高三数学概率与统计知识点
高三概率(理:立足文科)
统计与概率专题(理科)【总知识脉络】概率概念随机事件必然事件不可能事件随机事件的概率等可能性事件的概率互斥事件互斥事件有一个发生的概率相互独立事件相互独立事件同时发生的概率计算频率与概率数理统计随机变量离散型随即变量随即变量的概率分布列数学期望方差连续型随即变量抽样方法系统抽样分层抽样简单随机抽样【知识梳理】一、离散型随机变量及其分布列、均值与方差1、随机变量、离散型随机变量的定义(1)随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母ξ、η等表示。
(2)离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X 可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.2、离散型随机变量的分布列:(1)定义:一般的,设离散型随机变量X 可能取的值为12,,,,,i n x x x xX 取每一个值(1,2,)i x i =的概率()i i P x p ξ==,则称表为离散型随机变量X 的概率分布,简称分布列:(2)分布列性质:①0,1,2,i p i ≥= ;②12... 1.n p p p +++=3、两点分布与超几何分布(1)二点分布:如果随机变量X 的分布列为:其中01,1p q p <<=-,则称离散型随机变量X 服从参数p 的二点分布(2)超几何分布:一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取()n n N ≤件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为),2,1,0()(m k C C C k X P nNk n MN k M ===--, 其中{}min,m M n =,且*,,,,n N M N n M N N∈≤≤4、※均值与方差※则称1122()n n E X x p x p x p =+++为X 的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量。
高三数学概率表知识点归纳
高三数学概率表知识点归纳概率是数学中一门重要的分支,也是高中数学必学内容之一。
在高三数学中,概率是一个相对简单但又不容忽视的知识点。
在复习过程中,归纳概率表的知识点能够帮助学生更好地理解和记忆概率相关概念和公式。
下面是对高三数学概率表知识点的归纳总结。
1. 基本概念概率是描述某一事件发生可能性大小的数值。
其中,事件是指某一结果或结果集合。
2. 概率的表示方法概率的表示可以有三种方式:- 百分数表示法:用百分比来表示概率,如75%- 小数表示法:用小数来表示概率,如0.75- 分数表示法:用分数表示概率,如3/43. 必然事件和不可能事件必然事件是概率为1的事件,不可能事件是概率为0的事件。
4. 事件的互斥和对立互斥事件是指两个事件不能同时发生,对立事件是指两个事件只能有一个发生。
互斥事件的概率为两个事件概率之和,对立事件的概率为1减去事件的概率。
5. 事件的组合事件的组合包括并、交、差等运算。
- 并事件的概率为两个事件概率之和减去交事件的概率;- 交事件的概率为两个事件概率之和减去并事件的概率;- 差事件的概率为一个事件发生的概率减去另一个事件发生的概率。
6. 条件概率条件概率是指在另一个事件已经发生的条件下,某一事件发生的概率。
条件概率的计算公式为:P(A|B) = P(AB) / P(B)。
7. 乘法定理乘法定理是指两个独立事件同时发生的概率等于各自发生的概率的乘积。
乘法定理可以推广到多个事件同时发生的情况。
8. 全概率公式和贝叶斯定理全概率公式和贝叶斯定理是在条件概率的基础上,分别用于计算事件的概率。
全概率公式用于计算未知事件的概率,贝叶斯定理用于在已知某个事件发生的条件下计算其他事件发生的概率。
9. 排列和组合排列是指从n个不同元素中取出m个元素进行排序的方法数,排列的计算公式为A(n, m) = n! / (n-m)!;组合是指从n个不同元素中取出m个元素进行组合的方法数,组合的计算公式为C(n, m) = n! / (m!(n-m)!)。
高三文科数学概率知识点
高三文科数学概率知识点概率是数学中一个重要的分支,也是高中数学中的一门重要课程,它研究的是不确定事件发生的可能性。
在高三文科数学中,概率作为其中的一部分内容,涵盖了很多重要的知识点。
本文将针对高三文科数学中的概率知识点进行详细论述。
一、基本概率规则在概率的计算中,我们首先要掌握的是基本概率规则。
基本概率规则包括等可能概型、互斥事件与对立事件等概念。
等可能概型指的是实验中每个基本结果发生的概率相等的情况。
例如,掷一个均匀的六面骰子,每个面出现的概率都是1/6。
互斥事件指的是两个事件不能同时发生的情况。
例如,投篮比赛中不同队员投进的概率是互斥事件。
对立事件指的是两个事件至少有一个发生的情况。
例如,掷一个均匀的六面骰子,出现奇数点数和出现偶数点数是对立事件。
二、概率计算方法在计算概率时,我们有多种方法可供选择,如频率法、古典概型法、几何概型法等。
频率法是通过重复实验的统计结果来估计概率。
例如,我们可以通过掷一枚硬币多次,统计正面朝上的次数来估计正反面朝上的概率。
古典概型法适用于每个基本结果发生的概率相等的情况。
例如,两个均匀的骰子同时掷出,计算两个骰子之和为7的概率。
几何概型法适用于几何空间问题。
例如,在一个圆盘内随机放置一个点,计算该点落在一个扇形区域内的概率。
三、条件概率条件概率是指在某个条件下事件发生的概率。
例如,某次抽奖中,已知甲中奖的概率为1/10,已知乙中奖的概率为1/5,求在乙中奖的条件下,甲中奖的概率。
条件概率的计算方法可以通过乘法定理来实现。
乘法定理指出,如果事件A和事件B相互独立,那么事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B在事件A发生条件下发生的概率。
四、独立事件独立事件是指两个事件的发生与否相互独立,即一个事件的发生不会影响到另一个事件的发生。
例如,掷一颗骰子,第一次掷得6点,第二次掷得1点的概率。
独立事件的概率计算方法可以通过乘法定理来实现。
乘法定理指出,如果事件A和事件B相互独立,那么事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
高三数学知识点归纳概率
高三数学知识点归纳概率概率是数学中一个非常重要的分支,它可以帮助我们理解事件发生的可能性。
在高三数学中,概率是一个必学的知识点。
本文将对高三数学概率知识点进行归纳总结,旨在帮助高三学生加深对概率的理解和掌握。
一、基础概念概率是指事件发生的可能性,用来表征事件的随机性。
它的取值范围是0到1之间,其中0表示不可能事件,1表示必然事件。
常用的求概率的方法有频率法、几何法和古典概型法等。
二、事件的概率计算1.频率法频率法是通过实验的次数和结果的出现次数来计算概率的方法。
当实验的次数足够多时,事件发生的频率将逼近其概率。
2.几何法几何法是通过对样本空间的几何图形进行面积比较来计算概率。
对于连续型随机事件,可以使用几何法计算概率。
3.古典概型法古典概型法适用于样本空间元素个数有限且等可能的随机事件。
通过计算事件的有利结果个数与总结果个数之比来计算概率。
三、概率的性质与公式1.加法公式对于两个互斥事件A和B,其概率之和等于两个事件分别发生的概率之和。
2.乘法公式对于两个独立事件A和B,其同时发生的概率等于两个事件分别发生的概率之积。
3.全概率公式全概率公式是在事件A的基础上,将样本空间划分为若干互斥事件,并计算这些事件的概率之和等于事件A的概率。
4.条件概率条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
通过条件概率,我们可以计算两个事件的相关性。
四、排列与组合排列与组合是概率中常见的计数方法。
排列是指从n个不同元素中选取m个元素按照一定顺序排列的方法数,计算公式为P(n,m)=n!/(n-m)!。
组合是指从n个不同元素中选取m个元素并不考虑顺序的方法数,计算公式为C(n,m)=n!/[(n-m)!m!]。
五、常见的概率模型1.简单随机抽样简单随机抽样是指从总体中随机选择样本的抽样方法,其样本容量n较小时,可以近似认为是简单随机抽样,使用古典概型法计算概率。
2.二项分布二项分布是一种离散型概率分布,适用于只有两种可能结果的重复试验。
高三概率与统计知识点总结高三网
高三概率与统计知识点总结高三网高三概率与统计知识点总结概率与统计是高三数学中的一个重要内容,它涉及到生活中各种随机事件的概率及统计分析。
在高三学习中,我们需要对概率与统计的相关概念和技巧进行总结和掌握。
下面是对高三概率与统计知识点的总结:一、概率的基本概念1. 事件与样本空间:事件是指我们关心的一个具体结果,而样本空间是一个随机事件所有可能结果的集合。
2. 定义域与频率:事件发生的频率与概率有联系,频率是指某个事件在样本空间中出现的次数占样本的比例。
