新人教版七年级下册数学平方根教案.汇编

合集下载

平方根人教版数学七年级下册教案3篇

平方根人教版数学七年级下册教案3篇

平方根人教版数学七年级下册教案3篇平方根人教版数学七年级下册教案1 人教版七年级数学下册《10.1平方根》教学设计PPT课件导学案教案课题: 10.1 平方根〔1〕教学目的 1.理解算术平方根的概念,会用根号表示正数的算术平方根,并理解算术平方根的非负性;2.理解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根;3.通过对实际生活中问题的解决,让学生体验数学与生活实际是严密联络着的,通过探究活动培养动手才能和激发学生学习数学的兴趣。

教学难点根据算术平方根的概念正确求出非负数的算术平方根。

知识重点算术平方根的概念。

教学过程〔师生活动〕设计理念情境导入同学们,20xx年10月15日,这是我们每个中国人值得骄傲的日子.因为这一天,“神舟”五号飞船载人航天飞行获得圆满成功,实现了中华民族千年的飞天梦想〔多媒体同时出示“神舟”五号飞船升空时的画面〕.那么,你们知道宇宙飞船分开地球进人轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度〔米/秒〕而小于第二宇宙速度:〔米/秒〕.、的大小满足 .怎样求、呢?这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.请看下面的问题.“神舟”五号成功发射和平安着陆,标志着我国在攀登世界科技顶峰的征程上又迈出具有重大历史意义的一步,是我们伟大祖国的荣耀.此内容有感染力,使学生对本章知识的应用价值有一个感性认识,同时激发学生的好奇心和学习的兴趣.这里的计算实际上是幂和乘方的指数求底数的问题,是乘方的逆运算,学生以前没有见过,由此引出了本章所要研究的主要内容,以及研究这些内容的大体思路.提出问题感知新知多媒体展示教科书第160页的问题〔问题略〕,然后提出问题:你是怎样算出画框的边长等于5dm的呢?〔学生考虑并交流解法〕这个问题相当于在等式扩=25中求出正数x的值.练习:教科书第160页的填表.练习:教科书第160页的填表.这个问题抽象成数学问题就是正方形的面积求正方形的边长,这与学生以前学过的正方形的边长求它的面积的过程互逆,教学时可以让学生初步体会这种互逆的过程,为后面的学习做准备。

七年级下册6.1平方根教案(第二课时)-经典教学教辅文档

七年级下册6.1平方根教案(第二课时)-经典教学教辅文档

6.2平方根(第2课时)的教学设计一.学习目标知识与技能:1.了解平方根、开平方的概念.2.明确算术平方根与平方根的区别和联系.3.进一步明确平方与开平方是互逆的运算关系.过程与方法:1.经历平方根概念的构成过程,让先生不仅掌握概念,而且进步和巩固所学知识的运用能力.2.培养先生求同与求异的思想,经过比较进步考虑成绩、辨析成绩的能力.情感、态度与价值观1.在学习中互相帮助、交流、合作、培养团队的精神.2.在学习的过程中,培养先生严谨的科学态度.二.教学重点、难点重点:1.了解平方根开、平方根的概念.2.了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.3.了解平方根与算术平方根的区别与联系.难点:1.平方根与算术平方根的区别和联系.2.负数没有平方根,即负数不能进行平方根的运算.三.学习方法:自主 合作 探求四.学习过程设计检查先生完成情况(:教师经行抽查,找出典型的成绩经行讲解)(一).自学范围:请自学教材第3页至第5页;(二).知识回顾:1. 64.0的算术平方根是 ;16 的算术平方根是 ;2. =-2)6( ;=971(二)算术平方根的平方:(1) 的平方等于3; (2)比较大小:32与23;平方根与算术平方根的联系与区别:联系:1.平方根包含算术平方根,算术平方根是平方根的一种.2.只需非负数才有平方根和算术平方根.3. 0的平方根是0,算术平方根也是0.区别:1.个数不同:一个正数有两个平方根,但只需一个算术平方根.2.表示法不同:平方根表示为 a ± ,而算术平方根表示为a1 .以下说法正确的是①3-②25的平方根是5;③-36的平方根是-6;④平方根等于0的数是0;⑤64的平方根是8.2.以下说法不正确的是( ) .(A)0的平方根是0 (B)22-的平方根是2±(C)非负数的平方根是互为相反数 (D)一个正数的算术平方根必然大于这个数的相反数3. 已知一个自然数的算术平方根是a,则该自然数的下一个自然数的算术平方根是().(C) a2+14. 指出以下各数的算术平方根:(1)0.04 (2)1645. 面积为9的正方形,边长=;面积为7的正方形,边长=;6.比较大小:8313-与81本节小结先生自主总结,先生畅谈本人的学习播种。

平方根人教版数学七年级下册教案

平方根人教版数学七年级下册教案

平方根一、教学目标1.知识与技能:理解平方根的概念,掌握平方根的性质,会求一个正数的平方根。

2.过程与方法:通过自主探究、合作交流,发展学生的推理能力和解决问题的能力。

3.情感态度与价值观:培养学生对数学的兴趣,增强学生学好数学的信心。

二、教学重难点1.重点:平方根的概念和性质。

2.难点:求一个正数的平方根。

三、教学过程1.导入新课师:同学们,我们已经学习了算术平方根,那么什么是平方根呢?今天我们就来学习平方根。

2.自主探究(1)写出下列各数的平方根:1,4,9,16。

(2)观察上面的结果,你发现了什么规律?生1:我发现,一个正数有两个平方根,它们互为相反数。

生2:我还发现,0的平方根是0,而负数没有平方根。

3.例题讲解例1:求下列各数的平方根:(1)49(2)0.01(3)0.25师:请同学们先独立思考,然后和同桌交流一下。

生1:对于(1)49,我们可以直接写出它的平方根为±7。

生2:对于(2)0.01,我们可以先求出它的算术平方根,再写出它的平方根为±0.1。

生3:对于(3)0.25,我们同样可以先求出它的算术平方根,再写出它的平方根为±0.5。

生1:一个正数有两个平方根,它们互为相反数。

生2:0的平方根是0。

生3:负数没有平方根。

5.练习巩固师:请同学们完成下面的练习题,巩固平方根的知识。

(1)求下列各数的平方根:①64②0.04③1(2)判断题:①9的平方根是3。

()②0的平方根是0。

()③负数有平方根。

()6.课堂小结师:今天我们学习了平方根,大家掌握得怎么样?请同学们分享一下自己的收获。

生1:我学会了平方根的概念和性质。

生2:我会求一个正数的平方根了。

生3:我对平方根有了更深的理解。

7.作业布置(1)教材P20习题1、2。

(2)预习下一节内容:立方根。

四、课后反思重难点补充:1.重点:平方根的概念和性质师:同学们,我们之前学过平方,比如2的平方是4,那么你们能告诉我,哪个数的平方是4吗?生:2的平方是4。

人教版数学七年级下册6.1.3《平方根》教案3

人教版数学七年级下册6.1.3《平方根》教案3

人教版数学七年级下册6.1.3《平方根》教案3一. 教材分析平方根是数学中的一个基本概念,它是指一个数乘以自身得到另一个数时,这个数就是原数的平方根。

平方根的引入可以帮助学生更好地理解有理数、无理数等概念,并且在实际问题中具有广泛的应用。

二. 学情分析学生在学习平方根之前,已经学习了有理数的乘法、平方等知识,对于乘法运算已经有了一定的理解。

但是,平方根的概念较为抽象,需要学生进行一定的思考和理解。

因此,在教学过程中,需要引导学生通过实际例子来理解平方根的概念,并通过练习来巩固所学知识。

三. 教学目标1.理解平方根的概念,掌握求一个数的平方根的方法。

2.能够应用平方根的概念解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.重点:平方根的概念和求一个数的平方根的方法。

