勾股定理应用课件.ppt
合集下载
勾股定理数学优秀ppt课件
实际应用
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
初中数学《勾股定理及其应用》课件
A
c= a2 b2
股 c弦
b
a= c2 b2 b= c2 a2
C a勾B
拼图
运用勾股定理 可解决直角三角形中边的计算
例1 在 Rt△ABC中,∠C=90° ⑴已知a=6,b=8,则c1=0 __ ⑵已知a=9,c=41,则b4=0 __ ⑶已知c=25,b=15,则2a0=__ ⑷已知a=n2-1,b=2n,则nc2=+1____
2PBCD2=*P(DDC+PD)2=CD2+PD2+
∴ PB2+P2CC2D=*P2DBD2+2PD2=2(AD2+PD2)=
练一练 2PA2
练一练
M N
B 如图,已知:在Rt△ABC中, ∠ACB=90º,AC=12,BC=5,
AM=AC,BN=BC
则MN的长是__4__
A
C
练一练
折叠矩形ABCD的一边AD,点D
例3 已知:在△ABC中,AB=AC,
AB=17,BC=16,求△ABC的面 积A 。 解:作△ABC边BC上的高AD
∵ AB=AC ∴BD=DC=8
在Rt△ABD中,
AD2=AB2-BD2=BC=22=125 1B5C*AD=
120
运用勾股定理
可解决直角三角形中边的计算
例3 已知:在△ABC中,AB=AC,
AB=17,BC=16,求△ABC的面
积。
A
思考:若过C点作AB边
D
上的高CD,则如何求解?
B
C
运用勾股定理 可解决直角三角形中边的计算
例 4
B
A 如图,已知:△ABC中, AD是中线,AE⊥BC于E
⑴若AB=12,BC=10, AC=8 求:DE的长度
勾股定理课件(共19张PPT)人教版初中数学八年级下册
1
+2·
2
ab =
即:在Rt△ABC 中,∠C=90 °
c2 = a2 + b2
1 2
c +ab
2
伽
菲
尔
德
证
法
归纳小结
“赵爽弦图”通过图形的切割、拼接,巧妙地利用面积关系证实
了命题的正确性,命题与直角三角形的边有关,我国把它称为
勾股定理:直角三角形两直角边的平方和等于斜边的平方.
即a2+b2=c2.
勾股定理: 直角三角形两直角边a、b的平
方和,等于斜边c的平方。
即:a2+b2 =c2
谢谢观看
哲学家、数学家、天文学家
新知探究
思考
图17.1-2中三个正方形的面积有什么关系?等腰
直角三角形的三边之间有什么关系?
A
B
a
b
c
C
图17.1-2
三个正方形A、
B、C的面积有
什么关系?
新知探究
探究
等腰直角三角形有上述性质,其他
直角三角形是否也有这个性质?
C
A
B
C'
图1
A'
B'
图17.1-3
图2
(图中每个小方格代表一个单位面积)
教 学 目 标 / Te a c h i n g a i m s
1
2
了解勾股定理文化背景,体验勾股定理的探究过
程。
理解不同勾股定理的证明方法,能够分析
它们的异同。
能够用勾股定理解决直角三角形的相关学习
3
和解决生活中的实际问题。
情景导入
图17.1-1
毕达哥拉斯(Pythagoras,约前
1勾股定理的应用PPT课件(华师大版)
分析:由于车宽1.6米,所以卡车能否
通过,只要比较距厂门中线0.8米处的
高度与车高即可.如图所示,点D在离厂
门中线0.8米处,且CD⊥AB,与地面相
交于点H.
讲授新课
解:在Rt△OCD中,由勾股定理,可得
CD OC 2 OD2 12 0.82 0.6,
CH=CD+DH=0.6+2.3=2.9>2.5.
的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸
边的水面,请问这个水池的深度和这根芦苇的长度各是多少?
解: 设水池的水深AC为x尺,则这根芦苇长为AD=AB=(x+1)尺,
在直角三角形ABC中,BC=5尺
由勾股定理得:BC2+AC2=AB2
即
52+x2=(x+1)2
25+x2= x2+2x+1,
可见高度上有0.4米的余量,因此卡
车能通过厂门.
讲授新课
2、有一根高为16米的电线杆在A处断裂,如图所示,电线杆的
顶部C落在离电线杆底部B处8米远的地方,求电线杆断裂处A到
地面的距离.
根据题意可知在Rt△ABC中,
∠ABC =90°,BC=8米,AB+
AC=16米.若设AB=x米,则
AC=(16-x)米,然后根据勾股定理
90°.∴S四边形ABCD=S△ABC+S△ACD= AB·BC+
AC·AD= ×4×3+ ×5×12=36.
∵36×30=1080(元),
∴这块地全部种草的费用是1080元.
