10.分离函数解决导数零点不可求问题

合集下载

导数中两种零点问题解决方法

导数中两种零点问题解决方法

导数中两种零点问题解决方法导数中的零点问题是指函数在其中一点的导数为零。

解决导数零点问题的方法有两种:一种是解析法,一种是数值法。

一、解析法解析法是指使用数学知识和方法,通过分析函数的性质来求解导数的零点。

解析法包括以下几种常见的方法:1.1.方程法方程法是根据导数的定义,将函数的导数表达式设置为零,得到一个方程,从而求解出导数的零点。

具体步骤如下:1.将函数的导数表达式设置为零,得到一个方程。

2.解方程,求出方程的根。

3.将根带入原函数,计算出在根处的函数值。

1.2.倒数法倒数法是指使用导数的倒数来求解导数的零点。

具体步骤如下:1.对函数进行求导,并求出导数的表达式。

2.求导数的倒数,得到一个新的函数。

3.使用方程法求解导数的倒数的零点。

4.将零点带入原函数,计算出在零点处的函数值。

1.3.函数性质法函数性质法是指通过分析函数的图像和性质来求解导数的零点。

具体步骤如下:1.根据函数的图像和性质,确定导数的零点的位置。

2.使用方程法求解导数的零点,得到具体的数值。

3.将零点带入原函数,计算出在零点处的函数值。

二、数值法数值法是指使用数值计算的方法来求解导数的零点。

数值法包括以下几种常见的方法:2.1.二分法二分法是一种迭代求根的方法,通过函数在区间内取值的正负性来确定区间,并通过不断缩小区间的范围来求解导数的零点。

具体步骤如下:1.根据函数的图像和性质,选择一个初值区间,并确定函数在区间内的正负性。

2.通过计算区间的中点,并确定中点的函数值的正负性,来缩小区间。

3.不断迭代上述步骤,直到区间的宽度满足要求,得到导数的零点的近似值。

2.2.切线法切线法是使用切线近似原曲线的方法,通过迭代求解切线与横轴交点的坐标,来求解导数的零点。

1.根据函数的图像和性质,选取一个初始点,并求出该点处的导数值。

2.过初始点作函数图像的切线,并求出切线方程。

3.求出切线与横轴的交点的坐标,并将该点作为新的初始点。

4.重复上述步骤,直到满足迭代终止条件,得到导数的零点的近似值。

导函数隐零点问题的8种解决策略教师版

导函数隐零点问题的8种解决策略教师版

隐零点问题的8种解决策略我们知道导函数的零点在很多时候是无法直接求解出来的,我们称之为“隐零点”(即能确定其存在,但又无法用显性的代数式进行表达),基本解决思路是:形式上虚设,运算上代换,数值上估算,策略上等价转化,方法上参变分离,技巧上反客为主 一、直接观察如果导函数存在零点,但令导函数为零后,出现超越方程,直接求解比较困难,此时可先用特殊值试探出方程的一个根,再通过二次求导研究其单调性,并证明其是唯一的。

一般的,当导数式含有x ln 时,可试根1,e 或e1等,当导数式含有xe 时可试根0或1 例1.(2013北京卷)求证:1ln -≤x xx证法1:令xx x x g ln 1)(--=,则22'ln 1)(x x x x g +-=,令x x x h ln 1)(2+-=, 则012)('>+=xx x h ,所以)(x h 在),0(+∞单调递增,又0)1(=h ,故当10<<x 时,0)(<x h 0)('<⇒x g ,)(x g 递减,当1>x 时,0)(>x h 0)('>⇒x g ,)(x g 递增,所以0)1()(=≥g x g ,即1ln 0ln 1-≤⇒≥--x xxx x x 证法2:(对数单身狗)即证x x x -≤2ln ,令x x x x f ln )(2--=,则)0()1)(12(112)('>-+=--=x xx x x x x f ,所以当)1,0(∈x 时,0)('<x f ,)(x f 递减 当),1(+∞∈x 时,0)('>x f ,)(x f 递增,所以0)1()(=≥f x f ,即0ln 2≥--x x x所以1ln -≤x xx例2.已知0ln )1(≥--a x x 恒成立,求a 的取值范围解:由题意x x a ln )1(-≤恒成立,令x x x f ln )1()(-=,则xx x x x f 1ln )('-+=观察知0)1('=f ,当10<<x 时,0)('<x f ,1>x 时,0)('>x f所以)(x f 在)1,0(内单调减,在),1(+∞单调增,所以0)1()(min ==f x f ,0≤∴a 二、虚设零点当导函数存在零点,但零点式子非常繁琐或无法求解时,可考虑虚设零点0x ,再对0)(0'=x f 进行合理的变形与代换,将超越式化为普通式,从而达到化简)(0x f 的目的例3.设函数)0()1ln(1)(>++=x x x x f ,若1)(+>x kx f 在),0(+∞内恒成立,求正整数k 的最大值解:由题意得xx x k ]1)1)[ln(1(+++<在),0(+∞内恒成立令)0(]1)1)[ln(1()(>+++=x x x x x g ,则2')1ln(1)(x x x x g +--=, 令)0)(1ln(1)(>+--=x x x x h ,则01)('>+=x x x h ,所以)(x h 在),0(+∞上递增又03ln 1)2(<-=h ,04ln 2)3(>-=h ,所以存在唯一的)3,2(0∈x 使得0)(0=x h ,即)1ln(100+-=x x ,所以当),0(0x x ∈时0)(<x h 0)('<⇒x g )(x g ⇒在),0(0x 上递减,当),(0+∞∈x x 时0)(>x h 0)('>⇒x g )(x g ⇒在)(0∞+,x 上递增, 所以)4,3(1]1)1)[ln(1()()(00000min ∈+=+++==x x x x x g x g ,故3≤k ,k 的最大值为3例4.已知)2ln()(+-=x e x f x,求证:0)(>x f 恒成立 证明:21)('+-=x e x f x,显然)('x f 在),2(+∞-上递增,又011)1('<-=-e f ,021)0('>=f 所以存在唯一的)0,1(0-∈x 使得0)(0'=x f ,即2100+=x ex )2ln(00+-=⇒x x 所以当),2(0x x -∈时0)('<x f ,)(x f 递减,当),(0+∞∈x x 时0)('>x f ,)(x f 递增,所以02)1(21)2ln()()(0200000min 0>++=++=+-==x x x x x e x f x f x ,所以0)(>x f 恒成立例5.(2015年全国卷)设x a e x f xln )(2-=,求证:当0>a 时aa a x f 2ln2)(+≥ 证明:xa e x f x-=2'2)(,当0>a 时,显然)('x f 在),0(+∞上递增, 又012)(2'>-=aea f ,+→0x 时-∞→)('x f ,所以)('x f 存在唯一零点0x ,即0002ln 2ln )2ln(220x a x a x x a e x -==⇒=所以当00x x <<时,0)('<x f ,)(x f 递减,当0x x >时,0)('>x f ,)(x f 递增,所以)22(ln 2ln )()(00020min 0x a a x a x a ex f x f x --=-==aa a a a ax x a 2ln 22ln 2200+≥++= 例6.(2018广州一测)设1ln )(++=x ax x f ,若对任意的0>x ,xxe x f 2)(≤恒成立,求a 的范围解:对任意的0>x ,xxe x f 2)(≤恒成立xx e a x1ln 2+-≤⇔在),0(+∞上恒成立 令xx e x g x1ln )(2+-=,则222'ln 2)(x x e x x g x +=,令x ex x h xln 2)(22+=,则01)(4)(22'>++=xe x x x h x ⇒)(x h 在),0(+∞上递增 又082ln 16)41(<-=e h ,02)1(2>=e h ,所以)(x h 存在唯一零点)1,41(0∈x ,所以当00x x <<时0)(0)('<⇒<x g x h ,当0x x >时0)(0)('>⇒>x g x h ,所以)(x g 在),0(0x 递减,在)(0∞+,x 递增,0020min 1ln )()(0x x e x g x g x +-==∴ 由00002202200ln )2ln()ln ln(22ln 0ln 2)(00x x x x x x e x ex x h x x ---=⇒-=⇒=+= )ln ()ln ln(2)2ln(0000x x x x -+-=+⇒,设x x x F +=ln )(,则)ln ()2(00x F x F -=,又易知)(x F 在),0(+∞上递增,020020012ln ln 20x x x ex x x =-=⇒-=∴ 21ln )()(0020min 0=+-==∴x x e x g x g x ,所以2≤a 例7.(2017年全国2卷)已知函数x x x x x f ln )(2--=,且0)(≥x f ,求证:)(x f 存在唯一的极大值点0x ,且2022)(--<<x f e证明:x x x f ln 22)('--=,设x x x h ln 22)(--=,则由21012)('>⇒>-=x x x h )(x h ∴在]21,0(上单调递减, ),21[+∞上单调递增,又0)1(,012ln )21(=<-=h h ,+→0x 时+∞→)(x h ,)(x h ∴在)21,0(上存在唯一零点0x 即0000ln 220ln 22x x x x =-⇒=--,当),0(0x x ∈时0)(>x h 0)('>⇒x f ,当)1,(0x x ∈时0)(<x h 0)('<⇒x f ,当),1(+∞∈x 时0)(>x h 0)('>⇒x f ,所以)(x f 为],0(0x 上递增,]1,[0x 上递减,),1[+∞递增,所以)(x f 极大值为)1()22(ln )(0000020000200x x x x x x x x x x x f -=---=--=,而)1,0(0∈x ,220002)21()(-=-+<∴x x x f ,又10-≠e x 且)1,0(1∈-e ,210)()(--=>∴e e f x f 综上2022)(--<<x f e例8.设2)(--=x e x f x,若0>x 时,01)()('>++-x x f k x ,求整数k 的最大值 解:(分离参数)1)('-=xe xf ,01)1)((1)()('>++--=++-x e k x x x f k x x等价于1111)1(-++=-++-<x x x e x x e x e x k 对0>x 恒成立令)0(11)(>-++=x e x x x g x ,则2')1()2()(---=x x x e x e e x g , 令)0(2)(>--=x x e x h x ,则01)('>-=xe x h ,所以)(x h 在),0(+∞上递增, 又03)1(<-=e h ,04)2(2>-=e h ,所以)(x h 存在唯一零点)2,1(0∈x ,则200+=x ex当),0(0x x ∈时0)(<x h 0)('<⇒x g ,当),(0+∞∈x x 时0)(>x h 0)('>⇒x g ,)(x g ∴在),0(0x 上单调递减,在),(0+∞x 上单调递增所以)3,2(111)()(0000min 0∈+=-++==x e x x x g x g x , 又min )(x g k <,所以整数k 的最大值为2 三、分类讨论例9.设21)(ax x e x f x---=,若当0>x 时0)(≥x f ,求a 的取值范围解:(分类讨论)ax e x f x21)('--=, 令)0(21)(>--=x ax e x g x,则a e x g x2)('-=因为1≥xe (1)当12≤a 即21≤a 时,0)('>x g 恒成立,)(x g ∴在),0(+∞上递增,0)0()(=>∴g x g ,即0)('>x f ,)(x f ∴在),0(+∞上递增,0)0()(=>∴f x f 成立(2)当12>a 即21>a 时,由a x x g 2ln 00)('<<⇒<,)(x g ∴在]2ln ,0(a 递减,),2[ln +∞a 递增所以当)2ln ,0(a x ∈时,0)0()(=≤g x g ,即0)('≤x f )(x f ⇒]2ln ,0(a 在递减,0)0()(=<∴f x f 与题意不符综合(1)(2)知a 的取值范围为21≤a 解法2:(切线放缩)先证明1+≥x e x ,当且仅当0=x 时等号成立,事实上,设1)(--=x e x g x ,则1)('-=x e x g ,令0)('>x g ,解得0>x ,令0)('<x g ,解得0<x ,所以)(x g 在]0,(-∞递减,),0[+∞上递增,所以0)0()(=≥g x g ,即1+≥x e x ,当且仅当0=x 时等号成立x a ax x ax e x f x )21(221)('-=-≥--=①当021≥-a 即21≤a 时,0)('≥x f 对),0(+∞∈x 恒成立,所以)(x f 在),0(+∞上递增,所以0)0()(=>f x f 成立,符合题意②当021<-a 即21>a 时,由当0≠x 时,1+>x e x 得)0(1≠-≥-x x e x ,从而xx x xxxea e e ea e ax e x f )2)(1()1(2121)('--=---<--=- 所以当)2ln ,0(a x ∈时,0)('<x f ,)(x f 递减,此时0)0()(=<f x f ,不合题意综上可知实数a 的取值范围为21≤a 例10.(2012 山东卷)已知xex x x x x f )ln 1)(1()(--+=,求证:21)(-+<e x f 证明:易知当1≥x ,则210)(-+<≤e x f所以当10<<x 时,0ln 1>--x x x ,由1+>x e x110<+<⇒xe x ,x x x x f ln 1)(--<∴ 令)10(ln 1)(<<--=x x x x x g ,则由2'00ln 2)(-<<⇒>--=ex x x g)(x g ∴在],0(2-e 单调递增,在),[2+∞-e 单调递减,所以221)()(--+=≤e e g x g从而21)(-+<e x f 综上知21)(-+<e x f例11.(2013广东卷)设2)1()(kx e x x f x --=,当]1,21(∈k 时,求)(x f 在],0[k 上最大值 解:由0)2()('>-=k e x x f xk x 2ln >⇒,考虑k 2ln 是否属于区间],0[k 令kk k g -=2ln )(,则01)('≤-=k k k g ,)(k g ∴在]1,21(∈k 递减,021)21()(<-=<g k g ,故当]1,21(∈k ]1,21(∈k 时,k k <<2ln 0)(x f ∴在]2ln ,0[k 递减,在],2[ln k k 递增,下面比较)0(f 与)(k f 的大小令)121(1)1()0()()(3≤<+--=-=k k e k f k f k h k,则)3()('k e k k h k -= 设)121(3)(≤<-=k k e k m k,则03)('<-=k e k m )(k m ⇒在]1,21(∈k 递减又049)21(>-=e m ,03)1(<-=e m ,所以)(k m 存在唯一零点)1,21(0∈k所以当),21(0k k ∈时0)(>k m 0)(>⇒k h ,当]1,(0k k ∈时0)(<k m 0)(<⇒k h ,所以)(k h 在),21(0k 递增,在]1,(0k 上递减,又0849)21(>-=eh ,0)1(=h , 0)(≥∴k h ,即)0()(f k f ≥,所以)(x f 在],0[k 上最大值为3)1()(k e k k f k --=例12.设2)(--=x e x f x,若0>x 时,01)()('>++-x x f k x ,求整数k 的最大值 解:(分类讨论)1)('-=xe xf ,设)0(1)1)((1)()()('>++--=++-=x x e k x x x f k x x g x则x e k x x g )1()('+-=(1)当01≤-k 即1≤k 时,0)('>x g 恒成立)(x g ⇒在),0(+∞递增,0)0()(=>g x g 符合题意(2)当01>-k 即1>k 时,由0)('>x g 1->⇒k x ,所以)(x g 在]1,0(-k 上递减,),1[+∞-k 上递增,1min 1)1()(--+=-=k e k k g x g令)1(1)(1>-+=-k ek k h k ,则01)(1'<-=-k e k h 恒成立)(k h ⇒在),1(+∞上递减又03)2(>-=e h ,04)3(2<-=e h ,故整数k 的最大值为2四、拆分函数当原函数比较复杂时,可适当将函数拆分成几个简单函数,便于处理例13.(2014 全国卷)求证:12ln )(1>+=-xe x e xf x x证明:exe x x e ex x ex x e x f x x x2ln 2ln 1)2(ln 1)(->⇔>+⇔>+⇔>-- 设x x x g ln )(=则由e x x x g 101ln )('>⇒>+=,)(x g 在]1,0(e 上递减,),1[+∞e上递增e e g x g 1)1()(min -==⇒设e xe x h x2)(-=-,则由10)1()('<⇒>-=-x x e x h x ,)(x h 在]1,0(上递增,),1[+∞递减eh x h 1)1()(max -==所以max min )()(x h x g ≥,又)(x g 和)(x h 不能同时取得最值,所以1)()()(>⇒>x f x h x g 例14.(2016山东卷)设212)ln ()(x x x x a x f -+-=,求证:当1=a 时23)()('+>x f x f 对任意的]2,1[∈x 恒成立证明:当1=a 时212ln )(x x x x x f -+-=,32'2211)(xx x x f +--= 23)()('+>x f x f 25312ln 23221122ln 23322+-->-⇔++-->-+-⇔x x x x x x x x x x x x令])2,1[(ln )(∈-=x x x x g ,])2,1[(25312)(23∈+--=x x x x x h1011)('>⇒>-=x xx g ,所以)(x g 在]2,1[上递增,1)1()(min ==g x g由0623)(42'>-+=x x x x h 3119->⇒x ,所以)(x h 在]3119,1[-上递减,]2,3119[-上递增,又21)1(=h ,1)2(=h ,1)2()(max ==∴h x h 故max min )()(x h x g ≥,又 )(x g 和)(x h 不能同时取得最值,故)()(x h x g >成立 所以23)()('+>x f x f 对任意的]2,1[∈x 恒成立 五、等价转化例15.(2013四川高考)设a x e x f x -+=)(,若曲线x y sin =上存在点),(00y x 使得00))((y y f f =,求a 的取值范围解:]1,1[sin 00-∈=x y ,且0)(≥x f ,00))((y y f f =,所以]1,0[0∈y ,又)(x f 递增,若00)(y y f >,则000)())((y y f y f f >>与00))((y y f f =矛盾 若00)(y y f <,则000)())((y y f y f f <<与00))((y y f f =矛盾所以00)(y y f =,即x x f =)(在]1,0[上有解,即2x x e a x a x e x x -+=⇔=-+ 令])1,0[()(2∈-+=x x x e x g x,则021)('≥-+=x e x g x恒成立,)(x g 在]1,0[上递增 又1)0(=g ,e g =)1(,即)(x g 的值域为],1[e ,],1[e a ∈∴例16.已知函数x x x x f 11ln )(++=,求证:当1>x 时,1ln )(->x xx f 证明:1ln )(->x x x f 即1ln 11ln ->++x x x x x x x x x x x x ln )1(1ln )1(2+>-+-⇔01ln 2<+-⇔xx x 令)1(1ln 2)(>+-=x xx x x g ,则0)1()(22'<--=x x x g 恒成立)(x g ⇒在),1(+∞上递减 0)1()(=<⇒g x g ,即1ln )(->x xx f 六、降次代换例17.已知函数271)(23+++=ax x x x f 有3个零点,求实数a 的取值范围 解:a x x x f ++=23)(2',则310)31(4<⇒>-=∆a a ,设)('x f 的两个零点分别为)(,2121x x x x <,则3,322121a x x x x =-=+,32023121121ax x a x x +-=⇒=++)(x f ∴在],(1x -∞上递增,],[21x x 上递减,),[2+∞x 上递增273192627132)32(271)(11111121311ax a ax a x a x x ax x x x f -+-=+++-+-=+++= 所以)2731926)(2731926()()(2121ax a a x a x f x f -+--+-=2212212)2731()(243)31(2)926(a x x a x x a -++-+-=1250)512(27)31()2731(3243)31(2)32()926(2222-<⇒<+-=-+⋅-+--==a a a a a a a七、巧妙放缩 利用常见的不等式1ln 11-≤≤-x x x ,1+≥x e x ,ex e x ≥,exx 1ln -≥进行放缩 例18.(2018广州一测)设1ln )(++=x ax x f ,若对任意的0>x ,xxe x f 2)(≤恒成立,求a 的范围解:(放缩法)由1+≥t e t得2)1(ln 1ln 2)1(ln )1(ln 1ln ln 222=+-++≥+-=+-=+-+xx x x x x e x x xe x x e x x x x所以2)1ln (min 2=+-≤xx ea x例19.求证:32ln 2))(1(<+---x x e x x证明:由1ln -≤x x 及xe x ≤+1得)2)(1()1()1(2))(1(ln 2))(1(----=-+--≤+-----x x e x x x e x x x e x x x x 324141)23(222<+<+--⋅<---e x e e x x例20.求证:12ln 1>+-xe x e x x证明:由exx 1ln -≥及1+≥x e x得12)1(2ln 11>=+-≥+--x e x e ex e x e x e x x x x x 例21.求证:)22(ln 22+-≥-x x e x e xe x证明:原不等式2121)1(2ln 21)1(2ln 2xx x x e x x x xex x --≥-⇔--≥-⇔-- 由1ln -≤x x 得x ex ≥-1,故21)1(2ln 201x x x x e x --≥≥--得证 例22.求证:当1>x 吋,x x x x ln 91)1(923+>++ 证明:先把3x 放缩下,x x x x x x x x x ln 9)1(ln 991)1(91)1(92223+>+>=++>++ 例23.求证:2ln ≥-x e x证明:由1+≥x e x 及1ln -≤x x 得2ln ≥-x e x例24.求证:2)1(ln 1)1(-+<+-+x x xe e ex x x 证明:原不等式)1()]1(ln 1)[1(22-+<+-+⇔e e x x x x对x e 放缩,由1+≥x e x可知只需证)1()1()]1(ln 1)[1(22-++<+-+e x x x x即证0ln 2)1)(1()1(ln 1222>+++⇔++<+----ex e x x x e x x x故只需证0ln 22>++-ex x x ,令2ln 2)(-++=e x x x x f ,则3'03ln )(->⇒>+=e x x x f)(x f ∴在],0(3-e 上递减,在),[3+∞-e 上递增,故0)()(323>-=≥---e e e f x f ,得证例25.证明:当0>x 肘,22>+-xex x 证明:先把2x 放缩掉,由x x x x x x ln 101222≥-≥-⇒≥+-xex x e x x +>+-⇒ln 2令x e x x f +=ln )(,则由e x xe x xf >⇒>-=01)(2',)(x f 在],0(e 递减,在),[+∞e 递增,所以2)()(=≥e f x f 证毕例26.设0>>a b ,求证:b ab ab a <--<ln ln证明:由基本不等式1ln 11-≤≤-x x x 得1ln 1-<<-aba b b ab ab a b a a a b a b b a a b a b b a b <--<⇒<--<⇒-<-<-⇒ln ln 1ln ln 1ln ln例27.求证:当20<<x 时,6911)1ln(+<-+++x xx x证明:由11)11(2111ln 211)1ln(1ln -++-+<-+++=-+++⇒-≤x x x x x x x x)11(3-+=x ,令)3,1(1∈=+t x ,则只需证0)2()1(5)1(31222<--⇔+-<-t t t t t显然成立,证毕例28.(2004全国2)设x x x g ln )(=,b a <<0,求证:2ln )()2(2)()(0a b ba gb g a g -<+-+< 证明:ba bb b a a a b a b a b b a a b a g b g a g +++=++-+=+-+2ln2ln 2ln )(ln ln )2(2)()( 由x x 11ln -≥0)21()21(2ln 2ln =+-++-≥+++⇒bba b a b a a b a b b b a a a2ln )(2ln )(2ln 2ln 2ln 2ln 22a b b a ba b a b a b b b a a b a b b b a a a b b a b a a -<+-=+++<+++⇒+<+ 例29.求证:2ln 3>-x e x证明:由132)1(32ln 31ln +-=---≥--⇒-≤x e x e x e x x xxx令23)(+-=x e x f x,则由3ln 03)('>⇒>-=x e x f x,)(x f ∴在]3ln ,0(上递减,在),3[ln +∞上递增,所以03ln 34)3(ln )(>-=≥f x f ,所以2ln 3>-x e x11 八、反客为主例30.(2015全国Ⅰ)设)0(ln )(2>-=a x a ex f x ,求证:a a a x f 2ln 2)(+≥ 证明:原不等式等价于02ln 2ln 2≥---a a a x a ex ,转换主元,视a 为主元, 令aa a x a e a g x 2ln 2ln )(2---=,则ex a ex a a g 20)2ln(ln )('>⇒>-= )(a g ∴在]2,0(ex 上递减,在),2[+∞ex 上递增,所以02)2()(2≥-=≥ex e ex g a g x。