3. 可能性与概率:概率是对事件发生的可能性的度量,它是一个介于0和1之间的实数。
二、概率的计算方法1. 古典概型:当随机事件有限且等可能发生时,我们可以直接使用古典概率计算公式来计算概率。
2. 几何概型:当样本空间为连续区间时,我们可以使用几何概率计算公式来计算概率。
3. 组合分析:当事件具有多个条件时,我们可以使用组合分析的方法来计算概率。
4. 条件概率:当事件A的发生与另一个事件B的发生有关时,我们可以使用条件概率计算公式来计算概率。
5. 独立事件:当两个事件发生与对方无关时,我们可以使用独立事件的概率计算公式来计算概率。
6. 事件的互斥与对立:当两个事件无相同结果时,我们可以使用互斥与对立事件的概率计算公式来计算概率。
7. 贝叶斯定理:当事件A和事件B之间发生依赖关系时,我们可以使用贝叶斯定理计算概率。
三、统计分析方法1. 随机变量:随机变量是指一个随机试验的结果所对应的某个数值。
2. 离散型随机变量:当随机变量只能取有限个或可数个数值时,我们称其为离散型随机变量。
3. 连续型随机变量:当随机变量可以取到某个区间范围内的任意一个值时,我们称其为连续型随机变量。
4. 离散型随机变量的分布:离散型随机变量的分布可以用概率分布列或概率质量函数来表示。
5. 连续型随机变量的分布:连续型随机变量的分布可以用概率密度函数来表示。
6. 期望:期望是对随机变量的平均值进行度量,可以用数学期望的定义来计算。
统计与概率知识点
统计与概率知识点部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑统计与概率知识点一:统计1:简单随机抽样<1)总体和样本①在统计学中 , 把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.b5E2RGbCAP④为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.p1EanqFDPw<2)简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同<概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
DXDiTa9E3d<3)简单随机抽样常用的方法:①抽签法②随机数表法③计算机模拟法③使用统计软件直接抽取。
RTCrpUDGiT在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
<4)抽签法:①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;5PCzVD7HxA③对样本中的每一个个体进行测量或调查<5)随机数表法:2:系统抽样<1)系统抽样<等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
K<抽样距离)=N<总体规模)/n<样本规模)jLBHrnAILg前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。
可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。
如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。
xHAQX74J0X<2)系统抽样,即等距抽样是实际中最为常用的抽样方法之一。
(完整版)高三数学概率统计知识点归纳
概率统计知识点归纳平均数、众数和中位数平均数、众数和中位数.要描述一组数据的集中趋势,最重要也是最常见的方法就是用这“三数”来说明.一、正确理解平均数、众数和中位数的概念平均数平均数是反映一组数据的平均水平的特征数,反映一组数据的集中趋势.平均数的大小与一组数据里的每一个数据都有关系,任何一个数据的变化都会引起平均数的变化.2.众数在一组数据中出现次数最多的数据叫做这一组数据的众数.一组数据中的众数有时不唯一.众数着眼于对各数出现的次数的考察,这就告诉我们在求一组数据的众数时,既不需要排列,又不需要计算,只要能找出样本中出现次数最多的那一个(或几个)数据就可以了.当一组数据中有数据多次重复出现时,它的众数也就是我们所要关心的一种集中趋势.3.中位数中位数就是将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).一组数据中的中位数是唯一的.二、注意区别平均数、众数和中位数三者之间的关系平均数、众数和中位数都是描述一组数据的集中趋势的量,但它们描述的角度和适用的范围又不尽相同.在具体问题中采用哪种量来描述一组数据的集中趋势,那得看数据的特点和要关注的问题.三、能正确选用平均数、众数和中位数来解决实际问题由于平均数、众数和中位数都是描述一组数据的集中趋势的量,所以利用平均数、众数和中位数可以来解决现实生活中的问题.极差、方差、标准差极差、方差和标准差都是用来研究一组数据的离散程度的,反映一组数据的波动范围或波动大小的量.极差一组数据中最大值与最小值的差叫做这组数据的极差,即极差=最大值-最小值.极差能够反映数据的变化范围,差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.二、方差方差是反映一组数据的整体波动大小的特征的量.它是指一组数据中各个数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.求一组数据的方差可以简记先求平均,再求差,然后平方,最后求平均数.一组数据x1、x2、x3、…、xn 的平均数为x ,则该组数据方差的计算公式为:])()()[(1222212x x x x x x n S n -++-+-=Λ.三、标准差在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常常将求出的方差再开平方,此时得到量为这组数据的标准差.即标准差=方差.四、极差、方差、标准差的关系方差和标准差都是用来描述一组数据波动情况的量,常用来比较两组数据的波动大小.两组数据中极差大的那一组并不一定方差也大.在实际问题中有时用到标准差,是因为标准差的单位和原数据的单位一致,且能缓解方差过大或过小的现象.一、 随机事件的概率1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。
_新教材高中数学第五章统计与概率
5.1.1 数据的收集【课程标准】(1)获取数据的基本途径及相关概念:①知道获取数据的基本途径,包括:统计报表和年鉴、社会调查、试验设计、普查和抽样、互联网等.②了解总体、样本、样本量的概念,了解数据的随机性.(2)抽样:①简单随机抽样通过实例,了解简单随机抽样的含义及其解决问题的过程,掌握两种简单随机抽样方法:抽签法和随机数表法.会计算样本均值和样本方差,了解样本与总体的关系.②分层随机抽样通过实例,了解分层随机抽样的特点和适用范围,了解分层随机抽样的必要性,掌握各层样本量比例分配的方法.结合具体实例,掌握分层随机抽样的样本均值和样本方差.③抽样方法的选择在简单的实际情境中,能根据实际问题的特点,设计恰当的抽样方法解决问题.新知初探·自主学习——突出基础性教材要点知识点一总体与样本所考察问题涉及的对象全体是________,总体中每个对象都是________,抽取的部分对象组成总体的一个样本,一个样本中包含的个体数目是________容量.知识点二简单随机抽样1.简单随机抽样的意义:一般地,简单随机抽样(也称为纯随机抽样)就是从总体中不加任何分组、划类、排队等,完全随机地抽取个体.简单随机抽样是其它各种抽样形式的基础.通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法.2.简单随机抽样的分类简单随机抽样{____________________状元随笔 (1)对总体、个体、样本、样本容量的认识总体:统计中所考察对象的全体叫做总体.个体:总体中的每一个考察对象叫做个体.样本:从总体中抽取的一部分个体叫做样本.样本容量:样本的个体的数目叫做样本容量.(2)简单随机抽样必须具备的几个特点①被抽取样本的总体中的个体数N 是有限的.②抽取的样本个体数n 小于或等于总体中的个体数N.③样本中的每个个体都是逐个不放回抽取的.④每个个体入样的可能性均为n N .3.随机数表法进行简单随机抽样的步骤状元随笔 用随机数表法进行简单随机抽样的规则(1)定方向:读数的方向(向左、向右、向上或向下都可以).(2)读数规则:读数时结合编号的特点进行读取,编号为两位数则两位两位地读取,编号为三位数则三位三位地读取,若得到的号码不在编号中或已被选用,则跳过,直到选满所需号码为止.知识点三分层抽样1.分层抽样的定义一般地,如果相对于要考察的问题来说,总体可以分成有明显差别的、互不重叠的几部分时,每一部分可称为层,在各层中按层在总体中所占比例进行随机抽样的方法称为分层随机抽样(简称分层抽样)注意:分层抽样又称类型抽样,应用分层抽样应遵循以下要求:(1)分层:将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则.