步发电机 GS TF94 交流电动机 MA JD95 直流电动机 MD ZD96 电压互感器二次回路小母线97 同期电压小母线(待并) WST或WVB TQMa,TQMb98 同期电压小母线(运行) WOS`或WVBn TQM`a,TQM`b99 准同期合闸小母线 1WSC,2WSC,3WSC1WPO,2WPO,3WPO 1THM,2THM,3THM100 控制电源小母线 +WC,-WC +KM,-KM101 信号电源小母线 +WS,-WS +XM,-XM102 合闸电源小母线 +WON,-WON +HM,-HM103 事故信号小母线 WFA SYM104 零序电压小母线 WVBz电流表 PA电压表 PV有功电度表 PJ无功电度表 PJR频率表 PF相位表 PPA最大需量表(负荷监控仪) PM功率因数表 PPF有功功率表 PW无功功率表 PR无功电流表 PAR声信号 HA光信号 HS指示灯 HL红色灯 HR绿色灯 HG黄色灯 HY蓝色灯 HB白色灯 HW连接片 XB插头 XP插座 XS端子板 XT电线,电缆,母线 W直流母线 WB插接式(馈电)母线 WIB 电力分支线 WP照明分支线 WL应急照明分支线 WE电力干线 WPM照明干线 WLM应急照明干线 WEM滑触线 WT合闸小母线 WCL控制小母线 WC信号小母线 WS闪光小母线 WF事故音响小母线 WFS 预告音响小母线 WPS 电压小母线 WV事故照明小母线 WELM 避雷器 F熔断器 FU快速熔断器 FTF跌落式熔断器 FF限压保护器件 FV电容器 C电力电容器 CE正转按钮 SBF反转按钮 SBR停止按钮 SBS紧急按钮 SBE试验按钮 SBT复位按钮 SR限位开关 SQ接近开关 SQP手动控制开关 SH时间控制开关 SK液位控制开关 SL湿度控制开关 SM压力控制开关 SP速度控制开关 SS温度控制开关,辅助开关 ST 电压表切换开关 SV电流表切换开关 SA整流器 U可控硅整流器 UR控制电路有电源的整流器 VC 变频器 UF变流器 UC逆变器 UI电动机 M异步电动机 MA同步电动机 MS直流电动机 MD绕线转子感应电动机 MW 鼠笼型电动机 MC电动阀 YM电磁阀 YV防火阀 YF排烟阀 YS电磁锁 YL跳闸线圈 YT合闸线圈 YC气动执行器 YPA,YA电动执行器 YE发热器件(电加热) FH照明灯(发光器件) EL空气调节器 EV电加热器加热元件 EE感应线圈,电抗器 L励磁线圈 LF消弧线圈 LA滤波电容器 LL电阻器,变阻器 R电位器 RP热敏电阻 RT光敏电阻 RL压敏电阻 RPS接地电阻 RG放电电阻 RD启动变阻器 RS频敏变阻器 RF限流电阻器 RC光电池,热电传感器 B压力变换器 BP温度变换器 BT速度变换器 BV时间测量传感器 BT1,BK 液位测量传感器 BL温度测量传感器 BH,BM关于电路图的图形符号一、电气制图采用的国家标准GB/T 6988.1-2008《电气技术用文件编制第1部分:规则》2008标准对简图的定义术语是:“主要是通过以图形符号表示项目及它们之间关系的图示形式来表达信息。

IGBT模块认证测试规范V2.0之欧阳育创编

IGBT模块认证测试规范V2.0之欧阳育创编

IGBT模块认证测试规范拟制:张广文日期:2011-03-07审核:姜明日期:__________批准:董瑞勇日期:__________更改信息登记表规范名称:IGBT模块认证测试规范规范编码:评审会签区:目录1.目的42.范围43.定义44.引用标准55.测试设备66.测试环境67.测试项目77.1规格参数比对77.2封装结构测试87.2.1封装外观检查87.2.2封装外形尺寸测试97.2.3基板平整度测试97.2.4封装内部结构测试117.3晶体管电特性测试127.3.1集-射极耐压VCES测试127.3.2 IGBT集-射极饱和压降VCE(sat)测试137.3.3 IGBT栅-射极阀值电压VGE(th)测试147.3.4 IGBT内置二极管正向压降VF测试157.4 Ices和IR测试167.5绝缘耐压测试187.6高温电应力老化测试207.7高低温老化测试217.8 NTC热敏电阻特性测试227.9驱动波形测试227.9.1驱动波形质量测试237.9.2开通关断时间测试257.9.3驱动电压幅值测试267.9.4死区时间测试277.10限流测试287.11均流测试297.12短路测试307.13温升测试347.14 IGBT晶元结温测试368.数据记录及报告格式40IGBT模块认证测试规范1.目的检验IGBT模块各项性能指标是否满足标准和产品设计要求。