讲授新课
练一练
1、一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图所示
勾股定理的应用-课件
02
在实际应用中,可以利用勾股定 理来检验一个三角形是否为直角 三角形,从而确定角度和边长之 间的关系。
勾股定理的逆定理
勾股定理的逆定理是:如果一个三角 形的一组边长满足勾股定理,则这个 三角形一定是直角三角形。
通过勾股定理的逆定理,可以用来判 断一个三角形的角度和边长是否满足 直角三角形的条件,从而确定其是否 为直角三角形。
如何进一步推广和应用勾股定理
跨学科应用
01
鼓励将勾股定理应用于其他学科,以促进跨学科的学习和理解
。
创新教学方法
02
通过创新教学方法,例如使用数字化工具和互动游戏,提高学
生对勾股定理的兴趣和参与度。
实际应用
03
鼓励学生将勾股定理应用于实际问题解决中,例如在建筑、工
程和科学实验等领域。
THANKS
感谢观看
确定直角三角形
勾股定理可以用来确定一个三角形是 否为直角三角形,只需验证三边关系 是否满足勾股定理即可。
计算直角三角形边长
判断三角形的稳定性
勾股定理的应用可以帮助我们判断三 角形的稳定性,因为只有直角三角形 满足勾股定理,所以只有直角三角形 是稳定的。
已知直角三角形两条边的长度,可以 使用勾股定理计算第三边的长度。
。
在气象学中,勾股定理也被用于 计算气象气球上升的高度和速度 ,以了解大气层的结构和变化。
05
勾股定理的未来发展
勾股定理在现代数学中的应用
代数证明
勾股定理可以通过代数方法进行证明,这有助于学生更好地理解 代数和几何之间的联系。
三角函数
勾股定理与三角函数密切相关,通过应用勾股定理,可以解决一些 与三角函数相关的问题。
在海上导航中,勾股定理也用于确定船只的经度和纬度,以确保航行安全和准确 到达目的地。
在实际应用中,可以利用勾股定 理来检验一个三角形是否为直角 三角形,从而确定角度和边长之 间的关系。
勾股定理的逆定理
勾股定理的逆定理是:如果一个三角 形的一组边长满足勾股定理,则这个 三角形一定是直角三角形。
通过勾股定理的逆定理,可以用来判 断一个三角形的角度和边长是否满足 直角三角形的条件,从而确定其是否 为直角三角形。
如何进一步推广和应用勾股定理
跨学科应用
01
鼓励将勾股定理应用于其他学科,以促进跨学科的学习和理解
。
创新教学方法
02
通过创新教学方法,例如使用数字化工具和互动游戏,提高学
生对勾股定理的兴趣和参与度。
实际应用
03
鼓励学生将勾股定理应用于实际问题解决中,例如在建筑、工
程和科学实验等领域。
THANKS
感谢观看
确定直角三角形
勾股定理可以用来确定一个三角形是 否为直角三角形,只需验证三边关系 是否满足勾股定理即可。
计算直角三角形边长
判断三角形的稳定性
勾股定理的应用可以帮助我们判断三 角形的稳定性,因为只有直角三角形 满足勾股定理,所以只有直角三角形 是稳定的。
已知直角三角形两条边的长度,可以 使用勾股定理计算第三边的长度。
。
在气象学中,勾股定理也被用于 计算气象气球上升的高度和速度 ,以了解大气层的结构和变化。
05
勾股定理的未来发展
勾股定理在现代数学中的应用
代数证明
勾股定理可以通过代数方法进行证明,这有助于学生更好地理解 代数和几何之间的联系。
三角函数
勾股定理与三角函数密切相关,通过应用勾股定理,可以解决一些 与三角函数相关的问题。
在海上导航中,勾股定理也用于确定船只的经度和纬度,以确保航行安全和准确 到达目的地。
勾股定理的应用课件
勾股定理的发展
在后来的几千年中,勾股定理经历了许多数学家的研究和证明,不断得到完善和发展。如今, 勾股定理已经成为中学数学课程中的重要内容之一,也是数学竞赛中的常见考点之一。
勾股定理的证明方法
基础证明方法
勾股定理可以通过多种方法进行证明,其中最基础的方法是利用相似三角形的性质进行证明。此外,还有利用代 数方法、微积分方法和几何方法等证明方法。
03 结构分析
在建筑结构分析中,勾股定理用于计算结构的承 载力和稳定性,确保建筑物的安全可靠。
航空航天领域中的应用
01 飞机设计
在飞机设计中,勾股定理用于计算机翼的弯度和 长度,以及机身的垂直度和水平度。
02 航天器设计
在航天器设计中,勾股定理用于确定卫星轨道的 参数和火箭发射角度等。
03 导航定位
物理学领域
在物理学中,勾股定理也具有广泛的应用。例如,在力学中,勾股定理可以用于解决与力的合 成和分解相关的问题。在电磁学中,勾股定理可用于计算电磁波的传播路径和强度。 物理学中的许多现象和规律都与勾股定理有关,如光的反射和折射、电场和磁场等。