(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等.2.分层抽样的步骤:(1)分层:按某种特征将总体分成若干部分.(2)按比例确定每层抽取个体的个数.(3)各层分别按简单随机抽样的方法抽取.(4)综合每层抽样,组成样本.状元随笔应用分层抽样法的前提条件①总体可以分层,层与层之间有明显区别,而层内个体间差异较小.②每层中所抽取的个体差异可按各层个体在总体中所占的比例抽取.③分层抽样要求对总体的情况有一定的了解,明确分层的界限和数目.基础自测1.某校期末考试后,为了分析该校高一年级1000名学生的成绩,从中抽取了100名学生的成绩单进行调查.就这个问题来说,下面说法正确的是( )A.1000名学生是总体B.每名学生是个体C.100名学生的成绩是一个个体D.样本的容量是1002.某政府机关在编人员共100人,其中副处级以上干部10人,一般干部70人,工人20人,上级部门为了了解该机关对政府机构改革的意见,要从中抽取20人,用下列哪种方法最合适( )A.抽签法 B.简单随机抽样法C.分层抽样法D.随机数表法3.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( ) A.100B.150C.200D.2504.甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法抽取一个容量为90的样本,应在这三校分别抽取学生( )A.30人,30人,30人B.30人,45人,15人C.20人,30人,10人D.30人,50人,10人课堂探究·素养提升——强化创新性题型1 简单随机抽样的概念[经典例题]例1 下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)质量监督部门从180种儿童玩具中选出18种玩具进行质量检验,在抽样过程中,从中任取一种玩具检验后再放回;(3)某社区组织100名党员研读《十九大报告》,学习十九大精神;(4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地逐个抽出7个号签.方法归纳简单随机抽样的四个特征跟踪训练1 下列抽样方式是否是简单随机抽样?(1)在某车间包装一种产品,在自动包装的传送带上每隔30分钟抽一包产品,检验其质量是否合格;(2)某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.题型2 简单随机抽样的应用[经典例题]例2 (1)要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,写出抽样过程;(2)某车间工人加工了一批零件共40件.为了了解这批零件的质量情况,要从中抽取10件进行检验,如何采用随机数表法抽取样本,写出抽样步骤.状元随笔(1)总体中的个体数有限,可以采用简单易行的抽签法,按照抽签法的步骤进行即可.抽签法:按照抽签法的步骤:“编号,制号签,搅拌均匀,随机抽取,得号码”进行.→→方法归纳(1)抽签法的优点:简单易行.当总体的个数不多时,使总体处于“搅拌均匀”的状态比较容易,这时,每个个体都有均等的机会被抽中,从而能够保证样本的代表性.缺点:仅适用于个体数较少的总体.当总体容量非常大时,费时费力又不方便.况且,如果号签搅拌不均匀,可能导致抽样不公平.(2)在随机数表法抽样的过程中要注意:①编号要求位数相同,读数时应结合编号特点进行读取,如:编号为两位,则两位、两位地读取;编号为三位,则三位、三位地读取.②第一个数字的抽取是随机的.③读数的方向是任意的,且事先定好.跟踪训练2 (1)第十三届中国(徐州)国际园林博览会于2021年9月开幕.为做好徐州园博园运营管理工作,2022年春节期间,还需要从30名大学生中随机抽取8人作为志愿者,请写出抽取样本的过程;(2)有一批机器,编号为1,2,3,…,112.请用随机数法抽取10台入样,写出抽样过程.题型3 分层抽样的概念及计算[经典例题]例3 (1)某中学有老年教师20人,中年教师65人,青年教师95人.为了调查他们的健康状况,需从他们中抽取一个容量为36的样本,则合适的抽样方法是( )A .抽签法B .简单随机抽样C .分层抽样D .随机数表法(2)某市有大型超市200家,中型超市400家,小型超市1400家.为掌握各类超市的营业情况,现按分层抽样的方法抽取一个容量为100的样本,应抽取中型超市________家.状元随笔 (1)有明显差异用分层抽样.→方法归纳(1)各部分之间有明显的差异是分层抽样的依据,至于各层内用什么方法抽样是灵活的,可用简单随机抽样,也可采用系统抽样.分层抽样中,无论哪一层的个体,被抽中的机会均等,体现了抽样的公平性.(2)分层抽样中有关抽样比的计算方法对于分层抽样中的比值问题,常利用以下关系式巧解: ①样本容量n总体容量N =该层抽取的个体数该层的个体数;②总体中某两层的个体数之比=样本中这两层抽取的个体数之比.对于分层抽样中求某层个体数,或某层要抽取的样本个体数,都可以通过上面两个等量关系求解.跟踪训练3 (1)某市有四所重点大学,为了解该市大学生的课外书籍阅读情况,采用下列哪种方法抽取样本最合适(四所大学图书馆的藏书有一定的差距)( )A .抽签法B .随机数表法C.简单随机法D.分层抽样法(2)某校高三年级有男生800人,女生600人,为了解该年级学生的身体健康情况,从男生中任意抽取40人,从女生中任意抽取30人进行调查.这种抽样方法是 ( ) 关键看是否有明显差异A.简单随机法B.抽签法C.随机数表法D.分层抽样法(3)某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍,为了解职工的身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为________.题型4 分层抽样的概念及应用例4 某家电视台在因特网上征集某电视节目现场参与的观众,报名的总人数为12000人,分别来自4个城区,其中东城区2400人,西城区4600人,南城区3800人,北城区1200人,从中抽取60人参加现场的节目,应当如何抽取?写出抽取过程.状元随笔由题知有明显差异,利用分层抽样抽样.(1)分多少层.(2)比例是多少.(3)每层抽多少.方法归纳(1)如果总体中的个体有差异时,就用分层抽样抽取样本,用分层抽样抽取样本时,要把性质、结构相同的个体,组成一层.(2)每层中所抽取的个体数应按各层个体数在总体中所占的比例抽取,也就是各层抽取.这样抽取能使所得到的样本结的比例都等于样本容量在总体中的比例,即抽样比=样本容量总体容量构与总体结构相同,可以提高样本对总体的代表性.跟踪训练4 在100个产品中,有一等品20个,二等品30个,三等品50个,现要抽取一个容量为30的样本,请说明抽样过程.第五章 统计与概率5.1 统计5.1.1 数据的收集新知初探·自主学习知识点一总体 个体 样本知识点二2.抽签法 随机数表法3.编号 任意 规则 编号[基础自测]1.解析:由随机抽样的基本概念可得,选D.答案:D2.解析:总体由差异明显的三部分组成,应选用分层抽样.答案:C3.解析:方法一:由题意可得70n−70=3 5001 500,解得n =100,故选A. 方法二:由题意,抽样比为703 500=150,总体容量为3500+1500=5000,故n =5000×150=100.答案:A4.解析:先求抽样比n N =903 600+5 400+1 800=1120,再各层按抽样比分别抽取,甲校抽取3600×1120=30(人),乙校抽取5400×1120=45(人),丙校抽取1800×1120=15(人),故选B. 答案:B课堂探究·素养提升例 1 【解析】 (1)不是简单随机抽样,因为简单随机抽样要求被抽取样本的总体的个数是有限的.(2)不是简单随机抽样,因为简单随机抽样要求逐个不放回地抽取.(3)不是简单随机抽样,因为这100名党员是挑选出来的,该社区每个人被抽到的可能性不同,不符合简单随机抽样中“等可能性”的要求.(4)是简单随机抽样,因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样.跟踪训练1 解析:由简单随机抽样的特点可知,(1)(2)均不是简单随机抽样.(1)总体个数不是有限的.(2)不符合“等可能性”的要求.例2 【解析】(1)利用抽签法,步骤如下:①将30辆汽车编号,号码是1,2, (30)②将号码分别写在一张纸条上,揉成团,制成号签;③将得到的号签放入一个不透明的袋子中,并搅拌均匀;④从袋子中依次抽取3个号签,并记录上面的编号;⑤所得号码对应的3辆汽车就是要抽取的对象.(2)抽样步骤是:第一步,先将40件零件编号,可以编号为00,01,02,…,38,39.第二步,在随机数表中任选一个数作为开始,例如从教材附表的随机数表中的第8行第9列的数0开始.