电路元件和电路定律
电路的基本规律知识点总结
电路的基本规律知识点总结第一、基本元件电路中的基本元件包括电源、导线、电阻、电容、电感等。
其中电源是提供电流的能源,导线负责将电流传输到电路的各个部分,而电阻、电容和电感是用来调节电流和电压的元件。
电路中的元件都符合一定的物理规律,比如欧姆定律、基尔霍夫法则等。
第二、欧姆定律欧姆定律是电路中最基本的规律之一,它描述了电流、电压和电阻之间的关系。
欧姆定律的表达式为:U=IR,其中U代表电压,I代表电流,R代表电阻。
根据欧姆定律,电流和电压成正比,而电阻和电流成反比。
欧姆定律在电路分析中起着非常重要的作用,可以帮助我们计算电路中各个元件的参数。
第三、基尔霍夫法则基尔霍夫法则是电路分析中另一个重要的定律,主要包括基尔霍夫电流定律和基尔霍夫电压定律。
基尔霍夫电流定律指出,电路中任意一个节点处的电流总和等于零,即输入的电流等于输出的电流。
而基尔霍夫电压定律则指出,电路中任意一个闭合回路中的电压之和等于零,即电路中的电压总和等于零。
基尔霍夫法则可以帮助我们在复杂的电路中进行电流和电压的分析。
第四、电感和电容电感和电容是电路中常用的元件,它们分别用来存储电能。
电感是由螺线圈或线圈组成,当通过电流时,会产生一个磁场,从而存储电能。
而电容则是由两个导体之间的绝缘材料组成,当电压加到电容上时,会在两个导体之间产生电场,从而存储电能。
在电路中,电感和电容经常用来改变电流和电压的频率,从而实现信号调理和滤波的功能。
第五、交流电路和直流电路电路可以分为交流电路和直流电路两种。
直流电路是电流方向不变的电路,一般使用直流电源供电,例如电池。
而交流电路是电流方向会周期性地改变的电路,一般使用交流电源供电,例如插座。
交流电路和直流电路在元件选择、电压波形分析等方面有很大的区别,需要根据不同的应用来进行设计和分析。
第六、耦合和隔离在电路中,元件之间会存在耦合和隔离的关系。
耦合是指两个元件之间的相互影响,可以是电流或电压的共享,也可以是信号的传输。
电路原理第一章
(2) 设电流参考方向如 (c) 并在c点画上接地符号 并在 点画上接地符号
q 4 I = = − = −2 A t 2
= = W W
ac
电位: 电位:
V V V
a
q
bc
=
8 + 12 4
= 5V
b
q
12 = 4
= 3V
c
= 0
(c为参考点 为参考点) 为参考点
U
ab
所以电压: 所以电压:
= V a − V b = 5 − 3 = 2V
dw ( t ) p (t) = dt
由: u ( t ) = d w ( t )
对于实际电路,根据它的电气特性, 对于实际电路,根据它的电气特性,由电路 元件来抽象出它的电路模型的过程称为电路 的建模。电路的建模时, 的建模。电路的建模时,常需要用到理想化 来化简电路; 来化简电路;另一方面还需注意电器部件在 不同工作条件下的电气特性不一定相同, 不同工作条件下的电气特性不一定相同,因 而相应的电路模型也会不同。 而相应的电路模型也会不同。
选择的参考方向不同, 选择的参考方向不同,则列出的电路方程也 不一样,得到方程的解也不尽相同, 不一样,得到方程的解也不尽相同,但这些 解应该是大小相等而只存在着符号的差异。 解应该是大小相等而只存在着符号的差异。 综合解的符号和参考方向, 综合解的符号和参考方向,这些不同的电路 方程的解所表示的实际电流或电压应该是完 全一致的。 全一致的。 习惯上,电阻、电容、 习惯上,电阻、电容、电感等元件支路上的 端电压和流经电流取为关联参考方向。 端电压和流经电流取为关联参考方向。
抽象的电路元件用来体现单纯的电性质: 抽象的电路元件用来体现单纯的电性质: 导线----导通电流 导线 导通电流 电源----提供电能 电源 提供电能 电阻----消耗电能 电阻 消耗电能 电容----以电场形式储存电能 电容 以电场形式储存电能 电感----以磁场形式储存电能 电感 以磁场形式储存电能 这样就可以用理想化的电路元件来表示实际物 理电器件的某一方面电磁特性, 理电器件的某一方面电磁特性,而以其组合在 电路模型中来综合表示该实际物理电器件及其 构成的电路。 构成的电路。
电路分析-电压源、电流源和受控电源