2.难点:理解平方根的概念,能够应用平方根解决实际问题。

五. 教学方法采用问题驱动法、案例教学法、小组讨论法等教学方法,引导学生通过实际例子来理解平方根的概念,并通过练习来巩固所学知识。

六. 教学准备1.PPT课件2.教学视频或案例七. 教学过程1.导入(5分钟)通过一个实际例子来引入平方根的概念,例如:一个正方形的边长为4,求这个正方形的面积。

引导学生思考,如何求解这个问题。

2.呈现(15分钟)讲解平方根的概念,通过PPT课件或者板书,给出平方根的定义和性质。

同时,给出求一个数的平方根的方法。

让学生理解并掌握平方根的概念。

3.操练(10分钟)通过一些练习题,让学生运用平方根的概念来求解问题。

给予学生解答的指导,并纠正一些常见的错误。

4.巩固(10分钟)让学生通过一些实际问题,应用平方根的概念来解决问题。

让学生感受到平方根在实际问题中的应用价值。

5.拓展(10分钟)引导学生思考平方根的应用场景,例如:在物理学中,平方根的概念可以应用于振动频率的计算;在经济学中,平方根的概念可以应用于需求曲线的计算等。

让学生了解平方根在实际问题中的应用。

七年级数学下《平方根》教案

七年级数学下《平方根》教案

七年级数学下《平方根》教案一、教学目标1.知识与技能:学生能够理解平方根的概念,掌握平方根的基本性质,能够进行简单的平方根运算。

2.过程与方法:通过观察、思考和探究,培养学生的数学思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的好奇心和探究欲,培养他们认真思考、勇于探索的精神。

二、教学内容与过程1.导入:通过回顾正方形的面积,引出平方根的概念。

教师可提出一些问题,如:“如果一个正方形的面积为8平方米,那么它的边长是多少?”引导学生思考并引出平方根的概念。

2.知识讲解:详细讲解平方根的定义、性质和运算方法。

通过实例进行解释,帮助学生深入理解平方根的概念。

同时,强调平方根与算术平方根的区别与联系。

3.探究活动:设计探究活动,让学生自己动手操作,探索平方根的基本性质和运算方法。

探究活动可以包括求一些数的平方根、比较不同数的平方根的大小等。

4.应用实践:设计实际问题,让学生运用所学知识解决,如求一些实际问题中的平方根等。

同时,可以引导学生探索平方根在实际生活中的应用。

5.总结与提升:总结平方根的主要知识点,强调重点和难点。

通过综合性题目,提升学生运用知识解决实际问题的能力。

同时,可以引导学生思考平方根与其他数学知识的联系,为后续学习打下基础。

三、教学方法与手段1.教学方法:采用启发式、探究式和合作学习的方法,引导学生主动探索和思考。

同时,注重实例教学,通过实例帮助学生理解抽象的数学概念。

2.教学手段:利用实物模型、PPT演示、数学软件等辅助教学工具,帮助学生更好地理解平方根的概念和性质。

同时,鼓励学生动手操作,培养他们的实践能力。

四、教学评价与反馈1.课堂互动:通过课堂提问、小组讨论等方式,及时了解学生的学习情况,调整教学策略。

同时,鼓励学生积极参与课堂活动,发表自己的观点和见解。

2.作业评价:布置相关练习题,要求学生按时完成,并进行批改和反馈。

同时,关注学生的作业完成情况,对有困难的学生进行个别辅导。

人教版七年级数学下册 教学设计6.1 第2课时《平方根》

人教版七年级数学下册 教学设计6.1 第2课时《平方根》

人教版七年级数学下册教学设计6.1 第2课时《平方根》一. 教材分析本节课的教学内容是《平方根》,这是人教版七年级数学下册第六章第一节的一部分。

在此之前,学生已经学习了有理数、实数等基础知识,对数的运算也有一定的了解。

本节课主要让学生掌握平方根的定义、性质和求法,以及了解平方根在实际问题中的应用。

二. 学情分析七年级的学生已经具备了一定的数学基础,但部分学生在实数方面的理解还不够深入。

在导入新课环节,教师需要通过生活中的实例激发学生的学习兴趣,让学生感受到平方根在实际生活中的重要性。

在教学过程中,要注意引导学生主动探索、发现和总结平方根的性质,提高学生的数学思维能力。

三. 教学目标1.知识与技能:让学生掌握平方根的定义、性质和求法,能够运用平方根解决实际问题。

2.过程与方法:通过自主学习、合作交流,培养学生探究数学问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和自主学习能力。

四. 教学重难点1.重点:平方根的定义、性质和求法。

2.难点:平方根在实际问题中的应用。

五. 教学方法1.启发式教学:教师通过提问、引导,激发学生的思考,让学生主动探索平方根的性质。

2.情境教学:结合生活实例,让学生感受平方根在实际问题中的应用。

3.小组合作:引导学生进行合作交流,共同探讨平方根的问题。

六. 教学准备1.教学课件:制作课件,展示平方根的相关知识点。

2.实例材料:准备一些实际问题,用于引导学生运用平方根解决。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实例,如测量土地面积、计算物体高度等,引导学生思考这些实际问题与平方根的关系,激发学生的学习兴趣。

2.呈现(10分钟)教师引导学生回顾实数的相关知识,然后给出平方根的定义,并通过PPT展示平方根的性质。

同时,教师可以通过讲解、举例等方式,让学生了解平方根的求法。

3.操练(10分钟)教师提出一些有关平方根的问题,让学生独立解答。

(人教版)七年级数学下册第六章第1节《平方根》教案(两份)

(人教版)七年级数学下册第六章第1节《平方根》教案(两份)