为便于说明,我们将随机数表中的第6行到第10行分别摘录如下:6606574717 3407276850 3669736170 6581339885 11199291708105010805 4557182405 3530342814 8879907439 23403097328326977602 020******* 6855574818 7305385247 18623885796357332135 0532547048 9055857518 2846828709 83401256247379645753 0352964778 3580834282 6093520344 3527388435第三步,从选定的数0开始向右读下去,得一个两位数字号码02,将它取出;继续向右读,得到02,由于前面已经取出,将它去掉;继续下去,去掉重复的号码,又得到05,16,18,38,33,21,35,32,28.至此,10个样本号码已经取满,于是,所要抽取的样本号码是02,05,16,18,38,33,21,35,32,28.与这10个号码对应的零件即是抽取的样本个体.跟踪训练2 解析:(1)抽样过程如下:第一步,先将30名大学生进行编号,从1到30.第二步,将编号写在形状、大小相同的号签上.第三步,将号签放到一个不透明的盒子中搅拌均匀,然后从盒子中逐个抽取8个号签.第四步,将与号签上的编号对应的大学生抽出,即得样本.(2)方法一:第一步,将原来的编号调整为001,002,003, (112)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第14行第7个数“0”,向右读.第三步,从“0”开始,向右读,每次读取三位,凡不在001~112中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到020,086,013,110,089,021,080,098,027,002.第四步,对应原来编号为20,86,13,110,89,21,80,98,27,2的机器便是要抽取的对象.方法二:第一步,将原来的编号调整为101,102,103, (212)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第9行第7个数“1”,向右读.第三步,从“1”开始,向右读,每次读取三位,凡不在101~212中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到173,119,170,187,186,125,140,109,184,178.第四步,对应原来编号为73,19,70,87,86,25,40,9,84,78的机器便是要抽取的对象.例3 【解析】 (1)各部分之间有明显的差异是分层抽样的依据.(2)依据题意,可得抽样比为100200+400+1 400=120,故应抽取中型超市400×120=20(家).【答案】 (1)C (2)20跟踪训练3 解析:(1)因为学校图书馆的藏书对学生课外书籍阅读影响比较大,因此采取分层抽样.(2)总体中个体差异比较明显40800=30600=120,且抽取的比例也符合分层抽样.(3)设该单位老年职工人数为x ,由题意得3x =430-160,解得x =90.则样本中的老年职工人数为90×32160=18.答案:(1)D (2)D (3)18例4 【解析】 采用分层抽样的方式抽取参加现场节目的观众,步骤如下:第一步,分层.按城区分为四层:东城区、西城区、南城区、北城区.第二步,确定抽样比.样本容量n =60,总体容量N =12000,故抽样比k =n N =6012 000=1200.第三步,按比例确定每层抽取个体数.在东城区抽取2400×1200=12(人),在西城区抽取4600×1200=23(人),在南城区抽取3800×1200=19(人),在北城区抽取1200×1200=6(人).第四步,在各层分别用简单随机抽样法抽取样本.将各城区抽取的观众合在一起组成样本.跟踪训练4 解析:先将产品按等级分成三层;第一层,一等品20个;第二层,二等品30个;第三层,三等品50个.然后确定每一层抽取的个体数,因为抽样比为30100=310,所以应在第一层中抽取产品20×310=6(个),在第二层中抽取产品30×310=9(个),在第三层中抽取产品50×3=15(个).分别给这些产品编号并贴上标签,用抽签法或随机数表法10在各层中抽取,得到一等品6个,二等品9个,三等品15个,这样就通过分层抽样得到了一个容量为30的样本.。
高三数学知识点概率和统计
高三数学知识点概率和统计概率和统计是高中数学中一门重要的知识点,它不仅在学术领域具有广泛的应用,而且在日常生活中也起着重要的作用。
本文将以深入浅出的方式,介绍概率和统计的基本概念、应用及其在现实生活中的意义。
一、概率的基本概念概率是研究随机事件发生可能性的数学工具。
在概率论中,我们通过定义事件、样本空间以及事件发生的概率来进行研究。
在一个随机试验中,样本空间是指所有可能的结果的集合。
而事件则是样本空间的一个子集,它表示我们所关心的具体结果。
通过定义样本空间和事件,我们可以计算出事件发生的概率。
概率的计算一般使用频率的概念,即某个事件发生的次数与总试验次数的比值。
二、概率的应用概率在现实生活中有着广泛的应用。
例如,在购买彩票时,我们可以利用概率的知识来判断购买中奖的可能性。
概率计算还可以应用于投资决策、风险管理等领域。
此外,概率还可以用来解决排列和组合问题。
在排列问题中,我们关注的是有顺序的一组对象的不同排列方式的数量。
而在组合问题中,我们考虑的是从一组对象中选择出一部分对象的不同组合方式的数量。
三、统计的基本概念统计是研究数据收集、分析和解释的学科。
在现实生活中,我们经常会遇到各种各样的数据,统计学可以帮助我们从数据中发现规律,做出推断和预测。
统计学中的重要概念包括样本和总体。
样本是指从总体中抽取的一部分数据,而总体是我们希望研究的对象的全体数据。
利用统计学的方法,我们可以对数据进行描述和分析。
例如,通过计算数据的平均值、标准差、方差等指标,我们可以对数据的特征进行量化描述。
同时,统计学还涉及概率分布、假设检验、回归分析等复杂的概念和方法。
四、统计的应用统计学在各个领域都有着广泛的应用。
在医学领域,统计学可以帮助医生进行临床试验和疾病预测。
在市场营销中,统计学可以帮助企业了解客户的需求、评估营销策略的效果。
除此之外,统计学还可以应用于财务分析、社会调查、教育研究等领域。
统计学的方法可以帮助我们更好地理解和解决实际问题。
高中概率统计知识点_高三概率知识点总结范文
《高中概率统计知识点总结》高中概率统计是数学中的重要组成部分,它不仅在高考中占据着重要的地位,而且在实际生活中也有着广泛的应用。
本文将对高中概率统计的知识点进行全面总结,帮助高三学生更好地掌握这部分内容。
一、随机事件与概率1. 随机事件随机事件是在一定条件下可能发生也可能不发生的事件。
必然事件是在一定条件下必然发生的事件,不可能事件是在一定条件下不可能发生的事件。
2. 概率的定义概率是对随机事件发生可能性大小的度量。
对于一个随机事件A,它的概率 P(A)满足0≤P(A)≤1。
当 P(A)=1 时,事件 A 为必然事件;当 P(A)=0 时,事件 A 为不可能事件。
3. 概率的基本性质(1)概率的加法公式:对于任意两个互斥事件 A 和 B,P(A∪B)=P(A)+P(B)。
(2)对立事件的概率:若事件 A 的对立事件为\(\overline{A}\),则 P(A)+P(\(\overline{A}\))=1。
二、古典概型1. 古典概型的特点(1)试验中所有可能出现的基本事件只有有限个。
(2)每个基本事件出现的可能性相等。
2. 古典概型的概率计算公式如果一次试验中共有 n 个基本事件,事件 A 包含其中的 m 个基本事件,则事件 A 的概率 P(A)=\(\frac{m}{n}\)。
三、几何概型1. 几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个。
(2)每个基本事件出现的可能性相等。
2. 几何概型的概率计算公式一般地,在几何区域 D 中随机地取一点,记事件“该点落在其内部一个区域 d 内”为事件 A,则事件 A 发生的概率P(A)=\(\frac{d 的测度}{D 的测度}\)。
这里测度可以是长度、面积、体积等。
四、互斥事件与独立事件1. 互斥事件若事件 A 与事件 B 不能同时发生,则称事件 A 与事件 B 为互斥事件。
互斥事件的概率加法公式为P(A∪B)=P(A)+P(B)(A、B 互斥)。
数学高三概率与统计知识点
数学高三概率与统计知识点概率与统计是高中数学中的一门重要课程,也是数理统计学的基础。
在高三学习中,学生需要掌握一定的概率与统计的知识点,以应对相关的考试和应用问题。
在这篇文章中,我们将介绍数学高三概率与统计的主要知识点。
一、概率概率是一种描述事件发生可能性的数值,通常用一个介于0到1之间的数来表示。