第08讲 拓展一:分离变量法解决导数问题 (精讲+精练)(学生版)

第08讲 拓展一:分离变量法解决导数问题 (精讲+精练)(学生版)

第08讲拓展一:分离变量法解决导数问题(精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:恒成立(存在问题)求解参数a范围①完全分离参数法②部分分离参数法高频考点二:已知零点个数求解参数a范围①完全分离参数法②部分分离参数法第四部分:高考真题感悟第五部分:第08讲拓展一:分离变量法解决导数问题(精练)1、分离变量法在处理含参a 的函数(,)f x a 不等式和方程问题时,有时可以将变量分离出来,如将方程(,)0f x a =,转化为()()g x h a =这样就将把研究含参函数(,)f x a 与x 轴的位置关系的问题转化为不含参的函数()g x 与动直线()y h a =的位置关系问题,这种处理方法就叫分离变量法。

(1)优点:分离变量法可以将含参函数中的参数分离出去,避免直接讨论,从而简化运算; (2)解题过程中可能遇到的问题: ①参数无法分离;②参数分离后的函数()y g x =过于复杂;③讨论位置关系时可能用到()y g x =的函数极限,造成说理困难.2、分类:分离参数法有完全分离参数法(全分参)和部分分离参数法(半分参)两种 注意事项:无论哪种分参方法,分参过程中需注意变量的正负对不等号的影响!3、常见题型1:恒成立/存在问题求解参数a 范围核心知识点:将()a x f ,与0的大小关系转化成()x g 和()a h 的大小关系 ①,()()x D h a g x ∀∈≥恒成立⇔max ()()h a g x ≥ ②,()()x D h a g x ∀∈≤恒成立⇔min ()()h a g x ≤ ③,()()x D h a g x ∃∈≥恒成立⇔min ()()h a g x ≥ ④,()()x D h a g x ∃∈≤恒成立⇔max ()()h a g x ≤4、常见题型2:已知零点个数求解参数a 范围核心知识点:将()0,=a x f 转化成()()x g a h =,应用导数方法绘制()x g 函数的大致图象(注意绘制图象时,可能需要用到极限思想,才能精确确定图象的轮廓).1.(2021·江苏·高二单元测试)若函数()1ln f x x a x=+-在区间()1,e 上只有一个零点,则常数a 的取值范围为( ) A .1a ≤B .a e >C .111a e<<+ D .11a e<<2.(2009·福建·高考真题(文))若曲线2()ln f x ax x =+存在垂直于y 轴的切线,则实数a 的取值范围是_________ 3.(2015·浙江金华·高二期中(理))1kx ≤-对[1,)x ∈+∞恒成立,则实数k 的取值范围是:___________.4.(2022·全国·高三专题练习)若存在[]0,1x ∈,使得13713x x m +≥+成立,则实数m 的取值范围是___________. 5.(2022·四川省泸县第四中学高二阶段练习(理))若函数()32133f x x x x a =---有三个不同的零点,则实数a 的取值范围是__________.6.(2021·全国·高三专题练习)已知函数()()ln 1af x x a R x =-∈+.若函数()y f x =在定义域上单调递增,求实数a 的取值范围.高频考点一:恒成立(存在问题)求解参数a 范围①完全分离参数法1.(2022·江西·临川一中高二期末(文))已知不等式ln 0x mx ->只有一个整数解,则m 的取值范围是( ) A .10,ln 22⎛⎫ ⎪⎝⎭B .11ln 2,ln 323⎡⎫⎪⎢⎣⎭C .11ln 2,2e ⎡⎫⎪⎢⎣⎭D .11ln 3,3e ⎡⎫⎪⎢⎣⎭2.(2022·新疆昌吉·高三阶段练习(理))若存在正实数x ,y ,使得等式()()243e ln ln 0x a y x y x +--=成立,其中e 为自然对数的底数,则a 的取值范围为( ) A .210,e ⎛⎤ ⎥⎝⎦B .21,e ⎡⎫+∞⎪⎢⎣⎭C .(),0∞-D .()21,0,e ⎡⎫-∞⋃+∞⎪⎢⎣⎭3.(2022·陕西·西安中学模拟预测(文))已知函数()e ln x f x x x x =--,若不等式()f x a ≥恒成立,则a 的最大值为( ) A .1B .e 1-C .2D .e4.(2022·山东省东明县第一中学高二阶段练习)已知函数()()1ln 0f x ax x a x=+>.(1)当1a =时,()f x 的极小值为______;(2)若()f x ax ≥,在()0,∞+上恒成立,则实数a 的取值范围为______.5.(2022·上海·华师大二附中高二阶段练习)若32223328e 4e e x x x x x a x a a ++<++对x ∈R 恒成立,则a 的取值范围是__________;6.(2022·江苏·金陵中学高二期末)已知函数f (x )=ax -2ln x . (1)讨论f (x )的单调性;(2)设函数g (x )=x -2,若存在31,e x ⎡⎤∈⎣⎦,使得f (x )≤g (x ),求a 的取值范围.7.(2022·广西·宾阳中学高二阶段练习(理))已知函数()()e ,R x f x x a a =+∈. (1)若函数()f x 在区间[3,)-+∞上是增函数,求实数a 的取值范围. (2)若2()e f x ≥在[]0,2x ∈时恒成立,求实数a 的取值范围.8.(2022·陕西榆林·三模(理))已知函数()e 1,()ln x f x a g x x =+=. (1)讨论函数()()()e xxf x xh x g x -=+的单调性; (2)若()()1xf x g x <+,求a 的取值范围.9.(2022·湖南·长郡中学高三阶段练习)已知函数()2ln f x ax x =-,R a ∈. (1)讨论()f x 的单调性; (2)若对任意()0,x ∈+∞,不等式()2ex x xf x -+≥恒成立,求实数a 的取值范围.②部分分离参数法1.(2022·广东·铁一中学高二阶段练习)已知函数()4ln 8f x x kx k =--+,若关于x 的不等式()0f x ≤恒成立,则k 的取值范围为( ) A .[1,)+∞B .[e,)+∞C .[4,)+∞D .)2,e ⎡+∞⎣2.(2022·全国·高三专题练习)已知不等式()21xkx k e x +<+恰有2个整数解,求实数k 的取值范围( )A .23243k e e≤< B .23243k e e<≤ C .324354k e e <≤ D .324354k e e ≤< 3.(2022·河南·新蔡县第一高级中学高二阶段练习(理))设函数()()()3213853f x x x a x a a R =-+---∈,若存在唯一的正整数0x ,使得()00f x <,则实数a 的取值范围是( ) A .11,156⎛⎤ ⎥⎝⎦B .11,154⎛⎤ ⎥⎝⎦C .11,123⎛⎤ ⎥⎝⎦D .11,125⎛⎤ ⎥⎝⎦4.(2022·全国·高三专题练习)函数()()e 13xf x x ax a =-+-,其中1a <,若有且只有一个整数0x ,使得()00f x >,则a 的取值范围是( ) A .23,e 4⎡⎫⎪⎢⎣⎭B .23,e 4⎛⎫ ⎪⎝⎭C .2,1e ⎡⎫⎪⎢⎣⎭D .2,1e ⎛⎫ ⎪⎝⎭5.(2022·全国·高三专题练习)已知函数()()31e x f x a x x =+-,若存在唯一的正整数0x ,使得()00f x <,则实数a的取值范围是( ) A .218,2e 3e ⎡⎫⎪⎢⎣⎭B .436427,5e 4e ⎡⎫⎪⎢⎣⎭C .32278,4e 3e ⎡⎫⎪⎢⎣⎭D .10,2e ⎡⎫⎪⎢⎣⎭6.(2022·全国·高三专题练习)已知函数2()2ln ||28f x x x ax a =-+-,其中0a . (1)当0a =时,求函数()f x 的最值;(2)若存在唯一整数0x ,使得0()0f x ,求实数a 的取值范围.高频考点二:已知零点个数求解参数a 范围①完全分离参数法1.(2022·全国·高二期末)已知函数()2ln ,0,1,0x x x f x x x >⎧=⎨-≤⎩若函数()()=-g x f x k 有三个零点,则( ) A .e 1k -<≤B .11ek -<<C .e 0k -<<D .10ek -<<2.(2022·江苏省苏州实验中学高二阶段练习)已知函数(),12,1x xe x f x x x ⎧<=⎨-≥⎩,若()f x k -有三个不同的零点,则实数k 的取值范围为( ) A .[)1,-+∞B .[)1,0-C .1,0e ⎛⎫- ⎪⎝⎭D .1,e ⎛⎫-+∞ ⎪⎝⎭3.(多选)(2022·重庆·模拟预测)已知函数()e 1xaf x x =--有唯一零点,则实数a 的值可以是( ) A .1-B .12-C .0D .14.(2022·河南·南阳市第二完全学校高级中学高二阶段练习(理))若函数()e ln xy x a x x =+-存在零点,则实数a的取值范围是______.5.(2022·福建·启悟中学高二阶段练习)函数3()3f x x x a =--仅有一个零点,则实数a 的取值范围是_________.6.(2022·四川宜宾·二模(文))已知函数()ln f x a x =- (1)若2a =,求曲线()y f x =在1x =处的切线方程; (2)若函数()f x 在(]0,16上有两个零点,求a 的取值范围.7.(2022·内蒙古包头·一模(文))已知函数32()31f x x ax x =-++. (1)讨论()f x 的单调性;(2)若()f x 有三个零点,求a 的取值范围.(注:3232(2)(1)x x x x --=-+)8.(2022·湖南·长沙一中高三阶段练习)已知函数()21e ,0e 2,0x x x f x x x x ⎧+≤⎪=⎨⎪->⎩,则方程()0f x =的根为________.若函数()()y f f x a =-有三个零点,则实数a 的取值范围是________.②部分分离参数法1.(2022·河南·模拟预测(文))已知函数()()2e 1,0ln 1,0xx f x x x -⎧-<⎪=⎨+≥⎪⎩,若关于x 的方程()0f x kx -=有两个不同的实数根,则k 的取值范围为( ) A .()(),20,1-∞-⋃ B .()(),10,1-∞-⋃ C .()(),00,1-∞⋃D .()(),00,∞-+∞2.(2022·全国·模拟预测(理))已知定义为R 的奇函数()f x 满足:()()ln ,0121,1x x x f x f x x <≤⎧=⎨->⎩,若方程()12f x kx =-在[]1,2-上恰有三个根,则实数k 的取值范围是( )A .1,1ln 24⎡⎫-⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .1e ,122⎛⎤- ⎥⎝⎦D .11ln 2,2⎛⎫- ⎪⎝⎭3.(2021·江苏·高二单元测试)已知函数()y f x =是R 上的奇函数,且当0x >时,()223f x x x =--,若关于x 的方程()f x x a =+恰有四个互不相等的实数根,则实数a 的取值范围是___________. 4.(2022·全国·模拟预测)已知函数()24ex x f x =,若存在1x ,2x ,…,()*n x n ∈N ,使得()()()1212222n nf x f x f x x x x ---==⋅⋅⋅=,则n 的最大值为______. 5.(2022·河南·高二阶段练习(文))已知()2,112e ,1x x f x x x ⎧>⎪=-⎨⎪-⎩若方程()2f x mx =+有一个实数根,则实数m 的取值范围是___________.1.(2021·北京·高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论: ①若0k =,()f x 恰 有2个零点; ②存在负数k ,使得()f x 恰有个1零点; ③存在负数k ,使得()f x 恰有个3零点; ④存在正数k ,使得()f x 恰有个3零点. 其中所有正确结论的序号是_______.2.(2020·全国·高考真题(理))已知函数2()e x f x ax x =+-. (1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.3.(2021·全国·高考真题(理))已知0a >且1a ≠,函数()(0)ax x f x x a=>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.4.(2020·浙江·高考真题)已知12a <≤,函数()e xf x x a =--,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数()y f x =在(0)+∞,上有唯一零点;5.(2020·全国·高考真题(文))已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.一、单选题1.(2022·全国·高三专题练习)已知关于x 的不等式3221e xax x axx +++≥在0,上恒成立,则实数a 的取值范围为( ) A .(],e -∞B .1,e 2⎛⎤-∞- ⎥⎝⎦C .(],e 1-∞-D .(],e 2-∞-2.(2022·全国·高三专题练习)已知函数1()ln ,()12f x xg x x ==+,直线()y t t R =∈与函数(),()f x g x 的图象分别交于点()()1122,,,A x y B x y ,若对任意t R ∈,不等式2121x x a -≥+成立,则实数a 的取值范围为 A .ln 21,4+⎛⎤-∞ ⎥⎝⎦ B .ln 23,4+⎛⎫-∞ ⎪⎝⎭C .ln 2,4⎛⎤-∞ ⎥⎝⎦ D .(,ln21]-∞-3.(2022·福建省龙岩第一中学高二阶段练习)若函数()2x e ax a g x x-+=在[]2,3内单调递增,则实数a 的取值范围是( )A .)3,e ⎡-+∞⎣B .)2,e ⎡-+∞⎣C .()3,e -+∞D .()2,e -+∞4.(2022·全国·高二)若关于x 的不等式22ln 4ax a x x ->--有且只有两个整数解,则实数a 的取值范围是( ) A .(]2ln3,2ln 2-- B .(),2ln 2-∞- C .(],2ln3-∞-D .(),2ln3-∞-5.(2022·全国·高二)若关于x 的方程ln 0x ax -=有且只有2个零点,则a 的取值范围是( ) A .1(,]e-∞B .1(,)e -∞C .1(0,]eD .1(0,)e6.(2022·黑龙江双鸭山·高二期末)函数()1ln()f x x k x=+-有两个不同的零点,则实数k 的取值范围是( )A .ln 2k ≠B .ln2k >C .ln 2k ≥D .0ln 2k <<7.(2022·广东肇庆·模拟预测)已知当,()0x ∈+∞时,函数()e x f x k =的图象与函数2()21xg x x =+的图象有且只有两个交点,则实数k 的取值范围是( ) A .⎛ ⎝⎭B .10,e ⎛⎫⎪⎝⎭C .1,e ⎛⎫+∞ ⎪⎝⎭D .⎫+∞⎪⎪⎝⎭8.(2022·全国·高三专题练习)已知函数()1,0,0x x f x xe x -⎧->⎪=⎨⎪≤⎩且关于x 的方程()0f x ax -=有三个不等实根,则实数a 的取值范围为( )A .(],e -∞-B .(),e -∞-C .(),1-∞-D .(],1-∞- 二、填空题9.(2022·全国·高三专题练习)方程1ln cos 3x x +=在(0,1)上的实数根的个数为___________.10.(2022·河南·高三阶段练习(理))若不等式()()23e 2x x a x -<-在(),2-∞上仅有一个整数解,则a 的取值范围是______.11.(2022·全国·高三专题练习)已知函数()e (31)x f x x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则实数a 的取值范围是____.12.(2022·全国·高三专题练习)已知()|sin(2)6h x m x π=+-+的最小值为0,则正实数m 的值为__. 三、解答题13.(2022·河南·汝州市第一高级中学模拟预测(文))已知函数()()21e x f x x x -=-+⋅. (1)求()f x 的单调区间;(2)若不等式()22f x x x m ≥-++对任意的[)0,x ∈+∞恒成立,求实数m 的取值范围.14.(2022·全国·高三专题练习)若存在x ∈1,e e ⎡⎤⎢⎥⎣⎦,不等式2x ln x +x 2-mx +3≥0成立,求实数m 的取值范围.15.(2022·宁夏银川·一模(文))已知函数()e 3x f x ax =+-在0x =处的切线为2y =-.(1)求实数a 的值及函数()f x 的单调区间;(2)用[]t 表示不超过实数t 的最大整数,如:[]0.80=,[]1.42-=-,若0x >时,()e 2x t x t -<+,求[]t 的最大值.16.(2022·河南·温县第一高级中学高三阶段练习(文))已知()()2x x m f x m R e+=∈. (1)若34m =,求()f x 的极值.(2)若方程()8ln x e f x x ⋅=在[]1,e 上有两个不同的实数根,求实数m 的取值范围.。

破解导函数零点不可求问题的两个“妙招”

破解导函数零点不可求问题的两个“妙招”

丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛有时我们无法根据题意求出导函数的零点,就很难根据导数与函数的单调性之间的关系判断出函数的单调性,这就给我们解题造成了很大的障碍.对于这类导函数的零点不可求问题,我们需通过设而不求、二次求导来求得问题的答案.一、设而不求当导函数有零点却难以求出其值时,可采用设而不求法,先设出零点的坐标,将其看作已知的点代入导函数为0的式子进行运算;然后用该零点将函数的定义域划分为几个子区间,在每个子区间上讨论导函数与0的大小关系,从而判断出函数的单调性,求得函数的单调区间和最值.例1.已知f(x)=x2-x-x ln x,且f(x)≥0.证明f(x)存在唯一的极大值x0,且e-2<f(x0)<2-2.证明:对函数求导f(x)=x2-x-x ln x,可得f′()x=2x-2-ln x,x>0,f″()x=2-1x=2x-1x,因此f′()x在(0,12)上单调递减,在(12,+∞)上单调递增,所以f′()x min=f′()2-1=ln2-1<0.由于f′()1=0,f′()e-2=2e-2>0,所以∃x0∈(e-2,2-1),使得f′()x0=0,即2x0-2-ln x0=0.当x∈(x0,1)时,f′()x<0;当x∈(1,+∞)时,f′()x>0.因此f(x)=x2-x-x ln x在(0,x0)与(1,+∞)上单调递增,在(x0,1)上单调递减.所以f(x)存在唯一的极大值点x0,则ln x0=2x0-2,且f(x0)=x02-x0-x0ln x0=-(x0-12)2+14.由于x0∈(e-2,12),所以f(e-2)<f(x0)<f(12)=14.因为f(e-2)=(e-2)2+e-2>e-2,所以e-2<f(x0)<2-2.根据函数零点存在性定理,可知本题中导函数的零点是存在的,但无法求出,所以假设x0是该函数的零点,即令f′()x0=0,通过代换与化简,得到x0∈(e-2,12).最后利用二次函数的单调性来证明f(x)存在唯一的极大值x0,且e-2<f(x a)<2-2.运用设而不求法解题,不必求出零点的具体坐标或者数值,只需将其看作已知的值进行代换即可.二、二次求导当导函数的零点不可求时,可以尝试运用二次或多次求导的方法,来逐步判断出原函数的单调性,求得原函数的最值.在解题的过程中,有时需对同一个函数进行二次求导,有时则要对不同函数进行多次求导.例2.设函数f(x)=e x,且g(x)=ln x,若对任意x≥0,都有f(x)-f(-x)≥ax成立,求实数a的取值范围.解:令h(x)=f(x)-f(-x)-ax=e x-e-x-ax,则在[0,+∞)上,h(x)≥0.对函数h(x)求导,得h′()x=e x+e-x-a,h″()x=e x-e-x,所以h′()x在[0,+∞)上单调递增,h′()0=2-a.①若a≤2,则h′()x≥0,所以函数h(x)在[0,+∞)上单调递增,所以h(x)≥0,所以f(x)-f(-x)≥ax.②若a>2,则h′()x在[0,+∞)上单调递增,所以h′()x m in≤0,所以在(0,+∞)内必然存在一个值m,使得h′()m=0,这与在[0,+∞)上h(x)≥0相矛盾,故舍去.所以实数a的取值范围为a≤2.我们对原函数进行两次求导,即可根据导函数与函数单调性之间的关系判断出上一级函数的单调性和最值,从而确定原函数的单调性和最值,确定参数a的取值范围.总之,虽然导函数零点问题中的零点不可求得,但是由于零点是存在的,所以我们可以通过设而不求、二次求导,并根据导函数与函数单调性之间的关系判断出函数的单调性,即可快速求得最值,证明不等式,求得参数的取值范围.(作者单位:江苏省响水县清源高级中学)“”陈亚冬38Copyright©博看网. All Rights Reserved.。

导数隐零点问题处理的8大技巧(附30道经典题目)

导数隐零点问题处理的8大技巧(附30道经典题目)

导数隐零点问题处理的8大技巧(附30道经典题目)导数隐零点问题处理的8大技巧如下:1.分类讨论:对于含参数的零点问题,常常需要根据参数的不同取值范围进行分类讨论。

2.构造函数:利用导数研究函数的单调性,进而研究不等式恒成立问题。

3.分离参数:通过分离参数将参数与变量分开,转化为求最值问题。

4.数形结合:利用数形结合思想,将函数图像与x轴的交点问题转化为求函数的最值问题。

5.转化与化归:将复杂问题转化为简单问题,将陌生问题转化为熟悉问题。

6.构造法:通过构造新的函数或方程,将问题转化为已知的问题进行求解。

7.放缩法:通过对不等式进行放缩,将问题转化为易于处理的形式。

8.判别式法:通过引入判别式,将方程问题转化为二次方程的判别式问题。

以下是30道经典题目,以供练习:1.已知函数f(x)=x3−3x2+5,则f(x)的单调递增区间为( )A.(−∞,1)和(2,+∞)B.(−∞,−1)和(1,+∞)C.(−∞,−1)和(2,+∞)D.(−∞,2)和(1,+∞)2.已知函数f(x)=x3−3x2+5,则f(x)在区间[−2,3]上的最大值是____.3.已知函数f(x)=x3+ax2+bx+c在x=1和x=−21时取极值.(1)求a,b的值;(2)求函数极值.4. 已知函数f(x)=x3−3ax2+4,若x∈[0,2]时,f(x)的最大值为417,求实数a的取值范围.5. 已知函数f(x)=ln x−mx+m有唯一的零点,则实数m的取值范围是____.6. 已知函数 f(x) = x^3 - 3ax^2 + 3x + 1,若 x ∈ [0,1] 时,f(x) ≤ f(0) 恒成立,则 m 的取值范围是 _______.7. 已知函数 f(x) = ax^3 + bx^2 - 3x (a、b ∈ Z) 在 x = ±1 和x = ±2 时取极值.(1) 求 f(x) 的解析式;(2) 求 f(x) 的单调区间和极值;8. 已知函数 f(x) = x^3 + ax^2 + bx + c 在 x = ±1 和 x = ±3时取极值.(1) 求 a,b 的值;(2) 求 f(x) 的单调区间和极值.1.已知函数 f(x) = x^3 - 3x^2 + 4 在 [0,3] 上的最大值和最小值分别为 M, N,则 M + N = _______.2.设f(x)=x3−3x2+4,则f(−x)+f(x)的值等于____3.已知函数f(x)=x3−3x2+4,则f(x)在(−3,2)上的最大值是____.4.已知函数f(x)=x3−3x2+4,则f(x)在区间[−1,3]上的最大值是____.5.已知函数f(x)=x3−3ax2+bx+c在x=±1时取极值,且函数y=f(x)图象过原点.(1) 求函数y=f(x)的表达式;(2) 求函数的单调区间和极值;14. 已知函数 f(x) = x^3 - 3ax^2 + bx 在 x = -1 和 x = 3 时取极值.(1) 求 a,b 的值;(2) 求 f(x) 在区间 [-2,4] 上的最大值和最小值.15. 已知函数 f(x) = ax^3 + bx^2 + c 在 x = ±1 和 x = ±2 时取极值.(1) 求 a,b 的值;(2) 若 f(x) 的最大值为 8,求 c 的值.16. 已知函数 f(x) = ax^3 + bx^2 + c 在 x = ±1 和 x = ±√2 时取极值,且 f(-2) = -4.(1) 求 a,b,c 的值;(2) 求 f(x) 在区间 [-3,3] 上的最大值和最小值.17. 已知函数 f(x) = x^3 - 3ax^2 + b (a > 0),若 f(x) 在区间[-1,0] 上是减函数,则 a 的取值范围是 _______.18. 若关于 x 的方程 x^3 - 3ax + a^3 = 0 有实根,则实数 a 的取值范围是 _______.19. 若关于 x 的方程 x^3 - ax^2 + b = 0 有三个不同的实根,则 a,b 应满足的条件是 _______.20. 若关于 x 的方程 x^3 - ax^2 + b = 0 有三个不同的实根,则 b应满足的条件是 _______.1.函数 f(x) = x^3 - 3x^2 + 4 在区间 [-1,3] 上的最大值和最小值分别为 _______.2.已知函数 f(x) = x^3 - 3x^2 + 4,若实数 x,y 满足 f(x) +3x^2 ≤ f(y) + 3y^2,则 x + y 的取值范围是 _______.3.已知函数 f(x) = x^3 - 3x^2 + 4,若实数 x,y 满足 f(x) ≤f(y) + 3,则 x + y 的取值范围是 _______.4.若关于 x 的方程 x^3 - ax^2 + b = 0 有三个不同的实根,则a,b 应满足的条件是 _______.5.已知函数 f(x) = x^3 - 3ax^2 + b 在 x = -1 和 x = 3 时取极值.(1) 求 a,b 的值;(2) 求 f(x) 在区间 [-3,3] 上的最大值和最小值.26. 若关于 x 的方程 x^3 - ax^2 + b = 0 有三个不同的实根,则 b 应满足的条件是 _______.27. 若关于 x 的方程 x^3 - ax^2 + b = 0 有两个不同的实根,则 a,b 应满足的条件是 _______.28. 若关于 x 的方程 x^3 - ax^2 + b = 0 有两个不同的实根,则 a,b 应满足的条件是 _______.29. 若关于 x 的方程 x^3 - ax^2 + b = 0 有两个相等的实根,则 a,b 应满足的条件是 _______.30. 若关于 x 的方程 x^3 - ax^2 + b = 0 有三个相等的实根,则 a,b 应满足的条件是 _______.。

导数零点不可求考点与题型归纳

导数零点不可求考点与题型归纳

导数零点不可求考点与题型归纳导数是研究函数的有力工具,其核心又是由导数值的正、负确定函数的单调性.用导数研究函数f (x )的单调性,往往需要解方程f ′(x )=0. 若该方程不易求解时,如何继续解题呢? 考点一 猜出方程f ′(x )=0的根[典例] 设f (x )=1+ln x x. (1)若函数f (x )在(a ,a +1)上有极值,求实数a 的取值范围;(2)若关于x 的方程f (x )=x 2-2x +k 有实数解,求实数k 的取值范围.[解题观摩] (1)因为f ′(x )=-ln x x 2,当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0,所以函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,故函数f (x )的极大值点为x =1,所以⎩⎪⎨⎪⎧a <1,a +1>1,即0<a <1,故所求实数a 的取值范围是(0,1). (2)方程f (x )=x 2-2x +k 有实数解,即f (x )-x 2+2x =k 有实数解.设g (x )=f (x )-x 2+2x ,则g ′(x )=2(1-x )-ln x x 2. 接下来,需求函数g (x )的单调区间,所以需解不等式g ′(x )≥0及g ′(x )≤0,因而需解方程g ′(x )=0.但此方程不易求解,所以我们可以先猜后解.因为g ′(1)=0,且当0<x <1时,g ′(x )>0,当x >1时,g ′(x )<0,所以函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.所以g (x )max =g (1)=2.当x →0时,g (x )→-∞;当x →+∞时,g (x )→-∞,所以函数g (x )的值域是(-∞,2],所以所求实数k 的取值范围是(-∞,2].[关键点拨]当所求的导函数解析式中出现ln x 时,常猜x =1;当函数解析式中出现e x 时,常猜x =0.考点二 隐零点代换[典例] 设函数f (x )=e 2x -a ln x .(1)讨论f (x )的导函数f ′(x )零点的个数;(2)求证:当a >0时,f (x )≥2a +a ln 2a. [解题观摩] (1)法一:f ′(x )=2e 2x -a x(x >0). 当a ≤0时,f ′(x )>0,f ′(x )没有零点.当a >0时,设u (x )=e 2x ,v (x )=-a x, 因为u (x )=e 2x 在(0,+∞)上单调递增,v (x )=-a x在(0,+∞)上单调递增, 所以f ′(x )在(0,+∞)上单调递增.又因为f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0, 所以当a >0时,f ′(x )存在唯一零点.法二:f ′(x )=2e 2x -a x(x >0). 令方程f ′(x )=0,得a =2x e 2x (x >0).因为函数g (x )=2x (x >0),h (x )=e 2x (x >0)均是函数值为正值的增函数,所以由增函数的定义可证得函数u (x )=2x e 2x (x >0)也是增函数,其值域是(0,+∞). 由此可得,当a ≤0时,f ′(x )无零点;当a >0时,f ′(x )有唯一零点.(2)证明:由(1)可设f ′(x )在(0,+∞)上的唯一零点为x 0.当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0.所以f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,当且仅当x =x 0时,f (x )取得最小值,最小值为f (x 0).因为2e2x 0-a x 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a (当且仅当x 0=12时等号成立). 所以当a >0时,f (x )≥2a +a ln 2a. [关键点拨]本题第(2)问的解题思路是求函数f (x )的最小值,因此需要求f ′(x )=0的根,但是f ′(x )=2e 2x -a x=0的根无法求解.故设出f ′(x )=0的根为x 0,通过证明f (x )在(0,x 0)和(x 0,+∞)上的单调性知f (x )min =f (x 0)=a 2x 0+2ax 0+a ln 2a,进而利用基本不等式证得结论,其解法类似解析几何中的设而不求. 考点三 证——证明方程f ′(x )=0无根[典例] 已知m ∈R ,函数f (x )=mx -m x -2ln x ,g (x )=2e x,若∃x 0∈[1,e],使得f (x 0)>g (x 0)成立,求实数m 的取值范围.[解题观摩] 因为当x =1时,f (x )=0,g (x )=2e ,不存在f (x 0)>g (x 0),所以关于x 的不等式f (x )>g (x )在[1,e]上有解,即关于x 的不等式2e +2x ln x x 2-1<m (1<x ≤e)有解. 设u (x )=2e +2x ln x x 2-1(1<x ≤e), 则u ′(x )=2x 2-4e x -2-(2x 2+2)ln x (x 2-1)2(1<x ≤e),但不易求解方程u ′(x )=0. 可大胆猜测方程u ′(x )=0无解,证明如下:由1<x ≤e ,可得-(2x 2+2)ln x <0,2x 2-4e x -2=2(x -e)2-2e 2-2<0,所以u ′(x )<0,u (x )在(1,e]上是减函数,所以函数u (x )的值域是⎣⎢⎡⎭⎪⎫4e e 2-1,+∞, 故所求实数m 的取值范围是⎝ ⎛⎭⎪⎫4e e 2-1,+∞. [关键点拨]当利用导函数求函数f (x )在区间[a ,b ],[a ,b )或(a ,b ]上的最值时,可首先考虑函数f (x )在该区间上是否具有单调性,若具有单调性,则f (x )在区间的端点处取得最值(此时若求f ′(x )=0的根,则此方程是无解的).第五课时 构造函数利用导数证明不等式,关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的,这时常常需要构造辅助函数来解决.题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,如何恰当构造函数,往往成为解题的关键.考点一 “比较法”构造函数证明不等式当试题中给出简单的基本初等函数,例如f (x )=x 3,g (x )=ln x ,进而证明在某个取值范围内不等式f (x )≥g (x )成立时,可以类比作差法,构造函数h (x )=f (x )-g (x )或φ(x )=g (x )-f (x ),进而证明h (x )min ≥0或φ(x )max ≤0即可,在求最值的过程中,可以利用导数为工具.此外,在能够说明g (x )>0(f (x )>0)的前提下,也可以类比作商法,构造函数h (x )=f (x )g (x )⎝⎛⎭⎫φ(x )=g (x )f (x ),进而证明h (x )min ≥1(φ(x )max ≤1).[典例] 已知函数f (x )=e x -ax (e 为自然对数的底数,a 为常数)的图象在点(0,1)处的切线斜率为-1.(1)求a 的值及函数f (x )的极值;(2)求证:当x >0时,x 2<e x .[解题观摩] (1)由f (x )=e x -ax ,得f ′(x )=e x -a .因为f ′(0)=1-a =-1,所以a =2,所以f (x )=e x -2x ,f ′(x )=e x -2,令f ′(x )=0,得x =ln 2,当x <ln 2时,f ′(x )<0,f (x )单调递减;当x >ln 2时,f ′(x )>0,f (x )单调递增.所以当x =ln 2时,f (x )取得极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-2ln 2,f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x .由(1)得g ′(x )=f (x )≥f (ln 2)>0,故g (x )在R 上单调递增.所以当x >0时,g (x )>g (0)=1>0,即x 2<e x .[关键点拨]在本题第(2)问中,发现“x 2,e x ”具有基本初等函数的基因,故可选择对要证明的“x 2<e x ”构造函数,得到“g (x )=e x -x 2”,并利用(1)的结论求解.考点二 “拆分法”构造函数证明不等式当所要证明的不等式由几个基本初等函数通过相乘以及相加的形式组成时,如果对其直接求导,得到的导函数往往给人一种“扑朔迷离”“不知所措”的感觉.这时可以将原不等式合理拆分为f (x )≤g (x )的形式,进而证明f (x )max ≤g (x )min 即可,此时注意配合使用导数工具.在拆分的过程中,一定要注意合理性的把握,一般以能利用导数进行最值分析为拆分标准.[典例] 已知函数f (x )=eln x -ax (a ∈R).(1)讨论f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0.[解题观摩] (1)f ′(x )=e x-a (x >0), ①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;②若a >0,则当0<x <e a 时,f ′(x )>0,当x >e a时,f ′(x )<0, 故f (x )在⎝⎛⎭⎫0,e a 上单调递增,在⎝⎛⎭⎫e a ,+∞上单调递减. (2)证明:法一:因为x >0,所以只需证f (x )≤e x x-2e , 当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以f (x )max =f (1)=-e.记g (x )=e x x-2e(x >0), 则g ′(x )=(x -1)e xx 2, 所以当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增,所以g (x )min =g (1)=-e.综上,当x >0时,f (x )≤g (x ),即f (x )≤e x x-2e ,即xf (x )-e x +2e x ≤0.法二:要证xf (x )-e x +2e x ≤0,即证e x ln x -e x 2-e x +2e x ≤0,从而等价于ln x -x +2≤e x e x. 设函数g (x )=ln x -x +2,则g ′(x )=1x-1. 所以当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0,故g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而g (x )在(0,+∞)上的最大值为g (1)=1.设函数h (x )=e x e x ,则h ′(x )=e x(x -1)e x 2. 所以当x ∈(0,1)时,h ′(x )<0,当x ∈(1,+∞)时,h ′(x )>0,故h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,从而h (x )在(0,+∞)上的最小值为h (1)=1.综上,当x >0时,g (x )≤h (x ),即xf (x )-e x +2e x ≤0.[关键点拨]对于第(2)问xf (x )-e x +2e x ≤0的证明直接构造函数h (x )=x eln x -ax 2-e x +2e x ,求导后不易分析,故可将不等式合理拆分为f (x )≤e x x -2e 或ln x -x +2≤e x e x,再分别对不等式两边构造函数证明不等式. 考点三 “换元法”构造函数证明不等式若两个变元x 1,x 2之间联系“亲密”,我们可以通过计算、化简,将所证明的不等式整体转化为关于m (x 1,x 2)的表达式(其中m (x 1,x 2)为x 1,x 2组合成的表达式),进而使用换元令m (x 1,x 2)=t ,使所要证明的不等式转化为关于t 的表达式,进而用导数法进行证明,因此,换元的本质是消元.[典例] 已知函数f (x )=ln x x-k 有两个不同的零点x 1,x 2,求证:x 1x 2>e 2. [解题观摩] f (x )=ln x x-k ,设x 1>x 2>0, 由f (x 1)=f (x 2)=0,可得ln x 1-kx 1=0,ln x 2-kx 2=0,两式相加减,得ln x 1+ln x 2=k (x 1+x 2),ln x 1-ln x 2=k (x 1-x 2).要证x 1x 2>e 2,即证ln x 1x 2>2,只需证ln x 1+ln x 2>2,也就是证k (x 1+x 2)>2,即证k >2x 1+x 2. 因为k =ln x 1-ln x 2x 1-x 2,所以只需证ln x 1-ln x 2x 1-x 2>2x 1+x 2,即证ln x 1x 2>2(x 1-x 2)x 1+x 2. 令x 1x 2=t (t >1),则只需证ln t >2(t -1)t +1(t >1). 令h (t )=ln t -2(t -1)t +1(t >1), 则h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0, 故函数h (t )在(1,+∞)上单调递增,所以h (t )>h (1)=0,即ln t >2(t -1)t +1. 所以x 1x 2>e 2.[关键点拨]不妨设x 1>x 2>0,由f (x 1)=f (x 2)=0,可得ln x 1-kx 1=0,ln x 2-kx 2=0,两式相加减,利用分析法将要证明的不等式转化为ln x 1-ln x 2x 1-x 2>2x 1+x 2,再利用换元法,通过求导证明上述不等式成立. 考点四 “转化法”构造函数在关于x 1,x 2的双变元问题中,若无法将所给不等式整体转化为关于m (x 1,x 2)的表达式,则考虑将不等式转化为函数的单调性问题进行处理,进而实现消元的目的.[典例] 设函数f (x )=ln x +m x ,m ∈R ,若对任意b >a >0,f (b )-f (a )b -a<1恒成立,求m 的取值范围.[解题观摩] 对任意的b >a >0,f (b )-f (a )b -a<1等价于f (b )-b <f (a )-a 恒成立.(*) 设h (x )=f (x )-x =ln x +m x-x (x >0), 故(*)等价于h (x )在(0,+∞)上单调递减.由h ′(x )=1x -m x 2-1≤0在(0,+∞)上恒成立,得m ≥-x 2+x =-⎝⎛⎭⎫x -122+14(x >0)恒成立,故m ≥14,当且仅当x =12时等号成立,所以m 的取值范围为⎣⎡⎭⎫14,+∞.。