13.1 平方根(一)一、教学目标1.经历平方根概念的形成过程,了解平方根的概念,会求某些正数(完全平方数)的平方根 .2.经历有关平方根结论的归纳过程,知道正数有两个平方根,它们互为相反数,0 的平方根是 0,负数没有平方根 .二、教学重点和难点1.重点:平方根的概念 .2.难点:归纳有关平方根的结论 .三、教学过程(一)基本训练,巩固旧知1. 填空:如果一个的平方等于a,那么这个叫做a的算术平方根,a的算术平方根记作.2.填空:(1)面积为 16的正方形,边长==;(2)面积为 15的正方形,边长=≈(利用计算器求值,精确到 0.01 ).3.填空:(1)因为 1.7 2= 2.89 ,所以 2.89的算术平方根等于,即 2.89 =;(2)因为 1.73 2=2.9929 ,所以 3的算术平方根约等于,即3≈ .(二)前面两节课我们学习了算术平方根的概念,本节课我们将学习平方根的概念(板书课题: 13.1 平方根). 什么是平方根呢?大家先来思考这么一个问题 .(三)如果一个正数的平方等于9,这个正数是多少?如果一个数的平方等于9,这个数是多少?和算术平方根的概念类似,(指准 32= 9)我们把 3 叫做 9 的平方根,(指准 (-3) 2= 9)把- 3 也叫做 9 的平方根,也就是 3 和- 3 是 9 的平方根(板书: 3 和-3 是 9 的平方根).我们再来看几个例子 . (师出示下表)x21636491425x同学们大概已经明白了平方根的意思. 平方根的概念与算术平方根的概念是类似的,谁会用一句话概括什么是平方根?平方根:如果一个数的平方等于a,那么这个数叫做 a 的平方根 .大家把平方根概念默读两遍. (生默读)平方根概念与算术平方根概念只有一点点区别,哪一点点区别?(出示例题)例求下面各数的平方根:(1)100;(2)0.25;(3)0;(4)-4;(1)因为(± 10)2=100),所以 100 的平方根是+ 10 和- 100 的平方是 0,正数的平方是正数,负数的平方还是正数,所以任何数的平方都不会等于- 4. 这说明什么?(例题)从这个例题你能得出什么结论?(稍停片刻)正数有几个平方根?0 有几个平方根?负数有几个平方根?请学生小组讨论正数有平方根(板书:正数有两个平方根) .__________ _______平方根有什么关系?0 的平方根个,平方根是.__________________________________负数平方根_________________大家把平方根的这三条结论读两遍.(四)自我检测1.填空:(1)因为()2=49,所以 49 的平方根是;(2)因为()2=0,所以 0 的平方根是;(3)因为()2=1.96 ,所以 1.96 的平方根是;2.填表后填空:33x8-855x21210.36(1)121的平方根是, 121 的算术平方根是;(2)0.36的平方根是,0.36 的算术平方根是;(3)的平方根是 8 和- 8,的算术平方根是8;(4)的平方根是3和33.5 5,的算术平方根是56.判断题:对的画“√” ,错的画“×” .(1)0 的平方根是 0;()(2)- 25 的平方根是- 5;()(3)- 5 的平方是 25;()(4)5 是 25 的一个平方根;()(5)25 的平方根是 5;()(6)25 的算术平方根是 5;()(7)52的平方根是± 5;()(8)(-5) 2的算术平方根是- 5.()教学反思:6.1 平方根(二)学习目标:1、掌握平方根的概念,明确平方根和算术平方根之间的联系和区别.2、能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系.学习重点:平方根的概念和求数的平方根。

人教版七年级数学下册第六章6.1平方根(教案)

人教版七年级数学下册第六章6.1平方根(教案)
3.求平方根的方法:掌握求解平方根的两种方法——直接开平方和迭代法。
4.应用平方根解决实际问题:运用所学的平方根知识解决一些简单的实际问题。
二、核心素养目标
1.培养学生的逻辑推理能力:通过平方根的定义和性质的探究,让学生理解数学知识之间的内在联系,提高逻辑推理能力。
2.提升解决问题的能力:通过求平方根的方法学习和实际问题的应用,培养学生运用数学知识解决实际问题的能力。
举例:在解释负数没有平方根时,可以借助数轴,说明实数范围内无法找到一个数的平方等于负数;在讲解迭代法时,以√2为例,展示迭代法的步骤,让学生通过实际操作感受方法的可行性;在解决实际问题中,如计算正方形的对角线长度,指导学生先将问题转化为求边长的平方根,进而求解。
四、教学流程
(一)导入新课(用时5分钟)
1.理论介绍:首先,我们要了解平方根的基本概念。平方根是指一个数乘以自身等于另一个数的运算。它是解决许多实际问题的关键,如在几何中求解边长、面积等。
2.案例分析:接下来,我们来看一个具体的案例。通过求解一个正方形的边长,展示平方根在实际中过程中,我会特别强调平方根的定义和求法这两个重点。对于难点部分,如负数没有平方根、迭代法的应用,我会通过举例和比较来帮助大家理解。
课堂上,我尝试通过实际案例引入平方根的应用,让学生们感受到数学知识在生活中的重要性。这种做法激发了学生的兴趣,他们积极参与讨论和实验操作,这让我感到很欣慰。但同时我也注意到,在小组讨论中,个别学生参与度不高,可能是因为他们对问题不够了解或者缺乏自信。我需要在以后的课堂中更加关注这些学生,鼓励他们大胆表达自己的想法。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平方根相关的实际问题,如求解不同形状的面积。

数学七年级下学期《平方根》教学设计

数学七年级下学期《平方根》教学设计

数学七年级下学期《平方根》教学设计一. 教材分析《平方根》是七年级下学期数学的重要内容,主要介绍了平方根的概念、求法以及平方根的性质。

通过学习平方根,学生能够理解和掌握平方根的概念,掌握求一个数的平方根的方法,了解平方根的性质,并能运用平方根解决一些实际问题。

二. 学情分析学生在学习《平方根》之前,已经学习了有理数、实数等知识,对数的运算和性质有一定的了解。

但是,学生对平方根的概念和性质可能比较陌生,需要通过具体的教学活动来引导学生理解和掌握。

三. 教学目标1.理解平方根的概念,掌握求一个数的平方根的方法。

2.了解平方根的性质,能运用平方根解决一些实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.平方根的概念和性质。

2.求一个数的平方根的方法。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生通过自主学习、合作交流,掌握平方根的知识和应用。

六. 教学准备1.教学PPT。

2.相关案例和问题。

3.练习题。

七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的平方根实例,如物体的高度、面积等,引导学生思考这些实例与平方根的关系,激发学生的学习兴趣。