本规范主要从IGBT结构、电气性能、可靠性等方面全面评估IGBT模块各项性能指标。

2.范围本规范规定的IGBT模块性能测试方法,适用于英威腾电气股份有限公司IGBT模块器件选型认可及产品开发过程中IGBT模块单体性能测试。

3.定义绝缘栅双极型晶体管IGBT(Insulated Gate Bipolar Transistor):是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。

PNP双极型晶体管的设计

PNP双极型晶体管的设计

课程设计课程名称微电子器件工艺课程设计题目名称PNP双极型晶体管的设计学生学院___ 材料与能源学院___ _ 专业班级 0学号学生姓名____ _ _指导教师____ ___一、课程设计的内容设计一个均匀掺杂的pn p型硅双极晶体管,满足T=300K时,基区掺杂浓度为NB =1016cm-3,`共发射极电流增益β=50。

BVCEO=60V,设计时应尽量减小基区宽度调制效应的影响,假设经验参数为年n=3)二、课程设计的要求与数据1.了解晶体管设计的一般步骤和设计原则2.根据设计指标设计材料参数,包括发射区、基区和集电区掺杂浓度NE , NB,和NC, 根据各区的掺杂浓度确定少子的扩散系数,迁移率,扩散长度和寿命等。

3.根据主要参数的设计指标确定器件的纵向结构参数,包括集电区厚度Wc,基本宽度Wb ,发射区宽度We和扩散结深Xjc, 发射结结深Xje等。

4.根据扩散结深Xjc , 发射结结深Xje等确定基区和发射区预扩散和再扩散的扩散温度和扩散时间;由扩散时间确定氧化层的氧化温度、氧化厚度和氧化时间。

5.根据设计指标确定器件的图形结构,设计器件的图形尺寸,绘制出基区、发射区和金属接触孔的光刻版图。

6. 根据现有工艺条件,制定详细的工艺实施方案。

7.撰写设计报告三、课程设计应完成的工作1. 材料参数设计2.晶体管纵向结构设计3.晶体管的横向结构设计(设计光刻基区、发射区和金属化的掩膜版图形)4.工艺参数设计和工艺操作步骤5.总结工艺流程和工艺参数6. 写设计报告四、课程设计进程安排五、应收集的资料及主要参考文献1.《半导体器件基础》Robert F. Pierret著,黄如译,电子工业出版社,2004. 2.《半导体物理与器件》赵毅强等译,电子工业出版社,2005年.3.《硅集成电路工艺基础》,关旭东编著,北京大学出版社,2005年.发出任务书日期: 2011年 6 月 6日指导教师签名:计划完成日期: 2011年 6月 17日基层教学单位责任人签章:主管院长签章:目录一、课程设计目的与任务 (2)二、课程设计时间 (2)三、课程设计的基本内容 (2)3.1 微电子器件与工艺课程设计――npn双极型晶体管的设计 (2)3.2 课程设计的主要内容: (2)四、课程设计原理 (3)五、工艺参数设计 (3)5.1 晶体管设计的一般步骤: (3)5.2 材料参数计算 (4)5.2.1 各区掺杂浓度及相关参数的计算 (4)5.2.2 集电区厚度Wc的选择 (8)5.2.3 基区宽度WB (8)5.2.4 晶体管的横向设计…………………………………………………………115.2.4.1 晶体管横向结构参数的选择 (11)5.3 工艺参数设计 (12)5.3.1 晶体管工艺概述……………………………………………………………125.3.2 工艺参数计算思路…………………………………………………………135.3.3 基区相关参数的计算过程: (13)5.3.4 发射区相关参数的计算过程………………………………………………155.3.5 氧化时间的计算……………………………………………………………175.3.6 外延层的参数计算…………………………………………………………195.3.7 设计参数总结………………………………………………………………20六、工艺流程图 (21)七、生产工艺流程 (21)7.1 硅片清洗………………………………………………………………………217.2 氧化工艺 (22)7.3 第一次氧化工艺步骤(基区氧化)……………………………………………237.4 采用比色法测量氧化层厚度 (23)7.5 第一次光刻工艺(基区光刻)…………………………………………………247.6 硼扩散工艺……………………………………………………………………257.6.1原理 (25)7.6.2工艺步骤 (25)7.7 第二次光刻工艺(发射区光刻) (26)7.8 磷扩散工艺(发射区扩散) (26)7.8.1工艺原理 (26)7.8.2 工艺步骤(扩散的过程同时要进行发射区的氧化) …………………………………………………………………………………27八、版图 (28)九、心得体会 (30)十、参考文献 (31)PNP双极型晶体管的设计一、课程设计目的与任务《微电子器件与工艺课程设计》是继《微电子器件物理》、《微电子器件工艺》和《半导体物理》理论课之后开出的有关微电子器件和工艺知识的综合应用的课程,使我们系统的掌握半导体器件,集成电路,半导体材料及工艺的有关知识的必不可少的重要环节。