导数与函数零点问题解题方法归纳

导数与函数零点问题解题方法归纳

导函数零点问题一.方法综述导数是研究函数性质的有力工具,其核心又是由导数值的正、负确定函数的单调性.应用导数研究函数的性质或研究不等式问题时,绕不开研究()f x 的单调性,往往需要解方程()0f x '=.若该方程不易求解时,如何继续解题呢?在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明“三招”妙解导函数零点问题.二.解题策略类型一 察“言”观“色”,“猜”出零点【例1】【2020·福建南平期末】已知函数()()21e x f x x ax =++. (1)讨论()f x 的单调性;(2)若函数()()21e 1x g x x mx =+--在[)1,-+∞有两个零点,求m 的取值范围. 【分析】(1)首先求出函数的导函数因式分解为()()()11e xf x a x x =++'+,再对参数a 分类讨论可得; (2)依题意可得()()21e xg x m x =+'-,当0m 函数在定义域上单调递增,不满足条件;当0m >时,由(1)得()g x '在[)1,-+∞为增函数,因为()01g m '=-,()00g =.再对1m =,1m ,01m <<三种情况讨论可得.【解析】(1)因为()()21x f x x ax e =++,所以()()221e xf x x a x a ⎡⎤=+++⎣⎦'+, 即()()()11e xf x a x x =++'+. 由()0f x '=,得()11x a =-+,21x =-.①当0a =时,()()21e 0x f x x =+',当且仅当1x =-时,等号成立.故()f x 在(),-∞+∞为增函数.②当0a >时,()11a -+<-,由()0f x >′得()1x a <-+或1x >-,由()0f x <′得()11a x -+<<-;所以()f x 在()(),1a -∞-+,()1,-+∞为增函数,在()()1,1a -+-为减函数.③当0a <时,()11a -+>-,由()0f x >′得()1x a >-+或1x <-,由()0f x <′得()11x a -<<-+;所以()f x 在(),1-∞-,()()1,a -++∞为增函数,在()()1,1a --+为减函数.综上,当0a =时,()f x 在为(),-∞+∞增函数;当0a >时,()f x 在()(),1a -∞-+,()1,-+∞为增函数,在()()1,1a -+-为减函数;当0a <时,()f x 在(),1-∞-,()()1,a -++∞为增函数,在()()1,1a --+为减函数.(2)因为()()21e 1x g x x mx =+--,所以()()21e x g x m x =+'-, ①当0m 时,()0g x ',()g x 在[)1,-+∞为增函数,所以()g x 在[)1,-+∞至多一个零点.②当0m >时,由(1)得()g x '在[)1,-+∞为增函数.因为()01g m '=-,()00g =.(ⅰ)当1m =时,()00g '=,0x >时,()0g x '>,10x -<<时,()0g x '<;所以()g x 在[)1,0-为减函数,在[)0,+∞为增函数,()()min 00g x g ==.故()g x 在[)1,-+∞有且只有一个零点.(ⅱ)当1m 时,()00g '<,()()210m g m e m m '=+->,()00,x m ∃∈,使得()00g x '=, 且()g x 在[)01,x -为减函数,在()0,x +∞为增函数.所以()()000g x g <=,又()()()22221e 1110m g m m m m m =+-->+--=, 根据零点存在性定理,()g x 在()0,x m 有且只有一个零点.又()g x 在[)01,x -上有且只有一个零点0.故当1m 时,()g x 在[)1,-+∞有两个零点.(ⅲ)当01m <<时,()01g m -'=-<,()00g '>,()01,0x ∃∈-,使得()00g x '=,且()g x 在[)01,x -为减函数,在()0,x +∞为增函数.因为()g x 在()0,x +∞有且只有一个零点0,若()g x 在[)1,-+∞有两个零点,则()g x 在[)01,x -有且只有一个零点.又()()000g x g <=,所以()10g -即()2110e g m -=+-,所以21e m -, 即当211em -<时()g x 在[)1,-+∞有两个零点. 综上,m 的取值范围为211em -< 【指点迷津】1.由于导函数为超越函数,无法利用解方程的方法,可以在观察方程结构的基础上大胆猜测.一般地,当所求的导函数解析式中出现ln x 时,常猜x =1;当函数解析式中出现e x时,常猜x =0或x =ln x .2.例题解析中灵活应用了分离参数法、构造函数法【举一反三】 【2020·山西吕梁期末】已知函数221()ln ()x f x a x a R x-=-∈. (1)讨论()f x 的单调性;(2)设()sin x g x e x =-,若()()()()2h x g x f x x =-且()y h x =有两个零点,求a 的取值范围. 【解析】(1)()f x 的定义域为(0,)+∞,1()2ln f x x a x x =--, 21()2f x x '=+2221a x ax x x-+-=, 对于2210x ax -+=,28a ∆=-,当[a ∈-时,()0f x '≥,则()f x 在(0,)+∞上是增函数.当(,a ∈-∞-时,对于0x >,有()0f x '>,则()f x 在(0,)+∞上是增函数.当)a ∈+∞时,令()0f x '>,得04a x <<或4a x >,令()0f x '<,得44a a x <<,所以()f x 在,)+∞上是增函数,在(44a a 上是减函数.综上,当(,a ∈-∞时,()f x 在(0,)+∞上是增函数;当)a ∈+∞时,()f x 在(0,)4a -,()4a ++∞上是增函数,在(44a a 上是减函数. (2)由已知可得()cos x g x e x '=-, 因为0x >,所以e 1x >,而c o s 1x ≤,所以cos 0x e x ->,所以()0g x '>,所以()sin xg x e x =-在()0+∞,上单调递增. 所以()()00g x g >=.故()h x 有两个零点,等价于()2y f x x =-=1aInx x--在()0+∞,内有两个零点. 等价于1ln 0a x x--=有两根, 显然1x =不是方程的根, 因此原方程可化为()1ln 01x x x x a-=>≠且, 设()ln x x x φ=,()ln 1x x φ='+,由()0x φ'>解得11x e<<,或1x > 由()0x φ'<解得10x e <<, 故()ln x x x φ=在10e ⎛⎫ ⎪⎝⎭,上单调递减,在()1,1,1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.其图像如下所示:所以()min 11x e eφφ⎛⎫==- ⎪⎝⎭, 所以110e a-<-<, 所以a e >. 类型二 设而不求,巧“借”零点 【例2】【2015高考新课标1,文21】设函数()2ln x f x e a x =-.(I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22lnf x a a a ≥+. 【解析】(I )()f x 的定义域为0+,,2()=20x a f x e x x . 当0a时,()0f x ,()f x 没有零点; 当0a 时,因为2x e 单调递增,a x 单调递增,所以()f x 在0+,单调递增.又()0f a ,当b 满足04a b 且14b 时,(b)0f ,故当0a 时,()f x 存在唯一零点. (II )由(I ),可设()f x 在0+,的唯一零点为0x ,当00x x ,时,()0f x ;当0+x x ,时,()0f x .故()f x 在00x ,单调递减,在0+x ,单调递增,所以当0x x 时,()f x 取得最小值,最小值为0()f x . 由于0202=0x a e x ,所以00022()=2ln 2ln 2a f x ax a a a x a a . 故当0a 时,2()2ln f x a a a. 【指点迷津】本例第(2)问的解题思路是求函数()f x 的最值.因此需要求()0f x '=的根.但是2()=20x af x e x 的根无法求解.故设出()0f x '=的根为0x ,通过证明f (x )在(0,0x )和(0x ,+∞)上的单调性知()min f x =()000222a f x ax aln x a=++,进而利用基本不等式证得结论,其解法类似解析几何中的“设而不求”.【举一反三】 【2020·江西赣州期末】已知函数2()x f x e ax x =--(e 为自然对数的底数)在点(1,(1))f 的切线方程为(3)y e x b =-+.(1)求实数,a b 的值;(2)若关于x 的不等式4()5f x m >+对于任意(0,)x ∈+∞恒成立,求整数m 的最大值. 【解析】(1)令2()x f x e ax x =--,则()21x f x e ax '=--,得:(1)e 1f a =--,(1)e 21f a '=--,由题得:(1)e 21e 31(1)e 1e 31f a a f a b b ⎧=--=-=⎧⇒⎨⎨=--=-+=⎩'⎩(2)根据题意,要证不等式4()5f x m >+对于任意恒成立,即证(0,)x ∈+∞时,4()5f x -的最小值大于m , 令244()()()2155x x g x f x e x x g x e x '=-=---⇒=--, 记()()21()2x xh x g x e x h x e ''==--⇒=-,当(0,ln 2)x ∈时,()0h x '<;当x (ln 2,)∈+∞时,()0h x '>,故()h x 即()g x '在(0,ln 2)上单调递减,在(ln 2,)+∞上单调递增, 又(0)0g '=,(ln 2)12ln 20g '=-<,且(1)30g e '=-<,323402g e ⎛⎫'=-> ⎪⎝⎭, 故存在唯一031,2x ⎛⎫∈ ⎪⎝⎭,使()00g x '=, 故当()00,x x ∈时,0g x ;当()0,x x ∈+∞时,()0g x '>;故()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以()02min 0004()5x g x g x e x x ==--- 一方面:()014(1)5g x g e <=- 另一方面:由()00g x '=,即00210x e x --=,得()022*********x g x e x x x x =---=-++ 由031,2x ⎛⎫∈ ⎪⎝⎭得:()0111205g x -<<,进而()011140205g x e -<<-<, 所以1120m <- ,又因为m 是整数,所以1m -,即max 1m =-. 类型三 二次构造(求导),避免求根 【例3】【2020重庆巴蜀中学月考】已知函数()()21ln 12f x x a x =+-.(1)当1a =-时,求()f x 的单调增区间;(2)若4a >,且()f x 在()0,1上有唯一的零点0x ,求证:210e x e --<<.【分析】(1)求出()'f x ,令()'0f x ≥,解不等式可得单调递增区间;(2)通过求()f x 的导函数,可得()f x 在()0,1上有两个极值点,设为1x ,2x ,又由()f x 在()0,1上有唯一的零点0x 可得0110,2x x ⎛⎫=∈ ⎪⎝⎭,所以有()()()200020001ln 10210f x x a x g x ax ax ⎧=+-=⎪⎨⎪=-+=⎩,消去a ,可得0002ln 10x x x -+=,记()00002ln 1t x x x x =-+,010,2x ⎛⎫∈ ⎪⎝⎭,研究其单调性,利用零点存在性定理可得结果.【解析】(1)由已知()f x 的定义域为0x >,当1a =-时,()()21ln 12f x x x =--, 则()()2111'x x x xf x x -++=--=, 令()'0f x ≥且0x >,则102x +<≤, 故()f x在10,2⎛ ⎝⎦上单调递增;(2)由()()21ln 12f x x a x =+-, 有()()2111'ax f x ax a x x x-+=+-=,记()21g x ax ax =-+,由4a >,有()()001011110242110a g g a a g >⎧⎪=>⎪⎪⎪⎛⎫=-+<⎨ ⎪⎝⎭⎪⎪=>⎪⎪⎩, 即()f x 在()0,1上有两个极值点,设为1x ,2x ,不妨设12x x <,且1x ,2x 是210ax ax -+=的两个根, 则121012x x <<<<, 又()f x 在()0,1上有唯一的零点0x ,且当0x +→时,()f x →-∞,当1x =时,()10f =, 所以得0110,2x x ⎛⎫=∈ ⎪⎝⎭, 所以()()()200020001ln 10210f x x a x g x ax ax ⎧=+-=⎪⎨⎪=-+=⎩,两式结合消去a ,得0001ln 02x x x --=, 即0002ln 10x x x -+=,记()00002ln 1t x x x x =-+,010,2x ⎛⎫∈ ⎪⎝⎭, 有()00'2ln 1t x x =+,其在10,2⎛⎫ ⎪⎝⎭上单调递增,所以()001'2ln 12ln 11ln 402t x x =+<+=-< 则()00'2ln 10t x x =+<在10,2⎛⎫⎪⎝⎭上恒成立, 即()0t x 在10,2⎛⎫ ⎪⎝⎭上单调递减,又222212*********e t e e e e e t e e e ⎧-⎛⎫=--+=< ⎪⎪⎝⎭⎪⎨-⎛⎫⎪=-=> ⎪⎪⎝⎭⎩, 由零点存在定理,210ex e --<<. 【指点迷津】当导函数的零点不易求时,可以通过进一步构造函数,求其导数,即通过“二次求导”,避免解方程而使问题得解.如上面例题,从题目形式来看,是极其常规的一道导数考题,第(3)问要求参数b 的范围问题,实际上是求g (x )=x (ln x +x -x 2)极值问题,问题是g ′(x )=ln x +1+2x -3x 2=0这个方程求解不易,这时我们可以尝试对h (x )=g ′(x )再一次求导并解决问题.所以当导数值等于0这个方程求解有困难,考虑用二次求导尝试不失为一种妙法.这种方法适用于研究函数的单调性、确定极(最)值及其相关参数范围、证明不等式等.【举一反三】【2020·云南昆明一中期末】已知函数2()(1)x x f x eax e =-+⋅,且()0f x . (1)求a ;(2)证明:()f x 存在唯一极大值点0x ,且()0316f x <. 【解析】(1)因为()()ee 10x xf x ax =--≥,且e 0x >,所以e 10x ax --≥, 构造函数()e 1x u x ax =--,则()'e xu x a =-,又()00u =, 若0a ≤,则()'0u x >,则()u x 在R 上单调递增,则当0x <时,()0u x <矛盾,舍去;若01a <<,则ln 0a <,则当ln 0a x <<时,'()0u x >,则()u x 在(ln ,0)a 上单调递增,则()()ln 00u a u <=矛盾,舍去;若1a >,则ln 0a >,则当0ln x a <<时,'()0u x <,则()u x 在(0,ln )a 上单调递减,则()()ln 00u a u <=矛盾,舍去;若1a =,则当0x <时,'()0u x <,当0x >时,'()0u x >,则()u x 在(,0)-∞上单调递减,在(0,)+∞上单调递增,故()()00u x u ≥=,则()()e 0xf x u x =⋅≥,满足题意;综上所述,1a =.(2)证明:由(1)可知()()2e 1e x xf x x =-+⋅,则()()'e2e 2xxf x x =--,构造函数()2e 2xg x x =--,则()'2e 1xg x =-,又()'g x 在R 上单调递增,且()'ln20g -=,故当ln2x <-时,)'(0g x <,当ln 2x >-时,'()0g x >, 则()g x 在(,ln 2)-∞-上单调递减,在(ln 2,)-+∞上单调递增,又()00g =,()2220e g -=>,又33233332223214e 16e 022e 2e 8e 2e g --⎛⎫-=-==< ⎪⎝⎭+, 结合零点存在性定理知,在区间3(2,)2--存在唯一实数0x ,使得()00g x =, 当0x x <时,()'0f x >,当00x x <<时,()'0f x <,当0x >时,()'0f x >, 故()f x 在()0,x -∞单调递增,在()0,0x 单调递减,在()0,∞+单调递增,故()f x 存在唯一极大值点0x ,因为()0002e 20xg x x =--=,所以00e 12xx =+, 故()()()()0022200000011e 1e 11112244x x x x f x x x x ⎛⎫⎛⎫=-+=+-++=-+ ⎪ ⎪⎝⎭⎝⎭,因为0322x -<<-,所以()201133144216f x ⎛⎫<--+< ⎪⎝⎭.三.强化训练1.【2020·安徽合肥二中月考】已知函数() 01ln 0x x e x f x xe x x x -⎧-≤=⎨--->⎩,,,则函数()()()()F x f f x ef x =-的零点个数为( )(e 是自然对数的底数) A .6 B .5C .4D .3【答案】B【解析】0x ≤时,()xf x e -=-是增函数,(0)1f =-,0x >时,()1ln x f x xe x x =---,11()(1)1(1)()xx f x x e x e x x'=+--=+-,显然10x +>, 由1xe x=,作出xy e =和1(0)y x x=>的图象,如图,x y e =是增函数,1y x =在0x >是减函数它们有一个交点,设交点横坐标为0x ,易得0011x e x =>,001x <<, 在00x x <<时,1xe x <,()0f x '<,0x x >时,1xe x>,()0f x '>, 所以()f x 在0(0,)x 上递减,在0(,)x +∞上递增,0()f x 是()f x 的极小值,也是在0x >时的最小值.001x e x =,001x x e =,0001ln ln x x x ==-,即00ln 0x x +=,00000()1ln 0x f x x e x x =---=, 0x →时,()f x →+∞,x →+∞时,()f x →+∞.作出()f x 的大致图象,作直线y ex =,如图,0x >时y ex =与()f x 的图象有两个交点,即()0f x ex -=有两个解12,t t ,120,0t t >>.0x <时,()x f x e -=-,()x f x e '-=,由11()xf x e e -'==得1x =-,而1x =-时,(1)y e e =⨯-=-,(1)f e -=-,所以直线y ex =与()x f x e -=-在(1,)e --处相切.即0x ≤时方程()0f x ex -=有一个解e -.()(())()0F x f f x ef x =-=,令()t f x =,则()()0F x f t et =-=,由上讨论知方程()0f t et -=有三个解:12,,e t t -(120,0t t >>)而()f x e =-有一个解,1()f x t =和2()f x t =都有两个解,所以()0F x =有5个解, 即函数()F x 有5个零点.故选B . 2.【2020江苏盐城期中】已知函数,若函数存在三个单调区间,则实数的取值范围是__________. 【答案】【解析】函数,若函数存在三个单调区间即0有两个不等实根,即有两个不等实根,转化为y=a 与y=的图像有两个不同的交点令,即x=,即y=在(0,)上单调递减,在(,+∞)上单调递增。