i
+
iS
u
_
(1) 短路:i= iS ,u=0
(2) 开路:理想电流源不允许开路。
4. 功率 iS
iS
+ +
u , iS 非关联
u
p发= u is
_
p吸= – uis
_
u , iS 关联
u
p吸= uis
p发= – uis
返回首页
受控电源 (非独立源) (controlled source or dependent source)
i1
i2
+
+
u_ 1
gu1 u2 _
{ i1=0 i2=gu1
VCCS
g: 转移电导
(4) 电压控制的电压源 ( Vole )
i1
i2
+
+
+
u_ 1
_u1
u2
_
VCVS
{ i1=0 u2= u1 :电压放大倍数
i1
i2
+
+
u_ 1
b i1 u2 _
一、定义 电压源电压或电流源电流不是给定函数,而是受电路
某个支路的电压(或电流)的控制。
电路符号
+– 受控电压源
受控电流源
例 Rb ib
Rc
ic
ic=b ib
电流控制的电流源
ib 控制部分
b ib
受控部分
二、四种类型
(1) 电流控制的电流源 ( Current Controlled Current Source )
3. 理想电压源的开路与短路
i
(1) 开路 i=0
电路原理知识总结
电路原理总结第一章基本元件和定律1.电流的参考方向可以任意指定,分析时:若参考方向与实际方向一致,则i>0,反之i<0。
电压的参考方向也可以任意指定,分析时:若参考方向与实际方向一致,则u>0反之u<0。
2.功率平衡一个实际的电路中,电源发出的功率总是等于负载消耗的功率。
3.全电路欧姆定律:U=E-RI4.负载大小的意义:电路的电流越大,负载越大。
电路的电阻越大,负载越小。
5.电路的断路与短路电路的断路处:I=0,U≠0电路的短路处:U=0,I≠0二.基尔霍夫定律1.几个概念:支路:是电路的一个分支。
结点:三条(或三条以上)支路的联接点称为结点。
回路:由支路构成的闭合路径称为回路。
网孔:电路中无其他支路穿过的回路称为网孔。
2.基尔霍夫电流定律:(1)定义:任一时刻,流入一个结点的电流的代数和为零。
或者说:流入的电流等于流出的电流。
(2)表达式:i进总和=0或:i进=i出(3)可以推广到一个闭合面。
3.基尔霍夫电压定律(1)定义:经过任何一个闭合的路径,电压的升等于电压的降。
或者说:在一个闭合的回路中,电压的代数和为零。
或者说:在一个闭合的回路中,电阻上的电压降之和等于电源的电动势之和。
(2)表达式:1或:2或:3(3)基尔霍夫电压定律可以推广到一个非闭合回路三.电位的概念(1)定义:某点的电位等于该点到电路参考点的电压。
(2)规定参考点的电位为零。
称为接地。
(3)电压用符号U表示,电位用符号V表示(4)两点间的电压等于两点的电位的差。
(5)注意电源的简化画法。
四.理想电压源与理想电流源1.理想电压源(1)不论负载电阻的大小,不论输出电流的大小,理想电压源的输出电压不变。
理想电压源的输出功率可达无穷大。
(2)理想电压源不允许短路。
2.理想电流源(1)不论负载电阻的大小,不论输出电压的大小,理想电流源的输出电流不变。
理想电流源的输出功率可达无穷大。
(2)理想电流源不允许开路。
电路的基本概念和定律、定理
基尔霍夫电流定律
总结词
基尔霍夫电流定律也称为节点电流定 律,它指出在电路中,流入一个节点 的电流总和等于流出该节点的电流总 和。
详细描述
这意味着对于任意一个封闭的电路或 节点,所有流入的电流必须等于所有 流出的电流。这个定律是电路分析中 的一个基本原则,适用于任何电路中 的节点。
基尔霍夫电压定律
对于高频交流信号,诺顿定理可能不适用, 因为电路的分布参数效应需要考虑。
THANKS
感谢观看
05
CATALOGUE
诺顿定理
诺顿定理的定义
01
诺顿定理:在任何线性无源二端 网络中,对其外部任一节点,流 入该节点的电流代数和等于零。
02
诺顿定理是电路分析中的重要定 理之一,它与基尔霍夫电流定律 (KCL)相似,但适用于更广泛 的电路情况。
诺顿定理的应用
01
02
03
验证电路的正确性
通过应用诺顿定理,可以 验证电路中电流的正确性 ,确保电路设计无误。