2.呈现(10分钟)通过PPT呈现平方根的定义和相关性质,让学生初步了解平方根的概念。

同时,给出求一个数的平方根的方法,并通过例题进行讲解。

3.操练(10分钟)让学生独立完成一些平方根的练习题,巩固所学知识。

教师可适时给予解答和指导,帮助学生掌握求平方根的方法。

4.巩固(5分钟)通过PPT展示一些与平方根相关的实际问题,让学生运用所学知识解决。

教师可学生进行讨论,分享解题思路和方法。

5.拓展(5分钟)引导学生思考平方根在实际生活中的应用,如测量物体高度、计算物体面积等。

同时,可介绍一些平方根的扩展知识,如立方根、四次方根等。

6.小结(5分钟)让学生总结本节课所学内容,教师进行补充和讲解。

7.家庭作业(5分钟)布置一些平方根的练习题,要求学生在课后完成。

最新新人教版七年级下册平方根教案

最新新人教版七年级下册平方根教案

6.1平方根教案一、教学目标知识目标:掌握算数平方根概念与性质,能及时通过开开方运算求一个非负数的算数平方根,理解平方与开方互为逆运算。

能力目标:通过对平方根概念及性质的探究,渗透分类讨论和数形结合的数学思想方法,提高数学探究能力和归纳表达能力。

情感目标:鼓励学生积极主动地参与数与学的整个过程,激发学生求知的欲望,增强学生学习数学的兴趣与信心。

二、教学重难点重点:算数平方根的概念和求法难点:算数平方根的求法三、教学过程:(一)情景引入问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为25 dm2的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?(二)探索归纳1、探索:学生能根据自己有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为5dm。

接下来教师可以再深入地引导此问题:如果正方形的面积分别是1、9、16、36、4/25,那么正方形的边长分别是多少呢?学生会求出边长分别是1、3、4、6、2/5,接下来教师可以引导性地提问:上面的问题他们有共同点吗?他们的本质是什么呢?这个问题学生可能总结不出来,教师需加以引导。

上面的问题,实际上是已知一个正数的平方,求这个正数的问题。

2、归纳:(1)算数平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a那么这个正数x叫做a的算数平方根。

(2)算数平方根的表示方法:a的算数平方根记为√a,读作“根号a”或者“二次根号a”,a叫做被开方数。

(三)应用例1、求下列各数的算数平方数:(1)100 (2)49/64 (3)0.0001 (4)0解:(1)因为102=100,所以100的算数平方根是10,即√100=10;(2)因为(7/8)2=49/64,所以49/64的算数平方根是7/8,即√49/64=7/8;(3)因为(0.01)2=0.0001,所以0.0001的算数平方根是0.01,即√0.0001=0.01;(4)因为(0)2=0,所以0的算数平方根是0,即√0=0;注:①根据算数平方根的定义解题,明确平方与开平方互为逆运算;②求带分数的算数平方根,需要先把带分数化成假分数,然后根据定义去求解;③0的算数平方根是0.由此例题教师可以引导学生思考如下问题:你能求出-1,-36,-100的算数平方根吗?任意一个负数有算数平方根吗?归纳:一个正数的算数平方根有1个,0的算数平方根是0,负数没有算数平方根。

人教版七年级数学下册教案 6-1 平方根(第3课时)

人教版七年级数学下册教案 6-1 平方根(第3课时)