接近开关NPN和PNP区别之欧阳音创编

接近开关NPN和PNP区别之欧阳音创编

接近开关NPN和PNP区别先要搞清楚PNP、NPN 暗示的意思是什么。

P暗示正、N暗示负。

PNP暗示平时为高电位,信号到来时信号为负。

NPN暗示平时为低电位,信号到来时信号为高电位输出.接近开关和光电开关只是检测电路不合输出相同。

至于PLC接线,一般用NPN的较多。

但大都的日本的PLC有日本型、世界型、和通用型。

进入中国的大都为世界型和通用型。

可直接用NPN 型。

接近开关和光电开关的电源正端接电源正、负接公共端、输出接PLC的输入端。

PLC的输入类型是分漏式和源式的,前者指的是正信号输入(可直接用PNP),后者指的是负信号输入(可直接用NPN),不然必须用继电器转换后输入。

传感器的型式不一而足,不过一般用得最多的是两线跟三线的,两线的跟负载串连。

三线的多为开集极输出,三根线辨别为正负电源和输出晶体管的集电极。

传感器的NPN和PNP是根据输出晶体管的型号来的。

NPN的负载是接在正电源与集电极之间,而PNP是接在集电极与负电源之间的。

要用万用表来判断传感器的型号,需要先给它一个负载,再根据它的输出电压来判断。

PNP与NPN型传感器根本的区别在哪?PNP与NPN型传感器其实就是利用三极管的饱和和截止,输出两种状态,属于开关型传感器。

但输出信号是截然相反的,即高电平和低电平。

NPN输出是低电平0,PNP输出的是高电平1。

PNP与NPN型传感器(开关型)分为六类:1、NPNNO(常开型)2、NPNNC(常闭型)3、NPNNC+NO(常开、常闭共有型)4、PNPNO(常开型)5、PNPNC(常闭型)6、PNPNC+NO(常开、常闭共有型)PNP与NPN型传感器一般有三条引出线,即电源线VCC、0V线,out信号输出线。

1、PNP类PNP是指当有信号触发时,信号输出线out 和电源线VCC连接,相当于输出高电平的电源线。

对PNPNO型,在没有信号触发时,输出线是悬空的,就是VCC电源线和out线断开。

有信号触发时,收回与VCC电源线相同的电压,也就是out 线和电源线VCC连接,输出高电平VCC。

NPN与PNP输出电路的转换之欧阳家百创编

NPN与PNP输出电路的转换之欧阳家百创编

NPN与PNP输出电路的转换1、输入传感器为接近开关时,只要接近开关的输出驱动力足够,漏型输入(也就是说COM端共0V)的PLC输入端就可以直接与NPN集电极开路型接近开关的输出进行连接。

但是,当采用PNP集电极开路型接近开关时,由于接近开关内部输出端与0V间的电阻很大,无法提供电耦合器件所需要的驱动电流,因此需要增加“下拉电阻”。

如图。

增加下拉电阻后应注意,此时的PLC内部输入信号与接近开关发信状态相反,即接近开关发信时,“下拉电阻”上端为24V,光电耦合器件无电流,内部信号为“0”;未发信时,PLC内部DC24V与0V之间,通过光电耦合器件、限流电阻、“下拉电阻”经公共端COM构成电流回路,输入为“1”。

下拉电阻的阻值主要决定于PLC输入光电耦合器件的驱动电流、PLC内部输入电路的限流电阻阻值。

通常情况下,其值为1.5—2KΩ,计算公式如下:第一种公式:R≤[(Ve-0.7)/Ii]-Ri欧阳家百(2021.03.07)式中:R——下拉电阻(KΩ)Ve——输入电源电压(V)Ii——最小输入驱动电流(mA)Ri——PLC内部输入限流电阻(KΩ)公式中取发光二极管的导通电压为0.7V。

第二种公式:下拉电阻≤[输入限流电阻/(最小ON电压/24V)]-输入限流电阻 2、输入传感器为接近开关时,只要接近开关的输出驱动力足够,源型输入(也就是COM端是共+24V的)的PLC输入端就可以直接与PNP集电极开路型接近开关的输出进行连接。