1. 样本空间和事件在概率理论中,我们将所有可能结果组成的集合称为样本空间,通常用S表示。
而事件则是样本空间的一个子集,用A、B、C等来表示。
2. 概率的定义与性质概率的定义有两种,一种是古典概型下的概率定义,另一种是频率定义。
在古典概型下,若事件A在样本空间S中的元素个数为n(A),样本空间中的元素个数为n(S),则事件A发生的概率定义为P(A)=n(A)/n(S)。
在频率定义下,事件A发生的概率定义为P(A)=lim(n→∞)(n(A)/n),其中n表示试验的次数。
概率具有以下性质:a) 非负性:对于任意事件A,有P(A)≥0;b) 规范性:P(S)=1,即样本空间发生的概率为1;c) 加法定理:对于两个互不相容的事件A和B,有P(A∪B)=P(A)+P(B);d) 减法定理:对于两个事件A和B,有P(A-B)=P(A)-P(A∩B)。
3. 条件概率条件概率是指事件B已经发生的条件下,事件A发生的概率,用P(A|B)表示。
条件概率的计算公式为P(A|B)=P(A∩B)/P(B)。
4. 独立事件如果事件A和事件B满足P(A∩B)=P(A)P(B),则称事件A和事件B是独立事件。
独立事件之间的乘法定理为P(A∩B)=P(A)P(B)。
二、统计统计是通过对一组数据的观察、整理、分析和总结,以获得有关规律和结论的方法。
在高三数学中,统计常常与概率结合起来,进行数据分析和推断。
1. 数据的收集与整理统计学中,数据的收集与整理是非常重要的一步。
数据可以通过实地调查、问卷调查、实验等方式获得,然后将数据进行整理,可以采用表格、图表等形式,以便更好地进行分析和推断。
(完整word版)高中数学必修3统计与概率
统计1:简单随机抽样(1)总体和样本①在统计学中, 把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.④为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.(2)简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
(3)简单随机抽样常用的方法:①抽签法②随机数表法③计算机模拟法③使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
(4)抽签法:①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查(5)随机数表法:2:系统抽样(1)系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
K(抽样距离)=N(总体规模)/n(样本规模)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。
可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。
如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。
(2)系统抽样,即等距抽样是实际中最为常用的抽样方法之一。
因为它对抽样框的要求较低,实施也比较简单。
更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。
3:分层抽样(1)分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
数学高三概率与统计章节重点知识梳理与习题攻略
数学高三概率与统计章节重点知识梳理与习题攻略概率与统计是高中数学中的重要章节,也是高考中的热点内容。
精通概率与统计对于学生提高数学成绩、应对高考至关重要。
为此,本文将对高三概率与统计章节的重点知识进行梳理,并提供习题攻略,帮助学生更好地掌握这一知识点。
一、基本概念1.事件与样本空间在概率与统计中,我们需要了解事件和样本空间的概念。
事件是指一个我们感兴趣的结果或者结果的集合,而样本空间是所有可能结果的集合。
2.概率概率是指某个事件发生的可能性大小。
常见的概率有经典概率、几何概率和统计概率等。
3.条件概率条件概率是指在某个事件已经发生的条件下,另一个事件发生的概率。
它可以用公式表示为:P(B|A) = P(A∩B)/P(A)。
4.互斥事件与独立事件互斥事件是指两个事件不能同时发生的情况,独立事件是指两个事件的发生不会相互影响。
二、概率计算方法1.加法原理与乘法原理加法原理是指计算两个事件至少发生一个的概率。
乘法原理是指计算两个事件同时发生的概率。
2.全概率公式和贝叶斯定理全概率公式是指在一组互斥事件的基础上计算某个事件的概率。
贝叶斯定理是指在已知某个事件发生的条件下计算另一个事件发生的概率。
三、随机变量与概率分布1.随机变量随机变量是指随机试验结果的某个函数,它可以是离散型随机变量或连续型随机变量。
2.离散型随机变量的概率分布离散型随机变量的概率分布可以用概率函数、分布列和累积分布函数来表示。
3.连续型随机变量的概率密度函数和分布函数连续型随机变量的概率密度函数和分布函数可以用来描述其取值的概率。
四、常见的概率分布1.二项分布与泊松分布二项分布是指在一系列独立的、相同概率的伯努利试验中,成功次数的概率分布。
泊松分布是指在一个固定时间或空间内,随机事件发生的概率分布。
2.正态分布正态分布是指在自然界种种现象中,满足特定条件的随机变量的概率分布。
它是统计学中最重要的分布之一。
五、统计推断1.抽样与抽样分布抽样是指从总体中选取个体(样本),通过对样本的统计量进行分析推断出总体特征。
高中数学统计知识点高中数学概率与统计
高中数学统计知识点高中数学概率与统计
高中数学统计知识点包括以下内容:
1. 数据的收集和整理:包括原始数据的收集和整理,如问卷调查、实验结果等。
2. 描述统计:用于对数据进行总结和描述的方法,包括平均数、中位数、众数、极差、标准差等。
3. 概率:研究随机事件发生的可能性的数学分支,包括基本概念、概率的计算方法和
性质。
4. 概率分布:描述随机变量取值与相应概率的分布,包括离散型随机变量和连续型随
机变量的分布。
5. 统计推断:从样本数据中推断总体的特征的方法,包括点估计和区间估计。
6. 假设检验:用于推断总体参数的假设检验方法,包括单样本检验、双样本检验和相
关性检验等。
7. 相关分析:研究两个或多个变量之间关系的方法,包括相关系数和回归分析等。
8. 抽样调查:从总体中随机选择样本进行调查和统计分析的方法,包括简单随机抽样、系统抽样和分层抽样等。
以上是高中数学概率与统计的主要知识点,通过掌握这些知识,可以进行数据的整理
和分析,并进行相关的统计推断和假设检验。
高三数学知识点统计概率
高三数学知识点统计概率统计概率是高三数学中的重要知识点之一,它通过对统计数据进行分析和计算,帮助我们了解事件发生的概率。
下面将从基本概念、概率计算方法和应用实例三个方面进行介绍。
一、基本概念概率是指某一事件在相同条件下发生的可能性大小。
在统计学中,常用的概率计算方法包括频率概率和几何概率两种。
1.1 频率概率频率概率是通过统计大量实验结果得到的概率。
它的计算公式为:事件发生次数/总实验次数。
1.2 几何概率几何概率是通过计算事件所占的样本空间的面积或体积得到的概率。
它的计算公式为:事件发生的可能结果数/总可能结果数。
二、概率计算方法在统计概率的计算中,常用的方法有加法法则、乘法法则和条件概率。
2.1 加法法则加法法则用于计算两个事件中至少发生一个事件的概率。
当两个事件互斥时(即两个事件不可能同时发生),可以直接使用加法法则计算:P(A∪B) = P(A) + P(B)。
2.2 乘法法则乘法法则用于计算两个事件同时发生的概率。
当两个事件独立时(即一个事件的发生不影响另一个事件的发生),可以直接使用乘法法则计算:P(A∩B) = P(A) × P(B)。
2.3 条件概率条件概率是指在已知某一事件发生的条件下,另一个事件发生的概率。
条件概率的计算公式为:P(A|B) = P(A∩B) / P(B)。
三、应用实例统计概率在实际生活中有广泛的应用,下面以两个常见的例子介绍其应用。
3.1 投掷骰子假设我们有一枚均匀的六面骰子,每个面上的点数为1~6。
现在我们想知道投掷一次骰子后,点数为偶数的概率是多少。
根据频率概率,我们可以进行一系列实验,统计出点数为偶数的次数,再除以总实验次数,就可以得到概率。
根据几何概率,点数为偶数的可能结果数为3,总可能结果数为6,因此概率为1/2。
3.2 抽奖活动某个电商平台举办了一个抽奖活动,奖品包括一等奖、二等奖和三等奖。
现在我们想知道抽奖时至少抽到二等奖的概率是多少。
34:概率高三复习数学知识点总结(全)