导数中的零点问题

导数中的零点问题

导数中的零点问题1.已知函数 .(Ⅰ)若曲线在点处的切线与直线垂直,求实数的取值;(Ⅱ)求函数的单调区间;(Ⅲ)记 . 当时,函数在区间上有两个零点,求实数的取值范围.2.已知函数(Ⅰ)若的图像与直线相切,求(Ⅱ)若且函数的零点为,设函数试讨论函数的零点个数. (为自然常数)3.已知函数 .(1)若时,讨论函数的单调性;(2)若函数在区间上恰有 2 个零点,求实数的取值范围 .4.已知函数(为自然对数的底数,),在处的切线为.(1)求函数的解析式;(2)在轴上是否存在一点,使得过点可以作的三条切钱若存在,请求出横坐标为整数的点坐标;若不存在,请说明理由.5.已知函数f x x22lnx a R, a 0 . a( 1)讨论函数 f x 的单调性;( 2)若函数f x 有最小值,记为g a ,关于a的方程g a a21 m 有三9a个不同的实数根,求实数m 的取值范围.6.已知函数(Ⅰ)求函数f x x 2aa R , e 为自然对数的底数).x(ef x 的极值;(Ⅱ)当 a 1 时,若直线l : y kx 2 与曲线y f x 没有公共点,求k 的最大值.7.已知函数(为自然对数的底数).(1)求曲线在点处的切线方程;(2)当时 , 不等式恒成立 , 求实数的取值范围;(3)设,当函数有且只有一个零点时, 求实数的取值范围 .8.已知函数 .(1)若函数有两个零点,求实数的取值范围;(2)若函数有两个极值点,试判断函数的零点个数.9.已知函数 .(Ⅰ)讨论的单调性;(Ⅱ)是否存在实数,使得有三个相异零点若存在,求出的值;若不存在,说明理由.10.已知函数 .( 1)求函数的单调区间;( 2)记,当时,函数在区间上有两个零点,求实数的取值范围.11.已知函数 .(1)讨论的导函数零点的个数;(2)若函数的最小值为,求的取值范围.12..(1)证明:存在唯一实数,使得直线和曲线相切;(2)若不等式有且只有两个整数解,求的范围.13 .已知函数 f x ax3bx23x a,b R在点1, f 1处的切线方程为y 20 .( 1)求函数 f x 的解析式;( 2)若经过点M 2,m 可以作出曲线y f x 的三条切线,求实数m 的取值范围.14.已知函数f xx22aln x, a R .x( 1)若f x 在 x 2 处取极值,求 f x 在点1, f 1 处的切线方程;( 2)当a 0 时,若 f x 有唯一的零点x0,求x0.注 x 表示不超过x的最大整数,如0.6 0, 2.1 2, 1.52. 参考数据:ln2 0.693,ln3 1.099,ln5 1.609,ln7 1.946.15 .已知函数 f x e x m xln x m 1 x ;(1)若m 1 f x在0,上单调递增;,求证:(2)若g x =f ' x ,试讨论 g x 零点的个数.16.已知函数 f x e ax ?sinx 1 ,,其中 a 0 .(I) 当a 1时,求曲线y f x 在点0,f 0 处的切线方程;( Ⅱ) 证明: f x 在区间0,上恰有 2 个零点.参考答案1.(Ⅰ);(Ⅱ)当时 , 减区间为;当时,增区间为,减区间为; (Ⅲ).【解析】【分析】( 1)先求出函数f ( x )的定义域和导函数 f ′( x ),再由两直线垂直的条件可得 f ′( 1)=﹣ 3,求出 a 的值;( 2)求出 f ′( x ),对 a 讨论,由 f ′( x )> 0 和 f ′( x )< 0 进行求解,即判断出函数的单调区间;( 3)由( 1)和题意求出g ( )的解析式,求出′( x ),由 g ′( x )>0 和 g ′( x )< 0x g进行求解, 即判断出函数的单调区间, 再由条件和函数零点的几何意义列出不等式组,求出b 的范围.【详解】(Ⅰ)定义域, ,,∴.(Ⅱ)当,,单减区间为当时令,单增区间为;令,单减区间为当时,单减区间∴当时 , 减区间为;当时,增区间为,减区间为;(Ⅲ)令,,令,;令,∴是在上唯一的极小值点,也是唯一的最小值点∴∵在上有两个零点∴只须∴.【点睛】本题主要考查了利用导数研究函数的单调性以及几何意义、函数零点等基础知识,注意求出函数的定义域,考查计算能力和分析问题的能力.2.( 1)( 2)有两个不同的零点【解析】分析:(Ⅰ)设切点坐标为,故可以关于的方程组,从该方程组解得.(Ⅱ)因,故为减函数,结合可得的零点.又是分段函数,故分别讨论在上的单调性,结合利用零点存在定理得到有两个不同的零点.详解:(Ⅰ)设切点,所以,故,从而又切点在函数上,所以即,故,解得,.(Ⅱ)若且函数的零点为,因为,,为上的减函数,故.当时,,因为,当时,;当时,,则在上单调递增,上单调递减,则,所以在上单调递减.当时,,所以在区间上单调递增.又,且;又,所以函数在区间上存在一个零点,在区间上存在一个零点.综上,有两个不同的零点.点睛:处理切线问题的核心是设出切点坐标,因为它的横坐标沟通了切线的斜率和函数在该值处的导数.零点问题需要利用导数明确函数的单调性,再结合零点存在定理才能判断函数零点的个数.3.( 1)见解析;( 2)【解析】分析:( 1)求出,分三种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;( 2)分三种情况讨论的范围,分别利用导数研究函数的单调性,结合零点存在定理与函数图象,可筛选出函数在区间上恰有 2 个零点的实数的取值范围.详解:( 1)当时,,此时在单调递增;当时,①当时,,恒成立,,此时在单调递增;②当时,令在和上单调递增;在上单调递减;综上:当时,在单调递增;当时,在和上单调递增;在上单调递减;( 2)当时,由(1)知,在单调递增,,此时在区间上有一个零点,不符;当时,,在单调递增;,此时在区间上有一个零点,不符;当时,要使在内恰有两个零点,必须满足在区间上恰有两个零点时,点睛:导数及其应用通常围绕四个点进行命题.第一个点是围绕导数的几何意义展开,;第二个点是围绕利用导数研究函数的单调性、极值 ( 最值 ) 展开,设计求函数的单调区间、极值、最值,已知单调区间求参数或者参数范围等问题,在考查导数研究函数性质的同时考查分类与整合思想、化归与转化思想等数学思想方法;第三个点是围绕导数研究不等式、方程展开,涉及不等式的证明、不等式的恒成立、讨论方程根等问题,;第四个点是围数性质并把函数性质用来分析不等式和方程等问题的能力.4.( 1)( 2)不存在横坐标为整数的点,过该点可以作的三条切线.【解析】分析:(1) 求出 f ( x)的导数,由切线方程可得切线斜率和切点坐标,可得a=2,即可得到 f ( x)的解析式;(2) 令,设图象上一点,,该处的切线, 又过点则过作 3 条详解:( 1),由题意可知,,即( 2),令,设图象上一点,,该处的切线又过点则①过作 3 条不同的切线,则方程①关于有令,图象与轴有 3 个不同交点3 个不同实根( 1)当,,是单调函数,不可能有 3 个零点(2)当,或时,当时,所以在单调递减,单调递增,单调递减曲线与轴有个交点,应该满足,,当,又,所以无解(3)当,或时,,当时,在单调递减,单调递增,单调递减,应满足,,当,又,无解,综上,不存在横坐标为整数的点,过该点可以作的三条切线.点睛:( 1)函数零点个数(方程根的个数)的判断方法:①结合零点存在性定理,利用函数的单调性、对称性确定函数零点个数;②利用函数图像交点个数判断方程根的个数或函数零点个数.( 2)本题将方程实根个数的问题转化为两函数图象交点的问题解决.5.( 1)当a 0 时, f x 在 0, 上递减,当 a 0 时, f x 在 0, a 上递减,在a , 上递增;(2)1 1ln3 .ln2 ln 3 m33【解析】试题分析:( 1)函数求导得 f ' x 2x 2,分 a 0 和 a 0 两种情况讨论即可;a x2( 2)结合( 1 )中的单调性可得最值g a 1 lna ,即m a ln a ( a 0) ,令2(a 9aF a a ln a 0) ,求导得单调性得值域即可.试题解析:( 1) f ' x2x 2, (x0) ,a x当 a 0 时, f ' x 0 ,知 f x 在 0,上是递减的;当 a时, f ' x 2 xa x ax 在 0, a 上是递减的, 在 a ,ax,知 f上递增的 .( 2)由( 1)知, a 0 , f xmin fa1 ln a ,即 g a1 lna ,方程 g a a2 1 m ,即 m a ln a29a( a 0) ,9a令 Faa lna 2(a0) ,则 F ' a1 1 23a 13a 2a9a 29a 2,9a知 Fa 在0, 1 和 2 ,是递增的,1 , 2是递减的,333 3F a 极大F 11 ln3 ,Fa极小F 21 ln2 ln 3,3 33 3依题意得1ln2ln 3 m1 ln3 .33点睛:已知函数有零点求参数常用的方法和思路:( 1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;( 2)分离参数法:先将参数分离,转化成函数的值域问题解决;( 3)数形结合法:先对解析式变形,在同一个平面直角坐标系中,画出函数的图像,然后数形结合求解 .6.( 1)见解析( 2) k 的最大值为 1.【解析】试题分析: (1)先求导数,再根据 a 的正负讨论导函数符号变化规律,最后根据导函数符号确定极值, ( 2)先将无交点转化为方程1 在 R 上没有实数解,转化为k 1 x1e xxe x 在 R 上 没 有 实 数 解 , 再 利 用 导 数 研 究 g xxe x 的 取 值 范 围 , 即得k 11 , 1 ,即得 k 的取值范围是 1 e,1 ,从中确定 k 的最大值 . k 1ea①当 a 0 时, f x 0 , f x 为, 上的增函数,所以函数 f x 无极值 .②当 a 0 时,令 f x 0 ,得 e x a ,x lna .x ,ln a , f x 0 ; x lna , f x 0.所以 f x 在,ln a 上单调递减,在lna, 上单调递增,故 f x 在x lna 处取得极小值,且极小值为 f lna lna 1 ,无极大值.综上,当 a 0 时,函数 f x 无极小值;当 a 0 , f x 在 x lna 处取得极小值 lna ,无极大值.(Ⅱ)当 a 1 时, f x x 2 1 x. e直线 l : y kx 2 与曲线y f x 没有公共点,等价于关于 x 的方程 kx 2 x 2 1在 R 上没有实数解,即关于x 的方程:e xk 1 x 1x * 在 R 上没有实数解.e可化为1①当 k 1 时,方程* 0 ,在 R 上没有实数解.e x②当 k 1 时,方程* 化为 1 xe x.k 1令 g x xe x,则有 g x 1 x e x令 g x 0 ,得 x 1 ,当 x 变化时,g x 的变化情况如下表:x , 1 -1 1, g x - 0 +g x ↘ 1 ↗e当 x 1 时,g x min 1,同时当 x 趋于+ 时,g x 趋于 + ,e从而 g x 的取值范围为1. [ , )e所以当 11 , 1 时,方程 * 无实数解,k e解得 k 的取值范围是 1 e,1 .综上,得 k 的最大值为 1.7.( 1);(2);( 3)或【解析】分析:( 1)先求切点的坐标,再利用导数求切线的斜率,最后写出切线的方程.(2)先分离参数得到,再求函数的最小值,即得实数a 的取值范围 .(3) 先令,再转化为方程有且只有一个实根,再转化为有且只有一个交点,利用导数和函数的图像分析得到 a 的取值范围. 详解:( 1),所以切线的斜率.又因为,所以切线方程为,所以切线方程为.( 2)由得 .当 x=0 时,上述不等式显然成立,故只需考虑的情况.将变形得令,所以令,解得x> 1;令,解得x< 1.从而在( 0,1 )内单调递减,在(1, 2)内单调递增.所以 , 当 x=1 时,取得最小值e-1 ,从而所求实数的取值范围是.(3)令当时,,函数无零点;当时,,即令,令,则由题可知,当,或时,函数有一个函数零点点睛:第( 3)问的转化是一个关键,由于直接研究函数有且只有一个零点比较困难,所以本题把函数的零点转化为方程有且只有一个实根,再转化为有且只有一个交点,这样问题经过一次又一次的转化,大大提高了解题效率,优化了解题. 所以在解答数学难题时,注意数学转化思想的灵活运用.8.( 1)( 2) 3【解析】试题分析:( 1)第( 1)问,先把问题转化成的图象与的图象有两个交点,再利用导数求出的单调性,通过图像分析得到 a 的取值范围 .(2)第(2)问,先通过函数有两个极值点分析出函数g(x) 的单调性,再通过图像研究得到它的零点个数.试题解析:( 1)令,由题意知的图象与的图象有两个交点..当时,,∴在上单调递增;当时,,∴在上单调递减.∴.又∵时,,∴时, .又∵时, .综上可知,当且仅当时,与的图象有两个交点,即函数有两个零点.( 2)因为函数有两个极值点,由,得有两个不同的根,(设).由( 1)知,,,且,且函数在,上单调递减,在上单调递增,则 .令,则,所以函数在上单调递增,故, . 又,;,,所以函数恰有三个零点.点睛:对于零点问题的处理,一般利用图像法分析解答. 先求出函数的单调性、奇偶性、周期性、端点的取值等情况,再画出函数的图像分析函数的零点的个数. 本题第( 2)问,就是利用这种方法处理的.9.(Ⅰ)见解析 . (Ⅱ)见解析 .【解析】试题分析:( I )求出,分三种情况讨论的范围,分别令求得的范围,可得函数增区一定有且的极大值大于0,极小值小于0,则取得极大值和极小值时或,注意到此时恒有,则必有为极小值,此时极值点满足,即,还需满足,换元后只需证明即可.试题解析:(Ⅰ)由题可知.当,即时,令得,易知在上单调递减,在上单调递增.当时,令得或.当,即时,在,上单调递增,在上单调递减;当时,,在上单调递增;当时,在,上单调递增,在上单调递减.(Ⅱ)不存在.理由如下:假设有三个相异零点.由(Ⅰ)的讨论,一定有且的极大值大于0,极小值小于已知取得极大值和极小值时或,注意到此时恒有,则必有为极小值,此时极值点满足,即,还需满足,又,,故存在使得,即存在使得.令,即存在满足.令,,从而在上单调递增,所以,故不存在满足,与假设矛盾,从而不存在使得有三个相异零点10. (1) 见解析 ;(2) . 0..【解析】试题分析:(1)先求出函数 f (x)的定义域和导函数 f ′( x),对字母 a 分类讨论,由 f ′(x)>0 和 f ′(x)<0 进行求解,即判断出函数的单调区间;(2)由(1)和题意求出 g(x)的解析式,求出 g′(x),由 g′(x)>0 和 g′(x)< 0 进行求解,即判断出函数的单调区间,再由条件和函数零点的几何意义列出不等式组,求出 b 的范围.试题解析:(1)定义域为,,当时,,当时,由得,∴当时,的单调增区间为,无减区间,当时,的减区间为,增区间为.( 2)当时,,.令,得,,在区间上,令,得递增区间为,令,得递减区间为,所以是在上唯一的极小值点,也是最小值点,所以,又因为在上有两个零点,所以只需,,所以,即 .11. (1) 见解析 ;(2) .【解析】试题分析:( 1)先求出,则至少存在一个零点,讨论的范围,利用导数研究函数的单调性,结合单调性与函数图象可得结果;( 2)求出,分五种情况讨论的范围,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间,利用函数的单调性,结合函数图象可排除不合题意的的范围,筛选出符合题意的的范围.试题解析:( 1),令,故在上单调递增,则,因此,当或时,只有一个零点;当或时,有两个零点;(2)当时,,则函数在处取得最小值,当时,则函数在上单调递增,则必存在正数,使得,若,则,函数在与上单调递增,在上单调递减,又,故不符合题意.若,则,函数在上单调递增,又,故不符合题意.若,则,设正数,则,与函数的最小值为矛盾,12.( 1)详见解析;( 2) .【解析】试题分析:(1) 先设切点坐标,根据导数几何意义得切线斜率,根据切点既在切线上也在曲线上,联立方程组可得.再利用导数研究单调性,并根据零点存在定理确定零点唯一性,即得证结论,(2) 先化简不等式为,再分析函数单调性及其值域,结合图形确定讨论 a 的取法,根据整数解个数确定 a 满足条件,解得的范围.试题解析:(1)设切点为,则①,和相切,则②,所以,即.令,所以单增.又因为,所以,存在唯一实数,使得,且.所以只存在唯一实数,使①②成立,即存在唯一实数使得和相切.(2)令,即,所以,令,则,由( 1)可知,在上单减,在单增,且,故当时,,当时,,当时,因为要求整数解,所以在时,,所以有无穷多整数解,舍去;当时,,又,所以两个整数解为 0, 1,即,所以,即,当时,,因为在内大于或等于1,所以无整数解,舍去,综上,.13.( 1)f x x33x ;(2) 6 m 2【解析】试题分析:( 1)求出函数的导函数,然后根据导数的几何意义得到关于a,b 的方程组,解方程组求得a, b 后可得函数的解析式.(2)设出切点x0 , y0 ,求导数后可得 f x0 3x02 3 ,即为切线的斜率,然后根据斜率公式可得 3x02 3 x03 3x0 m,即2x03 6x02 6 m 0.若x0 2函数有三条切线,则函数g x 2x3 6 x2 6 m有三个不同的零点,根据函数的极值可得所求范围.试题解析;( 1)∵f xax3 bx2 3x ,∴ fx 3ax 22bx 3 ,根据题意得 {f 1 a b 3 2a 1f 13a2b 3 ,解得 {b 0,∴函数的解析式为fx x 3 3x .( 2)由( 1)得 f x3x 2 3 .设切点为x 0 , y 0 ,则 y 0 x 03 3x 0 , f x 03x 02 3 ,故切线的斜率为 3x 02 3 ,由题意得 3x 023 x 03 3x 0 m ,x 0 2即 2x 03 6x 02 6 m 0 ,∵过点M2,m m 2 可作曲线 yf x 的三条切线∴方程 2 x 03 6 x 026m 0 有三个不同的实数解,∴函数 g x 2x 3 6x 2 6 m 有三个不同的零点.由于 g x 6x 2 12x 6x x2 ,∴当 x 0 时, g x 0, g x 单调递增,当 0 x 2时, g x 0, g x 单调递减,当 x2 时, g x0, g x 单调递增 .∴当 x 0 时, g x 有极大值,且极大值为 g 0 m 6 ;当 x 2 时, g x 有极小值,且极小值为 g 2 m 2 .∵函数 g x 有 3 个零点,6 m 0 ∴ {m,2 0解得 6m 2 .∴实数 m 的取值范围是6,2 .点睛:利用导数研究方程根的方法( 1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求, 画出函数图象的大体形状, 标明函数极 ( 最 ) 值的位置, 通过数形结合的思想去分析问题,使问题的求解有直观的整体展现.( 2)研究方程根的情况,也可通过分离参数的方法,转化为两函数图象公共点个数的问题处理,解题时仍要利用数形结合求解.14.( 1) 7x y 10 0 ;( 2) 2【解析】试题分析: ( 1)求导,利用对应导函数为 0 求出 a 值,再利用导数的几何意义进行求解;( 2)求导,讨论导函数的符号变化确定函数的单调性和极值,通过极值的符号确定零点的位置,再利用零点存在定理进行求解.试题解析:(1)因为 fx2x 3 ax 2216 2a 2 a 7 ,则x 2,所以 f4 0 ,解得f 1 7 ,即 fx 在点 1, f 1 处的切线方程为 y 37 x 1 ,即 7 x y10 0 ;( 2) f x x22 aln x ,f x2x 3 ax2x 0xx2令g x2x 3 ax 2 ,则 g x 6x 2 a由 a0, gx 0 ,可得 xa6g x 在 0, a上单调递减,在a , 上单调递增66由于 g 02 0 ,故 x0,a时, g x 06又 g 1a 0 ,故 g x 在 1,上有唯一零点,设为x 1 ,从而可知 f x在0, x 1 上单调递减,在 x 1,上单调递增由于 fx 有唯一零点 x 0 ,故 x 1 x 0 , 且 x 0 1又 2lnx 031 0 ......*x 0 3 1令h x 2ln x 031 ,可知h x 在 1, 上单调递增x 0 3 1由于 h 22ln2 10 2 0.7 10 0 , h 32ln3290 ,7 726故方程* 的唯一零点 x 02,3 ,故 x 0215.( 1)见解析( 2)当 m 1时, g x 没有零点; m 1时, g x 有一个零点; m1时, gx 有两个零点 .【解析】试题分析:( 1)m 1时, f x e x 1 xlnx , f ' xe x 1lnx 1 ,要证 f x在 0,+ 上单调递增,只要证:f ' x0 对 x 0 恒成立,只需证明e x 1x (当且仅当 x1 时取等号) . x lnx 1 (当且仅当 x 1时取等号),即可证明 f ' x0 ;( 2)求函数的导数,根据函数极值和导数的关系,分 m 1 m >1, m1讨论,即可判断函数 g x 零点的个数.试题解析:( 1) m 1时, f xe x 1xlnx , f ' x e x 1 lnx 1 ,要证 f x 在 0,+上单调递增,只要证:f ' x0 对 x 0 恒成立,令i x e x 1 x ,则 i ' x e x 1 1 ,当 x 1 时, i ' x 0 ,当 x 1 i ' x 0 ,故 i x 在 ,1 上单调递减,在 1,+上单调递增,时,所以 i x i 10 ,即 e x 1x (当且仅当 x 1 时等号成立),令 j xx 1 lnx x 0 ,则 j ' xx 1x ,当 0x 1时, j ' x 0 ,当 x 1时,j ' x 0 ,故 j x 在( 0, 1)上单调递减,在 1,+上单调递增,所以j xj 1 0 ,即 x lnx 1(当且仅当 x 1 时取等号), f xe x 1lnx 1 x lnx 10 (当且仅当 x 1 时等号成立)f x 在 0,+ 上单调递增 .( 2)由 g xe xmlnx m 有 g ' xe x m1 x0 ,显然 g ' x 是增函数,x令g ' x 00 ,得 e x 0 m1 , e m x 0 e x 0 , mx 0 ln x 0 ,x 0则 x0, x 0 时, g ' x 0 , x x 0 ,时, g ' x0 ,∴ gx 在 0,x 0 上是减函数,在 x 0 ,上是增函数,∴ gx 有极小值,g x 0e xmln x 0 m12ln x 0 x 0 ,x 0①当 m 1时, x 0 1, g x 极小值 =g 10 , g x 有一个零点1;② m1时, 0 x 0 1, g x 0g 1 1 0 1 0,g x 没有零点;③当 m 1时, x 0 1, g x 010 1 0 ,又 g e me emmm m e e mm0 ,又对于函数 y e x x 1 , y ' e x 10 时 x 0 ,∴当 x 0 时, y1 0 1 0 ,即 e xx 1 ,∴g 3m e 2mln3m m2m 1 ln3m mm 1 lnmln3 ,令 tmm 1 lnm ln3 ,则 t ' m11 m 1mm ,∵ m 1,∴ t ' m 0 ,∴ t mt 12 ln3 0 ,∴ g 3m0 ,又 e m1 x 0 , 3m 3x 0 3lnx 0x 0 ,∴ g x 有两个零点,综上, 当 m 1时, g x 没有零点;m 1时, g x 有一个零点; m 1时, g x 有两个零点 .【点睛】 本题题考查导数的综合应用, 利用函数单调性极值和导数之间的关系是解决本题的关键.,对于参数要进行分类讨论,综合性较强,难度较大.16.( Ⅰ) y x 1 ( Ⅱ) 见解析.【解析】试题分析:( Ⅰ)求出 f x 在 x0 的导数即可得切线的斜率, 也就得到在 0, f处切线方程. (Ⅱ)先研究函数 fx 的单调性,其导数为 f ' x e axa sin x cosx ,当x 0,时,利用三角函数的符号可以判断出 f ' x 0 ,当 x, 时,导数有唯 22一的零点 x 0 且为函数的极大值点.结合f0 , f 0 f 0 可以判断 f x 在20,x 0 存在一个零点,在 x 0 , 上存在一个零点,故在 0,上存在两个不同的零点.解析:(Ⅰ)当 a 1 时, f xe x sinx 1,所以f x e x sinx cosx ,故 f ' 01 ,又 f 01 ,故曲线在 0, f 0 的切线方程为 y x 1 .(Ⅱ) f 'xe ax asinx cosx .当 x0, 时,因为 a 0,sin x 0,cosx 0 ,故 f ' x 0 ,所以 f x 在 0,是单22调增函数;当 x, 时, f ' xae ax cosx 1 tanx ,令 tanx1 0, x, ,此方程2aa2有唯一解 x x 0 .当 x, x 0 时, f ' x 0 , f x 在, x 0 上是单调增函数; 22当 xx 0 ,时,f ' x 0 , f x 在 x 0 ,上是单调减函数;因为 fx 的图像是不间断的, 所以 f x 在0,x 0上是单调增函数, 在 x 0 ,上是单调减a,f 0f1 0 , 而 x 0函 数 .又 f2e 21 02 , 故f x 0f0 ,根据零点存在定理和 f x 的单调性可知 f x 在 0,x 0存在一个零2点,在x 0 ,上存在一个零点,故f x 在 0,上存在两个不同的零点.点睛:导数背景下函数的零点个数的讨论不仅要考虑函数的极值的符号, 还要结合零点存在定理去判断.一般地,我们在一个单调区间中要找到这样的a, b ,使得 f a f b0 .。