日常生活中的应用
勾股定理在日常生活中也有很多应用,如建筑测量、航海导 航、道路桥梁设计等。通过勾股定理可以确定建筑物的垂直 度和水平度,保证建筑物的安全性和稳定性。
勾股定理在日常生活中的应用案例
家具制作
在家具制作中,勾股定理 用于确定家具的尺寸和比 例,保证家具的美观和实 用性。
航海导航
在航海导航中,勾股定理 用于计算航行距离和方向 ,确保航行的准确性和安 全性。
音乐艺术
在音乐艺术中,勾股定理 用于确定音符的频率和音 高,保证音乐的和谐性和 美感。
如何提高勾股定理的应用能
勾股定理的表述
在后来的几千年中,勾股定理经历了许多数学家的研究和证明,不断得到完善和发展。如今, 勾股定理已经成为中学数学课程中的重要内容之一,也是数学竞赛中的常见考点之一。
勾股定理的证明方法
基础证明方法
勾股定理可以通过多种方法进行证明,其中最基础的方法是利用相似三角形的性质进行证明。此外,还有利用代 数方法、微积分方法和几何方法等证明方法。
03 结构分析
在建筑结构分析中,勾股定理用于计算结构的承 载力和稳定性,确保建筑物的安全可靠。
航空航天领域中的应用
01 飞机设计
在飞机设计中,勾股定理用于计算机翼的弯度和 长度,以及机身的垂直度和水平度。
02 航天器设计
在航天器设计中,勾股定理用于确定卫星轨道的 参数和火箭发射角度等。
03 导航定位
物理学领域
在物理学中,勾股定理也具有广泛的应用。例如,在力学中,勾股定理可以用于解决与力的合 成和分解相关的问题。在电磁学中,勾股定理可用于计算电磁波的传播路径和强度。 物理学中的许多现象和规律都与勾股定理有关,如光的反射和折射、电场和磁场等。
日常生活中的应用
勾股定理在日常生活中也有很多应用,如建筑测量、航海导 航、道路桥梁设计等。通过勾股定理可以确定建筑物的垂直 度和水平度,保证建筑物的安全性和稳定性。
勾股定理在日常生活中的应用案例
家具制作
在家具制作中,勾股定理 用于确定家具的尺寸和比 例,保证家具的美观和实 用性。
航海导航
在航海导航中,勾股定理 用于计算航行距离和方向 ,确保航行的准确性和安 全性。
音乐艺术
在音乐艺术中,勾股定理 用于确定音符的频率和音 高,保证音乐的和谐性和 美感。
如何提高勾股定理的应用能
勾股定理的表述
勾股定理的应用ppt课件
1.3 勾股定理的应用
● 考点清单解读 ● 重难题型突破
1.3 勾股定理的应用
返回目录
考 ■考点一 立体图形上的最短路线
点 清 1. 确定圆柱侧面上两点之间的最短距离,其步骤如下:
单 解
(1)将侧面展开为长方形;
读
(2)根据“两点之间线段最短”构造直角三角形;
(3)利用勾股定理求距离.
1.3 勾股定理的应用
单 解
一边与另两边的关系,求直角三角形的另两边时,可设未知
读 数,根据勾股定理建立方程,通过解方程解决问题.
1.3 勾股定理的应用
返回目录
考
对点典例剖析
点 清
典例2 如图,台风过后,一棵白杨树在某处折断,白杨
单 树的顶部落在离白杨树根部 8 m 处,已知白杨树高 16 m, 解
读 则白杨树是在离根部_____ m 的位置折断的.
1.3 勾股定理的应用
考 [答案] 6 点 清 单 解 读
返回目录
1.3 勾股定理的应用
返回目录
重 ■题型 勾股定理中的方案设计问题
难 题
例 一路上 A,B 两地(视为直线上的两点)相距 25
型 突
km,C,D为两村庄(视为两点),DA⊥AB
于点
A,CB⊥AB
破 于点 B(如图),已知 DA=10 km,CB=15 km,现要在路
AB 上建一个土特产收购站 E,使得 C,D 两村到收购站 E
的距离相等,请求出 E 站到 A 地的距离.
1.3 勾股定理的应用
返回目录
重 [答案] 解:由题意得 CE=DE,在 Rt△DAE和 Rt
难 题
△CBE
中
,DE2
=AD2
● 考点清单解读 ● 重难题型突破
1.3 勾股定理的应用
返回目录
考 ■考点一 立体图形上的最短路线
点 清 1. 确定圆柱侧面上两点之间的最短距离,其步骤如下:
单 解
(1)将侧面展开为长方形;
读
(2)根据“两点之间线段最短”构造直角三角形;
(3)利用勾股定理求距离.
1.3 勾股定理的应用
单 解
一边与另两边的关系,求直角三角形的另两边时,可设未知
读 数,根据勾股定理建立方程,通过解方程解决问题.
1.3 勾股定理的应用
返回目录
考
对点典例剖析
点 清
典例2 如图,台风过后,一棵白杨树在某处折断,白杨
单 树的顶部落在离白杨树根部 8 m 处,已知白杨树高 16 m, 解
读 则白杨树是在离根部_____ m 的位置折断的.