相反,当采用NPN集电极开路型接近开关时,由于接近开关内部输出端与24V间的电阻很大,无法提供电耦合器件所需要的驱动电流,因此需要增加“上拉电阻”。

增加下拉电阻后应注意,此时的PLC内部输入信号与接近开关发信状态相反,即接近开关发信时,“上拉电阻”上端为0V,光电耦合器件无电流,内部信号为“0”;未发信时,PLC内部DC24V与0V之间,通过光电耦合器件、限流电阻、“上拉电阻”经公共端COM构成电流回路,输入为“1”。

集电极开路输出之欧阳物创编

集电极开路输出之欧阳物创编

集电极开路输出我们先来说说集电极开路输出的结构。

集电极开路输出的结构如图1所示,右边的那个三极管集电极什么都不接,所以叫做集电极开路(左边的三极管为反相之用,使输入为“0”时,输出也为“0”)。

对图1,当左真个输入为“0”时,前面的三极管截止(即集电极c跟发射极e 之间相当于断开),所以5v 电源通过1k电阻加到右边的三极管上,右边的三极管导通(即相当于一个开关闭合);当左真个输入为“1”时,前面的三极管导通,此后面的三极管截止(相当于开关断开)。

我们将图1简化成图2的样子。

图2中的开关受软件控制,“1”时断开,“0”时闭合。

很明显可以看出,当开关闭合时,输出直接接地,所以输出电平为0。

而当开关断开时,则输出端悬空了,即高阻态。

这时电平状态未知,如果后面一个电阻负载(即使很轻的负载)到地,那么输出真个电平就被这个负载拉到低电平了,所以这个电路是不克不及输出高电平的。

再看图三。

图三中那个1k的电阻即是上拉电阻。

如果开关闭合,则有电流从1k电阻及开关上流过,但由于开关闭和时电阻为0(便利我们的讨论,实际情况中开关电阻不为0,另外对三极管还存在饱和压降),所以在开关上的电压为0,即输出电平为0。

如果开关断开,则由于开关电阻为无穷年夜(同上,不考虑实际中的漏电流),所以流过的电流为0,因此在1k电阻上的压降也为0,所以输出真个电压就是5v 了,这样就能输出高电平了。

可是这个输出的内阻是比较年夜的(即1kω),如果接一个电阻为r的负载,通过分压计算,就可以算得最后的输出电压为5*r/(r+1000)伏,即5/(1+1000/r)伏。

所以,如果要达到一定的电压的话,r就不克不及太小。

如果r真的太小,而招致输出电压不敷的话,那我们只有通过减小那个1k的上拉电阻来增加驱动能力。

可是,上拉电阻又不克不及取得太小,因为当开关闭合时,将产生电流,由于开关能流过的电流是有限的,因此限制了上拉电阻的取值,另外还需要考虑到,当输出低电平时,负载可能还会给提供一部分电流从开关流过,因此要综合这些电流考虑来选择合适的上拉电阻。

数字集成电路设计_笔记归纳之欧阳学创编

数字集成电路设计_笔记归纳之欧阳学创编

第三章、器件一、超深亚微米工艺条件下MOS 管主要二阶效应:1、速度饱和效应:主要出现在短沟道NMOS 管,PMOS 速度饱和效应不显著。

主要原因是TH GS V V -太大。

在沟道电场强度不高时载流子速度正比于电场强度(μξν=),即载流子迁移率是常数。

但在电场强度很高时载流子的速度将由于散射效应而趋于饱和,不再随电场强度的增加而线性增加。

此时近似表达式为:μξυ=(c ξξ<),c sat μξυυ==(c ξξ≥),出现饱和速度时的漏源电压DSAT V 是一个常数。

线性区的电流公式不变,但一旦达到DSAT V ,电流即可饱和,此时DS I 与GS V 成线性关系(不再是低压时的平方关系)。

2、Latch-up 效应:由于单阱工艺的NPNP 结构,可能会出现VDD 到VSS 的短路大电流。

正反馈机制:PNP 微正向导通,射集电流反馈入NPN 的基极,电流放大后又反馈到PNP 的基极,再次放大加剧导通。

克服的方法:1、减少阱/衬底的寄生电阻,从而减少馈入基极的电流,于是削弱了正反馈。

2、保护环。

3、短沟道效应:在沟道较长时,沟道耗尽区主要来自MOS场效应,而当沟道较短时,漏衬结(反偏)、源衬结的耗尽区将不可忽略,即栅下的一部分区域已被耗尽,只需要一个较小的阈值电压就足以引起强反型。