导函数的零点不可求怎么办

导函数的零点不可求怎么办

(作者单位:福建宁化第一中学)导函数的零点不可求怎么办?◎张运能管理科学在导数大题的求解或证明中,很多时候需要求解函数或者导函数的零点,学生对于处理函数零点可求时可能较为熟练,但在面对函数的零点不可求或零点不存在情形等问题时,就手足无措,无从下手了。

我们是否就是"束手无策"呢?显然不是!对于这一类问题的求解,可从以下三方面入手解决。

一、猜根:通过观察方程的结构特征,猜出方程f′(x )=0的根对于有关x 与ln x 的组合函数为背景的试题,要求学生理解导数公式和导数的运算法则等基础知识,准确的求出函数的导数,当所求的导函数解析式中出现ln x 时,常猜x=1;当函数解析式中出现e x时,常猜x=0,然后代入未知数x 的值进行检验,看看满足方程f′(x )=0吗?例题1设(1)若函数f (x )在(a,a+1)上有极值,求实数a 的取值范围;(2)若关于x 的方程f (x )=x 2-2x+k有实数解,求实数k 的取值范围.分析:(1)因为,,当0<x<1时,f′(x )>0;当x>1时,f′(x )<0,所以函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,故函数f (x )的极大值点为x=1,所以即0<a<1,故所求实数a 的取值范围是(0,1).(2)由已知可得,方程f (x )=x 2-2x+k 有实数根,即f (x )-x 2+2x=k 有实数根.设g (x )=f (x )-x 2+2x,则接下来,需求函数g (x )的单调区间,所以需解不等式g′(x )≥0及g′(x )≤0,因而需解方程g′(x )=0。

但此方程不易求解,所以我们可以先猜后解.因为g′(1)=0,且当0<x<1时,g′(x )>0,当x>1时,g′(x )<0,所以函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减所以g (x )max=g (1)=3/2。

当x→0时,g (x )→-∞;当x→+∞时,g (x )→-∞,所以函数g (x )的值域是(-∞,3/2),所以所求实数k 的取值范围是(-∞,3/2)。

导数零点不可求

导数零点不可求

导数零点不可求导数是研究函数的有力工具,其核心又是由导数值的正、负确定函数的单调性.用导数研究函数f (x )的单调性,往往需要解方程f ′(x )=0. 若该方程不易求解时,如何继续解题呢?考点一 猜出方程f ′(x )=0的根[典例] 设f (x )=1+ln x x .(1)若函数f (x )在(a ,a +1)上有极值,求实数a 的取值范围;(2)若关于x 的方程f (x )=x 2-2x +k 有实数解,求实数k 的取值范围.[解题观摩] (1)因为f ′(x )=-ln x x 2,当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0,所以函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,故函数f (x )的极大值点为x =1,所以⎩⎪⎨⎪⎧a <1,a +1>1,即0<a <1,故所求实数a 的取值范围是(0,1).(2)方程f (x )=x 2-2x +k 有实数解,即f (x )-x 2+2x =k 有实数解.设g (x )=f (x )-x 2+2x ,则g ′(x )=2(1-x )-ln x x 2.接下来,需求函数g (x )的单调区间,所以需解不等式g ′(x )≥0及g ′(x )≤0,因而需解方程g ′(x )=0.但此方程不易求解,所以我们可以先猜后解.因为g ′(1)=0,且当0<x <1时,g ′(x )>0,当x >1时,g ′(x )<0,所以函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.所以g (x )max =g (1)=2.当x →0时,g (x )→-∞;当x →+∞时,g (x )→-∞,所以函数g(x)的值域是(-∞,2],所以所求实数k的取值范围是(-∞,2].[关键点拨]当所求的导函数解析式中出现ln x时,常猜x=1;当函数解析式中出现e x 时,常猜x=0.考点二隐零点代换[典例]设函数f(x)=e2x-a ln x.(1)讨论f(x)的导函数f′(x)零点的个数;(2)求证:当a>0时,f(x)≥2a+a ln 2 a.[解题观摩](1)法一:f′(x)=2e2x-ax(x>0).当a≤0时,f′(x)>0,f′(x)没有零点.当a>0时,设u(x)=e2x,v(x)=-ax,因为u(x)=e2x在(0,+∞)上单调递增,v(x)=-ax在(0,+∞)上单调递增,所以f′(x)在(0,+∞)上单调递增.又因为f′(a)>0,当b满足0<b<a4且b<14时,f′(b)<0,所以当a>0时,f′(x)存在唯一零点.法二:f′(x)=2e2x-ax(x>0).令方程f′(x)=0,得a=2x e2x(x>0).因为函数g(x)=2x(x>0),h(x)=e2x(x>0)均是函数值为正值的增函数,所以由增函数的定义可证得函数u(x)=2x e2x(x>0)也是增函数,其值域是(0,+∞).由此可得,当a≤0时,f′(x)无零点;当a>0时,f′(x)有唯一零点.(2)证明:由(1)可设f′(x)在(0,+∞)上的唯一零点为x0.当x∈(0,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0.所以f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,当且仅当x=x0时,f(x)取得最小值,最小值为f(x0).因为2e2x0-ax0=0,所以f(x0)=a2x0+2ax0+a ln2a≥2a+a ln2a(当且仅当x0=12时等号成立).所以当a>0时,f(x)≥2a+a ln2a.[关键点拨]本题第(2)问的解题思路是求函数f(x)的最小值,因此需要求f′(x)=0的根,但是f′(x)=2e2x-ax=0的根无法求解.故设出f′(x)=0的根为x0,通过证明f(x)在(0,x0)和(x0,+∞)上的单调性知f(x)min=f(x0)=a2x0+2ax0+a ln2a,进而利用基本不等式证得结论,其解法类似解析几何中的设而不求.考点三证——证明方程f′(x)=0无根[典例]已知m∈R,函数f(x)=mx-mx-2ln x,g(x)=2ex,若∃x0∈[1,e],使得f(x0)>g(x0)成立,求实数m的取值范围.[解题观摩]因为当x=1时,f(x)=0,g(x)=2e,不存在f(x0)>g(x0),所以关于x的不等式f(x)>g(x)在[1,e]上有解,即关于x的不等式2e+2x ln xx2-1<m(1<x≤e)有解.设u(x)=2e+2x ln xx2-1(1<x≤e),。

导数与函数零点问题解题方法归纳

导数与函数零点问题解题方法归纳

导数与函数零点问题解题方法归纳导函数零点问题一、方法综述导数是研究函数性质的有力工具,其核心是由导数值的正负确定函数的单调性。

应用导数研究函数的性质或研究不等式问题时,绕不开研究$f(x)$的单调性,往往需要解方程$f'(x)=0$。

若该方程不易求解时,如何继续解题呢?在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明“三招”妙解导函数零点问题。

二、解题策略类型一:察“言”观“色”,“猜”出零点例1】【2020·福建南平期末】已知函数$f(x)=x+ax+\frac{1}{e^{2x}}$1)讨论$f(x)$的单调性;2)若函数$g(x)=x+\frac{1}{e^{-mx}-1}$在$[-1,+\infty)$有两个零点,求$m$的取值范围。

分析】1)首先求出函数的导函数因式分解为$f'(x)=(x+a+1)(x+1)e^{-2x}$,再对参数$a$分类讨论可得:①当$a=0$时,$f'(x)=(x+1)e^{-2x}$,当且仅当$x=-1$时,等号成立。

故$f(x)$在$(-\infty,+\infty)$为增函数。

②当$a>0$时,$-10$得$x-1$,由$f'(x)<0$得$-a-1<x<-1$;所以$f(x)$在$(-\infty,-a-1)$,$(-1,+\infty)$为增函数,在$-a-1,-1$为减函数。

③当$aa+1$,由$f'(x)>0$得$x>-a-1$或$x<-1$,由$f'(x)<0$得$-1<x<-a-1$;所以$f(x)$在$(-\infty,-1)$,$-a-1,+\infty$为增函数,在$-1,-a-1$为减函数。

综上,当$a=0$时,$f(x)$在$(-\infty,+\infty)$为增函数;当$a>0$时,$f(x)$在$(-\infty,-a-1)$,$(-1,+\infty)$为增函数,在$-a-1,-1$为减函数;当$a<0$时,$f(x)$在$(-\infty,-1)$,$-a-1,+\infty$为增函数,在$-1,-a-1$为减函数。