6.1 平方根第3课时一、教学目标【知识与技能】1.了解平方根的概念,掌握平方根的特征.2.能正确区分平方根与算术平方根的意义.3.能利用开平方与平方互为逆运算的关系,求某些非负数的平方根.【过程与方法】类比算术平方根概念探究平方根,利用平方与开平方互逆揭示开平方运算的本质,经历观察、思考、交流、总结归纳出平方根的特征.【情感态度与价值观】使学生深入体验平方与开平方的互逆关系,培养学生逆向思维解决问题的习惯.二、课型新授课三、课时第3课时共3课时四、教学重难点【教学重点】理解平方根概念,会用符号表示一个正数的平方根.【教学难点】理解平方根的意义.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2-3)1.什么叫做算术平方根?如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根.2.判断下列各数有没有算术平方根,如果有,请求出它们的算术平方根.100; 1;36121; 0; -0.0025; (-3)2; -25.3.填空:(1)3²=_______, (-3)²=_______; (2)(23)2=________,=(−23)2=________; (3)0.8²=_______,(-0.8)²=_______.反过来,如果已知一个数的平方,怎样求这个数? (二)探索新知1.出示课件5-9,探究平方根的概念及性质教师问:要做一张边长是3分米的方桌面,它的面积是多少?学生答:它的面积是9平方分米.教师问:这个问题实际上就是求:32=? 这是已知底数和指数,求幂的运算.这是什么运算?学生答:这是乘方运算.教师问:反过来,要做一张面积是9平方分米的方桌面,它的边长是多少分米?学生答:它的边长是3分米.教师问:实际上就是要求出一个数,使它的平方等于9, 即:( )2=9,应该填什么呢?学生答:显然,括号里应是±3. 教师问:桌子的边长为何是3分米?学生答:-3不符题意. ∴方桌面的边长应是3分米. 教师问:你还能得到什么问题呢?学生问:如果一个数的平方等于9,这个数是多少? 教师答:由于(±3)2=9 ,所以这个数是3或-3. 教师问:想一想:3和-3有什么特征? 学生答:3和-3互为相反数,只有符号不同. 教师问:3和-3互为相反数,会不会是巧合呢? 学生答:猜想不一定是巧合,需要实例吧! 做一做,想一想:(1) 4的平方等于16,那么16的算术平方根就是_____. (2)25的平方等于425,那么425的算术平方根就是____.(3) 展厅地面为正方形,其面积是49 m 2,则其边长为___m. 教师依次展示学生的答案:学生1答:(1)16的算术平方根就是4. 学生2答:(2)425的算术平方根就是25. 学生3答:(3)其边长为7m.教师总结如下:答案如下:(1)4;(2)25;(3)7.教师问:平方等于16, 425,49的数还有吗?学生答:还有-4,-25,-7.教师问:填一填,想一想: 写出左圈和右圈中的“?”表示的数:学生答:如下图所示:总结点拨:(出示课件10)根据上述问题,即要找出一个数,使它的平方等于给定的数.我们抽象出下述概念: 定义:如果有一个数x ,使得x ²=a ,那么我们把x 叫作a 的一个平方根,也叫作二次方根.例如: (±1)2=1,1的平方根为±1.平方根的性质:如果x 是正数a 的一个平方根,那么a 的平方根有且只有两个:x 与-x.即平方根互为相反数.教师问:121的平方根是什么?(出示课件11) 学生答:121的平方根是±11. 教师问:0的平方根是什么? 学生答:0的平方根是0. 教师问:1649的平方根是什么? 学生答:1649的平方根是±47.教师问:-9有没有平方根?为什么?学生答:没有,因为一个数的平方不可能是负数.教师问:通过这些题目的解答,你能发现什么?(出示课件12)学生答:有些数有两个平方根,有些数有一个平方根,有些数没有平方根. 教师问:正数有几个平方根? 学生答:正数有2个平方根. 教师问:0有几个平方根?学生答:0有1个平方根.教师问:有没有一个数的平方是负数? 学生答:没有一个数的平方是负数. 教师问:负数有几个平方根呢? 学生答:负数没有平方根. 教师问:为何负数没有平方根呢?学生答:因为任何实数的平方都为非负数,所以负数没有平方根,也没有算术平方根. 总结点拨:(出示课件13) 平方根的性质:1.正数有两个平方根,两个平方根互为相反数.2.0的平方根还是0.3.负数没有平方根. 考点1:求平方根 求下列各数的平方根:(1)100; (2) 916 ; (3)0.25.(出示课件14)师生共同讨论解答如下: 教师依次展示学生解答过程:学生1解:(1) ∵(±10)2=100,∴100的平方根是±10; 学生2解:(2) ∵(±34 )2=916 , ∴916 的平方根是±34; 学生3解:(3) ∵(±0.5)2=0.25,∴0.25的平方根是±0.5. 方法总结:正确理解平方根的概念,明确是求哪一个数的平方根. 出示课件15,学生自主练习后口答,教师订正. 2.出示课件16-17,探究平方根的读法和表示 教师问:非负数a 的平方根表示为什么呢? 学生答:非负数a 的平方根表示为±√a . 教师问:±√a 的各部分表示什么意思呢?师生一起解答:一个正数a 的正平方根,用“√a ”表示,(读作“根号a”).又叫a 的算术平方根.a 的负平方根,用“-√a ”表 示a 的算术平方根的相反数,(读作“负根号a”). 合起来,一个正数a 的平方根就用“ ±√a ”表示,(读作“正、负根号a”)如下图所示:出示课件17,学生自主练习后口答,教师订正. 考点2:利用平方根的表示求平方根 分别求下列各数的平方根:(1)36;(2)259 ;(3)1.21 (出示课件18)学生独立思考后,师生共同分析后解答. 教师依次展示学生解答过程:学生1解:(1)由于(±6)²=36,因此36的平方根是6与-6. 即±√36=±6.学生2解:(2)由于(±53)²=259,因此259的平方根是53与-53.即±√259=±53.学生3解:(3)由于(±1.1)²=1.21, 因此1.21的平方根是1.1与-1.1. 即±√1.21=±1.1.出示课件20,学生自主练习后口答,教师订正. 3.出示课件21-24,探究平方与开方的关系 教师出示问题:请完成下面的题目:学生答:答案如下图所示:教师问:上面的运算是平方运算,什么是平方运算呢?学生答:已知一个数,求它的平方的运算,叫作平方运算.教师问:反之,已知一个数的平方,求这个数的运算是什么?师生一起解答:求一个数的平方根的运算叫作开平方.教师问:开平方与平方是什么关系?学生答:互为逆运算.教师总结点拨:(出示课件23)已知底数和指数求幂已知幂和指数求底数教生一起完成下面的题目:总结点拨:(出示课件25)平方根与算术平方根的联系与区别:考点3:开平方的有关计算 求下列各式的值:(出示课件26) (1)√36;(2)-√0.81;(3)±√499 学生独立思考后,师生共同分析后解答. 教师依次展示学生解答过程: 学生1解:(1)√36=6; 学生2解:(2)-√0.81=−0.9; 学生3解:(3)±√499=±73.出示课件27,学生自主练习,教师给出答案.教师:学了前面的知识,接下来做几道练习题看看你掌握的怎么样吧. (三)课堂练习(出示课件28-33) 练习课件第28-33页题目,约用时20分钟. (四)课堂小结(出示课件34)(五)课前预习预习下节课(6.2第1课时)的相关内容.知道立方根、三次方根、开立方的定义及利用计算器求立方根的步骤. 七、课后作业教材第46-47页练习第1,2,3,4题. 八、板书设计6.1.平方根第3课时1、平方根定义2、归纳正数有两个平方根,0的平方根是0;负数没有平方根3、考点讲解考点1 考点2 考点3九、教学反思成功之处:本节课从知识与方法、能力与素质的层面确定了相应的教学目标.把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.整节课以“问题情境—合作探究—分析计算—总结升华”为主线,使学生亲身体验根据平方根计算和算术平方根计算的探索和验证过程,努力做到由传统的数学课堂向实验课堂转变.不足之处:在教学过程中,对于平方根的作用、算术平方根深入讨论,有些学生只是知道要取算术平方根,对于其中的原因根本没有明白,部分学生对于平方根的理解还不够深刻.补救措施:适当增加学生熟悉的实例,通过对比,使学生明白为什么要取算术平方根,并能更进一步理解平方根的含义,掌握根据平方根和算术平方根的异同.。

人教版数学七年级下册6.1.3《平方根》教学设计2

人教版数学七年级下册6.1.3《平方根》教学设计2

人教版数学七年级下册6.1.3《平方根》教学设计2一. 教材分析平方根是初中数学中的重要概念,对于学生来说,掌握平方根的概念和求法是十分必要的。

本节课的内容包括平方根的定义、求法以及平方根的性质。

通过学习,学生能够理解平方根的概念,掌握求一个数的平方根的方法,以及了解平方根的性质。

二. 学情分析学生在之前的学习中已经掌握了有理数的概念,也了解了乘方的概念,这为本节课的学习提供了基础。

但是,对于平方根的概念和求法,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。

三. 教学目标1.知识与技能目标:理解平方根的概念,掌握求一个数的平方根的方法,了解平方根的性质。

2.过程与方法目标:通过观察、实验、探究等活动,培养学生的动手操作能力和抽象思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力和团队合作精神。

四. 教学重难点1.重点:平方根的概念和求法,平方根的性质。

2.难点:平方根的性质的理解和应用。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究,培养学生的动手操作能力和抽象思维能力。

六. 教学准备1.准备平方根的实例和练习题。

2.准备教学课件和板书设计。

七. 教学过程1.导入(5分钟)通过一个实例,如“一个正方形的边长是a,求这个正方形的面积”,引出平方根的概念。

让学生思考,如何求一个数的平方根。

2.呈现(15分钟)介绍平方根的定义,通过PPT展示平方根的图像,让学生直观地理解平方根的概念。

然后,讲解如何求一个数的平方根,以及平方根的性质。

3.操练(10分钟)让学生分组进行练习,每组选择一个数,求出它的平方根,并观察平方根的性质。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生独立完成,检验学生对平方根的概念和求法的掌握程度。

5.拓展(10分钟)引导学生思考,如何求一个数的算术平方根,以及算术平方根的性质。

让学生通过小组合作,共同探究这个问题。

人教版七年级下册6.1.1《算术平方根》(教学设计)

人教版七年级下册6.1.1《算术平方根》(教学设计)

人教版七年级下册6.1.1《算术平方根》(教学设计)一. 教材分析《算术平方根》是人教版七年级下册数学教材第六章第一节的内容。

本节课主要介绍了算术平方根的概念、性质及其求法。

通过学习本节课,学生能够理解算术平方根的定义,掌握求算术平方根的方法,并能够应用算术平方根解决实际问题。

教材通过例题和练习题的形式,帮助学生巩固所学知识,提高解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了有理数、整数、分数等基础知识,具备了一定的逻辑思维能力和运算能力。