1.3 勾股定理的应用
考 [答案] 6 点 清 单 解 读
返回目录
1.3 勾股定理的应用
返回目录
重 ■题型 勾股定理中的方案设计问题
难 题
例 一路上 A,B 两地(视为直线上的两点)相距 25
型 突
km,C,D为两村庄(视为两点),DA⊥AB
于点
A,CB⊥AB
破 于点 B(如图),已知 DA=10 km,CB=15 km,现要在路
AB 上建一个土特产收购站 E,使得 C,D 两村到收购站 E
的距离相等,请求出 E 站到 A 地的距离.
1.3 勾股定理的应用
返回目录
重 [答案] 解:由题意得 CE=DE,在 Rt△DAE和 Rt
难 题
△CBE
中
,DE2
=AD2
17.2 勾股定理的应用 课件(共17张PPT) 2024-2025学年人教版八年级数学下册
解 : 设水的深度为x尺 , 则这根芦苇的长 度为(x+1)尺 , 根据题意和勾股定理可列方 程为x2+52=(x+1)2 , 整理得2x+1=25 , 解得 x=12.所以水的深度为12尺,这根芦苇的长 度为13尺.
拓展延伸ቤተ መጻሕፍቲ ባይዱ
如图,边长为1的正方体中,一只蚂蚁从顶点A出发沿着正方
体的外表面爬到顶点B的最短距离是( B ).
探索新知
例1 一个门框的尺寸如图所示,一块长3 m,宽2.2 m的长方形 薄木板能否从门框内通过?为什么?
思考:
已知两直角边求斜边.
1.木板能横着或竖着从门框通过吗?
2.这个门框能通过的最大长度是多少?
3.怎样判定这块木板能否通过门框?
探索新知
例1 一个门框的尺寸如图所示,一块长3 m,宽2.2 m的长方形 薄木板能否从门框内通过?为什么?
A.3
B . 5 C.2
D.1
B
B
A
A
课堂小结
利用勾股定理解决实际问题的一般思路: ①正确理解实际问题的题意; ②建立对应的数学模型; ③解决相应的数学问题; ④将数学问题的结果“翻译”成实际问题的答案.
A
B
A′
O
亭亭多姿湖中立,突遭狂风吹一边.
A
离开原处六尺远,花贴湖面像睡莲.
请君动脑想一想,湖水在此深几尺? B
A′
解:设水深为h尺,Rt△ABC中, OB=h,AO=h+3,A′B=6. 由勾股定理得:A′O2=A′B2+BO2,即 O (h+3)2=h2+62, ∴h2+6h+9=h2+36,解得:h=4.5. 答:湖水深为4.5尺.
拓展延伸ቤተ መጻሕፍቲ ባይዱ
如图,边长为1的正方体中,一只蚂蚁从顶点A出发沿着正方
体的外表面爬到顶点B的最短距离是( B ).
探索新知
例1 一个门框的尺寸如图所示,一块长3 m,宽2.2 m的长方形 薄木板能否从门框内通过?为什么?
思考:
已知两直角边求斜边.
1.木板能横着或竖着从门框通过吗?
2.这个门框能通过的最大长度是多少?
3.怎样判定这块木板能否通过门框?
探索新知
例1 一个门框的尺寸如图所示,一块长3 m,宽2.2 m的长方形 薄木板能否从门框内通过?为什么?
A.3
B . 5 C.2
D.1
B
B
A
A
课堂小结
利用勾股定理解决实际问题的一般思路: ①正确理解实际问题的题意; ②建立对应的数学模型; ③解决相应的数学问题; ④将数学问题的结果“翻译”成实际问题的答案.
A
B
A′
O
亭亭多姿湖中立,突遭狂风吹一边.
A
离开原处六尺远,花贴湖面像睡莲.
请君动脑想一想,湖水在此深几尺? B
A′
解:设水深为h尺,Rt△ABC中, OB=h,AO=h+3,A′B=6. 由勾股定理得:A′O2=A′B2+BO2,即 O (h+3)2=h2+62, ∴h2+6h+9=h2+36,解得:h=4.5. 答:湖水深为4.5尺.
