(完整word)高中数学算法框图习题及详解

合集下载

高中数学《算法---程序框图》典型例题练习(含答案)

高中数学《算法---程序框图》典型例题练习(含答案)

高中数学《算法---程序框图》典型例题练习(含答案)算法与程序框图在高考中常以小题出现,难度不大,主要考察循环结构。

在处理这类问题时关键在于计算的准确。

一、基础知识:读框图时,要抓住“看头,审尾,记过程”这三点1、看头:观察框图中变量的个数,以及赋予的初始值2、审尾:强调细致的“审查”循环结束时,变量所取到的最后一个值,这也是易错点3、记过程:为了保证计算的准确,在读取框图的过程中,可详细记录循环体中每经过一个步骤,变量取值的变化情况,以便于在跳出循环时能快速准确得到输出变量的值二、典型例题:例1:执行下图所示的程序框图,若输入2x =,则输出y 的值为 .思路:通过框图的判断语句可知y 关于x 的函数为:2321,01,012,1x x y x x x x x −<⎧⎪=+≤<⎨⎪+≥⎩,所以当2x =时,322212y =+⋅=答案:12例2:阅读右边的程序框图,运行相应的程序,则输出的值为( )A .3B .4C .5D .6思路:循环的流程如下:① 1,2i a ==② 2,5i a ==③ 3,16i a ==④ 4,65i a ==i循环终止,所以4i =答案:B例3:某程序框图如图所示,若输出的57S =,则判断框内为( )A. 4?k >B. 5?k >C. 6?k >D. 7?k >思路:循环的流程如下:① 2,4k S ==② 3,11k S ==③ 4,26k S ==④ 5,57k S ==所以应该在此时终止,所以填入4?k >答案:A例4:执行右面的程序框图,如果输入的N 是6,那么输出的p 是( )A. 120B. 720C. 1440D. 5040思路:循环的流程如下:① 1p =② 2,2k p ==③ 3,6k p ==④ 4,24k p ==⑤ 5,120k p ==⑥ 6,720k p ==答案:B例5:右图是一个算法的流程图,则输出S 的值是______ 第4题思路:循环的流程如下: ① 1123S =+=② 22,327n S ==+=③ 33,7215n S ==+=④ 44,15231n S ==+=⑤ 55,31263n S ==+=循环结束,所以63S =答案:63S =例6:执行如图所示的程序框图,若输出i 的值为2,则输入x 的最大值是( )A .5B .6C .22D .33思路:因为输出的2i =,说明只经过了一次循环。

2017-2018学年高中数学必修三(人教B版)练习:1.1算法与程序框图1.1.1 Word版含解析

2017-2018学年高中数学必修三(人教B版)练习:1.1算法与程序框图1.1.1 Word版含解析

第一章 1.1 1.1.1A级基础巩固一、选择题1.下列语句中是算法的是导学号95064017(A)A.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1B.吃饭C.做饭D.写作业[解析]选项A是解一元一次方程的具体步骤,故它是算法,而B、C、D是说的三个事实,不是算法.2.计算下列各式中的S值,能设计算法求解的是导学号95064018(B)①S=1+2+3+ (100)②S=1+2+3+…+100+…;③S=1+2+3+…+n(n≥1,且n∈N).A.①②B.①③C.②D.②③[解析]由算法的确定性、有限性知选B.3.早上从起床到出门需要洗脸、刷牙(5 min),刷水壶(2 min),烧水(8 min),泡面(3 min),吃饭(10 min),听广播(8 min)几个过程,下列选项中最好的一种算法是导学号95064019 (C)A.第一步,洗脸刷牙;第二步,刷水壶;第三步,烧水;第四步,泡面;第五步,吃饭;第六步,听广播B.第一步,刷水壶;第二步,烧水同时洗脸刷牙;第三步,泡面;第四步,吃饭;第五步,听广播C.第一步,刷水壶;第二步,烧水同时洗脸刷牙;第三步,泡面;第四步,吃饭同时听广播D.第一步,吃饭同时听广播;第二步,泡面;第三步,烧水同时洗脸刷牙;第四步,刷水壶[解析]因为A选项共用时36 min,B选项共有时31 min,C选项共用时23 min,选项D的算法步骤不符合常理,所以最好的一种算法为C选项.4.对于一般的二元一次方程组⎩⎪⎨⎪⎧a 1x +b 1y =c 1a 2x +b 2y =c 2,在写求此方程组解的算法时,需要我们注意的是导学号 95064020( C )A .a 1≠0B .a 2≠0C .a 1b 2-a 2b 1≠0D .a 1b 1-a 2b 2≠0[解析] 由二元一次方程组的公式算法即知C 正确. 5.下面是对高斯消去法的理解: ①它是解方程的一种方法; ②它只能用来解二元一次方程组; ③它可以用来解多元一次方程组;④用它来解方程组时,有些方程组的答案可能不准确. 其中正确的是导学号 95064021( A ) A .①② B .②④ C .①③D .②③[解析] 高斯消去法是只能用来解二元一次方程组的一种方法,故①②正确. 6.一个算法步骤如下: S1 S 取值0,i 取值2;S2 如果i ≤10,则执行S3,否则执行S6; S3 计算S +i 并将结果代替S ; S4 用i +2的值代替; S5 转去执行S2; S6 输出S .运行以上步骤输出的结果为导学号 95064022( B ) A .25 B .30 C .35D .40[解析] 按算法步骤一步一步地循环计算替换,该算法作用为求和S =2+4+6+8+10=30.二、填空题7.已知直角三角形两条直角边长分别为a 、b ,求斜边长c 的算法如下:导学号 95064023S1 输入两直角边长a 、b 的值. S2 计算c =a 2+b 2的值;S3____________.将算法补充完整,横线处应填__输出斜边长c的值__.[解析]算法要有输出,故S3应为输出c的值.8.一个算法步骤如下:导学号95064024S1S取值0,i取值1;S2如果i≤12,则执行S3,否则执行S6;S3计算S+i并将结果代替S;S4用i+3的值代替i;S5转去执行S2;S6输出S.运行以上步骤输出的结果为S=__22__.[解析]由以上算法可知:S=1+4+7+10=22.三、解答题9.某年青歌赛流行唱法个人组决赛中,某歌手以99.19分夺得金奖.青歌赛在计算选手最后得分时,要去掉所有评委对该选手所打分数中的最高分和最低分,试设计一个找出最高分的算法.导学号95064025[解析]S1先假定其中一个为“最高分”;S2将第二个分数与“最高分”比较,如果它比“最高分”还高,就假定这个分数为“最高分”;否则“最高分”不变;S3如果还有其他分数,重复S2;S4一直到没有可比的分数为止,这时假定的“最高分”就是所有评委打分中的最高分.10.一个人带三只狼和三只羚羊过河,只有一条船,同船最多可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊.请设计过河的算法.导学号95064026[解析]算法如下:S1人带两只狼过河;S2人自己返回;S3人带一只羚羊过河;S4人带两只狼返回;S5人带两只羚羊过河;S6人自己返回;S7人带两只狼过河;S8人自己返回;S9人带一只狼过河.B级素养提升一、选择题1.算法:S1输入n;S2判断n是否是2.若n=2,则n满足条件;若n>2,则执行S3;S3依次从2到n-1检验能不能整除n,若不能整除n,则满足条件.上述满足条件的数是导学号95064027(A)A.质数B.奇数C.偶数D.4的倍数[解析]根据算法可知,如果n=2直接就是满足条件的数.n不是2时,验证从2到n -1有没有n的因数,如果没有就满足条件.显然,满足这个算法中条件的数是质数.故选A.2.现用若干张扑克牌进行扑克牌游戏.小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步:从左边一堆拿出两张,放入中间一堆;第三步:从右边一堆拿出一张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿出几张牌放入左边一堆.这时,小明准确地说出了中间一堆牌现有的张数,你认为中间一堆牌的张数是导学号95064028(B)A.4 B.5C.6 D.8[解析]按各放3张,可以算出答案是5,各放x张答案也是一样的.二、填空题3.下面算法运行后输出结果为__720__.导学号95064029S1设i=1,P=1;S2如果i≤6则执行S3,否则执行S5;S3计算P×i,并将结果代替P的值;S4用i+1的值代替i的值,转去执行S2;S5输出P.[解析]该算法包含一个循环结构,计数变量i的初值为1,每次循环它的值增加1.由1变到6.P 是一个累乘变量,每一次循环得到一个新的结果,并用新的结果替代原值. 第一次循环i =1,P =1.第二次循环i =2,P =2.第三次循环i =3,P =6.第四次循环i =4,P =24.第五次循环i =5,P =120.第六次循环i =6,P =720.4.下面是解决一个问题的算法:导学号 95064030 S1 输入x ;S2 若x ≥4,转到S3;否则转到S4; S3 输出2x -1; S4 输出x 2-2x +3.当输入x 的值为__1__输出的数值最小值为__2__.[解析] 所给算法解决的问题是求分段函数f (x )=⎩⎪⎨⎪⎧2x -1 (x ≥4)x 2-2x +3 (x <4)的函数值的问题当x ≥4时,f (x )=2x -1≥2×4-1=7;当x <4时,f (x )=x 2-2x +3=(x -1)2+2≥2.所以f (x )min =2,此时x =1.即当输入x 的值为1时,输出的数值最小,且最小值是2.三、解答题5.设计一个算法,求表面积为16π的球的体积. 导学号 95064031 [解析] S1 取S =16π; S2 计算R =S4π(由于S =4πR 2); S3 计算V =43πR 3;S4 输出运算结果.6.设火车托运行李,当行李重量为m (kg)时,每千米的费用(单位:元)标准为y =⎩⎪⎨⎪⎧0.3m (m ≤30 kg )0.3×30+0.5(m -30)(m >30 kg ),试写出当托运路程为S 千米时计算运费的算法.导学号 95064032[解析] 算法如下: S1 输入m ;S2 若m ≤30,则执行S3,若m >30,则执行S4; S3 输出0.3m ×S ;S4 输出[0.3×30+0.5(m -30)]×S .C 级 能力拔高1.已知函数y =⎩⎪⎨⎪⎧2x-1(x ≤-1)log 2(x +1)(-1<x <2)x 2(x ≥2),请设计一个算法,输入x 的值,求对应的函数值.导学号95064033[解析]算法如下:S1输入x的值;S2当x≤-1时,计算y=2x-1,否则执行S3;S3当x<2时,计算y=log2(x+1),否则执行S4;S4计算y=x2;S5输出y.2.试描述判断圆(x-x0)2+(y-y0)2=r2和直线Ax+By+C=0的位置关系的算法.导学号95064034[解析]S1输入圆心的坐标(x0,y0),直线方程的系数A,B,C和半径r;S2计算z1=Ax0+By0+C;S3计算z2=A2+B2;S4计算d=|z1|z2;S5如果d>r,则相离;如果d=r,则相切;如果d<r,则相交.。

高二数学算法与框图试题答案及解析

高二数学算法与框图试题答案及解析

高二数学算法与框图试题答案及解析1.(8分).已知程序框图为:指出其功能(用算式表示)【答案】解:算法的功能为:【解析】略2.设,,c,则()A.B.C.D.【答案】B【解析】故选B3.计算机执行右面的程序段后,输出的结果是()A.1,3B.4,1C.0,0D.6,0【答案】B【解析】分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用顺序结构计算变量a,b的值,并输出,逐行分析程序各语句的功能不难得到结果.解答:解:∵a=1,b=3∴a=a+b=3+1=4,∴b=a-b=4-3=1.故输出的变量a,b的值分别为:4,1故选B点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)?②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.4.用秦九韶算法计算多项式f (x)=8x4+5x3+3x2+2x+1在x=2时的值时,v= .2【答案】45【解析】略5.在下列各数中,最大的数是()A.B.C.D.【答案】A【解析】将四个选项的不同进位制分别转换为十进制为:A.;B.;C.;D.显然最大的是A.故答案为A.【考点】1.进位制之间的转化;2.比较大小.6.按流程图的程序计算,若开始输入的值为,则输出的的值是()A.B.C.D.【答案】D【解析】由程序框图,得,输出值.【考点】流程图.7.阅读右边的程序框图,运行相应的程序,则输出s的值为().A.1B.2C.3D.0【答案】【解析】时,,,否,;,否时,;,否时,;,是,输出.【考点】程序框图的应用8.若如下框图所给的程序运行结果为,那么判断框中应填入的关于的条件是()A.B.C.D.【答案】【解析】开始,第一轮,;第二轮,;第三轮,;第四轮,;由题可知,第四轮退出循环,所以判断框应填:,故答案选.【考点】程序框图的识别.9.执行如图所示的程序框图,若输入,则输出的()A.B.C.D.【答案】A【解析】程序执行中的数据变化如下:不成立,输出【考点】程序框图10.执行右边的程序框图,若第一次输入的a的值为-1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为()A.0.2,0.2B.0.2,0.8C.0.8,0.2D.0.8,0.8【答案】C【解析】程序执行中的数据变化如下:不成立,输出;不成立,输出【考点】程序框图11.某程序的框图如图所示,执行该程序,若输入的p为16,则输出的n的值为__________.【答案】4【解析】第一次循环:S=3,n=2;第二次循环:S=3+6=9,n=3;第三次循环:S=9+9=18,n=4;此时18<p不成立,跳出循环体.故输出的n的值为4.【考点】程序框图12.把11化为二进制数为().A.1 011(2)B.11 011(2)C.10 110(2)D.0 110(2)【答案】A【解析】,故选A。

高二数学算法与框图试题答案及解析

高二数学算法与框图试题答案及解析

高二数学算法与框图试题答案及解析1.(本小题满分12分)在国家法定工作日内,每周满工作量的时间为40小时,若每周工作时间不超过40小时,则每小时工资25元;如因需要加班,超过40小时的每小时工资为50元.某公务员在一周内工作时间为小时,但他须交纳个人住房公积金和失业保险(这两项费用为每周总收入的10%).试分析算法步骤并画出其每周净得工资元的算法的程序框图.(注:满工作量外的工作时间为加班)【答案】程序框图:【解析】本试题主要是考查了算法的含义以及在实际生活中运写出算法的步骤以及表示的框图的综合运用。