概率1.随机事件的概率(1)必然事件:在一定条件下,必然会发生的事件;(2)不可能事件:在一定条件下,肯定不会发生的事件;(3)随机事件:在一定条件下,可能发生也可能不发生的事件.(4)随机事件的概率:对于给定的随机事件,A 在大量重复进行同一试验时,事件A 发生的频率n m会在某个常数附近摆动并趋于稳定,我们把这个常数常数称为随机事件A 的概率,记作).(A P 注:由定义可知,1)(0≤≤A P 必然事件的概率是1,不可能事件的概率是0.2.事件的关系与运算定义符号表示包含关系如果事件A 发生,则事件B 一定发生,这时称事件B 包含事件A (或称事件A 包含于事件B )B ⊇A (或A ⊆B )相等关系若A ⊆B 且B ⊆A A =B并事件(和事件)若某事件发生当且仅当事件A 发生或事件B 发生,称此事件为事件A 与事件B 的并事件(或和事件)A ∪B (或A +B )交事件(积事件)若某事件发生当且仅当事件A 发生且事件B 发生,则称此事件为事件A 与事件B 的交事件(或积事件)A ∩B (或AB )互斥事件若A ∩B 为不可能事件(A ∩B =∅),则称事件A 与事件B 互斥A ∩B =∅对立事件若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件A ∩B =∅,P(A)+P(B)=13.古典概型(列举法)(1)古典概型的两大特点:①所有的基本事件只有有限个;②每个基本事件的发生都是等可能的.(2)古典概型的概率计算公式:如果一次试验的等可能基本事件共有n 个,那么每一个等可能基本事件发生的概率都是.1n 如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为.)(nmA P =例1-1【2020全国I 文】设O 为正方形ABCD 的中心,在D CB A O ,,,,中任选三点,则取到三点共线的概率为()A.51B.52 C.21 D.54例1-2【2016全国I 文】为美化环境,从红、黄、白、紫4种颜色的花中任取2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.31 B.21 C.32 D.65例1-3【2016江苏高考】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.答:1-1:A ;1-2:C;1-3:65.4.互斥事件和对立事件(1)互斥事件:不能同时发生的两个事件叫做互斥事件.一般地,如果事件n A A A ,,,21 中的任意两个都是互斥事件,则称事件n A A A ,,,21 彼此互斥.(2)互斥事件概率公式:如果事件B A ,互斥,那么事件B A +发生(注:B A +表示事件B A ,至少有一个发生)的概率,等于事件B A ,分别发生的概率的和,即).()()(B P A P B A P +=+推广:一般地,若n A A A ,,,21 彼此互斥,那么).()()()(2121n n A P A P A P A A A P +++=+++ 注:若A,B 不互斥,则).()()()(B A P B P A P B A P -+=(3)对立事件:如果两个互斥事件必有一个发生,那么称这两个事件为对立事件.事件A 的对立事件记为.A (4)对立事件的概率公式:).(1)(A P A P -=注:“至多”,“至少”的问题考虑反面(对立事件)往往比较简单.例2-1:某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62% B.56% C.46% D.42%例2-2:将一枚骰子连续抛掷两次,至少有一次向上的点数为1的概率是.答:2-1:C;2-2:.36115.事件的独立性(1)条件概率:一般地,对于两个事件A 和,B 在已知事件B 发生的条件下事件A 发生的概率,称为事件B 发生的条件下事件A 的条件概率,记为).|(B A P 概率的乘法公式:).()|()(B P B A P AB P =注:事件AB 表示事件A 和事件B 同时发生.(2)事件的独立性①定义:一般地,若事件B A ,满足)()|(A P B A P =(即事件B 发生不影响事件A 发生的概率),则称事件B A ,独立.②性质:若事件B A ,相互独立,则事件A 与B ,A 与,B A 与B 都相互独立.③公式:事件B A ,相互独立的充要条件是).()()(B P A P AB P =④推广:若n A A A ,,,21 相互独立,则这n 个事件同时发生的概率为).()()()(2121n n A P A P A P A A A P =⑤区别:独立事件与互斥事件的根本区别在于是否能同时发生,如果不能那是互斥事件,如果能再满足)()()(B P A P AB P =则为独立事件.注:求条件概率的两个思路:思路一:缩减样本空间法计算条件概率,如求P (A |B ),可分别求出事件B ,AB 包含的基本事件的个数,再利用公式P (A |B )=n (AB )n (B )计算;思路二:直接利用公式计算条件概率,即先分别计算出P (AB ),P (B ),再利用公式P (A |B )=P (AB )P (B )计算.(3)全概率公式设n A A A ,,,21 是一组两两互斥的事件,,21Ω=n A A A 且,0)(>i A P ,,,2,1n i =则对任意的事件,Ω⊆B 有∑==ni i i A B P A P B P 1).|()()(我们称上面的公式为全概率公式.全概率公式是概率论中最基本的公式之一.6.离散型随机变量及其概率分布(1)随机变量:一般地,如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,通常用大写拉丁字母Z Y X ,,(或小写的希腊字母ξ,η,ζ)等表示,而用小写拉丁字母z y x ,,(加上适当下标)等表示随机变量可能的取值.(2)离散型随机变量的概率分布:一般地,假定随机变量X 有n 个不同的取值,它们分别是1x ,2x ,…,n x ,且()i i P X x p ==,1,2,,i n =⋅⋅⋅,①则称①为随机变量X 的概率分布列,简称为X 的分布列.也可以将①用表的形式来表示.X 1x 2x …nx P1p 2p …np 我们将表称为随机变量X 的概率分布表.它和①都叫做随机变量X 的概率分布.注:①),,2,1(0n i p i =≥;②121=+++n p p p ;③求随机变量的概率分布的步骤:1.确定X 的可能取值(1,2,)i x i =…;2.求出相应的概率()i i P X x p ==;3.列成表格的形式.7.常见离散型随机变量的概率分布(1)两点分布(0-1分布)若随机变量X 服从两点分布,即其分布列为X01P p-1p 则,)(p X E =).1()(p p X D -=(2)超几何分布一批产品共N 件,其中有M 件次品,任取n 件,其中恰有X 件次品,则事件}{r X=发生的概率为()r n r M N MnN C C P X r C --==,0,1,2,,r m = ,其中{}min ,m n M =,称X 服从超几何分布,记为),,,(~N M n H X 并将()r n r M N MnNC C P X r C --==记为).,,;(N M n r H X 01…mP00n M N Mn NC C C --11n M N Mn NC C C --…m n m M N Mn NC C C --则N nM X E =)(;)1())(()(2---=N N n N M N nM X D (了解).8.二项分布(1)n 次独立重复试验(伯努利试验)一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 和,A 每次试验中.0)(>=p A P 我们将这样的试验称为n 次独立重复试验,也称为伯努利试验.(2)二项分布一般地,在n 次独立重复试验中,设事件A 发生的次数为,X 在每次试验事件A 发生的概率均为,p 那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为),2,1,0()1()(n k p p C k X P k n kk n =-==-.此时称随机变量X 服从参数为p n ,的二项分布,记作).,(~p n B X(3)均值与方差若),,(~p n B X 则np x E =)(,).1()(p np x V -=注:超几何分布与二项分布的区别与联系(1)区别:是否有放回是两个的本质区别,有放回是二项分布,无放回是超几何分布;(2)联系:当总体容量较大时如流水线上,也可以用二项分布近似超几何分布.9.离散型随机变量的均值与方差(1)一般地,若离散型随机变量X 的概率分布为X 1x 2x…nx P1p 2p …np 其中,1,,,2,1,021=+++=≥n i p p p n i p 则有如下公式1.均值(数学期望):.)(2211n n p x p x p x X E ++==μ它反映了离散型随机变量取值的平.均水平....注:对于连续型变量通常取“组中值”来代替i x 计算期望.2.方差:.)()()()(22221212n n p x p x p x X V μμμσ-++-+-== (方差也可以用V(x)表示),它刻画了随机变量X 与其均值E (X )的平均偏离程度........3.标准差:.)