勾股定理的应用课件
利用勾股定理确定卫星轨 道参数,提高卫星通信的 覆盖范围和信号质量。
广播信号
在广播信号传输中,勾股 定理用于优化信号传输路 径,提高广播信号的覆盖 范围和清晰度。
勾股定理在日常生活中的应用
航海
在航海中,勾股定理用于确定航行方向 和距离,保证船舶能够准确到达目的地 。
VS
测量
在日常生活中,勾股定理用于测量物体的 高度、长度等参数,方便人们进行各种实 际操作。
勾股定理的应用 ppt课件
目 录
• 勾股定理的介绍 • 勾股定理的应用场景 • 勾股定理的实际应用案例 • 勾股定理的扩展应用 • 总结与展望
01
勾股定理的介绍
勾股定理的定义
勾股定理是几何学中的基本定理之一 ,它描述了直角三角形三边的关系。 具体来说,在一个直角三角形中,直 角边的平方和等于斜边的平方。
导航系统
利用勾股定理计算飞行器的位置和速 度,提高航空和航天导航的精度和可 靠性。
航天器设计
在航天器设计中,勾股定理用于确定 火箭的发射角度和卫星轨道的参数, 以确保航天器能够成功进入预定轨道 。
通信工程中的应用
电波传播
在通信工程中,勾股定理 用于计算电波传播的距离 和范围,优化信号传输质 量。
卫星通信
02
勾股定理的应用场景
几何学领域
确定直角三角形
勾股定理是确定直角三角形的重 要工具,通过已知的两边长度, 可以判断是否为直角三角形,并 进一步求出第三边的长度。
解决几何问题
勾股定理在解决几何问题中有着 广泛的应用,如求三角形面积、 判断三角形的形状、计算最短路 径等。
物理学领域
力的合成与分解
在物理学中,勾股定理常用于力的合 成与分解,特别是在分析斜面上的物 体受力情况时,通过勾股定理可以确 定力的方向和大小。
广播信号
在广播信号传输中,勾股 定理用于优化信号传输路 径,提高广播信号的覆盖 范围和清晰度。
勾股定理在日常生活中的应用
航海
在航海中,勾股定理用于确定航行方向 和距离,保证船舶能够准确到达目的地 。
VS
测量
在日常生活中,勾股定理用于测量物体的 高度、长度等参数,方便人们进行各种实 际操作。
勾股定理的应用 ppt课件
目 录
• 勾股定理的介绍 • 勾股定理的应用场景 • 勾股定理的实际应用案例 • 勾股定理的扩展应用 • 总结与展望
01
勾股定理的介绍
勾股定理的定义
勾股定理是几何学中的基本定理之一 ,它描述了直角三角形三边的关系。 具体来说,在一个直角三角形中,直 角边的平方和等于斜边的平方。
导航系统
利用勾股定理计算飞行器的位置和速 度,提高航空和航天导航的精度和可 靠性。
航天器设计
在航天器设计中,勾股定理用于确定 火箭的发射角度和卫星轨道的参数, 以确保航天器能够成功进入预定轨道 。
通信工程中的应用
电波传播
在通信工程中,勾股定理 用于计算电波传播的距离 和范围,优化信号传输质 量。
卫星通信
02
勾股定理的应用场景
几何学领域
确定直角三角形
勾股定理是确定直角三角形的重 要工具,通过已知的两边长度, 可以判断是否为直角三角形,并 进一步求出第三边的长度。
解决几何问题
勾股定理在解决几何问题中有着 广泛的应用,如求三角形面积、 判断三角形的形状、计算最短路 径等。
物理学领域
力的合成与分解
在物理学中,勾股定理常用于力的合 成与分解,特别是在分析斜面上的物 体受力情况时,通过勾股定理可以确 定力的方向和大小。
勾股定理应用举例ppt课件
24m,高为
6m,一只老鼠从距底面1m的A处爬行到对角B处
吃食物,它爬行的最短路线长为
.
选做题
如图,长方体盒子(无盖)的长、宽、高分别 为12cm ,8cm,30cm,在AB中点C处有一滴蜜 糖,一只小虫从D处爬到C处去吃,则最短路程 是多少?
A
D
.C
30
B
8 12
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
数学思想:
本节课充分利用了数学中的转化思想,即将 立体图形转化为平面图形。
七、当堂检测,达标反馈 为了规范事业单位聘用关系,建立和完善适应社会主义市场经济体制的事业单位工作人员聘用制度,保障用人单位和职工的合法权益
分层检测 ☞
必做题
1、有一圆柱体如图,高8cm,底面半径5cm,A处 有一蚂蚁,若蚂蚁欲爬行到C处,求蚂蚁爬行的最 短距离(π取值为3)
五、知识总结
这节课你学习了什么内容?
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
谈谈这节课你的收获
这节课主要是应用勾股定理来解决路程最短问题。 数学方法:
把几何体适当展开成平面图形,再利用“两点之 间线段最短”的性质找出最短距离,构造直角三 角形,运用勾股定理解决问题。
最短距离问题小结
(1)将立体图形转化为平面图形,画出适当的示意图 。 (2)找准点的位置,根据“两点之间,线段最短” 确定行
走路线,找到最短路径。
(3)以最短路径为边构造直角三角形,利用勾股定理求解。
B
6m,一只老鼠从距底面1m的A处爬行到对角B处
吃食物,它爬行的最短路线长为
.
选做题
如图,长方体盒子(无盖)的长、宽、高分别 为12cm ,8cm,30cm,在AB中点C处有一滴蜜 糖,一只小虫从D处爬到C处去吃,则最短路程 是多少?
A
D
.C
30
B
8 12
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
数学思想:
本节课充分利用了数学中的转化思想,即将 立体图形转化为平面图形。
七、当堂检测,达标反馈 为了规范事业单位聘用关系,建立和完善适应社会主义市场经济体制的事业单位工作人员聘用制度,保障用人单位和职工的合法权益
分层检测 ☞
必做题
1、有一圆柱体如图,高8cm,底面半径5cm,A处 有一蚂蚁,若蚂蚁欲爬行到C处,求蚂蚁爬行的最 短距离(π取值为3)
五、知识总结
这节课你学习了什么内容?