电路的组成
总结词
电路的组成包括电源、负载、开关、导线等部分。
详细描述
电源是电路中提供电能的设备,如电池、发电机等;负载是电路中消耗电能的 设备,如灯泡、电机等;开关用于控制电路的通断;导线用于连接各元件,形 成电流的通路。
电路的状态
总结词
电路的状态分为开路、短路和闭路三种。
详细描述
开路是指电路中无电流通过的状态,通常是由于开关未闭合或导线断开等原因造成的;短路是指电流不经过负载 直接由电源正负极流过的状态,会导致电流过大、发热甚至烧毁电源;闭路是指电路中电流正常流通的状态,负 载正常工作。
总结词
基尔霍夫电压定律也称为回路电压定律,它指出在电路中,沿着任意闭合回路的电压降总和等于零。
电路的基本元件和电路定律
第1章 电路的基本元件和电路定律主要内容:介绍电路模型的概念,电压、电流参考方向的概念,功率的计算及概念,电阻、电容、电感、独立电源和受控源等电路元件,最后介绍基尔霍夫定律。
学时安排:本章分4讲,共8学时。
第一讲 电路模型、电压和电流参考方向以及元件功率一、主要内容1、课程的性质和作用 《电路理论》是一门技术基础课程。
通过本课程的学习,能运用所学知识解决一些基本的有关电学方面的问题,同时为后续《电子技术》等课程打下基础。
2、教学安排 第1章 10学时、第2章 4学时、第3章 6学时、第4章 6学时、直流电路习题课 2学时、第5章4学时、第6章 8学时、第七章 4学时、第8章6学时、交流与习题课 2学时、第9章 8学时、第10章 4学时、第11章 8学时、第12章 6学时、一阶与非正弦电路习题课 2学时、第13章 6学时、第14章 8学时、第15章 2学时、总复习 2学时3、电路的作用、组成与任务 电路的作用:完成能量的转换;完成信号的处理。
电路的组成:实际电路是由电气器件相互联接而构成的电流通路。
实际电气器件在一定条件下都可用理想元件来代替。
由理想元件代替实际电气器件组成的电路叫电路模型。
电路是根据电路模型来进行分析的。
电路分析的目的:根据电路结构和已知参数,求电路的电压、电流和功率。
电路是各种各样电器装置的联接体。
本书研究的电路是实际电路的电路模型。
某些实际器件可用一个理想电路元件代替,某些实际器件需用几个理想电路元件的组合来代替。
电路模型就是用理想电路元件代替实际器件组成的电路。
4、电流的参考方向 1)电流的实际方向电流(又叫电流强度)—单位时间内通过的电流,即dt dqi =。
电流的实际方向是单位正电荷定向移动的方向。
2)电流的参考方向 A 用箭头表示,如图1-1(a )所示;B 用双下标表示,如图1-1(b )所示。
如电流A 3=AB i ,则电流实际方向与参考方向一致;如电流A 3-=AB i ,则电流实际方向与参考方向相反。
第1章-电路模型和电路定律
1.6 电容元件 (capacitor)
1、电容器
++ ++ ++ ++ +q –--– –--– –q
线性定常电容元件:任何时刻,电容元件极板上的电 荷q与电压 u 成正比。
2、电路符号
C
3. 元件特性 i
与电容有关两个变量: C, q 对于线性电容,有: q =Cu
1.7 电感元件
1 、线性定常电感元件
iL
变量: 电流 i , 磁链
+
u
–
def ψ L
i
L 称为自感系数 L 的单位:亨(利) 符号:H (Henry)
2 、韦安( ~i )特性
0
i
3 、 电压、电流关系:
i
+–
ue –+
i , 右螺旋 e , 右螺旋 u , e 非关联 u , i 关联
交流: iS是确定的时间函数,如 iS=Imsint
(b) 电源两端电压是任意的,由外电路决定。
(3). 伏安特性
i
+
iS
u
_
u
IS
O
i
(a) 若iS= IS ,即直流电源,则其伏安特性为平行于电 压轴的直线,反映电流与 端电压无关。
(b) 若iS为变化的电源,则某一时刻的伏安关系也是 这样 电流为零的电流源,伏安曲线与 u 轴重合, 相当于开路元件
+ u
+ C
C
def
q
u
C 称为电容器的电容
–
–
电容 C 的单位:F (法) (Farad,法拉)
电路基本理论及电路计算
电路基本理论及电路计算电路是电气工程的基础,用于传输和控制电能的载体。