但部分学生对平方根的概念可能还比较模糊,需要通过实例和练习来进一步理解。

此外,学生可能对算术平方根的求法存在一定的困惑,需要通过教师的引导和同学的讨论来掌握。

三. 教学目标1.知识与技能目标:理解算术平方根的概念,掌握求算术平方根的方法,能够熟练运用算术平方根解决实际问题。

2.过程与方法目标:通过自主学习、合作交流,培养学生探究问题和解决问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,激发学生学习数学的积极性。

四. 教学重难点1.重点:算术平方根的概念及其求法。

2.难点:算术平方根在实际问题中的应用。

五. 教学方法1.启发式教学:通过问题引导,激发学生的思考,培养学生的探究能力。

2.合作学习:学生进行小组讨论,促进学生之间的交流与合作,共同解决问题。

3.实例教学:通过具体的例子,让学生更好地理解算术平方根的概念和求法。

4.练习巩固:通过适量练习,巩固所学知识,提高学生的应用能力。

六. 教学准备1.教材:人教版七年级下册数学教材。

2.课件:制作课件,包括算术平方根的定义、性质、求法及应用等内容。

3.练习题:准备一些有关算术平方根的练习题,用于课堂练习和巩固。

4.板书:准备黑板,用于书写重要概念和步骤。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学过的平方根知识,为新课的学习做好铺垫。

例如:“请大家回忆一下,平方根的概念是什么?我们已经学习了哪些求平方根的方法?”2.呈现(10分钟)教师展示课件,介绍算术平方根的定义、性质和求法。

人教版数学七年级下册6.1《平方根》教案4

人教版数学七年级下册6.1《平方根》教案4

人教版数学七年级下册6.1《平方根》教案4一. 教材分析《平方根》是人教版数学七年级下册第六章的第一节内容,主要介绍了平方根的概念、求平方根的方法以及平方根的性质。

本节内容是学生学习实数系统的关键,也是进一步学习立方根、算术平方根等概念的基础。

二. 学情分析七年级的学生已经掌握了实数的基本概念,具备了一定的逻辑思维能力和抽象思维能力。

但是,对于平方根的概念和性质,学生可能初次接触,需要通过具体例题和实际操作来理解和掌握。

三. 教学目标1.了解平方根的概念,掌握求一个数的平方根的方法。

2.理解平方根的性质,能够运用平方根的概念解决实际问题。

3.培养学生的逻辑思维能力和抽象思维能力。

四. 教学重难点1.平方根的概念和性质。

2.求一个数的平方根的方法。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生通过观察、思考、讨论、操作等活动,自主探索和理解平方根的概念和性质。

六. 教学准备1.课件和教学素材。

2.练习题和答案。

七. 教学过程1.导入(5分钟)通过一个实际问题引入平方根的概念,如“一个正方形的边长是6厘米,求这个正方形的面积。

”让学生思考如何求解这个问题,从而引出平方根的概念。

2.呈现(15分钟)利用课件呈现平方根的定义和性质,通过具体例题和实际操作,让学生理解和掌握平方根的概念和性质。

3.操练(10分钟)让学生分组进行练习,运用平方根的概念和性质解决实际问题,如求一个数的平方根,判断一个数是否为完全平方数等。

4.巩固(10分钟)让学生独立完成练习题,教师进行个别辅导,巩固学生对平方根的概念和性质的理解。

5.拓展(10分钟)引导学生思考平方根的应用,如在几何、物理、化学等领域的应用,让学生感受数学与实际生活的紧密联系。

6.小结(5分钟)教师引导学生总结本节课所学内容,巩固平方根的概念和性质。

7.家庭作业(5分钟)布置一些有关平方根的练习题,让学生课后巩固所学知识。

8.板书(5分钟)教师根据教学内容进行板书设计,突出平方根的概念和性质。

人教版七年级数学下册 教案6.1 第3课时《算术平方根和平方根》

人教版七年级数学下册 教案6.1 第3课时《算术平方根和平方根》

人教版七年级数学下册教案6.1 第3课时《算术平方根和平方根》一. 教材分析《算术平方根和平方根》是人教版七年级数学下册第六章第一节的内容。

本节课主要介绍了平方根和算术平方根的概念,以及它们的性质和运算。

通过学习本节课,学生能够理解平方根和算术平方根的概念,掌握它们的性质和运算,并为后续学习二次根式打下基础。

二. 学情分析学生在之前的学习中已经掌握了有理数的乘方,对数的认识,以及一些基本的代数运算。

但是,对于平方根和算术平方根的概念和性质可能还比较陌生。

因此,在教学过程中,需要通过具体例子和实际操作,帮助学生理解和掌握这些概念和性质。

三. 教学目标1.理解平方根和算术平方根的概念。

2.掌握平方根和算术平方根的性质和运算。

3.能够运用平方根和算术平方根解决实际问题。

四. 教学重难点1.平方根和算术平方根的概念。

2.平方根和算术平方根的性质和运算。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过具体例子和实际操作,引导学生主动探索、积极思考,培养学生的动手操作能力和团队协作能力。

六. 教学准备1.教学PPT。

2.练习题。

3.教学道具(如平方根和算术平方根的模型)。

七. 教学过程1.导入(5分钟)利用生活实例或数学故事,引出平方根和算术平方根的概念。

例如,讲解勾股定理时,提到直角三角形的两条直角边的平方和等于斜边的平方,从而引出平方根和算术平方根的概念。

2.呈现(10分钟)通过PPT展示平方根和算术平方根的定义,以及它们的性质和运算。

让学生观察和思考,引导他们发现其中的规律。

3.操练(10分钟)让学生分组进行讨论,运用平方根和算术平方根的性质和运算,解决实际问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生独立完成。

题目难度可以适当调整,以保证大部分学生能够成功。

教师选取部分学生的作业进行点评,指出其中的错误和不足。

5.拓展(10分钟)引导学生运用平方根和算术平方根解决更复杂的问题,如二次方程的求解、实际生活中的测量等。

人教版数学七年级下册 6.1.3平方根教案(表格式)

人教版数学七年级下册 6.1.3平方根教案(表格式)