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
谈谈这节课你的收获
这节课主要是应用勾股定理来解决路程最短问题。 数学方法:
把几何体适当展开成平面图形,再利用“两点之 间线段最短”的性质找出最短距离,构造直角三 角形,运用勾股定理解决问题。
最短距离问题小结
(1)将立体图形转化为平面图形,画出适当的示意图 。 (2)找准点的位置,根据“两点之间,线段最短” 确定行
走路线,找到最短路径。
(3)以最短路径为边构造直角三角形,利用勾股定理求解。
B
勾股定理的应用课件(共26张PPT)
OB ________2_.7__5___1_._6_5_8_____.
C
在Rt△COD中, OD2 _C__D_2___O_C__2___3_2 __2_2___5___,
OD ________5_____2__.2__3_6_____.
O
B
D
BD _O_D_-__O_B__=__2_._2_3_6_-__1_._6_5_8__≈_0_._5_8___ .
(2)、(3)两题结果精确到0.1
ac
b
C
a2 b2 c2
A
小试身手 :☞
如图,学校有一块长方形花园,有极少 数人为了避开拐角走“捷径”,在花园内走 出了一条“路”,仅仅少走了________步路, 却踩伤了花草。 (假设1米为2步)
小试身手 :☞
如图,学校有一块长方形花圃,有极少 数人为了避开拐角走“捷径”,在花圃内走 出了一条“路”,仅仅少走了________步路, 却踩伤了花草。 (假设1米为2步)
勾股定理的应用
知识回忆 :☞
勾股定理及其数学语言表达式:
直角三角形两直角
边a、b的平方和等于斜
B
边c的平方。
ac
b
C
a2 b2 c2
A
知识回忆 :☞
在△ABC中,∠C=90°.
(1)若b=8,c=10,则a= 6
;
(2)若a=5,b=10,则c = 11.2 ;
B
(3)若a=2,∠A=30° ,则 b = 3.5 ;
C
:BC
:AB=
1:1:√2 . 若AB=8则AC= 4 2 .
又若CD⊥AB于D,则CD= 4√2 .
B
D
勾股定理的应用PPT课件
2
0.3
0.2
A
B
A
B
C
2m
(0.2×3+0.3×3)m
选作: 1. 如图,长方形中AC=3,CD=5,DF=6,求蚂蚁沿表面从A爬到F的最短距离.
3
5
6
A
C
D
E
B
F
已知:如图,在△ABC中,∠ACB=90º,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长.
已知:如图,在 中, ,是 边上的中线, 于, 求证:.
如图,将长为10米的梯子AC斜靠 在墙上,BC长为6米。
A
B
C
10
6
(1)求梯子上端A到墙的底端B的距离AB。
(2)若梯子下部C向后移动2米到C1点,那么梯子上部A向下移动了多少米?
A1
C1
2
一位工人叔叔要装修家,需要一块长3m、宽2.1m的薄木板,已知他家门框的尺寸如图所示,那么这块薄木板能否从门框内通过?为什么?
B
C
A
3
2
1
B
C
A
(1)当蚂蚁经过前面和上底面时,如图,最短路程为
解:
A
B
2
3
A
B
1பைடு நூலகம்
C
AB=
=
=
(2)当蚂蚁经过前面和右面时,如图,最短路程为
A
B
3
2
1
B
C
A
AB=
=
=
(3)当蚂蚁经过左面和上底面时,如图,最短路程为
A
B
AB=
=
=
3
2
1
B
C
A
2.如图,是一个三级台阶,它的每一级的长、宽、高分别为2m、0.3m、0.2m,A和B是台阶上两个相对的顶点,A点有一只蚂蚁,想到B点去吃可口的食物,问蚂蚁沿着台阶爬行到B点的最短路程是多少?
华师版数学八年级上册 14.2勾股定理的应用 课件(共19张ppt)
B NhomakorabeaA
新知探究
(1)自己做一个圆柱,尝试从点A到点B沿圆柱侧面画 几条路线,你觉得哪条路线最短?
B
B
B
A 方案①
A 方案②
A 方案③
(2)如图,将圆柱侧面剪开展成一个长方形,点A到
点B的最短路线是什么?你画对了吗?
B
B
A B
A
A
因为两点之间线段最短, 所以方案③的路线最短.
(3)蚂蚁从点A出发,想吃到B点上的食物,它沿圆柱 侧面爬行的最短路程是多少?
第14章 勾股定理
14.2 勾股定理的应用
学习目标
➢ 能解决与勾股定理有关的问题:立体图形中最 短路径问题、网格问题等.
➢ 能将实际问题转化为直角三角形的数学模型, 并能用勾股定理解决简单的实际问题,培养数 学应用意识.