运用最直观的图形给与解释,这是算法的优点。

解:算法如下:第一步,输入工作时间小时;第二步,若,则即,否则即;第三步,输出y值.程序框图:2. x=5y=6PRINT x+y=11END上面程序运行时输出的结果是( )A.x﹢y=11B.出错信息C.xy=11D.11【答案】B【解析】此题考查算法知识;完整的算法要有开始和结束,有输入和输出,此题没有输出的内容,所以选B3.设,,c,则()A.B.C.D.【答案】B【解析】故选B4.任何一个算法都离不开的基本结构为()A.逻辑结构B.选择结构C.循环结构D.顺序结构【答案】D【解析】分析:根据程序的特点,我们根据程序三种逻辑结构的功能,分析后即可得到答案.解答:解:根据算法的特点如果在执行过程中,不需要分类讨论,则不需要有条件结构;如果不需要重复执行某些操作,则不需要循环结构;算法的基本结构不包括逻辑结构.但任何一个算法都必须有顺序结构故选D.点评:本题考查的知识点是程序的三种结构,熟练掌握三种逻辑结构的功能是解答本题的关键,是对基础知识的直接考查,比较容易.5.将化为十进制结果为____ ;再将该数化为八进制数,结果___.【答案】【解析】要将化为十进制我们可以利用累加权重法,分别求出各数位上的1对应的权重,累加后即可得到答案;而要将所得的十进制再转化为8进制数,则可以使用除8求余法.;【考点】带余除法.6.计算机是将信息转换成二进制数进行处理的,二进制即“逢二进一”,如:表示二进制的数,将它转换成二进制的形式是,那么将二进制数转换成十进制的形式是()A.B.C.D.【答案】 C【解析】解.考点;二进制、十进制之间的转化.点评:本题考查的知识点是二进制、十进制之间的转化.7.定义下图中的(1)是A*B的运算,(2)是B*C的运算,(3)是C*D的运算,(4)是D*A的运算,那么图中(P)是的运算;(Q)是的运算.【答案】,【解析】因为(1)是的运算, (2)是的运算,而(1)(2)图中共有的为矩形,所以为矩形, 为横线, 为竖线.由图结合题意可知为圆.所以是的运算, 是的运算.【考点】推理.8.(1)某企业人力资源部为了研究企业员工工作积极性和对待企业改革态度的关系,随机抽取了名员工进行调查,所得的数据如下表所示:对于人力资源部的研究项目,根据上述数据你能得出什么结论?(友情提示:当时,有的把握说事件与有关;当时,有的把握说事件与有关; 当时认为事件与无关.)(2)高中数学必修3第三章内容是概率.概率包括事件与概率,古典概型,概率的应用.事件与概率又包括随机现象,事件与基本事件空间,频率与概率,概率的加法公式.请画出它们之间的知识结构图.【答案】(1)有的把握说,员工“工作积极”与“积极支持改革”是有关的;(2)见解析.【解析】(1)先利用所给公式求出,再利用临界值表进行判定;(2)由流程图进行画出结构图即可.试题解析:(1)由公式得,所以有的把握说,员工“工作积极”与“积极支持改革”是有关的.(2)【考点】1.独立性检验思想;2.流程图.9.下面是一个算法的伪代码,输出结果是.【答案】14【解析】第一次循环:;第二次循环:;第三次循环:;结束循环,输出【考点】循环结构流程图10.阅读下图的程序框图.若输入, 则输出的值为A.B.C.D.【答案】B【解析】根据题意可知,执行的结果为,,,所以输出的值为,故选B.【考点】程序框图.11.运行如图所示的程序框图.若输入x=4,则输出y的值为()A.49B.25C.13D.7【答案】B【解析】由题可知,若输入x=4,则y=2×4﹣1=8﹣1=7,|4﹣7|=3>8不成立,则x=7,y=2×7﹣1=14﹣1=13,|7﹣13|=6>8不成立,则x=13,y=2×13﹣1=26﹣1=25,|13﹣25|=12>8成立,则输出y=25;【考点】程序框图12.执行如图所示的程序框图,则输出的的值为A.10B.17C.19D.36【答案】C【解析】该程序框图所表示的算法功能为:,故选C.【考点】程序框图.13.如图所示,程序框图(算法流程图)的输出结果是()A.B.C.D.【答案】B【解析】第一次循环可得:,满足条件继续循环;第二次循环可得:,满足条件继续循环;第三次循环可得:,不满足条件,跳出循环体,可得,故选择【考点】流程图14.某程序的框图如图所示,执行该程序,若输入的p为16,则输出的n的值为__________.【答案】4【解析】第一次循环:S=3,n=2;第二次循环:S=3+6=9,n=3;第三次循环:S=9+9=18,n=4;此时18<p不成立,跳出循环体.故输出的n的值为4.【考点】程序框图15.如图所示的程序框图,输入时,程序运行结束后输出的、值的和为.【答案】11【解析】执行程序框图,得,不满足;得,不满足;得,不满足;得,满足,退出循环,输出的值为7,的值为4,故和为11.【考点】1、程序框图;2、算法.16.荆州市为了解岁的老人的日平均睡眠时间(单位:),随机选择了位老人进行调查,下表是这位老人睡眠时间的频率分布表:序号频率()()在上述统计数据的分析中一部分计算见算法流程图,则输出的的值为.【答案】6.42【解析】从程序框图知,输出的S即为50位老人的平均睡眠时间,所以.考点:•由频率分布表求数据特征平均数;‚程序框图.【思路点睛】本题是一个程序框图与统计的一个综合应用,难度中等.结合频率分布表及程序框图,理解s的本质,即s表示的是样本的平均数.由频率分布表如何求样本平均数?由频率分布表中每组的组中值乘以所在组的频率,然后再求各个积的和即可.17.某店一个月的收入和支出总共记录了个数据,,其中收入记为正数,支出记为负数.该店用右边的程序框图计算月总收入和月净盈利,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的( )A.B.C.D.【答案】C【解析】因为收入记为正数,支出记为负数,且月总收入为和月净盈利为,所以判断框中条件为.当满足时,,当不满足时,,且T为支出,而净利润是收入和支出的和,所以处理框中应填写.故选C.【考点】程序框图的应用.18.已知多项式函数f(x)=2x5-5x4-4x3+3x2-6x+7,当x=5时由秦九韶算法v0=2 v1=2×5-5=5则v3= ________.【答案】108【解析】:根据秦九韶算法我们可将多项式函数f(x)分解为:f(x)=((((2x-5)x-4)x+3)x-6)x+7,当x=5时,v0=2;v1=2×5-5=5v2=5×5-4=21v3=21×5+3=108【考点】秦九韶算法19.某程序框图如图所示,该程序运行后,输出的值为,则=()A.19B.9C.4D.3【答案】C【解析】根据框图的循环结构依次为: ; ;,跳出循环,输出,解得.故C正确.【考点】算法.20.右图是用模拟方法估计圆周率的程序框图,表示估计结果,则图中空白框内应填入()A.B.C.D.【答案】D【解析】由题意以及程序框图可知,用模拟方法估计圆周率π的程序框图,M是圆周内的点的次数,当i大于1000时,圆周内的点的次数为4M,总试验次数为1000,所以要求的概率,所以空白框内应填入的表达式是【考点】程序框图21.若某程序框图如图所示,则该程序运行后输出的B等于()A.B.C.D.【答案】A【解析】由程序图可得,程序执行5次后输出,则的值为:3,7,15,31,63,所以最后输出的值为63.【考点】程序框图.22.运行如图所示的程序,输出的结果是_______.【答案】3【解析】按步骤执行易知,输出的结果为3.【考点】框图运算.23.执行如图所示的程序框图,输出的结果为.【答案】89【解析】初始值:x=1,y=1,第1次循环:z=2,x=1,y=2;第2次循环:z=3,x=2,y=3;第3次循环:z=5,x=3,y=5;第4次循环:z=8,x=5,y=8;第5次循环:z=13,x=8,y=13;第6次循环:z=21,x=13,y=21;第7次循环:z=34,x=21,y=34;第8次循环:z=55,x=34,y=55;第9次循环:z=89,x=55,y=89;第10次循环时z=144,循环结束,输出y,故输出的结果为89.【考点】程序框图的应用.【方法点睛】解决本类问题先从宏观理清框图是解决什么具体问题的,然后严格按照步骤执行其流程要求.关键是每次循环过后,将每个变量一一列出,如果循环次数较多就要总结规律,如等差、等比数列通项、周期等;如果循环次数较少,可以全部列出.24.运行如图所示的程序框图,当输入实数的值为时,输出的函数值为;当输入实数的值为时,输出的函数值为.(Ⅰ)求实数,的值;并写出函数的解析式;(Ⅱ)求满足不等式的的取值范围.【答案】(Ⅰ)(Ⅱ)【解析】(I)算法的功能是求的值,根据输入实数x的值为-1时,输出的函数值为2;当输入实数x的值为3时,输出的函数值为7求得a、b;(II)分别在不同的段上求得函数的值域,再求并集试题解析:(1)当x=-1时f(-1)="-b," ∴b=-2当x=3时f(3)==7∴a=2∴(2)当x<0时当x>0时∴满足条件的x为:【考点】1.程序框图;2.函数值域25.执行如图所示的程序框图,输出的.【答案】【解析】时,,时,,时,,时,否,所以输出【考点】循环结构26.执行右图的程序框图后,若输入和输出的结果依次为4和51,则()A.B.5C.D.8【答案】B【解析】第一次循环,得;第二次循环,得;第三次循环,得;第四次循环,得,不满足循环条件,退出循环,输出,即,故选B.【考点】程序框图.【技巧点睛】具有循环结构的流程图问题,最有效的求解方法之一就是当循环次数比较少时,把每一次循环之后每个变量的取值都一一列出,当循环次数比较多时,利用数列通项把每次循环之后每个变量的取值一一列出.转化为十进制数是__________.27. 101110(2)【答案】46【解析】.【考点】进位制间的关系.28.若框图所给的程序运行结果为S =90.那么判断框中应填人后的条件是()A.k=9B.k≤8C.k<8D.k>8【答案】D【解析】模拟执行程序框图,可得,满足条件,,满足条件,,由题意可得,此时应该不满足条件,退出循环,输出的值为,则判断框中应该填入后的条件是.【考点】程序框图.【思路点睛】本题主要考查的是程序框图,属于容易题.识别运行程序框图和完善程序框图是高考的热点,要明确程序框图的顺序结构、条件结构和循环结构,解题时一定要抓住重要条件“输出的值是”,一定要清楚计数变量和累加变量用什么字母来表示,再把这两个变量的变化规律弄明白,否则很容易出现错误.在给出程序框图求解判断条件的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出的值即可得出判断条件.29.下列各数中,可能是六进制数的是()A.66B.108C.732D.2015【答案】D【解析】根据六进制数的特点,知六进制数只含有数字0,1,2,3,4,5,A中含有6,B中含有8,C中含有7,所以只有D中的数有可能是六进制的数【考点】进位制30.如果某一循环变量的初始值为,终值为,循环时每次循环变量的值增加,则该循环变量一共循环的次数是.【答案】【解析】分析程序中各变量、各语句的作用,可知:该程序的循环变量相当于一个等差数列:首项为:100,公差为:10,最后一项是:190,项数故可知该程序循环了30次【考点】循环结构31.下图程序运行的结果是()A.B.C.D.【答案】C【解析】由题意得,第1次运行:;第2次运行:;第3次运行:;第4次运行:,此时不满足,退出循环,输出.【考点】循环语句的应用.32.阅读如图所示的程序框图,如果输出的函数值在区间内,那么输入的实数的取值范围是A.B.C.D.【答案】B【解析】程序框图表示的分段函数,当值域为时定义域为【考点】1.程序框图;2.分段函数33.执行如图所示的程序框图,若输入,则输出的值为()A.B.C.D.3【答案】B【解析】依题意,若输入,执行循环体,,判断为否,则,第二次进入循环体,,判断为是,输出,故选B.【考点】程序框图.34.阅读右侧程序框图,运行相应的程序,则输出S的值为()A.8B.18C.26D.80【答案】C【解析】由框图的循环结构可知;;,跳出循环输出.故C正确.【考点】程序框图.【易错点晴】本题主要考查的是程序框图,属于容易题.解题时一定要抓住重要条件“”,否则很容易出现错误.在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.35.已知程序框图如下,则输出的的值是.【答案】9【解析】程序执行中的数据变化如下:成立,输出【考点】程序框图36.执行如图所示的程序框图,若输入的值为,则输出的的值为()A.2B.-2C.D.【答案】B【解析】当,,故选B.【考点】程序框图.37.执行如图所示的程序框图,输出.那么判断框内应填()A.B.C.D.【答案】A【解析】本程序的功能是计算,即k=2016不成立,k=2015成立,故断框内可填入的条件k≤2015【考点】程序框图38.如图所示,程序框图的输出结果是()A.B.C.D.【答案】B【解析】程序执行中的数据变化如下:不成立,输出【考点】程序框图39.把38化为二进制数为()A.101010(2)B.100110(2)C.110100(2)D.110010(2)【答案】B【解析】可以做出四个选项中的二进制数字对应的十进制数字,结果验证到第二个就得到结果,注意两个进位制的转化.解:可以验证所给的四个选项,在A中,2+8+32=42,在B中,2+4+32=38经过验证知道,B中的二进制表示的数字换成十进制以后得到38,故选B.【考点】算法的概念.40.已知实数x∈[1,9],执行如图所示的流程图,则输出的x不小于55的概率为.【答案】.【解析】由程序框图的流程,写出前三项循环得到的结果,得到输出的值与输入的值的关系,令输出值大于等于55得到输入值的范围,利用几何概型的概率公式求出输出的x不小于55的概率.解:设实数x∈[1,9],经过第一次循环得到x=2x+1,n=2经过第二循环得到x=2(2x+1)+1,n=3经过第三次循环得到x=2[2(2x+1)+1]+1,n=3此时输出x输出的值为8x+7令8x+7≥55,得x≥6由几何概型得到输出的x不小于55的概率为==.故答案为:.【考点】循环结构.41. 459和357的最大公约数()A.3B.9C.17D.51【答案】D【解析】用大数除以小数,得到商和余数,再用上面的除数除以余数,有得到商和余数,继续做下去,知道刚好能够整除为止,得到两个数的最大公约数.解:∵459÷357=1…102,357÷102=3…51,102÷51=2,∴459和357的最大公约数是51,故选:D.【考点】辗转相除法;最大公因数.42.某市乘坐出租车的收费办法如下:“不超过4千米的里程收费12元;超过4千米的里程按每千米2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费;当车程超过4千米时,另收燃油附加费1元”,相应系统收费的程序框图如图所示,其中(单位:千米)为行驶里程,(单位:元)为所收费用,用表示不大于的最大整数,则图中①处应填()A.B.C.D.【答案】D【解析】由已知该程序的功能是出租车的收费系统,里程不超过千米收元,超过毎千米,按每千米元收费,小于千米则不收费,若其大于或等于千米则按千米收费,而的含意就是“小于千米不收费,大于千米按千米收费”,由于当车程超过千米时,另收燃油附加费元,因此应选D.【考点】程序框图的条件结构流程图.43.如果一个算法的程序框图中有◇,则表示该算法中一定有哪种逻辑结构()A.循环结构和条件结构B.条件结构C.循环结构D.顺序结构和循环结构【答案】B【解析】本题考查条件结构的特点,以及判断框的意义.可直接判断选项.解:因为◇表示判断框,所以一定有条件结构.故答案为:B【考点】程序框图.44.执行如图所示的程序框图,则输出的等于。