所以短沟时VT随L的减小而减小。

此外,提高漏源电压可以得到类似的效应,短沟时VT随VDS增加而减小,因为这增加了反偏漏衬结耗尽区的宽度。

这一效应被称为漏端感应源端势垒降低。

4、漏端感应源端势垒降低(DIBL):VDS增加会使源端势垒下降,沟道长度缩短会使源端势垒下降。

VDS很大时反偏漏衬结击穿,漏源穿通,将不受栅压控制。

5、亚阈值效应(弱反型导通):当电压低于阈值电压时MOS管已部分导通。

不存在导电沟道时源(n+)体(p)漏(n+)三端实际上形成了一个寄生的双极性晶体管。

一般希望该效应越小越好,尤其在依靠电荷在电容上存储的动态电路,因为其工作会受亚阈值漏电的严重影响。

电力电子技术重点王兆安第五版之欧阳法创编

电力电子技术重点王兆安第五版之欧阳法创编

第1章绪论1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。

2 电力变换的种类(1)交流变直流AC-DC:整流(2)直流变交流DC-AC:逆变(3)直流变直流DC-DC:一般通过直流斩波电路实现(4)交流变交流AC-AC:一般称作交流电力控制3 电力电子技术分类:分为电力电子器件制造技术和变流技术。

第2章电力电子器件1 电力电子器件与主电路的关系(1)主电路:指能够直接承担电能变换或控制任务的电路。

(2)电力电子器件:指应用于主电路中,能够实现电能变换或控制的电子器件。

2 电力电子器件一般都工作于开关状态,以减小本身损耗。

3 电力电子系统基本组成与工作原理(1)一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。

(2)检测主电路中的信号并送入控制电路,根据这些信号并按照系统工作要求形成电力电子器件的工作信号。

(3)控制信号通过驱动电路去控制主电路中电力电子器件的导通或关断。

(4)同时,在主电路和控制电路中附加一些保护电路,以保证系统正常可靠运行。

4 电力电子器件的分类根据控制信号所控制的程度分类(1)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。

如SCR 晶闸管。

(2)全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。

如GTO、GTR、MOSFET 和IGBT。

(3)不可控器件:不能用控制信号来控制其通断的电力电子器件。

如电力二极管。

根据驱动信号的性质分类(1)电流型器件:通过从控制端注入或抽出电流的方式来实现导通或关断的电力电子器件。

如SCR、GTO、GTR。

(2)电压型器件:通过在控制端和公共端之间施加一定电压信号的方式来实现导通或关断的电力电子器件。

如MOSFET、IGBT。

根据器件内部载流子参与导电的情况分类(1)单极型器件:内部由一种载流子参与导电的器件。

如MOSFET。

高频开关电源的基本原理之欧阳与创编

高频开关电源的基本原理之欧阳与创编

第一节高频开关电源的基本原理一、高频开关电源的组成高频开关整流器通常由工频滤波电路、工频整流电路、功率因数校正电路、直流-直流变换器和输出滤波器等部分组成,其组成方框图如图1-3-1所示。

图1-3-1高频开关整流器组成方框图图中输入回路的作用是将交流输入电压整流滤波变为平滑的高压直流电压;功率变换器的作用是将高压直流电压转换为频率大于20KHZ的高频脉冲电压;整流滤波电路的作用是将高频的脉冲电压转换为稳定的直流输出电压;开关电源控制器的作用是将输出直流电压取样,来控制功率开关器件的驱动脉冲的宽度,从而调整开通时间以使输出电压可调且稳定。

从框图中可见,由于高频变压器取代了笨重的工频(50HZ)变压器,从而使稳压电源的体积和重量大小减小。

开关整流器的特点:①重量轻,体积小采用高频技术,去掉了工频变压器,与相控整流器相比较,在输出同等功率的情况下,开关整流器的体积只上相控整流器的1/10,重量也接近1/10。