情境引入
如图,有一个圆柱,它的高等于12 cm,底面圆的周长 为18 cm,在圆柱下底面的点A处有一只蚂蚁,它想吃 到上底面上与点A相对的点B处的食物,沿圆柱侧面爬 行的最短路程是多少?
解:设滑道AC的长度为x m,则AB的 长也为x m,AE的长度为(x-1)m.
CD
在Rt△ACE中,∠AEC=90°,
由勾股定理得AE2+CE2=AC2,
即(x-1)2+32=x2,
A
解得x=5.
EB
故滑道AC的长度为5 m.
感谢观看!
例2 如图,在公路AB旁有一危楼 C需要爆破,已知点C与公路上的 停靠站A的距离为300米,与公路 上另一停靠站B的距离为400米, 且CA⊥CB,为了安全起见,爆破点C周围250米范 围内不得进入,问:在进行爆破时,公路AB段是否 因有危险而需要暂时封锁?
新知探究
(1)自己做一个圆柱,尝试从点A到点B沿圆柱侧面画 几条路线,你觉得哪条路线最短?
B
B
B
A 方案①
A 方案②
A 方案③
(2)如图,将圆柱侧面剪开展成一个长方形,点A到
点B的最短路线是什么?你画对了吗?
B
B
A B
A
A
因为两点之间线段最短, 所以方案③的路线最短.
(3)蚂蚁从点A出发,想吃到B点上的食物,它沿圆柱 侧面爬行的最短路程是多少?
第14章 勾股定理
14.2 勾股定理的应用
学习目标
➢ 能解决与勾股定理有关的问题:立体图形中最 短路径问题、网格问题等.
➢ 能将实际问题转化为直角三角形的数学模型, 并能用勾股定理解决简单的实际问题,培养数 学应用意识.
情境引入
如图,有一个圆柱,它的高等于12 cm,底面圆的周长 为18 cm,在圆柱下底面的点A处有一只蚂蚁,它想吃 到上底面上与点A相对的点B处的食物,沿圆柱侧面爬 行的最短路程是多少?
解:设滑道AC的长度为x m,则AB的 长也为x m,AE的长度为(x-1)m.
CD
在Rt△ACE中,∠AEC=90°,
由勾股定理得AE2+CE2=AC2,
即(x-1)2+32=x2,
A
解得x=5.
EB
故滑道AC的长度为5 m.
感谢观看!
例2 如图,在公路AB旁有一危楼 C需要爆破,已知点C与公路上的 停靠站A的距离为300米,与公路 上另一停靠站B的距离为400米, 且CA⊥CB,为了安全起见,爆破点C周围250米范 围内不得进入,问:在进行爆破时,公路AB段是否 因有危险而需要暂时封锁?
北师大版八年级上册1.3勾股定理的应用 课件(共15张ppt)
勾股定理的逆定理应用于根据三边的长度判断 三角形的形状。
试一试
中国人民的聪明智 慧真的让人叹服!
例3 在我国古代数学著作《九章算术》中记载 了一道有趣的问题,“今有池方一丈,葭生其中央, 出水一尺。引葭赴岸,适与岸齐。问水深、葭长各 几何?”这个问题的意思是:有一个水池,水面是 一个边长为10尺的正方形.在水池正中央有一根新生 的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向 岸边,它的顶端恰好到达岸边的水面.请问这个水池 的深度和这根芦苇的长度各为多少?
解:设水池的深度为x尺,则芦苇的长度为
x+1尺。由勾股定理得
5
x2 +52=(x+1)2 x2 +25= x2+2x+1
x x+1
24= 2x
x=12
x+1=13(尺)
答:水池的深度为12尺,芦苇的长度为13尺
小试牛刀
练习2
如图是一个滑梯示意图,若将滑道AC水 平放置,则刚好与AB一样长。已知滑梯 的高度CE=3m,CD=1m,试求滑 道AC的长
(2)量得AD长是30厘米,AB 长是40厘米,BD长是50厘米。 AD边垂直于AB边吗?
(3)如果李叔叔随身只有一个长 度为20厘米的刻度尺,能有办法 检验AD边是否垂直于AB边吗? 边BC与边AB呢?
议一议
勾股定理与它的逆定理在应用上有什么区别?
勾股定理主要应用于在直角三角形中求线段 的长度,甚至周长或面积。
如果将圆柱侧面剪开展开成 一个长方形,从A点到B 点的最短路 线是什么?你画对了吗?
例题解析
h 12
C
B
A
解:由题意得展开图,知AB即为最短路径,其中 AC 12, BC 1 18 9 2 在RtABC 中,有 AC2+BC2=122+92=225=AB2 AB=15 故最短路径是15cm。
试一试
中国人民的聪明智 慧真的让人叹服!
例3 在我国古代数学著作《九章算术》中记载 了一道有趣的问题,“今有池方一丈,葭生其中央, 出水一尺。引葭赴岸,适与岸齐。问水深、葭长各 几何?”这个问题的意思是:有一个水池,水面是 一个边长为10尺的正方形.在水池正中央有一根新生 的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向 岸边,它的顶端恰好到达岸边的水面.请问这个水池 的深度和这根芦苇的长度各为多少?