高一数学框图试题答案及解析

高一数学框图试题答案及解析

高一数学框图试题答案及解析1.如图所示的程序框图中,输出的结果是()A.21B.101C.231D.301【答案】C【解析】由题意,该程序按如下步骤运行,第一次,输入x=3,计算得=6,不满足,继续运行;第二次计算,x=6,得=21,不满足,继续运行;第三次计算,x=21,得=231,满足,输出,结束运行,故输出231,选C。

【考点】程序框图功能识别点评:简单题,程序框图功能识别,一般按程序逐次运行即可。

2.下列给出的赋值语句中正确的是()A.B.C.D.【答案】B【解析】根据题意,由于赋值语句是将语句或者数值赋值给一个变量,故可知选项A,不成立,选项B,正确,选项C,不能同时赋值给两个变量,错误,选项D,赋值的不是变量和,而是变量,故选B.【考点】赋值语句点评:主要是考查了赋值语句的表示和运用,属于基础题。

3.某程序图如图所示,该程序运行后输出的结果是.【答案】5【解析】解:由图知运算规则是对S=2S,故第一次进入循环体后S=21,第二次进入循环体后S=22=4第三次进入循环体后S=24=16,第四次进入循环体后S=216>2012,退出循环.故该程序运行后输出的结果是:k=4+1=5.故答案为:5【考点】循环结构点评:本题考查循环结构,已知运算规则与最后运算结果,求运算次数的一个题,是算法中一种常见的题型.4.对下面流程图描述正确的是A.是顺序结构,引进4个变量B.是选择结构,引进1个变量C.是顺序结构,输出的是三数中的最大数D.是顺序结构,输出的是三数中的最小数【答案】C【解析】根据题意,由于程序框图可知,该流程图是从上到下的顺序结构组成的,并且是求解a,b中的较大者,同时求解m,c的大数位m,因此可知是求解三数中的最大数,故可知选C.【考点】顺序结构点评:主要是考查了顺序结构的概念和简单的运用,属于基础题。

5.执行下图所示的程序框图,若输入,则输出的值为________________.【答案】【解析】因为输入的x=10,所以,此时满足条件,所以输出的值为.【考点】本小题主要考查循环结构的程序框图的执行.点评:循环结构的程序框图保护直到型循环和当型循环,要分清循环类型,找清楚退出循环的条件.6.如果执行右面的程序框图,那么输出的( )A.-40B.40C.38D.-42【答案】B【解析】程序执行过程中数据的变化如下:输出S为40【考点】程序框图点评:程序框图题关键是分析清楚循环结构执行的次数7.阅读右面的程序框图,则输出的_______;【答案】30【解析】程序执行过程中数据的变化如下:,输出S【考点】程序框图点评:程序框图题目主要是分析清楚循环结构执行的次数8.阅读程序框图,运行相应的程序,则输出的值为()A.3B.4C.5D.6【答案】A【解析】利用循环体,计算每执行一次循环后a的值,即可得出结论.那么可知第一次循环,i=1,a=2;第二次循环,i=2,a=2×2+1=5;第三次循环,i=3,a=3×5+1=16;退出循环,此时输出的值为3,故答案为A【考点】循环结构点评:本试题主要是考查了循环结构,以及学生的读图能力,解题的关键是理解循环结构,属于基础题。

高中数学 专题1.2 程序框图与算法的基本逻辑结构练习(含解析)新人教A版必修3(2021年整理)

高中数学 专题1.2 程序框图与算法的基本逻辑结构练习(含解析)新人教A版必修3(2021年整理)

2016-2017学年高中数学专题1.2 程序框图与算法的基本逻辑结构练习(含解析)新人教A版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学专题1.2 程序框图与算法的基本逻辑结构练习(含解析)新人教A版必修3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学专题1.2 程序框图与算法的基本逻辑结构练习(含解析)新人教A版必修3的全部内容。

程序框图与算法的基本逻辑结构1.下列关于条件结构的描述,不正确的是()A.条件结构的出口有两个,但在执行时,只有一个出口是有效的B.条件结构的判断条件要写在判断框内C.条件结构只有一个出口D.条件结构根据条件是否成立,选择不同的分支执行【答案】C【解析】条件结构的出口有两个,算法的流程根据条件是否成立有不同的流向.故选C。

2.若输入-5,按图中所示程序框图运行后,输出的结果是().A.-5 B.0 C.-1 D.13.某程序框图如图所示,若输出的S=57,则判断框内为().A.k>4? B.k>5? C.k>6? D.k>7?4.阅读如图的程序框图,若输出s的值为-7,则判断框内可填写 ( ).A.i<3? B.i<4? C.i<5? D.i<6?5.如图所示,是求函数y=|x-3|的函数值的程序框图,则①处应填________,②处应填________.【答案】x<3?y=x-3【解析】∵y=|x-3|=错误!∴①中应填x<3?又∵若x≥3,则y=x-3.∴②中应填y=x-3.6.阅读如图所示的程序框图,则问该程序框图输出的结果是________.7.用循环结构书写求1+12+错误!+错误!+…+错误!的算法,并画出相应的程序框图.【解】相应的算法如下:第一步,S=0,i=1.第二步,S=S+错误!.第三步,i=i+1.第四步,i〉1 000是否成立,若成立执行第5步;否则重复执行第二步.第五步,输出S.相应的算法框图如图所示:。

高一数学算法与框图试题答案及解析

高一数学算法与框图试题答案及解析

高一数学算法与框图试题答案及解析1.有下面的程序,运行该程序,要使输出的结果是30,在“”处应添加的条件是______________.【答案】(答案不唯一如:等)【解析】第一次循环:;第二次循环:;第三次循环:;第四次循环:;第五次循环:.故应添加的条件是(答案不唯一如:等)。

【考点】循环语句的理解。

2.阅读下面程序框图运行相应的程序,若输入的值为-8,则输出的值为()A.0B.1C.D.【答案】D【解析】将-8带入程序框图中进行计算,x=-8绝对值大于4,进行下一步,x=12,绝对值依然大于4,再进行下一步,x=8,x=4满足条件,输出,故选择D项。

【考点】程序框图的计算3.下面是计算应纳税所得额的算法过程,其算法如下:第一步输入工资x(注x<=5000);第二步如果x<=800,那么y=0;如果800<x<=1300,那么 y=0.05(x-800);否则 y=25+0.1(x-1300)第三步输出税款y, 结束。

请写出该算法的程序框图和程序。

(注意:程序框图与程序必须对应)【答案】详见解析【解析】根据第一步,开始后,应设计一个数据输入框,由第二步,可知需要设计一个分支嵌套结构,最后还要在结束前有一个数据输出框,根据已知中数据,易得到程序的框图;由框图,将框图中的输入、分支、输出转化为对应语句后,即可得到程序的语句试题解析:【考点】程序语句与程序框图4.将两个数交换,使,下面语句正确一组是()【答案】A【解析】先把的值赋给中间变量,这样,再把的值赋给变量,这样,把的值赋给变量,这样.【考点】赋值语句5.将二进制数转化为四进制数,正确的是()A.B.C.D.【答案】B【解析】先将二进制转化为十进制,即再将28转化为四进制,,选B【考点】二进制6.阅读如图的程序框图,则输出的.【答案】30【解析】第一次循环得到:;第二次循环得到:;第三次循环得到:;第四次循环得到:;满足,所以输出30【考点】程序框图7.程序框图如下:如果上述程序运行的结果为S=132,那么判断框中应填入()A.B.C.D.【答案】A【解析】程序执行中的数据变化如下:成立,输出【考点】程序框图8.某程序框图如图所示,现输入如下四个函数,则可以输出的函数是()A.B.C.D.【答案】D【解析】由题意得,,即函数为奇函数,存在零点,即方程有解,对于函数,则,即函数为奇函数;同时当时,,此时,即函数存在零点,所以输入函数,则输出函数.【考点】1、函数的奇偶性;2、函数零点的应用;3、程序框图.【易错点晴】本题考查了函数的奇偶性及函数零点的应用,属于基础题,解答的关键是把握程序框图的输入与输出,同时把握函数的奇偶性及函数零点的概念是解答的基础,其中函数的零点的处理方法是解答的一个易错点.9.(2015秋•运城期末)执行如图的程序框图,若输人a=319,b=87,则输出的a是()A.19B.29C.57D.76【答案】B【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量a的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:第一次执行循环体后:c=58,a=87,b=58,不满足退出循环的条件;第二次执行循环体后:c=29,a=58,b=29,不满足退出循环的条件;第三次执行循环体后:c=0,a=29,b=0,满足退出循环的条件;故输出的a值为29,故选:B【考点】程序框图.10.执行如图所示的程序框图,若输出的,则判断框中应填入()A.?B.C.D.【答案】D【解析】第一次运行第二次运行第三次运行第四次运行第五次运行第六次运行输出,判断框中应填入,故选D.【考点】程序框图.11.执行如图的程序,若输入的,,则输出的___________.【答案】【解析】本题是一个利用辗转相除法求除以的余数问题,因为,,;,,;,,;,,所以输出的,故答案填.【考点】循环语句.【方法点睛】本题是一个利用循环语句求余数的问题,属于容易题.解决此类问题的基本思路与方法是,把较大的数除以较小的数,并求出所得的余数;再将上面的除数作被除数,所得的余数作除数,并求出新的余数……以此类推,反复重复以上步骤,直到余数为零结束循环,即可求得所需的结果.12.为了鼓励市民节约用水,太原市对已实施“一户一表、水表出户”的居民生活用水的收费标准规定如下:一级水量每户每月9立方米及以下,每立方米销售价格2.30元;二级水量每户每月9立方米以上至13.5立方米,每立方米销售价格为4.60元;三级水量每户每月13.5立方米及以上,每立方米销售价格为6.90元.(1)写出太原市居民每户每月生活用水费用(单位:元)与其用水量(单位:立方米)之间的关系式;(2)如图是按上述规定计算太原市居民每户每月生活用水费用的程序框图,但步骤没有全部给出,请将其补充完整(将答案写在下列横线上).①-______________;②_______________;③______________.【答案】(1);(2)①,②,③.【解析】对于问题(1),可设出居民每户每月生活用水吨,再根据题意对进行分段讨论,进而可得居民每户每月生活用水费用(单位:元)与其用水量(单位:立方米)之间的关系式;对于问题(2),根据(1)的结论便可补充完整居民每户每月生活用水费用的程序框图.试题解析:(1)设居民每户每月生活用水吨,根据题目条件可得;(2)根据(1)的结论可知居民每户每月生活用水费用的程序框图中应对应填写:①、②、③.【考点】1、分段函数;2、程序框图.13.执行下面的程序框图,如果输入的是6,那么输出的是()A.120B.720C.1440D.5040【答案】B【解析】,;;;;;此时输出所以为B.【考点】1.程序框图;14.如右图所示的程序框图中,输出S的值为( )A.10B.12C.15D.18【答案】C【解析】程序执行中的数据变化如下:成立,输出【考点】程序框图15.为调查海口市中学生平均每人每天参加体育锻炼时间(单位:分钟),按锻炼时间分下列四种情况统计:①分钟;②分钟;③分钟;④30分钟以上.有10000名中学生参加了此项活动,如图是此次调查中某一项的流程图,其输出的结果是6200,则平均每天参加体育锻炼时间在分钟内的学生的频率是___________.【答案】0.38【解析】由程序框图,可得该程序框图的功能是计算平均每天参加体育锻炼时间不在在分钟内的学生的人数,即6200,即平均每天参加体育锻炼时间在分钟内的学生的人数为10000-6200=3800,所以平均每天参加体育锻炼时间在分钟内的学生的频率为0.38;故填0.38.【考点】1.程序框图;2.统计.【思路点睛】本题以程序框图为载体考查统计中的频数和频率等知识;解决本题的关键是先分析程序框图,通过程序框图的循环结构判定程序框图的功能,并与该问题中的实际问题结合,要注意程序框图中两个变量的不同,这是处理程序框图问题的关键,也是易错之处.16.将53化为二进制的数,结果为()A.B.C.D.【答案】D【解析】利用“除k取余法”,可得D.【考点】十进制化k进制.17.下面程序运行后,得到的a,b,c分别为()a = 1b= 2c = 3a = bb = cc = aPRINTA, b, cENDA.2,3, 2B.2,3,1C.3,2,1D.3,2,3【答案】A【解析】由赋值语句的含义可知,要特别注意的值,它是由的初始值赋给后又赋给的.【考点】赋值语句.18.某程序框图如图所示,若输出的S=57,则判断框内()(图中K=K+1,S=2S+K)A.k>4?B.k>5?C.k>6?D.k>7?【答案】A【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输入S的值,条件框内的语句是决定是否结束循环,模拟执行程序即可得到答案.程序在运行过程中各变量值变化如下:K S 是否继续循环循环前 1 1 /第一圈 2 4 是第二圈 3 11 是第三圈 4 26 是第四圈 5 57 否故退出循环的条件应为k>4故选A.【考点】程序框图.19.已知某程序框图如图所示,则该程序运行后输出的结果为()A.B.C.D.【答案】A【解析】程序运行过程中,各变量的值如下表示:是否继续循环循环前第一圈是第二圈是第三圈是第四圈是第五圈是…第圈是第圈是第圈是第圈是…第圈是第圈是第圈否所以最后输出的值为,即.故选A.【考点】程序框图.20.如果输入,那么执行下图中算法的结果是()A.输出3B.输出4C.输出5D.程序出错,输不出任何结果【答案】C【解析】选C.【考点】流程图【名师】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.21.根据下边的图,当输入为2016时,输出的A.28B.10C.4D.2【答案】B【解析】由图所示的程序框图,输入,由判断框的条件,进过循环执行后,输出,再执行可得输出的【考点】算法程序框图的应用.22.某程序框图如图所示,若输出的S=57,则判断框内为( )A.k>4B.k>5C.k>6D.k>7【答案】A【解析】程序在运行过程中各变量值变化如下表:K S 是否继续循环循环前 1 1/第一圈 2 4 是第二圈 3 11 是第三圈 4 26 是第四圈 5 57 否故退出循环的条件应为k>4【考点】程序框图23.执行如图所示的程序框图,如果输入的,则输出的s属于()A.[-3,4]B.[-5,2]C.[-4,3]D.[-2,5]【答案】A【解析】此程序为分段函数,当时,,当时,,所以函数的值域为:,故选A.【考点】程序框图24.某程序框图如图所示,该程序运行后输出的n值是8,则从集合中所有满足条件的S值为()A.0B.1C.3D.4【答案】A【解析】经过第一次循环得到的结果为,n=1,不输出,满足判断框的条件即;经过第二次循环得到的结果为,n=2,不输出,满足判断框的条件即;经过第三次循环得到的结果为,n=3,不输出,满足判断框的条件即;经过第四次循环得到的结果为,n=4,不输出,满足判断框的条件即;经过第五次循环得到的结果为,n=5,不输出,满足判断框的条件即;经过第六次循环得到的结果为,n=6,不输出,满足判断框的条件即;经过第七次循环得到的结果为,n=7,不输出,满足判断框的条件即;经过第八次循环得到的结果为,n=8,输出,不满足判断框的条件即.∵,∴.故答案为:A.【考点】循环结构的作用 .25.在下边程序中,如果输入的值是20,则输出的值是【答案】150【解析】由条件可知,本程序实际为分段函数所以输出的y值为150 .【考点】程序框图 .26.给出一个算法:根据以上算法,可求得的值为___________.【答案】【解析】根据题意得:,所以.【考点】条件语句;分段函数.27.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【答案】B【解析】由a=14,b=18,a<b,则b变为18-14=4,由a>b,则a变为14-4=10,由a>b,则a变为10-4=6,由a>b,则a变为6-4=2,由a<b,则b变为4-2=2,由a=b=2,则输出的a=2【考点】程序框图28.计算__________.(用二进制表示)【答案】【解析】11011(2)-101(2)=1×20+1×21+1×22+1×23-1×20+0×21+1×22=11.故答案为:11.【点睛】本题以进位制的转换为背景考查算法的多样性,解题的关键是熟练掌握进位制的转化规则,属于记忆型题,计算题.29.辗转相除法是求两个正整数的()的方法.A.平均数B.标准差C.最大公约数D.最小公倍数【答案】C【解析】辗转相除法是与更相减损术是数学中见的求最大公约数的方法.故本题选.30.对应的二进制数是()A.B.C.D.【答案】A【解析】对应的十进制数是,则对应的二进制数是。