第3课时平方根9,那么-3叫做9的什么根呢?探究点1平方根的概念和计算(1)填表:(2)如果我们把上述填表的x的值分别叫做1,16,36,49,4的25平方根,你能类比算术平方根的概念,给出平方根的概念吗?答:如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.这就是说,如果x2=a,那么x叫做a的平方根.例如,±3是9的平方根.(3)我们把求一个数a的平方根的运算,叫做开平方.观察下图,你发现了什么?答:平方与开平方互为逆运算.探究点3平方根与算术平方根的关系问题1我们已经学过一个正数的算术平方根的表示方法,你能表示一个正数的平方根吗?答:我们知道,正数a 的算术平方根可以用a 表示;正数a 的负的平方根,可以用符号“-√a ”表示,故正数a 的平方根可以用符号“±√a ”表示,读作“正、负根号a ”.例如,±√9=±3,±√25=±5.问题2符号√a 只有当a ≥0时有意义,a <0时无意义,你知道为什么吗?答:因为在我们所认识的数中任何一个数的平方都不会是负数,所以负数不能开平方,即当a <0时,a 无意义.问题3说一说算术平方根与平方根之间的区别与联系.例1(教材P46例5)求下列各式的值: (1)√36;(2)-√0.81;(3) ±√499.解:(1)因为62=36,所以√36=6; (2)因为0.92=0.81,所以-√0.81=-0.9; (3)因为(73)2=499,所以±√499= ±73.问题4知道一个数的算术平方根,就可以立即写出它的负的平方根.为什么?答:因为一个数的负的平方根等于它的算术平方根的相反数. 【对应训练】1.下列计算错误的是( A )A.√4 = ±2B.√(−3)2 = 3C.±√16 = ±4D.-√25 = -5 2~3.教材P47练习第3~4题.例2求下列各式中x 的值:已知一个数的平方根,求原数的方法:需要根据题目的叙述进行判断,当题目中有类似“A 和B 是一个正数的两个平方根”或“一个正数的平方根分别是A 和B ”这样的描述时,则根据平方根的性质知A +B =0,直接列出方程求未知数,再进一步求得原数;当题目中有类似“A 和B 是一个正数的平方根”这样的描述时,则除了A +B =0,还需考虑A =B 的情况,需分别列方程求出未知数.例1若2m -4与3m -1是一个正数的两个平方根,则这个正数为( B ) A.1 B.4 C.±1 D.±4解析:由题意可知2m -4+3m -1=0,所以m =1,所以2m -4=-2,所以这个正数为4.故选B.例2已知a-1和5-2a 都是m 的平方根,求a 与m 的值. 解:根据题意,分以下两种情况:①当a -1与5-2a 是同一个平方根时,a -1=5-2a ,解得a =2.此时m =(2-1)2=1; ②当a -1与5-2a 是两个平方根时,a -1+5-2a =0,解得a =4.此时m =(4-1)2=9. 综上所述,a =2,m =1或a =4,m =9.例1已知5x -1的平方根是±3,4x +2y +1的平方根是±1,求4x -2y 的算术平方根. 解:因为5x -1的平方根是±3,4x +2y +1的平方根是±1, 所以5x -1=9,4x +2y +1=1,所以x =2,y =-4. 所以4x -2y =16,所以4x -2y 的算术平方根为4.例2已知a ,b ,c 满足b =-√(a −3)2+4,c 的平方根等于它本身.求a +√b −c 的平方根. 解:因为-(a -3)2≥0,所以a =3.【作业布置】1.教材P47习题6.1第3,4,7,8,9,10题.2.相应课时训练.教学步骤师生活动 板书设计6.1平方根 第3课时平方根1.平方根的概念.2.求一个正数的平方根的运算——开平方.3.平方根的性质及其应用:正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.平方根与算术平方根的区别与联系.教学反思本节课借助算术平方根的知识得出平方根的知识,渗透“类比思想”,通过大量实例让学生体会平方根的概念及其性质,渗透“具体—抽象—具体”的研究思路.结合学过的运算理解“开平方”的新运算,使学生的学习形成迁移.借助例题和课堂练习巩固新知,提高学生的学习能力.把a = 3代入b = √−(a−3)2+ 4,得b = 4.因为c的平方根等于它本身,所以c = 0.所以a + √b−c=3+√4−0=5,所以a+√b−c的平方根为±√5.增乘开方法增乘开方法是由我国古代数学家贾宪在十一世纪中叶所提出来的.那么古人又是如何求一个数的算术平方根的呢?下面以求55 225的算术平方根为例进行说明.1.由于55 225是一个五位数,因此我们估算商(即算术平方根)应当是一个三位数,并且由于万位上的数是5,所以估计商的百位数是2.2.令借为1,法的值则为借乘商(1×2),如图①.3.更新实,使之为原实减去商乘法(5-2×2=1),则新实为1,如图②.4.更新法为商乘借加到旧法上(2+2×1=4),如图③.5.将法后移一位,借后移两位,如图④.然后重复上面1~5的步骤:1.估算商的十位为3(3×4000=12000<15225).2.更新法为原法加上十位商乘借(4000+3×100=4300),如图⑤.3.更新实,使之为原实减去十位商乘法(15225-3×4300=2325),则新实为2325,如图⑥.4.更新法为十位商乘借加到旧法上(43+3×1=46).5.将法后移一位,借后移两位,如图⑦.再重复上面的1~3的步骤,得到图⑧,此时更新后的实为0(2325-465×5=0).由此我们得出,55 225的算术平方根为235.。

数学人教版七年级下册平方根、算术平方根的教案

数学人教版七年级下册平方根、算术平方根的教案

平方根、算术平方根(1)教案授课人:张琬珣一、教学目标(1)、了解平方根和算术平方根的概念,了解平方与开平方的关系;(2)、学会平方根、算术平方根的表示法,并运用其知识点来解决实际问题;(3)、学习从特殊到一般的数学思想方法,培养学生从实践到理论,从具体到抽象的辩证唯物主义观点;二、教学重点和难点(1)、重点:平方根的概念(2)、难点:平方根的概念和平方根的表示方法,其中表示方法较为抽象,是本节课最大的难点三、教学过程(1)创设情境,引出新课动脑筋:某家庭在装修儿童房时需铺地垫10.8㎡,刚好用去正方形的地砖30块.你能算出所用地垫的边长是多少米吗?提问:1、如何计算正方形地砖的边长呢?2、每块正方形地砖的面积是多少?解答:即:10.8÷30 =0.36(㎡)由于0.62=0.36因此面积为0.6㎡的正方形地砖,它的边长为0.6m.得出结论:在实际问题中我们常常遇到,要找一个数,使它的平方等于给定的数. (2)、引入新课由此我们抽象出下述概念:如果有一个数r,使得r2=a,那么我们把r叫作a的一个平方根.若r2= a,则r 是a 的一个平方根.(例如,由于22=4,因此2是4的平方根.)知识运用:分别说出9,16,25,49 的一个平方根是多少?继续探究:4的平方根除了2之外,还有别的数吗?提出问题:为什么-2是4的平方根?解答:(-2)2= 4.因此-2 也是4的一个平方根.继续深入:除了2和-2以外,4的平方根还有别的数吗?比2大的数有可能是4的平方根吗?容易说明:边长大于2的正方形,它的面积一定大于4,因此,比2大的数都不是4的平方根.由于(-b)2=b2,因此由上述可知,-2以外的负数都不是4的平方根.显然0不是4的平方根.因此,4的平方根有且只有两个:2与-2.得出结论:我们把a的正平方根叫作a的算术平方根,记作,读作“根号a”;把a的负平方根记作,读作“负根号a”这样正数a的平方根可以用符号“”来表示.(书写教师黑板展示)如果r是正数a的一个平方根,那么a的平方根有且只有两个:r与-r.(3)、知识运用例1 分别求出下列各数的平方根:36,25 , 1.21.例2 分别求出下列各数的算术平方根:100,,0.49.(4)、练习巩固1. 分别求 64, , 6.25 的平方根.2. 分别求 81, , 0.16 算术平方根.3. 面积是196c ㎡的正方形,它的边长是多少? 162525144。