它由电源、导线、电阻、电容和电感等元件组成,通过运算符号和公式进行电路计算。
本文将介绍电路基本理论和常用的电路计算方法。
一、电路基本理论1. 电路元件电路中常见的元件有电源、导线、电阻、电容和电感。
电源是提供电能的装置,导线用于连接电路元件,电阻产生电阻力,电容储存电能,电感产生电感力。
2. 电路原理电路按照电流的流动方式可分为串联电路和并联电路。
串联电路中电流只有一条路径流动,而并联电路中电流可以有多条路径。
根据欧姆定律,电流与电压和电阻之间的关系可以用公式I=U/R表示。
3. 基本电路定律基本电路定律包括基尔霍夫定律和等效电路定理。
基尔霍夫定律又分为基尔霍夫电流定律和基尔霍夫电压定律。
基尔霍夫电流定律指出,在电路中,进入和离开某一节点的电流代数和为零;基尔霍夫电压定律指出,在电路中,沿着闭合回路的电压代数和为零。
等效电路定理包括电阻的串联和并联、电容的串联和并联、电感的串联和并联等。
4. 交流电路和直流电路交流电路是指电流方向随时间变化的电路,直流电路是指电流方向保持不变的电路。
交流电路计算需要使用复数和相量的概念,而直流电路计算则可以直接使用欧姆定律。
二、电路计算方法1. 串联电路计算串联电路中,电阻、电压和电流满足以下关系:总电阻等于各个电阻之和,总电压等于各个电压之和,总电流相等。
因此,串联电路计算可以简化为将各个电阻、电压及电流相加。
2. 并联电路计算并联电路中,电阻、电压和电流满足以下关系:总电阻的倒数等于各个电阻倒数之和,总电压相等,总电流等于各个电流之和。
因此,并联电路计算可以简化为求各个电阻的倒数并相加,再取倒数,求各个电流之和。
3. 交流电路计算交流电路计算需要使用复数和相量的概念。
交流电压和电流可以表示为幅值和相位角的复数形式。
计算时需要进行复数的加减运算,以及复数和实数的乘除运算。
对于交流电路的计算,可以使用欧姆定律和基尔霍夫定律,并根据电路中的元件进行相应的计算。
电路分析基础-电路元件和基本定律
实际方向
实际方向
参考方向:任意选定一个方向即为电流的参考方向。
i
参考方向
A
大小
B
电流(代数量)
方向
电流的参考方向与实际方向的关系:
i
参考方向
i
参考方向
实际方向
i>0
实际方向
i<0
电流参考方向的两种表示:
用箭头表示:箭头的指向表电流的参考方向。 用双下标表示:如 iAB , 表电流的参考方向由A指向B。
(3) 元件或支路的u、i采用相同的参考方向,称关
联参考方向;反之,称为非关联参考方向。
i
i
N
+
u
–
关联参考方向
N
+
u
–
非关联参考方向
思考: u、i参考方向关联与否,与它们真实方向
有关否?与支路元件种类有关否? (4) 参考方向也称为假定方向、假定正方向,以后
讨论均在参考方向下进行,不考虑实际方向。
信号进行处理.
导线(line)、开关(switch)等:将电源与负载接成通路. 2、 从信号处理角度看分为:
激励信号 (输入信号)
电路 (网络)
响应信号 (输出信号)
二、电路模型 (circuit model)
1. 理想电路元件:根据实际电路元件所具备的电磁性
质所抽象出来的具有某种单一电磁性质的元件,其 u,i关系可用简单的数学式子严格表示。 几种基本的理想电路元件: 电阻元件:表示消耗电能的元件 电感元件:表示各种电感线圈产生磁场,储存磁场能的作用 电容元件:表示各种电容器产生电场,储存电场能的作用 电源元件:表示各种将其它形式的能量转变成电能的元件
电流的大小用电流强度表示:单位时间内通过导体截 面的电量。
什么是电路的基本定律和元件特性
什么是电路的基本定律和元件特性在我们的日常生活中,电无处不在,从照明的灯泡到驱动各种电器设备,都离不开电的作用。
而要理解电是如何在电路中流动和工作的,就需要了解电路的基本定律和元件特性。
电路,简单来说,就是电流流动的路径。
就像道路让车辆通行一样,电路为电流提供了流动的通道。
而电路的基本定律和元件特性,就是描述电流、电压、电阻等在电路中相互关系和行为的规则。
首先,咱们来聊聊欧姆定律。
这可是电路中最基础、最重要的定律之一。
欧姆定律指出,通过一段导体的电流与这段导体两端的电压成正比,与这段导体的电阻成反比。