(完整word)高中数学算法框图习题及详解.doc

(完整word)高中数学算法框图习题及详解.doc

专题复习:算法框图高中数学算法框图习题(含答案详解)一、1. (理 )如所示算法程序框运行,入a= tan315 ,°b= sin315 ,°c= cos315 ,° 出果 ()2 2A. 2 B .-2 C.- 1 D .1[答案 ] C[解析 ] a、 b、 c 三数中的最小,又cos315 °>0, sin315 =°-2此程序框是出 2,2tan315 =°- 1<-2,故 C.2.下列程序运行后出果()x= 1;for i = 1 10x= 2]A.1B.23 C. 113 D.以上都不[答案 ] B[解析 ] 每一次循 x 都重新,与原来 x 的无关,故最后出x 的只与最后一次循 i 的有关,∵i =10,∴ x=23.1( 共 6 个 2)的的算法的程序框,中的判断框中填3. (理 )下面是求 12+12+⋯+ 2A . i ≤5? B. i <5? C.i ≥5? D. i>5?[答案 ] A[解析 ] 由于所给计算的表达式中共有 6 个2,故只需 5 次循环即可,由此控制循环次数的变量i 应满足 i≤ 5.故选 A.4. (理 )已知数列 { a n} 中, a1= 1, a n+1= a n+ n,利用如图所示的程序框图计算该数列第10 项,则判断框中应填的语句是( )A . n>10B . n≤ 10 C. n<9 D. n≤ 9[答案 ] D[解析 ] 本题在算法与数列的交汇处命题,考查了对程序框图的理解能力.数列{ a } 是n一个递推数列,因为递推公式为a1 n +1 n 10 9= 1, a = a + n,故 a =a+9,因为循环体为m=m +1, n= n+ 1,当 n= 10 时结束循环,故判断框内应为n≤ 9.5. (理 )下列程序运行后输出结果为()S= 1;n= 1;while S<100S = S* n ;n = n + 3;endnA . 4B .10C . 13D . 16[答案 ]C[解析 ]S = 1<100,进行第一次循环后S = 1, n = 4; S = 1<100再进行第二次循环.循环后 S = 4,n = 7;第三次循环后 S = 28,n = 10;第四次循环后 S = 280,n = 13.因 故不再循环,跳出循环后输出 n = 13. 6. (文 )在如图的程序框图中,若输入 m = 77,n = 33,则输出的 n 的值是( S = 280>100,)A . 3B . 7C . 11D . 33[答案 ] C[解析 ] 这个程序框图执行的过程是:第一次循环: m = 77,n = 33, r =11;第二次循环: m = 33,n = 11, r = 0.因为 r =0,则结束循环,输出n = 11.7.下面的程序框图,若输入 a = 0,则输出的结果为 ( )A . 1022B . 2046C . 1024D . 2048[答案 ] B[解析 ]由程序框图中的循环结构可得到递推公式, a = 2a + 2,且 a = 0,由 ak +1k1k +1a k +1 + 2=2a k + 2 可得, a k +1+ 2= 2(a k + 2),即 = 2 且 a 1+ 2= 2,∴ { a k + 2} 是以 2 为公比, 2a + 2k为首项的等比数列, ∴ a + 2= 2×2 k - 1k,即 ak11= 2k = 2 - 2,从而a = 2 - 2= 2046,故选k11B.[点评 ]本题的关键是弄清输出的a 的值为数列{ a n } 的第几项,k =1 算出的是a 2,k = 2满足条件得a 3,故k =10满足条件计算后得到a 11,k = 11不满足,故输出的是a 11 而不是a 10,有不少人在这里搞不清楚,以为判断条件是k ≤ 10,故最后输出的是 a 10,这是没有完整理解算法的典型表现. 因为对同一个判断条件k ≤10,a =2a + 2 与 k = k + 1 语句的先后顺序不同输出结果也不同, 还与 k 的初值有关等等, 故应统盘考虑, 解决的一个有效途径就是循环几次把握其规律.【解答题】8.为了让学生更多的了解“数学史”知识,其中学高二年级举办了一次“追寻先哲的足迹, 倾听数学的声音”的数学史知识竞赛活动,共有 800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分 )进行统计.请你根据频率分布表,解答下列问题:序号 (i) 分组 (分数 ) 组中值 (G i) 频数 (人数 ) 频率 (F i)1 [60,70) 65 ①0.122 [70,80) 75 20 ②3 [80,90) 85 ③0.244 [90,100] 95 ④⑤合计50 1(1)填充频率分布表中的空格 (在解答中直接写出对应空格序号的答案);(2)为鼓励更多的学生了解“数学史”知识,成绩不低于85 分的同学能获奖,请估计在参加的 800 名学生中大概有多少同学获奖?(3)在上述统计数据的分析中有一项计算见算法流程图,求输出S 的值.[解析 ] (1)∵样本容量为50,∴①为 6,②为 0.4,③为 12,④为 12,⑤为 0.24.(2)在 [80,90) 之间, 85 分以上约占一半,∴12× 0.24+ 0.24 × 800= 288,即在参加的800 名学生中大概有288 名同学获奖.(3)由流程图知S= G1 F1+ G2F2+ G3F3+G4F 4=65×0.12+ 75× 0.4+ 85× 0.24+ 95× 0.24= 81.。

高考数学一轮复习专题11.4算法及框图练习(含解析)

高考数学一轮复习专题11.4算法及框图练习(含解析)

高考数学一轮复习专题11.4算法及框图练习(含解析)11.4 算法与框图1.算法算法通常是指对一类问题的机械的、统一的求解方法.2.流程图流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.3.三种基本逻辑结构(1)依次进行多个处理的结构称为顺序结构,是任何一个算法都离不开的基本结构.其结构形式为(2)选择结构是先根据条件作出判断,再决定执行哪一种操作的结构.其结构形式为(3)循环结构是指需要重复执行同一操作的结构,需要重复执行的同一操作称为循环体.循环结构又分为当型和直到型.其结构形式为【套路秘籍】---千里之行始于足下4.算法语句(1)赋值语句用符号“←”表示,“x←y”表示将y的值赋给x,其中x是一个变量,y是一个与x同类型的变量或表达式.一般格式为:变量名←表达式.(2)输入、输出语句用输入语句“Read a,b”表示输入的数据依次送给a,b,用输出语句“Print x”表示输出运算结果x.(3)条件语句条件语句的一般形式是If A ThenBElseCEnd If(4)循环语句①当型循环a.While循环当循环次数不能确定时,可用“While”语句来实现循环.“While”语句的一般形式为b.For循环当循环的次数已经确定,可用“For”语句表示,“For”语句的一般形式为②直到型循环直到型循环的一般形式为考向一 程序框图例1 (1)如图是一个求函数值的算法流程图,若输入的x 的值为5,则输出的y 的值为________.(2)如图给出的是计算12+14+16+18+…+196的值的一个流程图,其中判断框内应填入的条件是________.【答案】(1)-15 (2)i >48【解析】(1)由题意,y =⎩⎪⎨⎪⎧ 2x -3,x <0,5-4x ,x ≥0,当x =5时,y =5-4×5=-15,所以输出的y 的值为-15.(2)程序运行过程中,各变量值如下:第1次循环:S =0+12=12,n =4,i =2, 第2次循环:S =12+14,n =6,i =3,第3次循环:S =12+14+16,n =8,i =4, 依次类推,第48次循环:S =12+14+16+18+…+196,n =98,i =49,退出循环体. 所以判断框内应填入的条件是i >48.【举一反三】1.执行如图所示的流程图,输出的s 值为________.【答案】 56【解析】 初始化数值k =1,s =1,循环结果执行如下:第一次:s =1+(-1)1·12=12,k =2,k =2≥3不成立; 第二次:s =12+(-1)2·13=56,k =3,k =3≥3成立, 循环结束,输出s =56. 2.执行如图所示的流程图,如果输入n =3,则输出的S =________.【答案】 37【解析】 第一步运算:S =11×3=13,i =2; 第二步运算:S =13+13×5=25,i =3; 第三步运算:S =25+15×7=37,i =4>3. 故S =37.考向二 算法案例【例2】(1).用辗转相除法求510和357的最大公约数( )A .51B .27C .8D .3(2)下列各数转化成十进制后最小的数是 ( )A .111111(2)B .210(6)C .1000(4)D .81(9)(3)用秦九韶算法计算函数7542()75422f x x x x x x =+++++,当1x =时的值,则3V =__________.【答案】(1)A (2)A (3)16【解析】(1)由辗转相除法得51035711533571532511535130=⨯+⎧⎪=⨯+⎨⎪=⨯+⎩,故51为510和357的最大公约数.选A.(2)111111(2)= 1×25+1×24+1×23+1×22+1×2+1=63;210(6)=2×62+1×6+0=78;1000(4)=1×43=64;81(9)=8×9+1=73故选A.(3)由秦九韶算法可得:f (x )=7x 7+5x 5+4x 4+2x 2+x+2=((((((7x )x+5)x+4)x )x+2)x+1)x+2. 当x=1时的值,则V 0=7,V 1=7×1=7,V 2=7×1+5=12,V 3=12×1+4=16. 故答案为:16.【举一反三】1.用秦九韶算法求多项式()5424231f x x x x =+-+,当3=x 时,3=v __________. 【答案】123.【解析】根据秦九韶算法,把多项式改写成如下形式:()()()()()420301f x x x x x x =++-++40=v ,143214v =⨯+=,2143042v =⨯+=,34233123v =⨯-=,3123v ∴=.故答案为:123.2.十进制数2015等值于八进制数为( )A .3737(8)B .737(8)C .03737(8)D .7373(8) 【答案】A【解析】因为所以十进制数2015等值于八进制数为:3737.故选:A3.用更相减损术求117和182的最大公约数时,需做减法的次数是( )。

高一数学算法与框图试题答案及解析

高一数学算法与框图试题答案及解析

高一数学算法与框图试题答案及解析1.给出50个数,1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,…,以此类推.要求计算这50个数的和.先将右面给出的程序框图补充完整,再根据程序框图写出程序.1.把程序框图补充完整:(1)________________________(2)________________________2.程序:(答案写到答题卡上)【答案】1.(1)i < = 50(2)p=" p" + i ; 2.程序详见试题解析.【解析】1.按照程序框图执行下去,即可把(1)(2)补充完整;2.用当型循环把程序框图改写成算法语句即可.(1)i < = 50 ;(2)p=" p" + I 7分(2)程序:i=1p=1s=0WHILE i<="50"s=" s" + pp=" p" + ii=i+1WENDPRINT sEND 10分【考点】程序框图、算法语句.2.下边框图表示的算法的功能是()A.求和S=2+22+…+264B.求和S=1+2+22+…+263C.求和S=1+2+22+…+264D.以上均不对【答案】C【解析】程序第一次执行循环结构后,因此排除A,当时执行循环结构,因此最后一个加的数是,因此C正确【考点】程序框图3.将十进制数化成二进制数为.【答案】【解析】,,,,所以十进制数51化成二进制数为【考点】十进制数与二进制数的转化.4.运行下图所示的程序,如果输出结果为sum=1320,那么判断框中应填()A.i≥9B.i≥10C.i≤9D.i≤10【答案】B【解析】此程序框图是求从12开始的,递减的正整数的成绩,因为输出的是,而,所以只有3次进入循环结构,那么判定框应填入【考点】1.程序框图的应用;2.条件结构;3.循环结构.5.下面关于算法的说法正确的是()A.秦九韶算法是求两个数的最大公约数的方法B.更相减损术是求多项式的值的方法C.割圆术是采用正多边形面积逐渐逼近圆面积的算法计算圆周率D.以上结论皆错【答案】C【解析】秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法,故A不正确;更相减损术是求两个数的最大公约数的方法,故B不正确;割圆术是采用正多边形面积逐渐逼近圆面积的算法计算圆周率,正确,故选C。