②功率因数高相控整流器的功率因数随可控硅导通角的变化而变化,一般在全导通时,可接近0.7以上,而小负载时,仅为0.3左右。

经过校正的开磁电源功率因数一般在0.93以上,并且基本不受负载变化的影响(对20%以上负载)。

③可闻噪音低在相控整流设备中,工频变压器及滤波电感工作时产生的可闻噪声较大,一般大于60dB。

而开关电源在无风扇的情况下可闻噪声仅为45dB左右。

④效率高开关电源采用的功率器件一般功耗较小,带功率因数补偿的开关电源其整机效率可达88%以上,较好的可做到91%以上。

⑤冲击电流小开机冲击电流可限制的额定输入电流的水平。

⑥模块式结构由于体积不,重量轻,可设计为模块式结构,目前的水平是一个2m高的19英寸(in)机架容量可达48V/1000A以上,输出功率约为60KW。

二、高频开关电源的分类(二)开关整流器分类1、按激励方式可分为自激式和他激式。

自激式开关电源在接通电源后功率变换电路就自行产生振荡,即该电路是靠电路本身的正反馈过程来实现功率变换的。

PNP双极型晶体管的设计之欧阳语创编

PNP双极型晶体管的设计之欧阳语创编

目录1.课程设计目的与任务 (2)2.设计的内容 (2)3.设计的要求与数据 (2)4.物理参数设计 (3)4.1各区掺杂浓度及相关参数的计算 (3)4.2 集电区厚度Wc的选择 (6)4.3 基区宽度WB (6)4.4 扩散结深 (10)4.5 芯片厚度和质量 (10)4.6 晶体管的横向设计、结构参数的选择 (10)5.工艺参数设计 (11)5.1 工艺部分杂质参数 (11)5.2 基区相关参数的计算过程 (11)5.3发射区相关参数的计算过程 (13)5.4氧化时间的计算 (14)6.设计参数总结 (16)7.工艺流程图 (17)8.生产工艺流程 (19)9.版图 (28)10.心得体会 (29)11.参考文献 (30)PNP双极型晶体管的设计1、课程设计目的与任务《微电子器件与工艺课程设计》是继《微电子器件物理》、《微电子器件工艺》和《半导体物理》理论课之后开出的有关微电子器件和工艺知识的综合应用的课程,使我们系统的掌握半导体器件,集成电路,半导体材料及工艺的有关知识的必不可少的重要环节。

目的是使我们在熟悉晶体管基本理论和制造工艺的基础上,掌握晶体管的设计方法。

要求我们根据给定的晶体管电学参数的设计指标,完成晶体管的纵向结构参数设计→晶体管的图形结构设计→材料参数的选取和设计→制定实施工艺方案→晶体管各参数的检测方法等设计过程的训练,为从事微电子器件设计、集成电路设计打下必要的基础。

2、设计的内容设计一个均匀掺杂的pnp型双极晶体管,使T=300K 时,β=120,VCEO=15V,VCBO=80V.晶体管工作于小注入条件下,最大集电极电流为IC=5mA。

设计时应尽量减小基区宽度调制效应的影响。

3、设计的要求与数据(1)了解晶体管设计的一般步骤和设计原则。

(2)根据设计指标设计材料参数,包括发射区、基区和集电区掺杂浓度NE, NB,和NC,根据各区的掺杂浓度确定少子的扩散系数,迁移率,扩散长度和寿命等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录欧阳家百(2021.03.07)1.课程设计目的与任务 (2)2.设计的内容 (2)3.设计的要求与数据 (2)4.物理参数设计 (3)4.1各区掺杂浓度及相关参数的计算 (3)4.2 集电区厚度Wc的选择 (6)4.3 基区宽度WB (6)4.4 扩散结深 (10)4.5 芯片厚度和质量 (10)4.6 晶体管的横向设计、结构参数的选择 (10)5.工艺参数设计 (11)5.1 工艺部分杂质参数 (11)5.2 基区相关参数的计算过程 (11)5.3发射区相关参数的计算过程 (13)5.4氧化时间的计算 (14)6.设计参数总结 (16)7.工艺流程图 (17)8.生产工艺流程 (19)9.版图 (28)10.心得体会 (29)11.参考文献 (30)PNP双极型晶体管的设计1、课程设计目的与任务《微电子器件与工艺课程设计》是继《微电子器件物理》、《微电子器件工艺》和《半导体物理》理论课之后开出的有关微电子器件和工艺知识的综合应用的课程,使我们系统的掌握半导体器件,集成电路,半导体材料及工艺的有关知识的必不可少的重要环节。

目的是使我们在熟悉晶体管基本理论和制造工艺的基础上,掌握晶体管的设计方法。

要求我们根据给定的晶体管电学参数的设计指标,完成晶体管的纵向结构参数设计→晶体管的图形结构设计→材料参数的选取和设计→制定实施工艺方案→晶体管各参数的检测方法等设计过程的训练,为从事微电子器件设计、集成电路设计打下必要的基础。

2、设计的内容设计一个均匀掺杂的pnp型双极晶体管,使T=300K时,β=120,V CEO=15V,V CBO=80V.晶体管工作于小注入条件下,最大集电极电流为I C=5mA。