最新人教版七年级下册数学《平方根(2)》优质教学设计

最新人教版七年级下册数学《平方根(2)》优质教学设计

最新人教版七年级下册数学《平方根(2)》优质教学设计一、教学目标- 理解平方根的定义和性质。

- 能够求解简单的平方根运算。

- 通过实例理解平方根在实际问题中的应用。

二、教学准备- 课件:包含平方根的定义、性质和运算规则的课件。

- 练题:准备一些简单的平方根练题,包括计算和应用题。

- 实物:提前准备好一些平方根的实物对象,如根号形状的卡片或实际物体。

三、教学过程1. 导入与引入- 利用课件引入平方根的概念,通过介绍平方根的定义和性质来激发学生的兴趣。

2. 知识输入与讲解- 给学生展示平方根的运算规则,包括简单的开平方运算以及开平方的性质。

- 通过示例演示如何计算平方根,引导学生掌握计算平方根的方法。

3. 练与巩固- 让学生进行一些简单的计算平方根的练题,帮助他们巩固所学知识。

- 鼓励学生主动提问、解答问题,培养他们的思维能力和解决问题的能力。

4. 实践应用- 设计一些实际问题,引导学生运用平方根的知识解决问题。

例如,给出一个需要测量某个地点到校园大门距离的场景,让学生使用平方根计算出准确的距离。

- 使用提前准备好的实物对象让学生模拟测量并解决实际问题,加强他们对平方根的应用理解。

5. 总结与展望- 对本堂课学到的平方根知识进行总结概括,强调其重要性和实际应用场景。

- 展望下堂课的教学内容,为学生对平方根的进一步研究提供引导和展望。

四、教学评价- 通过学生的课堂参与度、练题的正确率等来评价学生对平方根知识的掌握情况。

- 观察学生在解决实际问题时的思路和方法,评估他们对平方根应用的理解程度。

五、拓展延伸- 在下一堂课中,可以引入更复杂的平方根运算和应用,拓展学生对平方根的深入理解和运用能力。

七年级下册数学教案《平方根》

七年级下册数学教案《平方根》

教学计划:《平方根》一、教学目标1.知识与技能:学生能够理解平方根的概念,掌握平方根的性质,学会求一个非负实数的平方根,并能区分算术平方根与平方根的区别。

2.过程与方法:通过观察、分析、归纳等数学活动,培养学生的逻辑思维能力和数学运算能力,掌握求解平方根的方法。

3.情感态度与价值观:激发学生对数学的兴趣,培养严谨的数学态度和探索数学奥秘的精神,同时增强学生的自信心和成就感。

二、教学重点和难点●教学重点:平方根的概念、性质及求法。

●教学难点:理解平方根与算术平方根的区别,掌握求解非完全平方数的平方根的估算方法。

三、教学过程1. 导入新课(约5分钟)●生活实例引入:通过提问“如何测量一个正方形花坛的边长,如果已知其面积?”引出平方根的概念。

●旧知回顾:复习平方运算,引导学生思考平方的逆运算,即平方根。

●明确目标:介绍本节课的学习内容,即平方根的概念、性质及求法。

2. 讲授新知(约15分钟)●定义讲解:明确平方根的定义,即若一个数的平方等于a(a为非负实数),则这个数叫做a的平方根。

●性质介绍:讲解平方根的性质,包括正数的平方根有两个(互为相反数),零的平方根是零,负数没有实数平方根等。

●算术平方根:特别指出算术平方根是非负数的平方根中正的那个,并强调在实际应用中常指算术平方根。

3. 求解方法(约10分钟)●完全平方数:直接开方法求解完全平方数的平方根,如√16=4。

●非完全平方数:介绍估算方法,如利用夹逼法、二分法或计算器求解,强调估算的近似性和精度控制。

●例题示范:通过例题展示求解平方根的过程,包括完全平方数和非完全平方数的情况,引导学生理解并掌握求解方法。

4. 巩固练习(约15分钟)●基础练习:设计一系列基础练习题,让学生独立求解平方根,包括完全平方数和非完全平方数的情况。

●小组讨论:分组讨论求解平方根时遇到的问题和解决方法,分享解题经验和技巧。

●教师总结:对学生的练习情况进行总结,强调解题思路和注意事项,特别是非完全平方数平方根的估算方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题6.1平方根(第1课时)
【教学目标】1.通过实际生活中的例子理解算术平方根的概念;
2.会求非负数的算术平方根并会用符号表示.【教学重点】算术平方根的概念和求法
【教学难点】算术平方根的求法
课题6.1平方根(第2课时)
【教学目标】1.了解无限不循环小数的特点;会用算术平方根的知识解决实际问题;
2. 通过探究2的大小,培养学生的估算意识,了解两个方向无限逼近的数
学思想.
【教学重点】认识无限不循环小数的特点,会估算一些数的算术平方根。

【教学难点】认识无限不循环小数的特点,会估算一些数的算术平方根。

课题6.1平方根(第3课时)
【教学目标】1.了解平方根的概念,会用根号表示正数的平方根;
2.了解开平方与平方互为逆运算,会用平方运算求某些非负数的平方根
【教学重点】了解开方和乘方互为逆运算,弄懂平方根与算术平方根的区别和联系.【教学难点】平方根与算术平方根的区别和联系.
);(
的算术平方根可用表示;正数
表示什么意思,这里的
又该怎样理解呢?这里的
课题6.2 立方根
【教学目标】1.了解立方根的概念和表示方法;
2.会求一个数的立方根;
3.通过探讨一个数的立方根与它的相反数的立方根的关系,可以将求负数的立
方根转化为求正数的立方根的问题,培养学生的转化思想.
【教学重点】立方根的概念和求法
【教学难点】立方根的求法。

课题6.3实数(第1课时)
【教学目标】1.了解无理数和实数的概念以及实数的分类;
2.知道实数与数轴上的点具有一一对应的关系. 【教学重点】了解无理数和实数的概念
【教学难点】对无理数的认识
课题6.3实数(第2课时)
【教学目标】1.掌握实数的相反数和绝对值;
2.掌握实数的运算律和运算性质.
3.通过建立有理数的一些概念和运算在实数范围里也成立的意识,让学生了解
在这种数的扩充中所体现的一致性,让学生充分感受数的不断发展。

【教学重点】认识和理解有理数的一些概念和运算在实数中仍适用的这种扩充
【教学难点】认识和理解有理数的一些概念和运算在实数中仍适用的这种扩充。

相关文档
最新文档