高二数学算法与框图试题答案及解析

高二数学算法与框图试题答案及解析

高二数学算法与框图试题答案及解析1.设,,c,则()A.B.C.D.【答案】B【解析】故选B2.看下面的伪代码,最终输出的结果是()S←0For I from 1 to 100 step 2S←S+I2End forPrint SA.1+2+3+…+100B.12+22+32+…+1002C.1+3+5+…+99D.12+32+52+…+992【答案】D【解析】根据语句“For I from 1to 100step 2”得到I的取值,然后根据循环体可值所求结果.解:∵For I from 1 to 100 step 2∴I的取值为1,3,5,…,99∵S←0,S←S+I2∴最终输出的结果是12+32+52+ (992)故选D.点评:本题主要考查了循环语句,解题的关键是弄清I的取值可能,属于基础题.3.计算机是将信息转换成二进制数进行处理的,二进制即“逢二进一”,如:表示二进制的数,将它转换成二进制的形式是,那么将二进制数转换成十进制的形式是()A.B.C.D.【答案】 C【解析】解.考点;二进制、十进制之间的转化.点评:本题考查的知识点是二进制、十进制之间的转化.4.下面是一个算法的伪代码,输出结果是.【答案】14【解析】第一次循环:;第二次循环:;第三次循环:;结束循环,输出【考点】循环结构流程图3,则输出y的值为()5.执行如图所示的程序框图,若输入x的值为2+log2A.B.C.D.【答案】【解析】程序框图执行过程中的数据变化如下:【考点】程序框图的应用6.若所给的程序运行结果为,那么判断框中应填入的关于的条件是A.?B.C.D.?【答案】D【解析】模拟算法:满足条件;满足条件;不满足条件,输出,故判断框中应填?,选D.【考点】程序框图.7.执行如图所示程序框图(算法流程图),输出的结果是A.5B.6C.7D.8【答案】C【解析】模拟算法:是的倍数;,,不成立;不是的倍数,,,不成立;是的倍数,,,不成立;不是的倍数,,,不成立;是的倍数,,,不成立;不是的倍数,,,成立,输出,故选C.【考点】程序框图.8.用辗转相除法求与的最大公约数时,需做的除法次数为A.3B.4C.5D.6【答案】A【解析】因为,所以共做3次除法运算可求两个数的最大公约数,故选A.【考点】算法案例.9.程序框图中表示计算的是()A.B.C.D.【答案】A【解析】A中执行框可表示计算;B中为输入输出框;C中为判断框;D中为起止框【考点】程序框图10.如图所示,程序框图(算法流程图)的输出结果是()A.B.C.D.【答案】B【解析】第一次循环可得:,满足条件继续循环;第二次循环可得:,满足条件继续循环;第三次循环可得:,不满足条件,跳出循环体,可得,故选择【考点】流程图11.某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4?B.k>5?C.k>6?D.k>7?【答案】A【解析】,此时输出,所以判断框内应为k>4?.【考点】1.程序框图;12.设计程序框图计算12+22+32+…+10002,并写出程序.【答案】【解析】本题属于程序框图和程序语句的书写,是常见的一种框图,在书写的过程中注意判断框中的判定条件是什么,以及用哪一种循环结构.试题解析:【考点】1.程序框图;2.程序语句;13.下边程序执行后输出的结果是()。

【精品】高中数学 必修3_算法与程序框图_知识点讲解+巩固练习(含答案)_基础

【精品】高中数学 必修3_算法与程序框图_知识点讲解+巩固练习(含答案)_基础

算法与程序框图【学习目标】1.初步建立算法的概念;2.让学生通过丰富的实例体会算法的思想;3.让学生通过对具体问题的探究,初步了解算法的含义;4.掌握程序框图的概念;5.会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构;6.掌握画程序框图的基本规则,能正确画出程序框图.【要点梳理】【高清课堂:算法与程序框图 397425 知识讲解1】要点一、算法的概念1、算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,现代意义的算法是指可以用计算机来解决的某一类问题的程序和步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2、算法的特征:(1)确定性:算法的每一步都应当做到准确无误、“不重不漏”.“不重”是指不是可有可无的、甚至无用的步骤,“不漏”是指缺少哪一步都无法完成任务.(2)逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.(3)有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制的持续进行.(4)不唯一性:求解某一个问题的算法不一定是唯一的,对于一个问题可以有不同的算法.3、设计算法的要求(1)写出的算法,必须能解决一类问题(如:判断一个整数35是否为质数;求任意一个方程的近似解……),并且能够重复使用.(2)要使算法尽量简单、步骤尽量少.(3)要保证算法正确.且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的.4、算法的描述:(1)自然语言:自然语言就是人们日常使用的语言,可以是汉语、英语或数学语言等.用自然语言描述算法的优点是通俗易懂,当算法中的操作步骤都是顺序执行时比较容易理解.缺点是如果算法中包含判断和转向,并且操作步骤较多时,就不那么直观清晰了.(2)程序框图:所谓框图,就是指用规定的图形符号来描述算法,用框图描述算法具有直观、结构清晰、条理分明、通俗易懂、便于检查修改及交流等特点.(3)程序语言:算法最终可以通过程序的形式编写出来,并在计算机上执行.要点诠释:算法的特点:思路简单清晰,叙述复杂,步骤繁琐,计算量大,完全依靠人力难以完成,而这些恰恰就是计算机的特长,它能不厌其烦地完成枯燥的、重复的繁琐的工作,正因为这些,现代算法的作用之一就是使计算机代替人完成某些工作,这也是我们学习算法的重要原因之一.事实上,算法中出现的程序只是用基本的语句把程序的主要结构描述出来,与真正的程序还有差距,所以算法描述的许多程序并不能直接运行,要运行程序,还要把程序按照某种语言的严格要求重新改写才行.【高清课堂:算法与程序框图 397425 知识讲解2】要点二、程序框图1、程序框图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形.2、构成程序框的图形符号及其作用处理框赋值、计算.算法中处理数据需要的算式、公式等,它们分别写在不同的用以处理数据的处理框内.判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时在出口处则标明“否”或“N”.流程线算法进行的前进方向以及先后顺序连结点连接另一页或另一部分的框图3、程序框图的构成一个程序框图包括以下几部分:实现不同算法功能的相对应的程序框;带箭头的流程线;程序框内必要的说明文字.4、算法的三种基本逻辑结构(1)顺序结构顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的.它是由若干个依次执行的步骤组成的,它是任何一个算法都离不开的一种基本算法结构.见示意图和实例:顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤.如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所指定的操作.(2)条件结构如下面图示中虚线框内是一个条件结构,此结构中含有一个判断框,算法执行到此判断给定的条件P是否成立,选择不同的执行框(A框、B框).无论P条件是否成立,只能执行A框或B框之一,不可能既执行A框又执行B框,也不可能A框、B框都不执行.A框或B框中可以有一个是空的,即不执行任何操作.见示意图要点诠释:条件结构中的条件要准确,不能含混不清,要清楚在什么情况下需要作怎样的判断,用什么条件来区分.(3)循环结构在一些算法中要求重复执行同一操作的结构称为循环结构.即从算法某处开始,按照一定条件重复执行某一处理过程.重复执行的处理步骤称为循环体.循环结构有两种形式:当型循环结构和直到型循环结构.①当型循环结构,如左下图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,返回来再判断条件P是否成立,如果仍然成立,返回来再执行A框,如此反复执行A框,直到某一次返回来判断条件P不成立时为止,此时不再执行A框,离开循环结构,继续执行下面的框图.②直到型循环结构,如右下图所示,它的功能是先执行重复执行的A框,然后判断给定的条件P是否成立,如果P仍然不成立,则返回来继续执行A框,再判断条件P是否成立,依次重复操作,直到某一次给定的判断条件P成立为止,此时不再返回来执行A框,离开循环结构,继续执行下面的框图.见示意图要点诠释:循环结构中使用什么样的条件控制循环的开始和结束,要清楚满足某个条件的变量的次数与循环次数的联系与区别.误区提醒1、框图中的流程线不能出现交叉的现象.若有交叉,则程序语句无法写出;2、各种框图有其固定的格式和作用,不要乱用.如条件结构中不要忘了“是”与“否”,流程线不要忘记画箭头;3、条件分支结构的方向要准确;4、循环结构中,计数变量要赋初值,计数变量的自加不要忘记,自加多少不能弄错.另外计数变量一般只负责计数任务;5、循环结构中循环的次数要严格把握,区分“<”与“≤”等.循环变量的取值与循环结构(当型与直到型)有关,需区分清楚.另外,同一问题用两种不同的结构解决时,其判断条件恰是相反的;6、程序框图不要出现死循环(无限步的循环).【典型例题】类型一:算法的概念例1.(1)下列描述不能看作算法的是().A.做米饭需要刷锅,淘米,添水,加热这些步骤B.洗衣机的使用说明书C.解方程2x2+x-1=0D.利用公式S=πr2,计算半径为4的圆的面积,就是计算π×42(2)下列关于算法的说法:①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生明确的结果.其中正确的有().A.1个B.2个C.3个D.4个【答案】(1)C (2)C【解析】(1)A、B、D都描述了解决问题的过程,可以看作算法.而C只描述了一个事实,没说明怎么解决问题,不是算法.(2)根据算法的特征可以知道,算法要有明确的开始与结束,每一步操作都必须是明确而有效的,必须在有限步内得到明确的结果,所以②③④正确.而解决某一类问题的算法不一定是唯一的,故①错误.【点评】算法一般是机械的,有时需要进行大量的重复计算,只要按部就班去做,总能算出结果.通常把算法过程称为“数学机械化”,数学机械化的最大优点是它可以借助计算机来完成.实际上处理任何问题都需要算法,如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如申请出国有一系列的先后手续,购买物品也有相关的手续…….举一反三:【变式1】我们已学过的算法有求解一元二次方程的求根公式,加减消元法求二元一次方程组的解,二分法求出函数的零点等,对算法的描述有:①对一类问题都有效;②算法可执行的步骤必须是有限的;③算法可以一步一步地进行,每一步都有确切的含义;④是一种通法,只要按部就班地做,总能得到结果.以上算法的描述正确的有().A.1个B.2个C.3个D.4个【答案】D类型二:算法的描述例2.写出求方程组32142x yx y-=⎧⎨+=-⎩①②的解的算法.【解析】可利用消元法或代入法求解.算法一:第一步:②×2+①,得到5x=14-4.③第二步,解方程③,可得x=2.④第三步,将④代入②,可得2+y=-2.⑤第四步,解⑤得y=-4.第五步,得到方程组的解为24 xy=⎧⎨=-⎩算法二:第一步,由②式移项可以得到x=-2-y.③第二步,把③代入①,得y=-4.④第三步,把④代入③,得x=2.第四步,得到方程组的解为24xy=⎧⎨=-⎩.【点评】通过求解二元一次方程组可知,求解某个问题的算法不一定唯一.对于具体的实例可以选择合适的算法,尽量做到“省时省力”,使所用的算法是最优算法.举一反三:【变式1】试描述求解三元一次方程组1233162x y zx y zx y z++=⎧⎪--=⎨⎪--=-⎩①②③的算法步骤.【解析】算法1:第一步,①+③,得x=5.④第二步,将④分别代入①式和②式可得73 1y zy z+=⎧⎨+=-⎩⑤⑥.第三步,⑥-⑤,得y=-4.⑦第四步,将⑦代入⑤可得z=11.第五步,得到方程组的解为5411xyz=⎧⎪=-⎨⎪=⎩.算法2:第一步,①+②,得2x-y=14.④第二步,②-③,得x-y=9.⑤第三步,④-⑤,得x=5.⑥第四步,将⑥代入⑤式,得y=-4.⑦第五步,将⑥和⑦代入①式,得z=11.第六步,得到方程组的解为5411x y z =⎧⎪=-⎨⎪=⎩.类型三:算法的设计【高清课堂:算法与程序框图 397425 算法中的例1】例3.设计一个算法,从3个互不相等的数中选出最小的一个数.,并用数学语言表达. 【解析】第一步:假定这3个数中第一个是“最小值”;第二步:将第二个数与“最小值”比较,如果它小于此“最小值”,那么就用这个数取代“最小值”;第三步:再重复第二步,将第三个数与最小值比较,如果它小于此“最小值”,那么就用这个数取代“最小值”;第四步:此时的“最小值”就是三个数中的最小值,输出最小值. 所谓的算法,就是解决该类问题的一般步骤.举一反三:【变式1】一位商人有9枚银元,其中有1枚略轻的是假银元.你能用天平(不用砝码)将假银元找出来吗?【解析】第一步:任取2枚银元分别放在天平的两边,如果天平左右不平衡,则轻的一边就是假银元;如果天平平衡,则进行第二步.第二步:取下右边的银元放在一边,然后把剩余的7枚银元依次放在右边进行称量,直到天平不平衡,偏轻的那一边就是假银元.(注意:算法不唯一)类型四:顺序结构的应用【高清课堂:算法与程序框图 397425 程序框图中的例1】 例4.对于一个二次函数2y ax bx c =++,求出顶点坐标. 【解析】算法步骤:S1 用户输入二次函数的系数a,b,c ;S2 计算顶点坐标24,24b ac b x y a a-=-=(赋值); S3 输出顶点坐标.算法框图:举一反三:【变式1】已知x=40,y=3.画出计算z=15x+8y的值的程序框图.【答案】程序框图如下图所示.类型五:条件结构的应用例5.已知函数232 1 (0)1 (01)2 (1)x xy x xx x x-<⎧⎪=+≤<⎨⎪+≥⎩,写出求该函数的函数值的算法,并画出程序框图.【解析】该函数是分段函数,因此当给出一个自变量x的值时,需先判断x的范围,然后确定利用哪一段的解析式求函数值.画程序框图时,必须采用条件分支结构,因为函数解析式分了三段,所以需要两个判断框,即进行两次判断.算法如下:第一步,输入x.开始结束计算顶点坐标24,24b ac bx ya a-=-=输出顶点坐标输入a,b,c的值第二步,如果x<0,那么使y=2x-1,输出y;否则,执行第三步.第三步,如果0≤x<1,那么使y=x2+1,输出y;否则,执行第四步.第四步,y=x2+2x第五步,输出y.程序框图如下图所示.【点评】凡是必须先根据条件作出判断,然后再决定进行哪一个步骤的问题,在画程序框图时,必须引入判断框,采用条件结构.而像本题求分段函数的函数值的程序框图的画法,如果是分两段的函数,只需引入一个判断框;如果是分三段的函数,需引入两个判断框;分四段的函数需引入三个判断框,依此类推.判断框内的内容是没有固定顺序的.举一反三:【变式1】已知函数1 (0)()0 (0)1 (0)xf x xx->⎧⎪==⎨⎪<⎩,写出求函数()f x的任一函数值的一个算法并画出程序框图.【解析】记y=f (x).算法:第一步:输入x.第二步:如果x>0,那么使y=-1;如果x=0,那么使y=0;如果x<0,那么使y=1.第三步:输出函数值y.程序框图如下图所示.【变式2】如果学生的成绩大于或等于60分,则输出“及格”,否则输出“不及格”.用程序框图表示这一算法过程.【答案】开始结束输入成绩AA <60?输出“及格”输出“不及格”是否类型六:循环结构的应用例6.设计一个计算1+3+5+7+…+999的值的算法,并画出程序框图. 【解析】 算法一:当型循环:第一步,令S=0,i=1.第二步,若i ≤999成立,则执行第三步;否则输出S ,结束算法. 第三步,S=S+i .第四步,i=i+2,返回第二步,程序框图如图(1).算法二:直到型循环:第一步,令S=0,i=1. 第二步,S=S+i . 第三步,i=i+2.第四步,若i 不大于999,转第二步;否则,输出S ,结束算法.程序框图如图1-1-8(2). 【点评】 注意直到型循环和当型循环的区别.直到型循环先执行i=i+2,再判断i >999是否成立,若成立才输出S ;而当型循环先判断i ≤999是否成立,若成立,则执行i=i+2,直到条件i ≤999不成立才结束循环,输出S . 举一反三:【变式1】已知函数2log ,2,2, 2.x x y x x ≥⎧=⎨-<⎩下图表示的是给定x 的值,求其对应的函数值y 的程序框图,①处应填写__________;②处应填写__________.【答案】2x <;2log y x =【解析】分段函数2log ,2,2,2x x y x x ≥⎧=⎨-<⎩中x 的范围对应程序框图中的判断条件,填2x <;解析式对应赋值框的内容,填2log y x =.【变式2】画出计算111135999++++L的值的一个程序框图.【解析】所求程序框图如下图所示类型七:利用算法和程序框图解决实际问题例7.北京获得了2008年第29届奥运会主办权.你知道在申办奥运会的最后阶段,国际奥委会是如何通过投票决定主办权归属的吗?对选出的5个申办城市进行表决的操作程序是:首先进行第一轮投票,如果有一个城市得票超过总票数的一半,那么该城市就获得主办权;如果所有申办城市得票数都不超过总票数的一半,则将得票最少的城市淘汰,然后重复上述过程,直到选出一个申办城市为止.试画出该过程的程序框图.【解析】本题为算法中与现实生活相联系的题目,从选举的方法看,应选择循环结构来描述算法.如图所示:【点评】解决与现实相关的问题时首先要理清题意,此循环结构中对用哪一个步骤控制循环,哪一个步骤作为循环体,要有清晰的思路.举一反三:【变式1】儿童乘坐火车时,若身高不超过1.1 m,则无需购票;若身高超过1.1 m,但不超过1.4 m,可买半票;若超过1.4 m,应买全票,请设计一个算法,并画出程序框图.【解析】根据题意,该题的算法中应用条件结构,首先以身高为标准,分成买和免票,在买票中再分出半票和全票.买票的算法步骤如下:第一步:测量儿童身高h.第二步:如果h≤1.1 m,那么免费乘车,否则若h≤1.4 m,则买半票,否则买全票.程序框图如下图所示.【点评】本题的程序框图中有两个判断点,一个是以1.1 m为判断点,1.1 m把身高分为两段,在大于1.1 m的一段中,1.4 m又将其分两段,因此1.4 m这个判断是套在1.1 m的判断里的.所以我们用到两个条件结构.【巩固练习】1.下列说法正确的是().A.一个算法的步骤是可逆的B.一个算法可以无止境地运算下去C.完成一件事情的算法有且只有一种D.设计算法要本着简单方便的原则2.早上从起床到出门需要洗脸刷牙(5 min)、刷水壶(2 min)、烧水(8 min)、泡面(3 min)、吃饭(10 min)、听广播(8 min)几个过程.从下列选项中选出最好的一种算法().A.第一步,洗脸刷牙.第二步,刷水壶.第三步,烧水.第四步,泡面.第五步,吃饭.第六步,听广播B.第一步,刷水壶.第二步,烧水同时洗脸刷牙.第三步,泡面.第四步,吃饭.第五步,听广播C.第一步,刷水壶.第二步,烧水同时洗脸刷牙.第三步,泡面.第四步,吃饭同时听广播D.第一步,吃饭同时听广播.第二步,泡面.第三步,烧水同时洗脸刷牙.第四步,刷水壶3.看下面的四段话,其中不是解决问题的算法的是().A.从黄冈到北京旅游,先坐汽车,再坐火车抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程x2-1=0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再由3+3=6,6+4=10,10+5=15,得最终结果为154.程序框图中“处理框”的功能是()A.赋值B.计算C.赋值或计算D.判断某一条件是否成立5.如下图(左)所示的是一个算法的程序框图,已知a1=3,输出的结果为7,则a2的值是()A.9 B.10 C.11 D.126.输入―1,按上图(右)所示的程序框图运行后,输出的结果是()A.―1 B.0 C.1 D.27.给出一个程序框图,如下图所示,其作用是输入x的值,输出相应的y的值.若要使输入的x的值与输出的y的值相等,则这样的x的值有()A.1个B.2个C.3个D.4个8.某程序框图如下图所示,该程序运行后输出的倒数第二个数是()A.1716B.98C.54D.329.完成不等式2332x x+<+的算法过程:(1)将含x的项移项至不等式的左边,将常数项移至不等式的右边,得;(2)在不等式两边同时除以x的系数,得.10.写出下列算法的功能.(1)图(左)中算法的功能是(a>0,b>0)________;(2)图(右)中算法的功能是______________________.11.如图所示是求小于等于1000的所有正偶数的和的程序框图,则空白处①应为;②应为.12.某程序框图如图所示,若输出的57S=,则判断框内为.13.已知函数2 1 (2)()1 (2)x x xf xx x⎧-+≥=⎨+<⎩,设计一个算法求函数的任一函数值.14.画出解不等式ax+b>0(b ≠0)的程序框图.15.火车站对乘客退票收取一定的费用,具体办法是:按票价每10元(不足10元按10元计算)核收2元;2元以下的票不退.试写出票价为x 元的车票退掉后,返还的金额y 元的算法的程序框图. 【答案与解析】 1.【答案】D【解析】 由算法的定义与特征可得. 2.【答案】C【解析】因为A 选项共用时间36 min ,B 选项共用时间31 min ,C 选项共用时间23 min ,D 选项的算法步骤不符合常理. 3.【答案】C【解析】 C 中没有解决问题的步骤,它不是算法. 4.【答案】C 5.【答案】C【解析】 根据算法的程序框图可知此处求的是122a a +,因为输出的结果是7,所以a 1+a 2=14,又a 1=3,从而a 2=11. 6.【答案】B【解析】根据程序框图应当执行“y=x 2-1”这个处理框,从而有y=0,故选B . 7.【答案】C【解析】经分析知满足该程序框图的函数解析式是2(2)23(25)1(5)x x y x x x x ⎧⎪≤⎪=-<≤⎨⎪⎪>⎩,令y=x , 解得x=0或x=1或x=3,所以满足条件的x 有3个,故选C . 8.【答案】C【解析】由程序框图知,输出的数依次为3,2,32,54,98.所以该程序运行后输出的倒数第二个数是54.9.【答案】(1)1x -<-;(2)1x >10.【答案】(1)求以a,b为直角边的直角三角形斜边c的长(2)求两个实数a,b的和【解析】这两个框图均为顺序结构,直拦可看出答案.11.【答案】;2S S i i i=+=+12.【答案】4k>13.【解析】比如求x=a时f(a)的值,可设计如下的算法:第一步,输入a;第二步,若a≥2,则执行第三步;若a<2,则执行第四步;第三步,输出a2-a+1;第四步,输出a+1.14.【解析】15.【解析】。