(X V =σ注:随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度.方差或标准差越小,随机变量偏离于均值的平均程度就越小,稳定性就越好.(2)均值和方差的性质若随机变量b aX Y +=(b a ,为常数),则,)()(b X aE Y E +=).()(2X V a Y V =10.正态分布(1)正态曲线函数,21)(222)(σμπσ--=x e x f 其中实数μ和σ为参数(σ>0,μ∈R).我们称函数)(x f 的图象为正态分布密度曲线,简称正态曲线.(2)正态曲线的特点①曲线位于x 轴上方,与x 轴不相交;当x 无限增大时,曲线无限接近x 轴.②曲线是单峰的,它关于直线μ=x 对称;③曲线在μ=x 处达到峰值1σ2π;④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移,如图甲所示;⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)正态分布的定义及表示①若随机变量X 的概率分布密度函数为,21)(222)(σμπσ--=x e x f 则称随机变量X 服从正态分布,则记作),(~2σμN X .其中,参数μ反映了正态分布的集中位置,σ反映了随机变量的分布相对于均值μ的离散程度,此时=)(X E μ,=)(X D 2σ.特别地,当10==σμ,时,称随机变量X 服从标准正态分布,记作X~N (0,1).②若),,(~2σμN X 则如图所示,X 取值不超过)(x X P ≤为图中区域A 的面积,而)(b X a P ≤≤为区域B的面积.(4)正态总体在三个特殊区间内取值的概率值①P(μ-σ<X ≤μ+σ)=0.6826;②P(μ-2σ<X ≤μ+2σ)=0.9544;③P(μ-3σ<X ≤μ+3σ)=0.9974.注:在实际应用中,通常认为服从正态分布),(2σμN 的随机变量X 只取]3,3[σμσμ+-之间的值,这在统计学中称为σ3原则.在次区间以外取值的概率只有0.0026,通常认为这种情况几乎不可能发生.【解题规范】【2014江苏高考】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同。
高三数学概率与统计知识精讲苏教版
高三数学概率与统计苏教版【本讲教育信息】一. 教学内容:概率与统计[学习过程]一、高考要求:了解:抽样方法;总体分布的估计;变量的相关性;统计案例。
理解:总体特征数的估计;了解:随机事件与概率;几何概型;互斥事件及其发生的概率;理解:古典概型。
二、本章知识结构:三、基础知识(一)统计1. 抽样方法有简单随机抽样;系统抽样;分层抽样。
2. 简单随机抽样抽签法;随机数表法。
3. 用抽签法从个体个数为N的总体中抽取一个容量为k的样本的步骤为:(1)将总体中的所有个体编号(号码可以从1到N);(2)将1到N这N个号码写在形状、大小相同的号签上(号签可以用小球、卡片、纸条等制作);(3)将号签放在同一箱中,并搅拌均匀;(4)从箱中每次抽出1个号签,并记录其编号,连续抽取k次;(5)从总体中将与抽到的签的编号相一致的个体取出.4. 用随机数表法抽取样本的步骤是:(1)对总体中的个体进行编号(每个号码位数一致);(2)在随机数表中任选一个数作为开始;(3)从选定的数开始按一定的方向读下去,得到的数码若不在编号中,则跳过;若在编号中,则取出;如果得到的号码前面已经取出,也跳过;如此继续下去,直到取满为止;(4)根据选定的号码抽取样本.5. 将总体平均分成几个部分,然后按照预先定出的规则,从每个部分中抽取一个个体,得到所需的样本,这样的抽样方法称为系统抽样(systemAticsAmpling). 系统抽样,又叫等距抽样。
6. 系统抽样的步骤为:(1)采用随机的方式将总体中的个体编号;系统抽样也可称为“等距抽样”.(2)将整个的编号按一定的间隔(设为k)分段,当Nn(N为总体中的个体数,n为样本容量)是整数时,k=Nn;当Nn不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N′能被n整除,这时k=N′n,并将剩下的总体重新编号;(3)在第一段中用简单随机抽样确定起始的个体编号l;(4)将编号为l,l+k,l+2k,…,l+(n-1)k的个体抽出.7. 当总体由差异明显的几个部分组成时,常常将总体中的个体按不同的特点分成比较分明的几部分,然后按各部分在总体中所占的比例实施抽样,这种抽样方法叫分层抽样;其中所分成的各个部分称为“层”.8. 分层抽样的步骤是:(1)将总体按一定标准分层;若按比例计算所得的个体数不是整数,可作适当的近似处理.(2)计算各层的个体数与总体的个体数的比;(3)按各层个体数占总体的个体数的比确定各层应抽取的样本容量;(4)在每一层进行抽样(可用简单随机抽样或系统抽样).9. 三种抽样的关10. 反映总体频率分布的表格称为频率分布表。
高三数学第十二章-概率与统计知识点归纳
高中数学知识点第十二章-概率与统计考试内容:抽样方法.总体分布的估计. 总体期望值和方差的估计. 考试要求:(1)了解随机抽样了解分层抽样的意义,会用它们对简单实际问题进行抽样.(2)会用样本频率分布估计总体分布. (3)会用样本估计总体期望值和方差.§12. 概率与统计 知识要点一、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量.设离散型随机变量ξ可能取的值为:ΛΛ,,,,21i x x xξ取每一个值),2,1(1Λ=i x 的概率i i p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的分布列.有性质①Λ,2,1,01=≥i p ; ②121=++++ΛΛi p p p .注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数.3. ⑴二项分布:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是:kn k k n qp C k)P(ξ-==[其中p q n k -==1,,,1,0Λ] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B (n ·p ),其中n ,p 为参数,并记p)n b(k;qp C kn kkn⋅=-.⑵二项分布的判断与应用.①二项分布,实际是对n 次独立重复试验.关键是看某一事件是否是进行n 次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.4. 几何分布:“k =ξ”表示在第k 次独立重复试验时,事件第一次发生,如果把k 次试验时事件A 发生记为k A ,事A 不发生记为q )P(A ,A k k =,那么)A A A AP(k)P(ξk 1k 21-==Λ.根据相互独立事件的概率乘法分式:))P(A A P()A )P(A P(k)P(ξk 1k 21-==Λ),3,2,1(1Λ==-k p q k 于是得到随机变量ξ的概率分布列.我们称ξ服从几何分布,并记p q p)g(k,1k -=,其中Λ3,2,1.1=-=k p q5. ⑴超几何分布:一批产品共有N 件,其中有M (M <N )件次品,今抽取)N n n(1≤≤件,则其中的次品数ξ是一离散型随机变量,分布列为)M N k n M,0k (0C C C k)P(ξnNk n MN k M -≤-≤≤≤⋅⋅==--.〔分子是从M 件次品中取k 件,从N-M 件正品中取n-k 件的取法数,如果规定m <r 时0C r m =,则k 的范围可以写为k=0,1,…,n.〕⑵超几何分布的另一种形式:一批产品由 a 件次品、b 件正品组成,今抽取n 件(1≤n ≤a+b ),则次品数ξ的分布列为n.,0,1,k CC C k)P(ξnba kn bk a Λ=⋅==+-.⑶超几何分布与二项分布的关系.设一批产品由a 件次品、b 件正品组成,不放回抽取n 件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数η的分布列可如下求得:把b a +个产品编号,则抽取n 次共有n b a )(+个可能结果,等可能:k)(η=含kn k k n ba C -个结果,故n ,0,1,2,k ,)ba a (1)b a a (C b)(a ba C k)P(ηkn k k n nkn k k n Λ=+-+=+==--,即η~)(b a a n B +⋅.[我们先为k个次品选定位置,共k n C 种选法;然后每个次品位置有a 种选法,每个正品位置有b 种选法] 可以证明:当产品总数很大而抽取个数不多时,k)P(ηk)P(ξ=≈=,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样. 二、数学期望与方差.1. 期望的含义:一般地,若离散型随机变量ξ的概率分布为则称ΛΛ++++=n n p x p x p x E 2211ξ为ξ的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散型随机变量取值的平均水平. 