解:设水池的深度为x尺,则芦苇的长度为
x+1尺。由勾股定理得
5
x2 +52=(x+1)2 x2 +25= x2+2x+1
x x+1
24= 2x
x=12
x+1=13(尺)
答:水池的深度为12尺,芦苇的长度为13尺
小试牛刀
练习2
如图是一个滑梯示意图,若将滑道AC水 平放置,则刚好与AB一样长。已知滑梯 的高度CE=3m,CD=1m,试求滑 道AC的长
(2)量得AD长是30厘米,AB 长是40厘米,BD长是50厘米。 AD边垂直于AB边吗?
(3)如果李叔叔随身只有一个长 度为20厘米的刻度尺,能有办法 检验AD边是否垂直于AB边吗? 边BC与边AB呢?
议一议
勾股定理与它的逆定理在应用上有什么区别?
勾股定理主要应用于在直角三角形中求线段 的长度,甚至周长或面积。
如果将圆柱侧面剪开展开成 一个长方形,从A点到B 点的最短路 线是什么?你画对了吗?
例题解析
h 12
C
B
A
解:由题意得展开图,知AB即为最短路径,其中 AC 12, BC 1 18 9 2 在RtABC 中,有 AC2+BC2=122+92=225=AB2 AB=15 故最短路径是15cm。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
6
答:A、B 两地的最短距离
10
8
是10 米.
1
2
A
36
c
练习3:
如果电梯的长、宽、高分别是4米、3米、 5米,那么,能进入电梯内的竹竿的最大长 度大约是多少米?
5米
4米 3米
A
x
3米
4米
5米 5米
3米 4米
Cx
B
X2=32+42=25
AB2=52+X2=50
AB= 米
探究1:
展开问题
2.3米
C
┏B
OD
M
2米 H
解 OC=1米 (大门宽度一半),
OD=0.8米 (卡车宽度一半)
在Rt△OCD中,由勾股定理得
CD= = OC2 OD2 12 0.82 =0.6米, CH=0.6+2.3=2.9(米)>2.5(米).
A
因此高度上有0.4米的余量, 所以卡车能通过厂门.
C
O
┏B
勾股定理的应用
练习1:
荷花问题 平平湖水清可鉴, 面上半尺生红莲; 出泥不染亭亭立, 忽被强风吹一边; 渔人观看忙向前, 花离原位二尺远; 能算诸君请解题, 湖水如何知深浅.
x2 22 ( x 0.5)2 x2 4 x2 x 0.25
x 4 0.25 x 3.75 (尺)
D
2.3米
N
M
2米 H
小结
①本节课学到了什么数 学知识?
②你了解勾股定理的发 现方法了吗?
③你还有什么困惑?
有一圆柱,底面圆的周长为24cm,高为6cm,一只蚂
蚁从底面的A处爬行到对角B处吃食物,它爬行的最
短路线长为多少?
分析:由于蚂蚁是沿着圆柱 的表面爬行的,故需把圆柱 展开成平面图形.根据两点之 间线段最短,可以发现A、B 分别在圆柱侧面展开图的宽 A 6cm处和长24cm中点处,即AB 长为最短路线.(如图)
C
A
A
变式2:如果圆柱换成如图的棱长为 10cm的正方体盒子,蚂蚁沿着表面由A 至B需要爬行的最短路程又是多少呢?
B
B
10
C
A
10
10
C
A
变式3:如果盒子换成如图长为3cm,宽
为2cm,高为1cm的长方体,蚂蚁沿着表 面需要爬行的最短路程又是多少呢?
B
1
A
3
2
挑战“试一试”:
一辆装满货物的卡
车,其外形高2.5米, A
B
宽1.6米,要开进厂门
2.3米
形状如图的某工厂,
问这辆卡车能否通过
该工厂的厂门?说明理 D
由。
2米
C
分析
如图所示,由于厂门宽度足 够,所以卡车能否通过,只 要看当卡车位于厂门正中 A 间时其高度是否小于 CH.∵CH=CD+DH,而 DH=?米,因此关键在求 CD,且CD⊥AB, 与地面 交于H.所以CD在直角三 N 角形中,那么OD=?米、 OC=?米.
答:湖水深3.75尺.
可用勾股定理建立方程.
0.5 2
x
x+0.5
练习2:
小明在平坦无障碍物的草地上,从A地向东走 3 m ,
再向北走 2 m ,再向西走 1 m ,再向北走 6 m ,最后
向东走 4 m 到达 B 地 ,求 A、B 两地的最短距离
是多少?
4 B
AB 62 82 100
B
C 12 B
6 65
A
蚂蚁从距底面1cm的A
处爬行到对角B处吃
食物,它爬行的最短 12 B
5 13
A
变式1:
有一木质圆柱形笔筒的高为h,底面半径 为r,现要围绕笔筒的表面由A至C,(A,C在 圆柱的同一轴截面上)镶入一条银色金属线 作为装饰,这条金属线的最短长度是多少?
C
BD