高一数学算法与框图试题答案及解析

高一数学算法与框图试题答案及解析

高一数学算法与框图试题答案及解析1.把89化成五进制数的末位数字为()A.1B.2C.3D.4【答案】D【解析】,故,所以89化成五进制数的末位数字为4.【考点】带余除法.2.下列对算法的理解不正确的是()A.一个算法包含的步骤是有限的B.一个算法中每一步都是明确可操作的,而不是模棱两可的C.算法在执行后,结果应是明确的D.一个问题只可以有一个算法【答案】D【解析】算法的特征:确定性、有限性、可行性;算法是解决一类问题的,所以D错误.考点:算法的概念及特征.3.任何一个算法都必须有的基本结构是().A.顺序结构B.条件结构C.循环结构D.三个都有【答案】A【解析】在执行过程中,如果不需要分类讨论就没有条件结构,如果不需要重复执行某些操作,就不需要循环结构,但顺序结构一定有【考点】算法的三种结构4.在右图的算法中,如果输入A=138,B=22,则输出的结果是()A.138B.2C.4D.0【答案】B【解析】程序执行过程中数据变化如下,输出2【考点】程序框图5.如图所示程序框图中,输出()A.B.C.D.【答案】D【解析】由程序框图值,第一次运行;第二次运行;第三次运行;…指导满足条件,运行终止,此时,,故选D.【考点】程序框图6.当时,执行如右图所示的程序框图,输出的值为()A.30B.14C.8D.6【答案】B【解析】当时,,是,进入循环,时,,是,进入循环,时,,是,进入循环,时,,否,所以退出循环,所以.【考点】1.程序框图的应用;2循环结构.7.阅读下图程序框图,运行相应的程序,则程序运行后输出的结果为()A.7B.9C.11D.13【答案】B【解析】首先进入程序,时,,否,所以进入,时,,否,此时,,否,,,否,,,是,所以对称循环,此时输出.【考点】1.循环结构;2.程序框图的应用.8.运行下图所示的程序,如果输出结果为sum=1320,那么判断框中应填()A.i≥9B.i≥10C.i≤9D.i≤10【答案】B【解析】此程序框图是求从12开始的,递减的正整数的成绩,因为输出的是,而,所以只有3次进入循环结构,那么判定框应填入【考点】1.程序框图的应用;2.条件结构;3.循环结构.9.某班有24名男生和26名女生,数据,…是该班50名学生在一次数学学业水平模拟考试中的成绩(成绩不为0),如图所示的程序用来同时统计全班成绩的平均数:,男生平均分:,女生平均分:.为了便于区别性别,输入时,男生的成绩用正数,女生的成绩用其相反数,那么在图中空白的判断框和处理框中,应分别填入()A.B.C.D.【答案】D【解析】根据题意男生平均分用变量表示,女生平均分用变量表示,可得满足条件1时,表示该分数为男生分数,又由男生的成绩用正数,故条件1为,统计结束后,为正数,为负数(女生成绩和的相反数),故此时,故选D。

高中数学《算法与框图》练习题(含答案解析)

高中数学《算法与框图》练习题(含答案解析)