设计时应尽量减小基区宽度调制效应的影响。

3、设计的要求与数据(1)了解晶体管设计的一般步骤和设计原则。

(2)根据设计指标设计材料参数,包括发射区、基区和集电区掺杂浓度N E, N B,和N C,根据各区的掺杂浓度确定少子的扩散系数,迁移率,扩散长度和寿命等。

4.根据主要参数的设计指标确定器件的纵向结构参数,包括集电区厚度W c,基本宽度W b,发射区宽度W e和扩散结深X jc,发射结结深X je等。

5.根据扩散结深X jc,发射结结深X je等确定基区和发射区预扩散和再扩散的扩散温度和扩散时间;由扩散时间确定氧化层的氧化温度、氧化厚度和氧化时间。

6.根据设计指标确定器件的图形结构,设计器件的图形尺寸,绘制出基区、发射区和金属接触孔的光刻版图。

(6)根据现有工艺条件,制定详细的工艺实施方案。

4、物理参数设计4.1 各区掺杂浓度及相关参数的计算击穿电压主要由集电区电阻率决定。

因此,集电区电阻率的最小值由击穿电压决定,在满足击穿电压要求的前提下,尽量降低电阻率,并适当调整其他参量,以满足其他电学参数的要求。

对于击穿电压较高的器件,在接近雪崩击穿时,集电结空间电荷区已扩展至均匀掺杂的外延层。

因此,当集电结上的偏置电压接近击穿电压V 时,集电结可用突变结近似,对于Si 器件击穿电压为4313106-⨯=)(BC B N V , 由此可得集电区杂质浓度为:由设计的要求可知C-B 结的击穿电压为:V BV CBO 80=根据公式,可算出集电区杂质浓度:一般的晶体管各区的浓度要满足NE>>NB>NC ,根据以往的经验可取:即各区的杂质溶度为:图1 室温下载流子迁移率与掺杂浓度的函数关系(器件物理P55) 根据图1,得到少子迁移率:根据公式可得少子的扩散系数:图2 掺杂浓度与电阻率的函数关系(器件物理P59)根据图2,可得到不同杂质浓度对应的电阻率:图3 少子寿命与掺杂浓度的函数关系(半导体物理P177)根据图3,可得到各区的少子寿命E B C τττ和、根据公式得出少子的扩散长度:4.2集电区厚度Wc 的选择根据公式求出集电区厚度的最小值为:um 91.3101.39]10814.6106.1808.111085.82[]2[521151914210=⨯≈⨯⨯⨯⨯⨯⨯⨯==〉---cm qN BV X W C CBO S mB C εεW C 的最大值受串联电阻r cs 的限制。

增大集电区厚度会使串联电阻r cs 增加,饱和压降V CES 增大,因此W C 的最大值受串联电阻限制。

综合考虑这两方面的因素,故选择W C =8μm4.3 基区宽度WB(1)基区宽度的最大值对于低频管,与基区宽度有关的主要电学参数是,因此低频器件的基区宽度最大值由确定。

当发射效率γ≈1时,电流放大系数][122nb B L W λβ=,因此基区宽度的最大值可按下式估计:212][βλnb B L W <为了使器件进入大电流状态时,电流放大系数仍能满足要求,因而设计过程中取λ=4。

根据公式,求得低频管的基区宽度的最大值为:由公式可看出,电流放大系数β要求愈高,则基区宽度愈窄。

为提高二次击穿耐量,在满足β要求的前提下,可以将基区宽度选的宽一些,使电流在传输过程中逐渐分散开,以提高二次击穿耐性。

(2)基区宽度的最小值为了保证器件正常工作,在正常工作电压下基区绝对不能穿通。

因此,对于高耐压器件,基区宽度的最小值由基区穿通电压决定,此处V BV CBO 80=,对于均匀基区晶体管,当集电结电压接近雪崩击穿时,基区一侧的耗尽层宽度为:在高频器件中,基区宽度的最小值往往还受工艺的限制。

则由上述计算可知基区的范围为:m W m B μμ08.5373.0<<(3)基区宽度的具体设计与PN 结二极管的分析类似,在平衡和标准工作条件下,BJT 可以看成是由两个独立的PN 结构成,它在平衡时的结构图如下所示:图4 平衡条件下的PNP 三极管的示意图具体来说,由于B E N N >>,所以E-B 耗尽区宽度(EB W )可近视看作全部位于基区内,又由C B N N >,得到大多数C-B 耗尽区宽度(CB W )位于集电区内。

因为C-B 结轻掺杂一侧的掺杂浓度比E-B 结轻掺杂一侧的浓度低,所以CB W >EB W 。

另外注意到B W 是基区宽度,W 是基区中准中性基区宽度;也就是说,对于PNP 晶体管,有:nCB nEB B x x W W ++=其中nEB x 和nCB x 分别是位于N 型区内的E-B 和C-B 耗尽区宽度,在BJT 分析中W 指的就是准中性基区宽度。

E-B 结的内建电势为:C-B 结的内建电势为:根据公式,E-B 结在基区一边的耗尽层宽度nEB x 为:∵B E N N >>,可以当成单边突变结处理C-B 结在基区一边的耗尽层厚度nCB x 为:对于准中性基区宽度W ,取基区宽度um 5.3=B W ,则验证其取值的准确性,根据公式有:解得的β接近于设计的要求,符合设计指标,所以基区宽度为m W B μ5.3=,满足条件m W m B μμ08.5373.0<<。