2023届高考数学导数满分通关:单变量恒成立之参变分离后导函数零点不可求型

2023届高考数学导数满分通关:单变量恒成立之参变分离后导函数零点不可求型

专题29 单变量恒成立之参变分离后导函数零点不可求型【方法总结】单变量恒成立之参变分离法参变分离法是将不等式变形成一个一端是f (a ),另一端是变量表达式g (x )的不等式后,若f (a )≥g (x )在x ∈D 上恒成立,则f (a )≥g (x )max ;若f (a )≤g (x )在x ∈D 上恒成立,则f (a )≤g (x )min .特别地,经常将不等式变形成一个一端是参数a ,另一端是变量表达式g (x )的不等式后,若a ≥g (x )在x ∈D 上恒成立,则a ≥g (x )max ;若a ≤g (x )在x ∈D 上恒成立,则a ≤g (x )min .利用分离参数法来确定不等式f (x ,a )≥0(x ∈D ,a 为实参数)恒成立问题中参数取值范围的基本步骤:(1)将参数与变量分离,化为f 1(a )≥f 2(x )或f 1(a )≤f 2(x )的形式.(2)求f 2(x )在x ∈D 时的最大值或最小值.(3)解不等式f 1(a )≥f 2(x )max 或f 1(a )≤f 2(x )min ,得到a 的取值范围.【例题选讲】[例1] 已知函数f (x )=ax e x -ln x +b 在x =1处的切线方程为y =(2e -1)x -e .(1)求a ,b 的值;(2)若f (x )≥mx 恒成立,求实数m 的取值范围.解析 (1)f ′(x )=a e x +ax e x -1x, ∵函数f (x )=ax e x -ln x +b 在x =1处的切线方程为y =(2e -1)x -e ,∴⎩⎪⎨⎪⎧f (1)=a e +b =e -1,f ′(1)=2a e -1=2e -1,∴a =1,b =-1. (2)由f (x )≥mx 得,x e x-ln x -1≥mx (x >0),即m ≤x e x -ln x -1x , 令φ(x )=x e x -ln x -1x ,则φ′(x )=x 2e x +ln x x 2, 令h (x )=x 2e x +ln x ,易知h (x )在(0,+∞)上单调递增,又h ⎝⎛⎭⎫1e =1e 2e 1e -1<e 2e 2-1=0,h (1)=e>0, 故h (x )在⎝⎛⎭⎫1e ,1上存在零点x 0,即h (x 0)=x 20e x 0+ln x 0=0,即x 0e x 0=-ln x 0x 0=⎝⎛⎭⎫ln 1x 0·e ln 1x 0 , 由于y =x e x 在(0,+∞)上单调递增,故x 0=ln 1x 0=-ln x 0,即e x 0=1x 0, 且φ(x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,∴φ(x )min =φ(x 0)=1+x 0-1x 0=1,∴m ≤1. [例2] 已知函数f (x )=x ln x +ax (a ∈R ).(1)若函数f (x )在区间[e 2,+∞)上为增函数,求a 的取值范围;(2)若对任意x ∈(1,+∞),f (x )>k (x -1)+ax -x 恒成立,求正整数k 的值.解析:(1)由f (x )=x ln x +ax ,得f ′(x )=ln x +a +1,∵函数f (x )在区间[e 2,+∞)上为增函数, ∴当x ∈[e 2,+∞)时,f ′(x )≥0,即ln x +a +1≥0在区间[e 2,+∞)上恒成立,∴a ≥-1-ln x . 又当x ∈[e 2,+∞) 时,ln x ∈[2,+∞),∴-1-ln x ∈(-∞,-3].∴a ≥-3.(2)若对任意x ∈(1,+∞),f (x )>k (x -1)+ax -x 恒成立,即x ln x +ax >k (x -1)+ax -x 恒成立, 也就是k (x -1)<x ln x +ax -ax +x 恒成立,∵x ∈(1,+∞),∴x -1>0.则问题转化为k <x ln x +x x -1对任意x ∈(1,+∞)恒成立. 设函数h (x )=x ln x +x x -1,则h ′(x )=x -ln x -2(x -1)2,再设m (x )=x -ln x -2,则m ′(x )=1-1x . ∵x ∈(1,+∞),∴m ′(x )>0,则m (x )=x -ln x -2在(1,+∞)上为增函数,∵m (1)=1-ln 1-2=-1,m (2)=2-ln 2-2=-ln 2,m (3)=3-ln 3-2=1-ln 3<0,m (4)=4-ln 4-2=2-ln 4>0.∴∃x 0∈(3,4),使m (x 0)=x 0-ln x 0-2=0,∴当x ∈(1,x 0)时,m (x )<0,h ′(x )<0,∴h (x )=x ln x +x x -1在(1,x 0)上单调递减,当x ∈(x 0,+∞)时,m (x )>0,h ′(x )>0, ∴h (x )=x ln x +x x -1在(x 0,+∞)上单调递增,∴h (x )的最小值为h (x 0)=x 0ln x 0+x 0x 0-1. ∵m (x 0)=x 0-ln x 0-2=0,∴ln x 0+1=x 0-1,代入函数h (x )=x ln x +x x -1得h (x 0)=x 0, ∵x 0∈(3,4),且k <h (x )对任意x ∈(1,+∞)恒成立,∴k <h (x )min =x 0,∴k ≤3,∴k 的值为1,2,3.[例3] 已知函数f (x )=a e x -x e x +x -a (a ∈R ).(1)若a =2,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)若对任意x >0都有f (x )<x +1恒成立,求a 的最大整数值.解析 (1)当a =2时,f (x )=2e x -x e x +x -2,∴f ′(x )=2e x -(e x +x e x )+1=e x -x e x +1,因此f (0)=0,f ′(0)=2.所以曲线y =f (x )在点(0,f (0))处的切线方程为y -0=2(x -0),即y =2x .(2)对任意x >0,恒有f (x )<x +1,即a (e x -1)<x e x +1.因为x >0,所以e x-1>0,所以a <x e x +1e x -1=x +x +1e x -1. 设g (x )=x +x +1e x -1(x >0),则只需a <g (x )min ,则g ′(x )=1-x e x +1(e x -1)2=e x (e x -x -2)(e x -1)2. 令h (x )=e x -x -2(x >0),则h ′(x )=e x -1>0恒成立.所以h (x )在(0,+∞)上单调递增.因为h (1)=e -3<0,h (2)=e 2-4>0.所以存在唯一一个x 0使得h (x 0)=0,且1<x 0<2.所以当x ∈(0,x 0)时,h (x )<0,g ′(x )<0,当x ∈(x 0,+∞)时,h (x )>0,g ′(x )>0.所以g (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以g (x )min =g (x 0)=x 0+x 0+1e x 0-1.由e x 0-x 0-2=0,得e x 0=x 0+2,所以g (x 0)=x 0+x 0+1x 0+2-1=x 0+1∈(2,3). 故a 的最大整数值为2.[例4] 已知函数f (x )=(x +a )ln x -12x 2-ax +a -1. (1)若a =1,求函数f (x )的单调区间;(2)若f (x )>a ln x -12x 2-2x 在(1,+∞)上恒成立,求整数a 的最大值. 解析 (1)若a =1,则f (x )=(x +1)ln x -12x 2-x , 函数f (x )的定义域为(0,+∞),f ′(x )=ln x -x +1x. 设g (x )=ln x -x +1x ,则g ′(x )=1x -1-1x 2=x -x 2-1x 2=-⎝⎛⎭⎫x -122-34x 2<0, 故g (x )在(0,+∞)上单调递减,且g (1)=0,故当x ∈(0,1)时,g (x )>0,即f ′(x )>0,f (x )单调递增;当x ∈(1,+∞)时,g (x )<0,即f ′(x )<0,f (x )单调递减.综上,函数f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)原不等式等价于x ln x -a (x -1)+2x -1>0,即a <x ln x +2x -1x -1在(1,+∞)上恒成立. 设φ(x )=x ln x +2x -1x -1,x >1,则φ′(x )=x -ln x -2(x -1)2. 设h (x )=x -ln x -2(x >1),则h ′(x )=1-1x =x -1x>0,所以h (x )在(1,+∞)上单调递增. 又h (3)=3-ln 3-2=1-ln 3<0,h (4)=4-ln 4-2=2-2ln 2>0,所以根据函数零点存在定理,可知h (x )在(1,+∞)上有唯一零点.设该零点为x 0,则x 0∈(3,4),且h (x 0)=x 0-ln x 0-2=0,即x 0-2=ln x 0.当x ∈(1,x 0)时,h (x )<0,即φ′(x )<0,故φ(x )在(1,x 0)上单调递减;当x ∈(x 0,+∞)时,h (x )>0,即φ′(x )>0,故φ(x )在(x 0,+∞)上单调递增.所以φ(x )min =φ(x 0)=x 0ln x 0+2x 0-1x 0-1=x 0+1. 由题意可知a <x 0+1,由x 0∈(3,4),得4<x 0+1<5,又a ∈Z ,所以整数a 的最大值为4.【对点精练】1.已知函数f (x )=ln x +a x. (1)若函数f (x )的图象在x =1处的切线为y =1,求f (x )的极值;(2)若f (x )≤e x +2x-1恒成立,求实数a 的取值范围. 1.解析 (1)f ′(x )=1-a -ln x x 2,由题意可得f ′(1)=1-a 12=0,解得a =1.此时f (1)=a =1, 所以f (x )=ln x +1x ,f ′(x )=-ln x x 2,由f ′(x )>0可得0<x <1,由f ′(x )<0可得x >1, 所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.所以f (x )的极大值为f (1)=1,不存在极小值.(2)由f (x )≤e x +2x -1,可得ln x +a x ≤e x +2x-1,分离参数a 可得,a ≤x (e x -1)-ln x +2(x >0), 令F (x )=x (e x -1)-ln x +2,x >0,F ′(x )=e x -1+x e x -1x =e x (x +1)-x +1x=(x +1)⎝⎛⎭⎫e x -1x ,x >0. 令h (x )=e x -1x ,x >0,则h ′(x )=e x +1x 2>0,所以h (x )在(0,+∞)上单调递增, 又h ⎝⎛⎭⎫12=e -2<0,h (1)=e -1>0,所以存在唯一的x 0∈⎝⎛⎭⎫12,1,使得h (x 0)=0e x -1x 0=0, 当0<x <x 0时,h (x )<0,即F ′(x )<0,当x >x 0时,h (x )>0,即F ′(x )>0,故F (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增.F (x )min =x 0(0e x -1)-ln x 0+2=x 00e x-x 0-ln x 0+2,由h (x 0)=0e x -1x 0=0,得x 00e x =1,再对x 00e x =1两边取对数可得x 0+ln x 0=0, 所以F (x )min =x 00e x -x 0-ln x 0+2=1-0+2=3,所以a ≤3,即实数a 的取值范围为a ≤3.2.已知函数f (x )=x e x +ln x x(e 为自然对数的底数). (1)求证:函数f (x )有唯一零点;(2)若对任意x ∈(0,+∞),x e x -ln x ≥1+kx 恒成立,求实数k 的取值范围.2.解析 (1) f ′(x )=(x +1)e x +1-ln x x 2,x ∈(0,+∞),易知当0<x <1时,f ′(x )>0, 所以f (x )在区间(0,1)上为增函数,又因为f ⎝⎛⎭⎫1e =e 1e -e 2e <0,f (1)=e >0,所以f ⎝⎛⎭⎫1e f (1)<0,即f (x )在区间(0,1)上恰有一个零点,由题可知f (x )>0在(1,+∞)上恒成立,即在(1,+∞)上无零点,所以f (x )在(0,+∞)上有唯一零点.(2)设f (x )的零点为x 0,即x 0e x 0+ln x 0x 0=0.原不等式可化为x e x -ln x -1x ≥k ,令g (x )=x e x-ln x -1x ,则g ′(x )=x e x +ln x x x , 由(1)可知g (x )在(0,x 0) 上单调递减,在(x 0,+∞)上单调递增,故g (x 0)为g (x )的最小值.下面分析x 0e x 0+ln x 0x 0=0, 设x 0e x 0=t ,则ln x 0x 0=-t ,可得⎩⎪⎨⎪⎧ln x 0=-tx 0,ln x 0+x 0=ln t ,即x 0(1-t )=ln t , 若t >1,等式左负右正不相等;若t <1,等式左正右负不相等,只能t =1.因此g (x 0)=x 0e x 0-ln x 0-1x 0=-ln x 0x 0=1,所以k ≤1. 即实数k 的取值范围为(-∞,1].3.已知函数f (x )=5+ln x ,g (x )=kx x +1(k ∈R ). (1)若函数f (x )的图象在点(1,f (1))处的切线与函数y =g (x )的图象相切,求k 的值;(2)若k ∈N *,且x ∈(1,+∞)时,恒有f (x )>g (x ),求k 的最大值.(参考数据:ln 5≈1.61,ln 6≈1.791 8,ln(2+1)≈0.881 4)3.解析:(1)∵f (x )=5+ln x ,∴f (1)=5,且f ′(x )=1x,从而得到f ′(1)=1. ∴函数f (x )的图象在点(1,f (1))处的切线方程为y -5=x -1,即y =x +4.设直线y =x +4与g (x )=kx x +1(k ∈R )的图象相切于点P (x 0,y 0),从而可得g ′(x 0)=1,g (x 0)=x 0+4, 又g ′(x )=k (x +1)2,∴⎩⎨⎧ k (x 0+1)2=1,kx 0x 0+1=x 0+4,解得⎩⎪⎨⎪⎧ x 0=2,k =9或⎩⎪⎨⎪⎧x 0=-2,k =1.∴k 的值为1或9. (2)由题意知,当x ∈(1,+∞)时,5+ln x >kx 1+x恒成立, 等价于当x ∈(1,+∞)时,k <(x +1)(5+ln x )x恒成立. 设h (x )=(x +1)(5+ln x )x (x >1),则h ′(x )=x -4-ln x x 2(x >1),记p (x )=x -4-ln x (x >1), 则p ′(x )=1-1x =x -1x>0,∴p (x )在x ∈(1,+∞)上单调递增.又p (5)=1-ln 5<0,p (6)=2-ln 6>0, ∴在x ∈(1,+∞)上存在唯一的实数m ,且m ∈(5,6),使得p (m )=m -4-ln m =0,①∴当x ∈(1,m )时,p (x )<0,即h ′(x )<0,则h (x )在x ∈(1,m )上单调递减;当x ∈(m ,+∞)时,p (x )>0,即h ′(x )>0,则h (x )在x ∈(m ,+∞)上单调递增,∴当x ∈(1,+∞)时,h (x )min =h (m )=(m +1)(5+ln m )m,由①可得ln m =m -4,∴h (m )=(m +1)(m +1)m =m +1m+2, 而m ∈(5,6),∴m +1m+2∈⎝⎛⎭⎫365,496,又h (3+22)≈7.9,p (3+22)=22-1-ln(3+22)>0, ∴m ∈(5,3+22),∴h (m )∈⎝⎛⎭⎫365,8.又k ∈N *,∴k 的最大值是7. 4.设函数f (x )=e x -ax -2.(1)求f (x )的单调区间;(2)若a =1,k 为整数,且当x >0时,(x -k )f ′(x )+x +1>0,求k 的最大值.4.解析 (1)f (x )的定义域为(-∞,+∞),f ′(x )=e x -a .若a ≤0,则f ′(x )>0,所以f (x )在(-∞,+∞)上单调递增.若a >0,则当x ∈(-∞,ln a )时,f ′(x )<0;当x ∈(ln a ,+∞)时,f ′(x )>0,所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.(2)由于a =1,所以(x -k )f ′(x )+x +1=(x -k )(e x -1)+x +1.故当x >0时,(x -k )f ′(x )+x +1>0等价于k <x +1e x -1+x (x >0).① 令g (x )=x +1e x -1+x ,则g ′(x )=e x (e x -x -2)(e x -1)2. 由(1)知,函数h (x )=e x -x -2在(0,+∞)上单调递增.而h (1)<0,h (2)>0,所以h (x )在(0,+∞)上存在唯一的零点.故g ′(x )在(0,+∞)上存在唯一的零点.设此零点为α,则α∈(1,2).当x ∈(0,α)时,g ′(x )<0;当x ∈(α,+∞)时,g ′(x )>0.所以g (x )在(0,+∞)上的最小值为g (α).又由g ′(α)=0,可得e α=α+2,所以g (α)=α+1∈(2,3). 由于①式等价于k <g (α),故整数k 的最大值为2.5.设函数f (x )=x ln x -ax 22+a -x (a ∈R ). (1)若函数f (x )有两个不同的极值点,求实数a 的取值范围;(2)若a =2,k ∈N ,g (x )=2-2x -x 2,且当x >2时不等式k (x -2)+g (x )<f (x )恒成立,试求k 的最大值.5.解析 (1)由题意知,函数f (x )的定义域为(0,+∞),f ′(x )=ln x +1-ax -1=ln x -ax ,令f ′(x )=0,可得a =ln x x ,令h (x )=ln x x(x >0), 则由题可知直线y =a 与函数h (x )的图象有两个不同的交点,h ′(x )=1-ln x x 2,令h ′(x )=0,得x =e ,可知h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减, h (x )max =h (e)=1e,当x →0时,h (x )→-∞,当x →+∞时,h (x )→0,故实数a 的取值范围为⎝⎛⎭⎫0,1e . (2)当a =2时,f (x )=x ln x -x 2+2-x ,k (x -2)+g (x )<f (x ),即k (x -2)+2-2x -x 2<x ln x -x 2+2-x ,整理得k (x -2)<x ln x +x ,因为x >2,所以k <x ln x +x x -2.设F (x )=x ln x +x x -2(x >2),则F ′(x )=x -4-2ln x (x -2)2. 令m (x )=x -4-2ln x (x >2),则m ′(x )=1-2x>0,所以m (x )在(2,+∞)上单调递增, m (8)=4-2ln 8<4-2ln e 2=4-4=0,m (10)=6-2ln 10>6-2ln e 3=6-6=0, 所以函数m (x )在(8,10)上有唯一的零点x 0,即x 0-4-2ln x 0=0,故当2<x <x 0时,m (x )<0,即F ′(x )<0,当x >x 0时,F ′(x )>0,所以F (x )min =F (x 0)=x 0ln x 0+x 0x 0-2=x 0⎝⎛⎭⎫1+x 0-42x 0-2=x 02,所以k <x 02, 因为x 0∈(8,10),所以x 02∈(4,5),故k 的最大值为4.。

最全总结之导数零点不可求

最全总结之导数零点不可求

导数零点不可求导数是研究函数的有力工具,其核心又是由导数值的正、负确定函数的单调性.用导数研究函数f (x )的单调性,往往需要解方程f ′(x )=0. 若该方程不易求解时,如何继续解题呢?考点一 猜出方程f ′(x )=0的根[典例] 设f (x )=1+ln xx.(1)若函数f (x )在(a ,a +1)上有极值,求实数a 的取值范围;(2)若关于x 的方程f (x )=x 2-2x +k 有实数解,求实数k 的取值范围.[解题观摩] (1)因为f ′(x )=-ln xx 2,当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0,所以函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,故函数f (x )的极大值点为x =1,所以⎩⎪⎨⎪⎧a <1,a +1>1,即0<a <1,故所求实数a 的取值范围是(0,1).(2)方程f (x )=x 2-2x +k 有实数解, 即f (x )-x 2+2x =k 有实数解. 设g (x )=f (x )-x 2+2x , 则g ′(x )=2(1-x )-ln x x2.接下来,需求函数g (x )的单调区间,所以需解不等式g ′(x )≥0及g ′(x )≤0,因而需解方程g ′(x )=0.但此方程不易求解,所以我们可以先猜后解.因为g ′(1)=0,且当0<x <1时,g ′(x )>0,当x >1时,g ′(x )<0,所以函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.所以g (x )max =g (1)=2.当x →0时,g (x )→-∞;当x →+∞时,g (x )→-∞,所以函数g (x )的值域是(-∞,2],所以所求实数k 的取值范围是(-∞,2].[关键点拨]当所求的导函数解析式中出现ln x 时,常猜x =1;当函数解析式中出现e x 时,常猜x =0.考点二 隐零点代换例1. (广州市天河区2019届)已知函数在点处的切线方程为.求a ,b 的值及函数的极值;若且对任意的恒成立,求m的最大值.解析:,,函数在点处的切线方程为,,解得,.,则,由,得.当时,,当时,.在上为减函数,在上为增函数,则当时,函数取得极小值为;当时,由,得.令,则,设,则,在上为增函数,,,,且,当时,,,在上单调递减;当时,,,在上单调递增.,,,,,的最大值为3.【点睛】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性与最值。

导数零点不可求的四种破解策略

导数零点不可求的四种破解策略

导数零点不可求的四种破解策略在数学中,导数就是用于描述函数改变率的概念。

直观上来说,导数可以理解为函数在其中一点上的斜率。

通常情况下,我们可以通过求导的方式来找到导数零点,也就是函数上的极值点。

但有时候,由于函数的复杂性或者特殊性,导数零点可能无法直接求得。

下面将介绍四种破解策略来应对这样的情况。

第一种策略是使用数值方法。

数值方法是一种通过近似计算来得到导数零点的方法。

其中,最常见的数值方法之一是牛顿法。

牛顿法是通过使用函数的切线来逼近导数零点的过程。

具体步骤如下:首先,取一个初始点;然后,计算该点处的切线斜率,得到一个新的点;再次计算新点处的切线斜率,得到一个更接近导数零点的新点;不断重复上述过程,直到达到所需的精度为止。

数值方法是一种有效的求导数零点的技巧,尤其适用于无法直接求导的函数。

第二种策略是使用图形方法。

图形方法是通过观察函数图像来找到导数零点的方法。

在图形方法中,我们可以使用计算机绘制函数图像,然后通过直观观察来找到导数为零的点。

这种方法尤其适用于简单的函数,或者具有明显特征的函数。

通过图形方法找到的导数零点可能不是精确值,但可以提供一个很好的近似解。

第三种策略是使用近似解析方法。

近似解析方法是一种通过进行适当近似来求解导数零点的方法。

其中,泰勒级数展开是一种常用的近似解析方法。

泰勒级数展开是将函数表示为一个无限级数的形式,通过截断级数,可以得到一个近似解析的形式。

利用泰勒级数展开,我们可以找到导数零点的近似解析解。

最后一种策略是使用符号计算方法。

符号计算是一种通过代数运算来进行精确计算的方法。

符号计算可用于求解导数为零的精确解。

通过使用符号计算软件,我们可以输入函数表达式,并对表达式进行求导、解方程等操作,以求得导数零点的精确解。

符号计算方法通常适用于简单的函数,或者具有明确表达式的函数。

综上所述,导数零点不可求的四种破解策略包括数值方法、图形方法、近似解析方法和符号计算方法。

根据具体问题的性质和要求,我们可以选择适用的方法来寻找导数零点,以得到所需的解。

函数与导数重点题型05:零点不可求问题研究(解答题篇)

函数与导数重点题型05:零点不可求问题研究(解答题篇)

重点题型五:导函数“零点不可求”问题【问题分析】近年来,导函数零点不可求逐渐成为高考命题的热点,导函数零点不可求是命题人故意为之,主要是考查学生对于函数零点的处理是否掌握到位,所以在学习过程中,函数零点处理技巧,处理策略就非常重要了。

导函数的变号零点就是函数的极值点,也是函数单调性的分界点,如果导函数零点“不可求”,我们就无法透彻的研究函数,就是是问题的解决陷入困境。

解决导函数零点不可求问题的依据其实就是函数零点存在性定理。

在解题过程中经常判断导函数f ′(x)的单调性(通过二次求导判断),然后再根据零点存在性定理判断导函数f ′(x)零点所在的区间。

【知识回顾】 函数的零点:零点存在性定理如果函数y =f(x)满足:①在区间[a ,b]上的图象是连续不断的一条曲线;②f(a)·f(b)<0; 则函数y =f(x)在(a ,b)上存在零点,即存在c ∈(a ,b),使得f(c)=0,这个c 也就是方程f(x)=0的根.【注】1.若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.函数的零点不是一个“点”,而是方程f (x )=0的实根.2.由函数y =f(x)(图象是连续不断的)在闭区间[a ,b]上有零点不一定能推出f(a)·f(b)<0,如图所示,函数零点 函数图像的交点 方程的根 与x 轴交点横坐标所以f(a)·f(b)<0是y =f(x)在闭区间[a ,b]上有零点的充分不必要条件.【解题策略】(1)观察法:对于导函数为常见的超越函数,我们无法求出其零点,但可以根据我们的直觉判断出常见超越函数的零点,如:①y ′=e ,x −x −1,其零点无法求出,通过我们观察当x =0时,y =0,即x =0是导函数y ′的一个零点。

对于导函数y ′=e nx −∑a i m i x i −1,(m,n ∈R )的形式, x =0是导函数y ′的一个零点。

最全总结之导数零点不可求

最全总结之导数零点不可求

最全总结之导数零点不可求导数零点不可求是指在一些情况下,导数无法通过常规方法计算出来或者计算过程十分繁琐。

下面将详细介绍一些常见情况下导数零点不可求的情况。

在数学中,导数是用来衡量函数在特定点的变化率的工具。

导数零点是指函数在特定点的导数等于零的点。

在一些情况下,导数的零点可以轻松地通过求导公式计算得出。

然而,并非所有函数都存在可求的导数零点,下面将介绍一些这样的情况。

首先,有些函数的导数不可求是因为它们不可导。

对于一个函数而言,如果存在一些点处的导数不存在或者不符合导数定义,那么这个函数在该点就是不可导的。

例如,绝对值函数f(x)=,x,在x=0处的导数不存在。

因为对于左侧和右侧靠近0的x值,函数的斜率分别为-1和1,即导数不存在。

其次,还有一些函数在一些点附近的导数计算十分困难,无法通过常规方法得到解析解。

例如,由分段函数组成的函数在一些分段连接点的导数往往计算困难。

考虑函数f(x)=x^2+1,当x大于等于1时,f(x)=x^2,当x小于1且大于等于0时,f(x)=x^2-1、显然,当x=1时,函数f(x)不可导,因为左右两侧的导数并不相等。

另外,有些函数的导数零点无法通过求导公式直接计算出来,需要进行复杂的计算或使用数值近似的方法。

例如,三角函数的导数通常需要借助一些三角恒等式进行化简。

考虑函数f(x) = sin(x),在x=π/2处,导数等于cos(π/2) = 0。

这里我们利用了三角函数的导数恒等式来计算导数零点。

值得注意的是,导数的零点不一定意味着函数的极值点。

函数的极值点可以通过导数的零点和导数的符号变化来确定,但是导数为零并不能保证函数在该点一定取得极值。

最后,导数零点不可求也可能是因为函数过于复杂。

在实际问题中,很多函数是通过一些特定的形式或数据拟合得到的,这些函数的导数可能不存在一个简洁的解析表示。

在这种情况下,求导过程可能十分繁琐,无法通过常规方法计算出来。

综上所述,导数零点不可求的情况有很多,包括函数不可导、函数过于复杂或导数计算困难等。

应对导数零点不可求的六种非常规策略

应对导数零点不可求的六种非常规策略

应对导数零点不可求的六种非常规策略导数零点不可求情况是指在一些函数上,导数的零点无法通过常规的求导方法求得,这时需要采用一些非常规的策略来应对。

下面将介绍六种非常规策略来解决这一问题。

1. 利用Definite Integral:在一些情况下,我们可以通过确定积分函数的定积分来解决导数零点不可求的问题。

例如,对于定义在区间[a, b]上的函数f(x),如果知道该函数在[a, b]上的定积分等于零,即∫[a, b]f(x)dx = 0,那么我们可以推断函数f(x)在[a, b]上存在导数零点。