高中数学《算法与框图》练习题(含答案解析)一、单选题1.执行如图所示的程序框图,若输入的10N=,则输出的X=()A.132B.121C.119D.1172.按如图所示的算法框图运算,若输入x=3,则输出k的值是()A.3B.4C.5D.63.运行如图所示的程序框图,若输入的A,B的值分别为5,7,则输出的结果为()A.5,7B.7,5C.7,7D.5,54.用辗转相除法求得288与123的最大公约数是()A.42B.39C.13D.35.流程图中表示判断框的是().A.矩形框B.菱形框C.圆形框D.椭圆形框6.给出如图所示的程序框图,若输入x的值为52-,则输出的y的值是()A.-3B.-1C.-2D.07.执行如图所示的程序框图,如果输入的x,Ry∈,那么输出的S的最大值为()A .0B .1C .2D .48.“大衍数列”来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中华传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.如图是求“大衍数列”前n 项和的程序框图.执行该程序框图,输入6m =,则输出的S =( )A .18B .26C .44D .689.某同学为了求2222123n ++++,设计了如图所示的程序框图,在该程序框图中,①和①两处应分别填入( )A .2,S S i i n =+≥B .2(1),1S S i i n =+-≥+C .2,S S i i n =+>D .2(1),1S S i i n =++≥-10.如图所示的形状出现在南宋数学家杨辉所著的《详解九章算法》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,….如图所示的程序框图,输出的S 即为小球总数,则S =( )A .35B .56C .84D .120二、填空题11.运行如图所示的伪代码,输出的T 的值为________.12.用秦九韶算法求函数432()2321f x x x x x =-+++,当1x =时的值时,2=v ___________.13.执行如图所示的程序框图,若输出的结果为48,则输入k 的值可以为______.14.设2134与1455的最大公约数为m ,则m 化为三进制为__________.三、解答题15.(1)求98的二进制数(2)用辗转相除法求840与1764的最大公约数(3)用秦九韶算法计算函数()432354f x x x x =++-当3x =时的函数值.16.某学校行政机构关系如下:①校长下设两名副校长和校长办公室;①两名副校长又各自管理教务处、教科室和保卫科、政教处、总务处;①各科室共同管理和服务各班级.试画出该校的行政组织结构图.17.任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积.18.用二分法设计一个求方程230x -=在[]1,2上的近似根的算法.(近似根与精确解的差的绝对值不超过0.0005)参考答案与解析:1.B【分析】根据程序循环体内的执行逻辑,依次列出每步的执行结果直到n N ≥,确定输出结果N 即可.【详解】由程序的执行逻辑知:输入10N =,1、1,1X n ==:得1,23X n ==,n N <,执行循环体; 2、13X =,2n =:得1,35X n ==,n N <,执行循环体; 3、15X =,3n =:得1,47X n ==,n N <,执行循环体; 4、17X =,4n =:得1,59X n ==,n N <,执行循环体; …10、119X =,10n =:得121X =,11n N =>,跳出循环体. 输出121X =. 故答案为:B.2.B【分析】根据程序框图依次进行计算即可【详解】当1k =时,1312x =-=;当2k =时,2213x =-=;当3k =时,33126x =-=;当4k =时,42612021x =->,故输出的4k =,故选:B3.B【分析】按照程序框图运行即可.【详解】模拟程序的运行,可得:5A =,7B =,满足A B <,5K =,则7A =,5B =.所以输出A ,B 的值分别为7,5.故选: B .4.D【分析】根据辗转相除法的步骤,将288和133带入进行运算,即可得到答案.【详解】288212342=⨯+12324239=⨯+42393=+39133=⨯故288与123的最大公约数是3故选:D.5.B【分析】根据算法框图中表示判断的是菱形框,即可得出答案.【详解】解:流程图中矩形框表示处理框,菱形框表示判断框,圆形框表示起止框,没有椭圆形框,所以B 选项正确.故选:B【点睛】本题考查流程图中图形符号含义,属于基础题.6.C【分析】模拟执行程序,即可求出输出值; 【详解】解:输入52x =-,则55221222-⎛⎫=> ⎪⎝⎭,满足12?2x ⎛⎫> ⎪⎝⎭, 第二次循环,51222x =-+=-,则11221222-⎛⎫=< ⎪⎝⎭,不满足12?2x ⎛⎫> ⎪⎝⎭,则22222211log log log 22log 2224y -⎛⎫=-===-=- ⎪⎝⎭,输出2-; 故选:C7.D【分析】画出判断条件对应的不等式组所表示的平面区域,结合图形,确定目标函数的最优解,利用程序框图的输出结果,即可求解.【详解】由题意,不等式组002x y x y ≥⎧⎪≥⎨⎪+≤⎩所表示的平面区域,如图所示,目标函数2S x y =+,可化为直线2y x S =-+,当直线2y x S =-+经过点A 时,直线在y 轴上的截距最大,此时目标函数取得最大值,又由02y x y =⎧⎨+=⎩,解得(2,0)A ,所以目标函数的最大值为max 4S ,又由不等式002x y x y <⎧⎪<⎨⎪+<⎩时,根据程序框图,可得1S =,所以输出的S 的最大值为4.故选:D.8.C【分析】根据程序流程图,代入6m =,计算出结果即可.【详解】①6m =,1n =,2102n a -==,0S S a =+=,此时n m <; ①2n =,222n a ==,2S S a =+=,此时n m <; ①3n =,2142n a -==,6S S a =+=,此时n m <; ①4n =,282n a ==,14S S a =+=,此时n m <; ①5n =,21122n a -==,26S S a =+=,此时n m <; ①6n =,2182n a ==,44S S a =+=,此时n m ≥, 结束程序,输出结果为44,故选:C9.C【分析】根据流程图及最后输出的结果逐项判断后可得正确的选项.【详解】对于A ,第1次判断前21,2S i ==,第2次判断前2212,3S i =+=,依次,最后一次判断前,()222121S n =+++-,此时i n =,终止循环, 故此时输出()222121S n =+++-,不合题意.对于C ,第1次判断前21,2S i ==,第2次判断前2212,3S i =+=,依次,最后一次判断前,22212S n =+++,此时1i n =+,终止循环, 故符合题意.对于B ,第1次判断前20,2S i ==,第2次判断前21,3S i ==,依次,最后一次判断前,()222121S n =+++-,此时1i n =+,终止循环, 故此时输出()222121S n =+++-,不合题意.对于D ,第1次判断前22,2S i ==,第2次判断前2223,3S i =+=,依次,最后一次判断前,()222231S n =+++-,此时1i n =-,终止循环, 故此时输出()222231S n =+++-,不合题意.故选:C10.B【分析】设第n 层小球个数为n a ,根据程序框图可知,输出的123456S a a a a a a =+++++,求出各个数即可得到.【详解】设第n 层小球个数为n a ,由题意可知,1n n a a n --=()2n ≥.根据程序框图可知,输出的123456S a a a a a a =+++++,又11a =,23a =,36a =,43410a a =+=,54515a a =+=,65621a a =+=,所以136********S =+++++=.故选:B.11.16【分析】模拟程序的运行过程,即可得出程序运行后的输出结果.【详解】当1T =时,3i =;当134T =+=时,5i =;当459T =+=时,7i =;当9716T =+=时,98i =>.所以输出16T =.故答案为:16.【点睛】本题主要考查了程序语言的应用问题,模拟程序的运行过程是常用的方法,属于基础题. 12.0【分析】利用秦九韶算法的定义计算即可.【详解】012221311110v v v ==⨯-=-=-⨯+=,,故答案为: 013.8(答案不唯一)【分析】根据程序框图依次计算,直至推出48s =截止,判断条件.【详解】执行程序框图,可知:第一次循环:n =1+3=4,S =2×1+4=6;第二次循环:n =4+3=7,S =2×6+7=19;第三次循环:n =7+3=10,S =2×19+10=48,要使得输出的结果为48,可知k 可以为8.故答案为:8(答案不唯一)14.()310121【分析】先求出2134与1455的最大公约数97m =,再利用“辗转相除法”进位方法,即可得出结果.【详解】解:21341455679,1455679297,679977=+=⨯+=⨯,2134∴与1455的最大公约数为97,97m ∴=,用97连续除3得余数,可得:97化为三进制数=()310121.故答案为:()310121.15.(1)()21100010(2)84(3)254【解析】(1)将98写成的幂的和的形式,即可找到98的二进制数;(2)根据辗转相除法的规则,即可求出最大公约数;(3)先将()f x 写成(){}23054x x x x +++-⎡⎤⎣⎦的形式,再计算3x =时01234,,,,v v v v v 的值即可.【详解】(1)6598222=++,所以98的二进制数是()21100010.(2)1764284084=⨯+,8401084=⨯,所以840与1764的最大公约数为84.(3)()(){}23054f x x x x x =+++-⎡⎤⎣⎦.0 3.v =12339.v =⨯+=293027.v =⨯+=3273586.v =⨯+=48634254.v =⨯-=【点睛】本题考查二进制,辗转相除法,秦九昭算法等知识,属于基础题.16.见解析【分析】根据题目中的条件,找出各要素之间的关系,校长只负责两名副校长和校长办公室,所以校长下只有两名副校长和校长办公室,依次类推,两名副校长又各自管理教务处、教科室和保卫科、政教处、总务处;班级由所有的科室负责.【详解】该校的行政组织结构图如图所示:【点睛】本题考查组织结构图的画法,关键是找出各要素之间的关系, 属于基础题.17.见解析【分析】由算法的概念可知:算法是先后顺序的,结果明确性,每一步操作明确的,根据已知半径求圆的面积的算法的先后顺序,即可得出结果.【详解】第一步:输入任意正实数r ;第二步:计算2S r π=;第三步:输出圆的面积S【点睛】本题考查算法的概念,解题关键是算法步骤的排序和格式,属于基础题.18.见解析【分析】计算(1)0,(2)0f f <>,设121,2x x ==,122x x m +=,判断()f m 的符号,根据零点存在定理得到算法.【详解】第一步:令2()3f x x =-,(1)20,(2)10f f =-<=>,∴设121,2x x ==;第二步:令122x x m +=,判断()f m 是否为0,若是,则m 为所求;若不是,则继续判断()1()f x f m ⋅大于0还是小于0; 第三步:若()1()0f x f m ⋅>,则令1x m =;否则,令2x m =;第四步:判断120.0005x x-≤是否成立?若是,则12,x x之间的任意值均为满足条件的近似根;若不是,则返回第二步.【点睛】本题考查了求方程近似根的算法,意在考查学生对于算法的理解和应用。

高一数学算法与框图试题答案及解析

高一数学算法与框图试题答案及解析

高一数学算法与框图试题答案及解析1. 将八进制数135(8)转化为二进制数是( ) A .1110101(2) B .1010101(2)C .111001(2)D .1011101(2)【答案】D【解析】因为135(8)=5×80+3×81+1×82=93,那么除二取余法由下图知,∴93=1011101(2),即135(8)=1011101(2),∴选D . 【考点】同余的性质. 2. 已知则执行如图所示的程序框图后输出的结果等于( )A .B .C .D .其他值【答案】C【解析】解:因为根据框图表示的意思,那么表示的为应该为求解三者中的最小值,那么选C3. .给出一个程序框图,其作用是输入的值,输出相应的值,若要使出入的值与输出的的值相等,则这样的的值有()A.1个B.2个C.3个D.4个【答案】C【解析】略4. 101110(2)转化为等值的八进制数是.【答案】56【解析】101110(2)化为十进制数为,46÷8="5" 65÷8="0" 5,故46(10)=56(8)【考点】二进制八进制与十进制的转化5.下列给出的赋值语句中正确的是()A.4=M B.B=A=3C.x+y=0D.M=-M【答案】D【解析】赋值语句是变量=表达式的形式,所以A错,变量不能出现运算,所以C错,不能够连等,所以B错.【考点】赋值语句6.某同学设计右面的程序框图用以计算和式的值,则在判断框中应填写()A.B.C.D.【答案】C【解析】代入四个选项一次验证可知是成立的,程序执行中的数据变化如下:不成立,输出【考点】程序框图7.阅读下图程序框图,运行相应的程序,则程序运行后输出的结果为()A.7B.9C.11D.13【答案】B【解析】首先进入程序,时,,否,所以进入,时,,否,此时,,否,,,否,,,是,所以对称循环,此时输出.【考点】1.循环结构;2.程序框图的应用.8.下列程序框图中,输出的是()A.B.C.D.【答案】D【解析】按照程序框图可得,;;;;;;由此可得,该框图是一个循环数列,以6为周期,而,所以当时,,则当时,,所以选D.【考点】程序框图9.二进制数定义为“逢二进一”,如表示二进制数,将它转换成十进制形式,是,即转换成十进制数是13,那么类似可定义进制数为“逢进一”,则8进制数转换成十进制数是_________.【答案】130【解析】由题意知,8进制转换成十进制是:【考点】进制之间的转换10.当输入,时,图中程序运行后输出的结果为()A.3; 43B.43;3C.-18;16D.16;-18【答案】A【解析】输入,根据IF语句则结束IF语句,输出选A【考点】IF语句11.下列给出的赋值语句中正确的是A.B.C.D.【答案】A【解析】赋值语句在赋值符号左侧为一个变量,右侧可以是一个式子或一个变量,因此只有A项成立【考点】赋值语句12.某算法的程序框图如图所示,其中输入的变量在1,2,3,…30这30个整数中等可能随机产生.(1)分别求出(按程序框图正确编程运行时)输出的值为的概率;(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行次后,统计记录了输出的值为的频数,下面是甲、乙所作频数统计表的部分数据:甲的频数统计表(部分)乙的频数统计表(部分)当时,根据表中的数据,分别写出甲、乙所编程序各自输出的值为的频率(用分数表示),并判断甲、乙中谁所编写的程序符合算法要求的可能性较大.【答案】(1),,;(2)乙.【解析】对于问题(1)可先将输入的数进行讨论,先分成奇数、偶数两类,若是奇数,则;然后再对是偶数时分成能否被整除两类,若能则,否则;根据以上讨论并结合古典概型的运算方法即可求得输出的值为的概率;对于问题(2)判断甲、乙中谁所编写的程序符合算法要求的可能性较大,其判断标准是看谁计算的的值更接近.试题解析:(1)由题意可得,变量是从这个整数中等可能随机产生的一个数,共有种结果,当变量从这个整数中产生时,输出的值为,所以,当变量从这个整数中产生时,输出的值为,所以,当变量从10,20,30这个整数中产生时,输出的值为,所以;(2)当时,甲、乙所编程序各自输出的值为的频率如下,比较频率可得,乙所编程符合算法要求的可能性较大.【考点】1、程序框图;2、分段函数;3、概率.13.若以下程序框图的输出结果为120,则判断框中应填写的判断条件为()A.B.C.D.【答案】B【解析】由程序框图:,,,,因为,则,【考点】程序框图的读法及应用.14.下列程序语句正确的是()A.输出语句B.输入语句C.赋值语句D.赋值语句【答案】C【解析】(1)赋值语句一般格式:变量名=表达式;(2)输入语句一般格式:INPUT 变量名;(3)输出语句一般格式:PRINT 表达式.【考点】基本算法语句.15.某高中男子体育小组的50米跑成绩(单位:)为:,,画出程序框图,从这些成绩中搜索出小于的成绩.【答案】程序框图见解析.【解析】由题要求,需先进行数据的判断,由于共有个数据,故循环体次数应执行次.试题解析:程序框图:【考点】程序框图.16.运行如下的程序框图,输出的值为()A.4B.3C.2D.1【答案】C【解析】本题程序循环是先判断再执行中,第一次:,,第二次:,,第三次:,满足判断条件,不执行循环,输出.故选C.【考点】程序框图.【名师】程序框图是高考的热点之一,几乎是每年必考内容,多半是考循环结构,基本方法是将每次循环的结果一一列举出来,与判断条件比较即可.17.已知如图的程序,如果程序执行后输出的结果是990,那么在UNTIL后面的“条件”应为()A.i > 9B.i >= 9C.i <= 8D.i < 8【答案】C【解析】运行该程序可得,,由此可知应填条件.【考点】程序中的条件语句.18.执行如图所示的程序框图,若输出的为,则输入的x应为()A.-2B.16C.-2或8D.-2或16【答案】D【解析】由程序框图知:算法的功能是求的值,当x≤1时,输出的;当x>1时,输出的.故选D.【考点】程序框图.19.某程序框图如图所示,若输出的S=57,则判断框内()(图中K=K+1,S=2S+K)A.k>4?B.k>5?C.k>6?D.k>7?【答案】A【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输入S的值,条件框内的语句是决定是否结束循环,模拟执行程序即可得到答案.程序在运行过程中各变量值变化如下:K S 是否继续循环循环前 1 1 /第一圈 2 4 是第二圈 3 11 是第三圈 4 26 是第四圈 5 57 否故退出循环的条件应为k>4故选A.【考点】程序框图.20.如图所示,执行程序框图输出的结果是()A.B.C.D.【答案】B【解析】由程序框图可得;第一次执行为;;第二次执行为;第二次执行为;…….观察可发现输出为;【考点】程序框图的读法.21.运行如图所示的流程图,如果输入,经过四次循环后输出的,则输入正数的值可能是()A.B.C.D.【答案】A【解析】依题意,模拟执行程序框图,可得,不满足条件,第一次执行循环,;不满足条件,第二次执行循环,;不满足条件,第三次执行循环,;不满足条件,第四次执行循环,;由题意得,此时应满足条件,推出循环,输出的值为,所以解得,故选A.【考点】程序框图.22.为了在运行下面的程序之后输出的y值为16,则输入x的值应该是INPUTxIFx<0THENy=(x+1)(x+1)ELSEy=(x-1)(x-1)ENDIFPRINTyENDA.3或-3B.-5C.-5或5D.5或-3【答案】C【解析】本程序含义为:输入x如果x<0,执行:y=(x+1)2否则,执行:y=(x-1)2因为输出y=16由,x<0,可得,x=-5由,x≥0,可得,x=5故x=5或-5【考点】程序语句23.某程序框图如图所示,该程序运行后输出的n值是8,则从集合中所有满足条件的S0值为()A.0B.1C.3D.4【答案】A【解析】经过第一次循环得到的结果为,n=1,不输出,满足判断框的条件即;经过第二次循环得到的结果为,n=2,不输出,满足判断框的条件即;经过第三次循环得到的结果为,n=3,不输出,满足判断框的条件即;经过第四次循环得到的结果为,n=4,不输出,满足判断框的条件即;经过第五次循环得到的结果为,n=5,不输出,满足判断框的条件即;经过第六次循环得到的结果为,n=6,不输出,满足判断框的条件即;经过第七次循环得到的结果为,n=7,不输出,满足判断框的条件即;经过第八次循环得到的结果为,n=8,输出,不满足判断框的条件即.∵,∴.故答案为:A.【考点】循环结构的作用.24.如图所示,程序框图(算法流程图)的输出结果是()A.B.C.D.【答案】B【解析】程序执行中的数据变化如下:不成立,输出【考点】程序框图25.给出一个算法:根据以上算法,可求得的值为___________.【答案】【解析】根据题意得:,所以.【考点】条件语句;分段函数.26.用秦九韶算法计算多项式当时,的值为( )A.B.C.D.【答案】B【解析】选B.27.下面程序的输出结果为()A.3,4B.7,7C.7,8D.7,11【答案】D【解析】∵变量初始值X=3,Y=4,∴根据X=X+Y得输出的X=7.又∵Y=X+Y,∴输出的Y=11.故选D.28.用“秦九韶算法”计算多项式,当时的值的过程中,要经过____________次乘法运算和_________次加法运算.【答案】 5 5【解析】多项式f(x)=5x5+4x4+3x3+2x2+x+1=((((5x+4)x+3)x+2)x+1)x+1不难发现要经过5次乘法5次加法运算.故答案为:5、5【点睛】本题主要考查了分类加法计数原理和一元n次多项式问题,属于基础题,“秦九韶算法”的运算法则是解题关键.29.计算__________.(用二进制表示)【答案】【解析】11011(2)-101(2)=1×20+1×21+1×22+1×23-1×20+0×21+1×22=11.故答案为:11.【点睛】本题以进位制的转换为背景考查算法的多样性,解题的关键是熟练掌握进位制的转化规则,属于记忆型题,计算题.30.下列程序语句的算法功能是( )INPUT a,b,cIF a<b THENa=bEND IFIF a<c THENa=cEND IFPRINT aENDA.输出a, b,c三个数中的最大数B.输出a,b,c三个数中的最小数C.将a,b,c从小到大排列D.将a,b,c从大到小排列【答案】A【解析】当时,取较大的值;当时,取较大的值; 当时,取较大的值;当时,取较大的值;因此输出a, b,c三个数中的最大数,选A.31.下列各组数据中最小的数是()A.B.C.D.【答案】D【解析】,,所以最小的数是故选D点睛:欲比较其大小先将其化为十进制数后再进行比较即可32.如图所示是一个算法程序框图,在集合,中随机抽取一个数值作为输入,则输出的的值落在区间内的概率为()A.0.8B.0.6C.0.5D.0.4【答案】A【解析】根据程序框图可知,其功能为计算因为输出值落在区间,即,①当时,,所以,解得;②当时,(满足题意);③当时,,所以,解得,综上所述,可得的取值为,所以概率为,故选A.33.执行下边程序框图,若输入的分别为,则输出的 ( )A.1B.2C.4D.12【答案】C【解析】程序运行时,值依次为;;;,所以输出,故选C.34.(2013年苏州B6)执行下面的流程图,输出的S=【答案】210【解析】由程序框图知:算法的功能是计算的值,∵循环的条件是.∴输出,故答案为.35.读下侧程序,此程序表示的函数为_______________【答案】【解析】由条件语句原理可得 .36.某程序框图如图所示,若输出的S=26,则判断框内应填入:k>______________;【答案】3【解析】程序在运行过程中各变量值变化如下表:K S 是否继续循环循环前 1 1第一圈 2 4 是第二圈 3 11 是第三圈 4 26 否故退出循环的条件应为k>3故答案为:3.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.37.阅读程序框图,并完成下列问题:(1)若输入x=0,求输出的结果;(2)请将该程序框图改成分段函数解析式;(3)若输出的函数值在区间内,求输入的实数x的取值范围.【答案】(1)1;(2);(3).【解析】(1)由x=0,得:f(0)=20=1;(2)写出分段函数;(3)由函数的值域,解出x的取值范围.试题解析:(1)输入x=0, ,所以输出结果为f(0)=20=1;(2);(3).38.下列给出的赋值语句中正确的是 ( )A.3=A B.M=—M C.B=A=2D.x+y=0【答案】B【解析】赋值语句的形式是将的值复制给,等号左边为一个变量【考点】程序语言点评:正确理解赋值语句的含义:是将的值复制给,B项是将复制给39.用秦九韶算法计算多项式在时的值时, 的值为 ( ) A.-845B.220C.-57D.34【答案】C【解析】原多项式变形为,即,【考点】秦九韶算法求多项式的值点评:利用秦九韶算法求多项式的值首先要将多项式改写为每个括号内为关于x的一次式的形式,由内层括号到外层括号依次为40.阅读右面的程序框图,运行相应的程序,若输入N的值为19,则输出N的值为()A.0B.1C.2D.3【答案】C【解析】第一次N=19,不能被3整除,N=19﹣1=18≤3不成立,第二次N=18,18能被3整除,N= =6,N=6≤3不成立,第三次N=6,能被3整除,N═=2≤3成立,输出N=2,故选:C点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.41.执行如图的程序框图,若输入的p=5,则输出的S的值为________.【答案】【解析】模拟执行程序框图,可得:;满足条件;满足条件;满足条件;满足条件;满足条件;满足条件;不满足条件,推出循环,输出S的值为.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.42.把38化成二进制数为A.B.C.D.【答案】A【解析】解:38=219+0,19=29+1,9=24+1,4=22+0,2=21+0,1=20+1,这样我们可以利用取余法就可以得到结论为的值为43.用秦九韶算法求多项式f(x)=x6-8 x5+60x4+16x3+96x2+240x+64在x=2时,v2_______。