2. ⑴随机变量b a +=ξη的数学期望:b aE b a E E +=+=ξξη)( ①当0=a 时,b b E =)(,即常数的数学期望就是这个常数本身. ②当1=a 时,b E b E +=+ξξ)(,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和.③当0=b 时,ξξaE a E =)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.⑵单点分布:c c E =⨯=1ξ其分布列为:c P ==)1(ξ.⑶两点分布:p p q E =⨯+⨯=10ξ,其分布列为:(p + q = 1) ⑷二项分布:∑=⋅-⋅=-np q p k n k n k E k n k )!(!!ξ 其分布列为ξ~),(p n B .(P 为发生ξ的概率)⑸几何分布:pE 1=ξ 其分布列为ξ~),(p k q .(P 为发生ξ的概率)3.方差、标准差的定义:当已知随机变量ξ的分布列为),2,1()(Λ===k p x P k k ξ时,则称ΛΛ+-++-+-=n n p E x pE x p E x D 2222121)()()(ξξξξ为ξ的方差.显然0≥ξD ,故σξξσξ.D =为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.ξD 越小,稳定性越高,波动越小............... 4.方差的性质.⑴随机变量b a +=ξη的方差ξξηD a b a D D 2)()(=+=.(a 、b 均为常数) ⑵单点分布:=ξD 其分布列为p P ==)1(ξ⑶两点分布:pq D =ξ 其分布列为:(+ q = 1)⑷二项分布:npq D =ξ ⑸几何分布:2p q D =ξ5. 期望与方差的关系.⑴如果ξE 和ηE 都存在,则ηξηξE E E ±=±)(⑵设ξ和η是互相独立的两个随机变量,则ηξηξηξξηD D D E E E +=+⋅=)(,)( ⑶期望与方差的转化:22)(ξξξE E D -= ⑷)()()(ξξξξE E E E E -=-(因为ξE 为一常数)0=-=ξξE E .三、正态分布.(基本不列入考试范围)1.密度曲线与密度函数:对于连续型随机变量ξ,位于x 轴上方,ξ落在任一区间),[b a 内的概率等于它与x 轴.直线a x =与直线b x =所围成的曲边梯形的面积图像的函数)(x f 是必然事件,故密度曲线与x 轴所夹部分面积等于1.2. ⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:222)(21)(σμσπ--=x ex f . (σμ,,R x ∈为常数,且0φσ),称ξ服从参数为σμ,的正态分布,用ξ~),(2σμN 表示.)(x f 的表达式可简记为),(2σμN ,它的密度曲线简称为正态曲线.⑵正态分布的期望与方差:若ξ~),(2σμN ,则ξ的期望与方差分别为:2,σξμξ==D E .⑶正态曲线的性质.①曲线在x 轴上方,与x 轴不相交. ②曲线关于直线μ=x 对称.③当μ=x 时曲线处于最高点,当x 向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线.④当x <μ时,曲线上升;当x >μ时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x 轴为渐近线,向x 轴无限的靠近. ⑤当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”.表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.3. ⑴标准正态分布:如果随机变量ξ的概率函数为)(21)(22+∞-∞=-ππx ex x πϕ,则称ξ服从标准正态分布. 即ξ~)1,0(N 有)()(x P x ≤=ξϕ,)(1)(x x --=ϕϕ求出,而P (a <ξ≤b )的计算则是)()()(a b b a P ϕϕξ-=≤π.注意:当标准正态分布的)(x Φ的X 取0时,有5.0)(=Φx 当)(x Φ的X 取大于0的数时,有5.0)(φx Φ.比如5.00793.0)5.0(π=-Φσμ则σμ-5.0S 阴=0.5S a =0.5+S如图.⑵正态分布与标准正态分布间的关系:若ξ~),(2σμN 则ξ的分布函数通常用)(x F 表示,且有)σμx (F(x)x)P(ξ-==≤ϕ.4.⑴“3σ”原则.假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正态分布),(2σμN .②确定一次试验中的取值a是否落入范围)3,3(σμσμ+-.③做出判断:如果)3,3(σμσμ+-∈a ,接受统计假设. 如果)3,3(σμσμ+-∉a ,由于这是小概率事件,就拒绝统计假设.⑵“3σ”原则的应用:若随机变量ξ服从正态分布),(2σμN 则 ξ落在)3,3(σμσμ+-内的概率为99.7% 亦即落在)3,3(σμσμ+-之外的概率为0.3%,此为小概率事件,如果此事件发生了,就说明此种产品不合格(即ξ不服从正态分布).。
高中数学知识点总结:概率与统计
高中数学知识点总结:概率与统计【】到了高三总复习的时候发现有许多的数学知识点还没有理解,而这些知识点往往就是必考的知识点,欢迎同学们来到精品的高三数学知识点频道参考高中数学知识点总结,祝愿大家都能有个好成绩!概率与统计(文)命题趋势预测:高考对概率与统计内容的考查,往往以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向。
概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,高考概率统计应用题多数省份出现在解答题前三题的位置,可见概率统计在高考中属于中档题。
在今年的高考中,可能涉及等可能事件,互斥事件,对立事件,独立事件的概率的求法,对于这部分,我们还应当重视与传统内容的有机结合。
概率与统计(理)命题趋势预测:我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。
特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。
知道“是这样”,就是讲不出“为什么”。
根本原因还是无“米”下“锅”。
于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。
所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。
要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学概率与统计知识点概率与统计是高中数学的重要内容之一,既是实际生活中数学应用的重要工具,也是学习高等数学的基础。
本文将从概率与统计的基本概念、概率计算、概率分布以及统计推断等方面进行介绍。
一、概率与统计的基本概念
概率是指事件发生的可能性大小,通常用一个介于0和1之间的数表示。
而统计则是通过对具体数据的收集、整理和分析,得出关于总体的特征和规律性的推断。
二、概率计算
1. 事件发生的概率计算:事件的概率等于该事件发生的次数除以总次数。
例如,掷一枚硬币正面朝上的概率为1/2。
2. 互斥事件的概率计算:互斥事件是指两个事件不能同时发生的情况。
对于互斥事件A和B,它们同时都不发生的概率等于各自不发生的概率相乘。
3. 独立事件的概率计算:独立事件是指两个事件的发生互不影响的情况。
对于独立事件A和B,它们同时发生的概率等于各自发生的概率相乘。
三、概率分布
1. 离散型随机变量的概率分布:离散型随机变量是指取某些特定值的概率可以被确定的随机变量。
它的概率分布可以用概率质量函数来表示。
2. 连续型随机变量的概率分布:连续型随机变量是指在某个区间内取值的概率可以被确定的随机变量。
它的概率分布可以用概率密度函数来表示。
3. 常见的概率分布:常见的概率分布有均匀分布、正态分布、指数分布等。
这些概率分布在实际问题中具有广泛的应用。
四、统计推断
统计推断是通过对样本数据的观察和分析,对总体参数进行推测和判断的方法。
常见的统计推断有点估计和区间估计。
1. 点估计:点估计是通过样本数据得到总体参数的估计值。
常见的点估计方法有最大似然估计和矩估计等。
2. 区间估计:区间估计是通过样本数据得到总体参数的估计区间。
常见的区间估计方法有置信区间和预测区间等。
总结:高三数学概率与统计是一个涵盖广泛的内容,包括概率与统计的基本概念、概率计算、概率分布以及统计推断等。
掌握这些知识点,不仅对于高考数学的考试有帮助,更为重要的是能够在实际生活中应用数学的思维方式解决问题。
因此,学好高三数学概率与统计知识,对于提高数学能力和解决实际问题具有重要意义。