4.4 扩散结深在晶体管的电学参数中,击穿电压与结深关系最为密切,它随结深变浅,曲率半径减小而降低,因而为了提高击穿电压,要求扩散结深一些。

但另一方面,结深却又受条宽限制,由于基区积累电荷增加,基区渡越时间增长,有效特征频率就下降,因此,通常选取:反射结结深为um W X B je 5.3== 集电结结深为um W X B j 72c =⨯=4.5 芯片厚度和质量本设计选用的是电阻率为cm ⋅Ω7的P 型硅,晶向是<111>。

硅片厚度主要由集电结深、集电区厚度、衬底反扩散层厚度决定。

同时扩散结深并不完全一致,在测量硅片厚度时也存在一定误差。

因此在选取硅片厚度时必须留有一定的的余量。

衬底厚度要选择适当,若太薄,则易碎,且不易加工;若太厚,则芯片热阻过大。

因此,在工艺操作过程中,一般硅片的厚度都在300um 以上,但最后要减薄到150~200um 。

硅片的质量指标主要是要求厚度均匀,电阻率符合要求,以及材料结构完整、缺陷少等。

4.6 晶体管的横向设计、结构参数的选择(1)横向设计进行晶体管横向设计的任务,是根据晶体管主要电学参数指标的要求,选取合适的几何图形,确定图形尺寸,绘制光刻版图。

晶体管的图形结构种类繁多:从电极配置上区分,有延伸电极和非延伸电极之分;从图形形状看,有圆形、梳状、网格、覆盖、菱形等不同的几何图形。

众多的图形结构各有其特色。

此次设计的晶体管只是普通的晶体管,对图形结构没有特别的要求,所以只是采用普通的单条形结构。

三极管剖面图如图5,三极管俯视图如图6。

图5:三极管剖面图图6:三极管俯视图(2)基区和发射区面积发射区面积取21001010m A E μ=⨯=基区面积取26002030m A B μ=⨯=。

5、工艺参数设计5.1 工艺部分杂质参数表1硅中磷和硼的0D 与a E (微电子工艺基础119页表5-1)5.2 基区相关参数的计算过程5.2.1预扩散时间PNP 基区的磷预扩散的温度取1080℃,即1353K 。

单位面积杂质浓度:由上述表1可知磷在硅中有:s cm D O /85.32=V E e 66.3a = 为了方便计算,取318cm 105-⨯=S C由公式 Dt C t Q S π2)(=,得出基区的预扩散时间:5.2.2氧化层厚度氧化层厚度的最小值由预扩散(1353K )的时间t=964.84s 来决定的,且服从余误差分布,并根据假设可求t D x SiO 26.4min =,由一些相关资料可查出磷(P )在温度1080℃时在2i O S 中的扩散系数:s /cm 102.22142i -⨯=O S D考虑到生产实际情况,基区氧化层厚度取为60000A 。

5.2.3基区再扩散的时间PNP 基区的磷再扩散的温度这里取1200℃。

由一些相关资料可查出磷的扩散系数:s /cm 106212⨯=D由于预扩散的结深很浅,可将它忽略,故,m jC μ7X X .==再扩 由再扩散结深公式:B SC C Dt ln 2X =再扩, 而且Dt QC S π=,31510814.6-⨯==cm N C C B 故可整理为:02X ln 2ln ln 4X 22=+⎪⎪⎭⎫ ⎝⎛⋅⋅-⇒⋅⋅=D D C Q t t t Dt C QDt B B 再扩再扩ππ 即()0106210710614.310814.61025.5ln 2ln 1224121512=⨯⨯⨯+⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯⋅----t t t经过化简得:0391675.13ln =+-⋅t t t 解得基区再扩散的时间:t=9050s=2.5h 5.3发射区相关参数的计算过程 5.3.1预扩散时间PNP 发射区的硼预扩散的温度这里取950℃,即1223K 。

单位面积杂质浓度:由上述表1可知硼在硅中有:s cm D O /76.02=VE e 46.3a =为了方便计算,取320cm 108-⨯=S C由公式DtC t Q S π2)(=,得出发射区的预扩散时间:5.3.2氧化层厚度氧化层厚度的最小值由预扩散(1353K )的时间t=1683s 来决定的,且服从余误差分布,并根据假设可求tD x SiO 26.4min =,由一些相关资料可查出硼(B )在温度950℃时在2i O S 中的扩散系数:s/cm 1062152i -⨯=O S D考虑到生产实际情况,基区氧化层厚度取为70000A 。

相关文档
最新文档