(完整版)高考算法程序框图真题练习及答案详解

(完整版)高考算法程序框图真题练习及答案详解

(完整版)高考算法程序框图真题练习及答案详解1. 该算法程序框图的功能是什么?A. 求a,b,c三数的最大数B. 求a,b,c三数的最小数C. 将a,b,c按从小到大排列2. 该算法程序框图的功能是什么?A. 求输出a,b,c三数的最大数B. 求输出a,b,c三数的最小数C. 将a,b,c按从小到大排列3. 该算法程序框图的功能是什么?A. 找出a、b、c三个数中最大的数B. 找出a、b、c三个数中最小的数C. 找出a、b、c三个数中第二大的数4. 程序框图表示的算法的运行结果是什么?A. 5B. 6C. 75. 程序框图中所表示的算法是什么?A. 求x的绝对值B. 求x的相反数C. 求x的平方根6. 运行图中所示程序框图所表达的算法,输出的结果是什么?A. 3B. 7C. 157. 程序框图(算法流程图)的输出结果是什么?A. 6B. 5C. 48. 运行相应的程序,输出的结果为什么?A. 676B. 26C. 59. 运行相应的程序,输出的结果是什么?A. 1B. 2C. 310. 运行相应的程序,输出的S的值等于什么?A. 18B. 2C. 2111. 当m=7,n=3时,执行如图所示的程序框图,输出的S的值为什么?A. 7B. 42C. 21012. 执行如图所示的程序框图,若输入n=10,则输出的S=什么?A.B.C.13. 运行相应的程序,当输入x的值为-25时,输出x的值为什么?A. -1B. 1C. 314. 运行相应的程序,输出s值等于什么?A. -3B. -10C.15. 执行如图所示的程序框图,若输入n的值为6,则输出s的值为什么?A. 105B.C. 1516. 执行如图所示的程序框图,则输出的S的值是什么?A.B. 16C.D. 1A.9B.10C.11D.12考点:循环结构.专题:程序框图.分析:根据程序框图,计算每次循环后变量a的值,直到不满足循环条件,输出结果.解答:解:根据程序框图,计算每次循环后变量a的值,直到不满足循环条件,输出结果.第一次循环:a=3+2=5第二次循环:a=5+3=8第三次循环:a=8+4=12第四次循环:a=12+5=17第五次循环:a=17+6=23第六次循环:a=23+7=30第七次循环:a=30+8=38第八次循环:a=38+9=47第九次循环:a=47+10=57此时不满足循环条件,输出a的值,为57-9=48,故选A.点评:本题考查了应用程序框图进行简单的计算问题,是基础题.并在满足条件时跳出循环,输出S的值.当k=3时,不满足条件k≥n,跳出循环,输出S=7×6×5×4=840.故选D.点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.同时,需要注意条件的判断和循环变量的变化过程.解:$k=1$,满足判断框,第1次循环,$s=1$,$k=2$;第2次判断后循环,$s=0$,$k=3$;第3次判断并循环$s=-3$,$k=4$,第3次判断退出循环,输出$s=-3$。

高一数学算法和程序框图试题答案及解析

高一数学算法和程序框图试题答案及解析

高一数学算法和程序框图试题答案及解析1.如图所示,程序框图(算法流程图)的输出结果是()A.B.C.D.【答案】A【解析】条件成立,第一次执行循环体,条件成立,第二次执行循环体条件成立,第三次执行循环体;条件不成立,退出循环,输出.【考点】程序框图的识别和应用.2.计算的算法流程图中:下面算法中错误的是()【答案】C【解析】选项C是求的是的值,答案选C.【考点】算法与程序框图3.如图.程序输出的结果 , 则判断框中应填()A.B.C.D.【答案】B【解析】按照程序框图执行如下:,因为输出的结果为,故此时判断条件应为:或.【考点】1、程序框图的运算;2、循环语句.4.如下图所示程序框图,已知集合是程序框图中输出的值},集合是程序框图中输出的值},全集U=Z,Z为整数集,当时,等于( )A.B.{-3. -1,5,7}C.{-3, -1,7}D.{-3, -1,7,9}【答案】D.【解析】依次执行程序框图中的语句:,;,;,;,;,;,;,;∴,,∴.【考点】读程序框图.5.如果执行右面的程序框图,那么输出的()A.22B.46C.190D.94【答案】D【解析】执行第1次,=1,=1,=4,=2>5,否,循环,执行第2次,=10,=3>5,否,循环,执行第3次,=22,=4>5,否,循环,执行第4次,=46,=5>5,否,循环,执行第5次,=94,=6>5,是,输出,S=94,故选D.考点:程序框图6.如果执行右边的程序框图,那么输出的()A.22B.46C.94D.190【答案】C【解析】.运行第1次,=1,=1,=2,=4,=2>5,否,循环;运行第2次,=3,=10,=3>5,否,循环;运行第3次,=4,=22,=4>5,否,循环;运行第4次,=5,=46,=5>5,否,循环;运行第5次,=6,=94,=6>5,是,输出S=94,故选C【考点】程序框图7.右图是一个算法的流程图,则输出S的值是 .【答案】7500【解析】根据算法的流程图S=0+3=3,K=1+2=3,S=3+9=12,K=3+2=5,S=12+15=27,以此规律则输出S的值是7500【考点】程序框图8.对任意函数,可按流程图构造一个数列发生器,其工作原理如下:①输入数据,数列发生器输出;②若,则数列发生器结束工作;若,则将反馈回输入端再输出,并且依此规律继续下去.现定义.(1)若输入,则由数列发生器产生数列,请写出数列的所有项;(2)若要数列发生器产生一个无穷的常数数列,试求输入的初始数据的值;(3)若输入时,产生的无穷数列满足:对任意正整数,均有,求的取值范围.【答案】(1)数列只有三项;(2);(3)【解析】(1)由题意知的定义域为,因此数列只有三项(2)要使该数列发生器产生一个无穷的常数数列,则有,通过构造函数,求得时,,因此当时,;时,()(3)解不等式得,,要使,则,由于,若,则不合题意;当时,且,同理的所有项均满足,综上所述,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学算法框图习题(含答案详解)
一、选择题
1.(理)如图所示算法程序框图运行时,输入a=tan315°,b=sin315°,c=cos315°,则输出结果为()
A.
2
2B.-
2
2C.-1 D.1
[答案] C
[解析]此程序框图是输出a、b、c三数中的最小值,又cos315°>0,sin315°=-
2
2
,tan315°=-1<-
2
2
,故选C.
2.下列程序运行后输出结果为()
x=1;
for i=110
x=2]
A.1
B.23 C.113 D.以上都不对
[答案] B
[解析]每一次循环x都重新赋值,与原来x的值无关,故最后输出x的值只与最后一次循环时i的值有关,∵i=10,∴x=23.
3.(理)下面是求
1
2+
1
2+…+
1
2
(共6个2)的值的算法的程序框图,图中的判断框中应填
A.i≤5? B.i<5? C.i≥5? D.i>5?
[答案] A
[解析]由于所给计算的表达式中共有6个2,故只需5次循环即可,由此控制循环次数的变量i应满足i≤5.故选A.
4.(理)已知数列{a n}中,a1=1,a n+1=a n+n,利用如图所示的程序框图计算该数列第10项,则判断框中应填的语句是()
A.n>10 B.n≤10 C.n<9 D.n≤9
[答案] D
[解析]本题在算法与数列的交汇处命题,考查了对程序框图的理解能力.数列{a n}是一个递推数列,因为递推公式为a1=1,a n+1=a n+n,故a10=a9+9,因为循环体为m=m +1,n=n+1,当n=10时结束循环,故判断框内应为n≤9.
5.(理)下列程序运行后输出结果为()
S=1;
n=1;
while S<100
S=S*n;
n=n+3;
end
n
A.4B.10C.13D.16
[答案] C
[解析]S=1<100,进行第一次循环后S=1,n=4;S=1<100再进行第二次循环.循环后S=4,n=7;第三次循环后S=28,n=10;第四次循环后S=280,n=13.因S=280>100,故不再循环,跳出循环后输出n=13.
6.(文)在如图的程序框图中,若输入m=77,n=33,则输出的n的值是()
A.3 B.7 C.11 D.33
[答案] C
[解析]这个程序框图执行的过程是:
第一次循环:m=77,n=33,r=11;
第二次循环:m=33,n=11,r=0.
因为r=0,则结束循环,输出n=11.
7.下面的程序框图,若输入a=0,则输出的结果为()
A .1022
B .2046
C .1024
D .2048 [答案] B
[解析] 由程序框图中的循环结构可得到递推公式,a k +1=2a k +2,且a 1=0,由a k +1
=2a k +2可得,a k +1+2=2(a k +2),即a k +1+2
a k +2=2且a 1+2=2,∴{a k +2}是以2为公比,2
为首项的等比数列,∴a k +2=2×2k -1=2k ,即a k =2k -2,从而a 11=211-2=2046,故选B.
[点评] 本题的关键是弄清输出的a 的值为数列{a n }的第几项,k =1算出的是a 2,k =2满足条件得a 3,故k =10满足条件计算后得到a 11,k =11不满足,故输出的是a 11而不是a 10,有不少人在这里搞不清楚,以为判断条件是k ≤10,故最后输出的是a 10,这是没有完整理解算法的典型表现.因为对同一个判断条件k ≤10,a =2a +2与k =k +1语句的先后顺序不同输出结果也不同,还与k 的初值有关等等,故应统盘考虑,解决的一个有效途径就是循环几次把握其规律.
【解答题】
8.为了让学生更多的了解“数学史”知识,其中学高二年级举办了一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动,共有800名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据频率分布表,解答下列问题:
序号(i ) 分组(分数) 组中值(G i )
频数(人数)
频率(F i ) 1 [60,70) 65 ① 0.12 2 [70,80) 75 20 ② 3 [80,90) 85 ③ 0.24 4
[90,100]
95
④ ⑤ 合计
50
1
(1)(2)为鼓励更多的学生了解“数学史”知识,成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少同学获奖?
(3)在上述统计数据的分析中有一项计算见算法流程图,求输出S 的值. [解析] (1)∵样本容量为50,∴①为6,②为0.4,③为12,④为12,⑤为0.24. (2)在[80,90)之间,85分以上约占一半, ∴⎝⎛⎭⎫12×0.24+0.24×800=288,
即在参加的800名学生中大概有288名同学获奖. (3)由流程图知S =G 1F 1+G 2F 2+G 3F 3+G 4F 4 =65×0.12+75×0.4+85×0.24+95×0.24=81.。

相关文档
最新文档