因此,可以利用该策略来确定导数零点的存在性。

2.函数的极值点:当导数零点不可求时,我们可以关注函数的极值点。

当函数在其中一点处取得极大值或极小值时,导数为零。

因此,我们可以利用这个特性来确定导数的零点。

但需要注意的是,并非所有的导数为零的点都是极值点,因此必须进行进一步的检查。

3.精确计算:当导数零点不可求时,我们可以尝试使用数值计算的方法来逼近这些导数零点。

其中最常用的方法是迭代法,通过每次迭代逐步逼近导数零点。

这是一种较为耗时的方法,但在一些情况下仍然是有效的。

4.利用对称性:有时,函数的导数零点可能无法显式求得,但可以通过函数的对称性推断。

例如,对于一个关于y轴对称的函数,其导数的零点必然位于y轴上。

通过利用函数的对称性,我们可以确定导数零点的存在。

5.利用特殊性质:有些函数具有特殊的性质,使得它们的导数的零点可以通过特殊方法求得。

例如,对于以原点为中心的奇函数,其导数的零点必然位于原点。

通过利用函数的特殊性质,可以确定导数的零点。

6.数学工具:当导数零点无法使用常规方法求得时,可以考虑使用一些特殊的数学工具来解决这个问题。

例如,使用复数、级数、积分等方法来解决导数零点不可求的问题。

这些数学工具在一些情况下可能会提供一种解决方案。

总结起来,当导数的零点不可求时,我们可以尝试使用非常规的策略来解决这个问题。

第10讲利用导数研究函数的零点问题 高考数学

第10讲利用导数研究函数的零点问题 高考数学

=




=



=

,构造函数

=

,求导得

, >
在 −∞, 上单调递减,在 , 上单调递增, , +∞ 上单调递减,
且 = ,
试卷讲评课件
=


> 及


→ +∞ 时 → ,
的图像如图,得到 =
当<或 = 时, 有一个零点;
当> 时, 有两个零点.
试卷讲评课件
练1
f x = 2ex − 5x 2 的零点的个数为(
A.0
B.1
)
D.3

C.2
【分析】先把零点个数转化为函数交点个数,再构造函数 =

,结

合导函数求解单调性及极值最后应用数形结合求解.
【详解】由
π
4
2e
a =______

【分析】常数分离得

=


= 有唯一的解,求出 的单调性与


极值,由 有且仅有一个零点可得 = .
试卷讲评课件
【详解】当 = 时, = ≥ 恒成立, 在[, ]上无零点.
1
, +∞
e
【分析】由 ′
2
3 1
,
2
2e e
3
0, 2
2e

,令


1
∪ , +∞
e

=
<<


,则直
上的图象有两个交点,利用导数分析函数

导数中两种零点问题解决方法

导数中两种零点问题解决方法

导数中的零点问题解决方法解决零点问题,需要采用数形结合思想,根据函数的图像或者趋势图像找出符合题意的条件即可,因此用导数判断出单调性作出函数图像或趋势图像至关重要。

一、能直接分离参数的零点题目此类问题较为简单,分离之后函数无参数,则可作出函数的准确图像,然后上下移动参数的值,看直线与函数交点个数即可。

例1.已知函数(),()ln a f x x g x x x =+=,若关于x 的方程2()()2g x f x e x=-只有一个实数根,求a 的值。

二、不能直接分离参数的零点问题(包括零点个数问题)这里需要注意几个转化,以三次函数为例,若三次函数有三个不同的零点,则函数必定有两个极值点,且极大值和极小值之积为负数,例如()f x 在区间(0,1)上有零点,此时并不能确定零点的个数,只能说明至少有一个零点,若函数在区间上单调,只需要用零点存在性定理即可,但是若函数在区间上不单调,则意味着()f x 在区间(0,1)上存在极值点。

在解决此类问题时常用的知识是零点存在定理和极限的相关知识,但必不可少的是求出函数的趋势图像,然后根据趋势图像找符合零点问题的条件即可,这里需要说明一下,参数影响零点的个数问题主要有两个方向,一是参数影响单调性和单调区间的个数,二是参数影响函数的极值或最值,而通过这两个方向就可以影响函数的趋势图像,进而影响零点的个数,因此分类讨论思想在此类问题中必不可少。

例2.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是例3.已知函数2()ln 2f x x x b x =++--在区间1[,]e e上有两个不同零点,求实数b 的取值范围。

例4.已知函数32()f x x ax b =++(1)讨论()f x 的单调性;(2)若b c a =-,当函数()f x 有三个不同的零点时,a 的取值范围恰好是33(,3)(1,)(,)22-∞-⋃⋃+∞,求c 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[高考数学母题一千题]分离函数解决导数零点不可求问题解决导数零点不可求问题的通法利用导数研究函数的关键“点”是求导数的零点,在高考中,存在一类试题,其导数的零点不可求,那么如何破解“导数的零点不可求”的困局?我们给出破解困局的通法,以如下母题的方式给出:[母题结构]:己知函数f(x)满足其导函数f '(x)的零点不可求,研究函数f(x)的性质.[解题程序]:首先对导函数f '(x)进行等价变形,分离出函数g(x),使f '(x)=M(x)g(x),其中M(x)或恒正,或恒负,或其零点可求,然后,研究函数g(x)的零点. 1.函数g(x)不含参数子题类型Ⅰ:(2012年课标高考试题文科第21题)设函数f(x)=e x-ax-2. (Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k 为整数,且当x>0时,(x-k)f '(x)+x+1>0,求k 的最大值.[分析]:本题的落脚点在第(Ⅱ)问,利用分离参数法可得:当x>0时,(x-k)f '(x)+x+1>0⇔k<11-+xe x +x,令g(x)=11-+x e x +x(x>0),则问题等价于k<g(x)的最小值;由g '(x)=2)1()1()1(-+--xxx e e x e +1=-2)1(1-+xx e xe +1=2)1(-xx e e (e x-x-2),然后,利用(Ⅰ)中的结果,研究分离出的函数f(x)=e x-x-2的零点.[解析]:(Ⅰ)由f(x)=e x -ax-2⇒f '(x)=e x-a;①当a ≤0时,f '(x)>0⇒f(x)在(-∞,+∞)上单调递增;②当a>0时,f(x)在(-∞,lna)上单调递减,f(x)在(lna,+∞)上单调递增;(Ⅱ)当a=1时,f '(x)=e x-1,所以,当x>0时,(x-k)f '(x)+x+1>0⇔当x>0时,k<11-+xe x +x;令g(x)=11-+x e x +x(x>0),则g '(x)=2)1(-x x e e (e x -x-2);由(Ⅰ)知,f(x)=e x-x-2在(0,+∞)上单调递增,且f(1)=e-3<0,f(2)=e 2-4>0⇒f(x),即g '(x)在(1,2)内存在唯一的零点α,且α是g(x)的极小值点,也是g(x)的最小值点;由g '(α)=0⇒e α-α-2=0⇒e α=α+2⇒g(α)=11-+ααe +α=1+α∈(2,3)⇒k 的最大值=2.[点评]:对于函数f(x)满足:f '(x)=M(x)g(x),其中M(x)或恒正,或恒负,g(x)不含参数,研究函数f(x)的性质;①确定g(x)的零点α范围;②判断α是f(x)的极大值点,还是极小值点?③由g(α)=0及α的范围,求f(α)的取值范围. 2.函数g(x)含参数子题类型Ⅱ:(2014年山东高考试题)设函数f(x)=2xe x -k(x2+lnx)(k 为常数,e=2071828…是自然对数的底数). (Ⅰ)当k ≤0时,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k 的取值范围.[分析]:由f(x)=2xe x-k(x2+lnx)(x>0)⇒f '(x)=422xxe e x xx --k(-22x+x 1)=32xx -(e x-kx),所以,函数f(x)的性质取决于分离出的函数g(x)=e x-kx 的零点.[解析]:由f(x)=2xe x-k(x2+lnx)(x>0)⇒f '(x)=422x xe e x xx --k(-22x +x 1)=32xx -(e x-kx); (Ⅰ)当k ≤0时,e x-kx>0(x>0),所以,函数f(x)在(0,2)上单调递减,在(2,+∞)上单调递增; (Ⅱ)当x ∈(0,2)时,32xx -<0;令g(x)=e x-kx,则函数f(x)在(0,2)内存在两个极值点⇔f '(x),即g(x)在(0,2)内存在两个零点,且g(x)的图案在其零点附近穿过x 轴;由(Ⅰ)知,当k ≤0时,不合题意;当k>0时,由g '(x)=e x-k ⇒g min (x)=g(lnk)=k-klnk,所以,0<lnk<2,g min (x)=k-klnk<0,且g(2)=e 2-2k>0⇒e<k<22e ⇒k 的取值范围是(e,22e ). [点评]:对于满足:f '(x)=M(x)g(x)的函数f(x),其中M(x)或恒正,或恒负,g(x)含参数,研究函数f(x)性质的关键是研究f '(x)分离出的含参数的函数g(x)的零点;逆向而行,由函数g(x)的零点及其零点类别(是f(x)的极大值点,极小值点,还是拐点),可命制函数f(x)的性质试题. 3.一个命题模式子题类型Ⅲ:(2014年辽宁高考理科试题)已知函数f(x)=(cosx-x)(π+2x)-38(sinx+1),g(x)=3(x-π)xosx-4(1+ sinx)ln(3-πx2).证明:(Ⅰ)存在唯一x 0∈(0,2π),使f(x 0)=0; (Ⅱ)存在唯一x 1∈(2π,π),使g(x 1)=0,且对(Ⅰ)中的x 0,有x 0+x 1<π. [分析]:第(Ⅰ)问是常规问题,对于第(Ⅱ)问当x ∈[2π,π]时,由g(x)=0⇔x x x sin 1cos )(3+-π-4ln(3-πx 2)=0,因此,需研讨函数h(x)=x x x sin 1cos )(3+-π-4ln(3-πx2),但其导数的零点不可求,为利用第(Ⅰ)问的需通过t=π-x 转化变量的范围得t ∈[0,2π],且h(t)=h(π-t)=t t t sin 1cos 3+-4ln(1+πt 2)⇒h '(t)=)sin 1)(2()(3t t t f ++π,即f(t)恰是由h '(t)分离出的函数. [解析]:(Ⅰ)当x ∈(0,2π)时,由f '(x)=-(1+sinx)(π+2x)-2x-32cosx<0⇒f(x)在(0,2π)内递减,又f(0)=π-38>0, f(2π)=-π2-316<0⇒存在唯一x 0∈(0,2π),使f(x 0)=0; (Ⅱ)由g(x)=0⇔x x x sin 1cos )(3+-π-4ln(3-πx 2)=0,x ∈[2π,π],令h(x)=x x x sin 1cos )(3+-π-4ln(3-πx2),x ∈[2π,π],t=π-x ∈[0,2π],h(t)=h(π-t)=)sin(1)cos(])[(3t t t -+---ππππ-4ln[3-ππ)(2t -]=t t t sin 1cos 3+-4ln(1+πt 2),则h '(t)=)sin 1)(2()(3t t t f ++π⇒当x ∈(0,x 0)时,h '(t)>0⇒h(t)在(0,x 0)内递增,又h(0)=0⇒h(t)>0;当x ∈(x 0,2π)时,h '(t)<0⇒h(t)在(x 0,2π)内递减,又h(2π)=-4ln2<0⇒存在唯一t 0∈(x 0,2π),使h(t 0)=0⇒存在唯一x 1∈(2π,π),使g(x 1)=0;由t 0=π-x 1∈(x 0,2π)⇒x 0+x 1<π. [点评]:本题给出了命制导数的零点不可求型试题一个模式:对于满足:f '(x)=M(x)g(x)的函数f(x),其中M(x)或恒正,或恒负,或其零点可求,而g(x)的不可求;可命制如下递进型试题:第(Ⅰ)问讨论g(x)的零点;第(Ⅱ)问证明或研究函数f(x)的性质. 4.子题系列:1.(2013年课标Ⅱ高考试题)已知函数f(x)=e x -ln(x+m). (Ⅰ)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (Ⅱ)当m≤2时,证明:f(x)>0.2.(2014年四川高考理科试题)已知函数f(x)=e x-ax 2-bx-1,其中a,b ∈R,e=2071828…为自然对数的底数. (Ⅰ)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值; (Ⅱ)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a 的取值范围.3.(2014年辽宁高考文科试题)已知函数f(x)=π(x-cosx)-2sinx-2,g(x)=(x-π)xx sin 1sin 1+-+πx 2-1.证明: (Ⅰ)存在唯一x 0∈(0,2π),使f(x 0)=0; (Ⅱ)存在唯一x 1∈(2π,π),使g(x 1)=0,且对(Ⅰ)中的x 0,有x 0+x 1>π. 4.(2015年山东高考试题)设函数f(x)=(x+a)lnx,g(x)=xe x 2,已知曲线y=f(x)在点(1,f(1))处的切线与直线2x-y=0平行.(Ⅰ)求a 的值;(Ⅱ)是否存在自然数k,使的方程f(x)=g(x)在(k,k+1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由; (Ⅲ)设函数m(x)=min{f(x),f(x)}(min{p,q}表示p,q 中的较小值),求m(x)的最大值. 5.(2015年四川高考文科试题)已知函数f(x)=-2xlnx+x 2-2ax+a 2,其中a>0. (Ⅰ)设g(x)是f(x)的导函数,讨论函数g(x)的单调性;(Ⅱ)证明:存在a ∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解. 6.(2015年四川高考理科试题)已知函数f(x)=-2(x+a)lnx+x 2-2ax-2a 2+a,其中a>0. (Ⅰ)设g(x)是f(x)的导函数,讨论函数g(x)的单调性;(Ⅱ)证明:存在a ∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解. 4.子题详解: 1.解:(Ⅰ)由f '(x)=e x-m x +1,x=0是f(x)的极值点⇒f '(0)=0⇒m=1⇒f '(x)=e x -11+x ⇒f ''(x)=e x+2)1(1+x >0⇒f '(x)在(-1,+∞)内单调递增⇒当x ∈(-1,0)时,f '(x)<f '(0)=0⇒f(x)在(-1,0)内单调递减;当x ∈(0,+∞)时,f '(x)>f '(0)=0⇒f(x)在(0,+∞)内单调递增;(Ⅱ)当m≤2时,f(x)=e x-ln(x+m)≥e x-ln(x+2),故只需证明当m=2时,f(x)=e x-ln(x+2)>0;由f '(x)=e x-21+x 在(-2,+∞)内单调递增,且f(-1)<0,f(0)>0⇒f(x)的最小值点x 0∈(-1,0),且e 0x -210+x =0⇒ln(x 0+2)=-x 0⇒f min (x)=f(x 0)=e 0x - ln(x 0+2)=210+x +x 0>0. 2.解:(Ⅰ)由f(x)=e x-ax 2-bx-1⇒g(x)=f '(x)=e x-2ax-b ⇒g '(x)=e x-2a,由x ∈[0,1]⇒e x∈[1,e];①当a ≤21时,g '(x)≥0⇒g(x)在[0,1]内递增⇒g min (x)=g(0)=1-b;②当21<a<2e时,g(x)在[0,ln(2a)]内递减,在[ln(2a),1]内递增⇒ g min (x)=g(ln(2a))=2a-2aln(2a)-b;③当a ≥2e时,g '(x)≤0⇒g(x)在[0,1]内递减⇒g min (x)=g(1)=e-2a-b; (Ⅱ)由f(1)=0⇒e-a-b-1=0⇒b=e-a-1,又f(0)=0,所以,f(x)在区间(0,1)内有零点⇔f(x)在区间(0,1)内至少有三个单调区间;由(Ⅰ)知,当a ≤21或a ≥2e时,f ''(x)在区间[0,1]上单调⇒f(x)在区间(0,1)内至少有二个单调区间,不合题意; 当21<a<2e时,g(0)=1-b=2+a-e>0,g(1)=e-2a-b=1-a>0⇒a ∈(e-2,1),g min (x)=2a-2aln(2a)-b=3a-2aln(2a)-e-1;令h(x)= 3x-2xln(2x)-e-1,x ∈(e-2,1),则h '(x)=1-2ln(2x)⇒h max (x)=h(2e )=2e -2e-1<0⇒g min (x)<0⇒f(x)在区间(0,1)内恰有三个单调区间.综上,a 的取值范围为(e-2,1). 3.解:(Ⅰ)由f '(x)=π(1+sinx)-2cosx>0⇒f(x)在(0,2π)内增,又f(0)<0,f(2π)>0⇒存在唯一x 0∈(0,2π),使f(x 0)=0; (Ⅱ)当x ∈[2π,π]时,由g(x)=(x-π)xxsin 1sin 1+-+πx 2-1=(π-x)x x sin 1cos ++πx 2-1;令t=π-x,h(t)=g(π-t)=-t t t sin 1cos +-πt 2+ 1,t ∈[0,2π],则h '(t)=)sin 1()(t t f +π⇒当x ∈(0,x 0)时,h '(t)<0⇒h(t)在(0,x 0)内递减,又h(0)=1,⇒h(t)>0;当x ∈(x 0,2π)时,h '(t)>0⇒h(t)在(x 0,2π)内递增,又h(2π)=0⇒h(x 0)<0⇒存在唯一t 0∈(0,x 0),使h(t 0)=0⇒存在唯一x 1∈(2π,π),使g(x 1)=0;由t 0=π-x 1∈(0,x 0)⇒x 0+x 1>π. 4.解:(Ⅰ)由f '(1)=2;由f(x)=(x+a)lnx ⇒f '(x)=lnx+xax +⇒f '(1)=1+a=2⇒a=1; (Ⅱ)由f '(x)=lnx+x x 1+⇒f ''(x)=x 1-21x =21x(x-1)⇒f '(x)的极小值=f '(1)=2⇒f '(x)>0⇒f(x)在(0,+∞)内递增;由g(x)=xex 2⇒g '(x)=-xe x x )2(-⇒g(x)在(0,2)内递增,在(2,+∞)内递减;又因当x ∈(0,1]时,f(x)≤0,g(x)>0;f(2)=3ln2>1,g(2)=24e <1;当x ∈(1,+∞)时,f(x)>f(2)>1,g(x)<g(2)<1.综上,当x ∈(1,2)时,方程f(x)=g(x)存在唯一的根⇒k=1;(Ⅲ)由(Ⅱ)知,方程f(x)=g(x)在(1,2)内存在唯一的根α,且当x ∈(0,α)时,f(x)<g(x)⇒m(x)=f(x)<f(α)=g(α)< g(2);当x ∈(α,+∞)时,f(x)>g(x)⇒m(x)=g(x)⇒m(x)的最大值=g(2)=24e .5.解:(Ⅰ)由g(x)=f '(x)=2(x-1-lnx-a)(x>0)⇒g '(x)=xx )1(2-⇒g(x)在(0,1)内递减,在(1,+∞)内递增; (Ⅱ)由(Ⅰ)知f '(x)=g(x)在(1,+∞)内递增,且f '(1)=-2a<0,f '(a+4)=2[3-ln(a+4)]>0⇒f '(x)在(1,+∞)内存在唯一零点α,且x=α是f(x)的极小值点,也是f(x)的最小值点,所以,f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解⇔f(α)=0;由f '(α)=0⇒a=α-ln α-1⇒f(α)=-2αln α+α2-2a α+a 2=-2αln α+(α-a)2=-2αln α+(ln α+1)2;令h(x)=-2xlnx+(lnx+1)2,则h(1)=1,h(e)=4-2e<0⇒h(x)存在零点t ∈(1,e);令T(t)=t-lnt-1,t ∈(1,e),则T '(t)=1-t1>0,T(1)=0,T(e)=e-2<1⇒T(t)∈(0,1)⇒a=α-ln α-1∈(0,1). 6.解:(Ⅰ)由g(x)=f '(x)=-2lnx-2-x a 2+2x-2a(x>0,a>0)⇒g '(x)=22x(x 2-x+a);①当a ≥41时,g '(x)≥0⇒g(x)在(0,+∞)内递增;②当0<a<41时,由g '(x)=0⇒x 1=2411a --,x 2=2411a -+⇒g(x)在(0,x 1)和(x 2,+∞)内递增,在(x 1,x 2)内递减; (Ⅱ)当a ∈(0,1)时,x 2=2411a-+<1,由(Ⅰ)知f '(x)=g(x)在(1,+∞)内递增,且f '(1)=-4a<0,f '(a+4)=2[3-ln(a+4)- 4+a a ]>2(3-2-51)>0⇒f '(x)在(1,+∞)内存在唯一零点α,且x=α是f(x)的极小值点,也是f(x)的最小值点,所以,f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解⇔f(α)=0;由f ''(α)=0⇒ln α=α-αa-a-1⇒f(α)= =-2(α+a)ln α+α2-2a α-2a 2+a=-2(α+a)(α-αa -a-1)+α2-2a α-2a 2+a=-α2+2α+α22a +4a-2a α;由f(α)=0⇒-α2+2α+α22a +5a-2a α=0⇒2a 2+(5α-2α2)a-α3+2α2=0⇒(2a-α)(a+α2-2α)=0⇒a=2α,或a=2α-α2,令a=2α-α2,代入f ''(α)=0得ln α=α2-3⇒α∈(1,2)⇒a=2α-α2∈(0,1).。

相关文档
最新文档