用公式表示就是 I = U / R ,其中 I 表示电流,U 表示电压,R 表示电阻。
打个比方,如果把电流想象成水流,电压就像是水压,而电阻则相当于水管的粗细程度。
水压越大,水流就越大;水管越细,水流就越小。
接下来是基尔霍夫定律,这包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。
基尔霍夫电流定律说的是,在电路的任何一个节点处,流入节点的电流之和等于流出节点的电流之和。
想象一下,节点就像是一个十字路口,各个方向的车流量(电流)在这个路口进出,总的进流量和总的出流量是相等的。
基尔霍夫电压定律则表示,在任何一个闭合回路中,各段电压的代数和为零。
这就好比我们绕着一个圈走路,上升的高度(正电压)和下降的高度(负电压)加起来总是等于零。
说完了电路的基本定律,再来说说电路中的元件特性。
电阻是电路中常见的元件,它的特性就是阻碍电流的流动。
电阻的大小取决于材料的性质、长度、横截面积等因素。
电阻在电路中起到限流、分压等作用。
电容是另一种重要的元件,它能够储存电荷。
电容的大小与极板的面积、极板间的距离以及介质的介电常数有关。
在电路中,电容常用于滤波、耦合等。
电感也是电路中不可或缺的元件,它通过产生自感电动势来抵抗电流的变化。
电感的大小与线圈的匝数、线圈的形状以及是否有铁芯等因素有关。
电感常用于滤波、振荡等电路中。
电路的基本定律欧姆定律与基尔霍夫定律
电路的基本定律欧姆定律与基尔霍夫定律电路的基本定律:欧姆定律与基尔霍夫定律电路是由电器元件以特定方式连接成的,电流在其中流动以传送电能。
为了准确地描述电路中电流、电压和电阻之间的关系,人们提出了一些基本的电路定律。
在本文中,我们将介绍两个最为重要的电路定律:欧姆定律和基尔霍夫定律。
一、欧姆定律欧姆定律是电路中最为基本的定律之一,它描述了电流、电压和电阻之间的关系。
根据欧姆定律,当一个电阻器两端施加电压时,通过它的电流与电压成正比,与电阻成反比。
数学表达式为:I = V / R其中,I代表电流,单位为安培(A);V代表电压,单位为伏特(V);R代表电阻,单位为欧姆(Ω)。
欧姆定律告诉我们,电流的大小与电压的大小成正比,与电阻的大小成反比。
二、基尔霍夫定律基尔霍夫定律是电路分析中非常重要的定律,它由德国物理学家基尔霍夫提出,并应用于电路的各种复杂情况。
基尔霍夫定律包括两个基本原理:第一定律和第二定律。
1. 第一定律(节点定律)第一定律也称为节点定律,它是基尔霍夫定律中的电流守恒定律。
根据第一定律,一个节点处的电流总和等于零。
具体而言,对于一个节点,所有进入节点的电流总和等于所有离开节点的电流总和。
数学表达式为:∑I_in = ∑I_out这个定律可以帮助我们在复杂的电路中分析节点处的电流情况,进而推导出电路中各个部分的电流数值。
2. 第二定律(回路定律)第二定律也称为回路定律,它是基尔霍夫定律中的电压守恒定律。
根据第二定律,在一个回路中,沿着回路的总电压等于零。
具体而言,对于一个回路,所有通过元件的电压之和等于所有电源的电压之和。
数学表达式为:∑V_loop = 0这个定律可以帮助我们在复杂的电路中分析回路中的电压情况,进而推导出电路中各个部分的电压数值。
综上所述,电路中的欧姆定律与基尔霍夫定律是电路分析与设计的基础。
欧姆定律描述了电流、电压和电阻之间的关系,而基尔霍夫定律提供了节点电流和回路电压的守恒原理。
1电路
二. 电压 (voltage) 1. 电压 (voltage):电场中某两点A、B间的电压(降)UAB 等于 将单位点电荷q从A点移至B点电场力所做的功 wAB,,即
def
U AB
d WAB dq
单位名称:伏(特) 符号:V(Volt)
2. 电压(降)的参考方向 + +
实际方向 实际方向
+
U
(参考方向)
由此可以看出,电感是无源元件,它本身不消耗能量。
1.6 电容元件 (capacitor)
电容器 + + + + +q – – – – –q
线性定常电容元件:任何时刻,电容元件极板上的电
荷q与电流 u 成正比。
C 电路符号
一. 元件特性
与电容有关两个变量: C, q
i 对于线性电容,有: q =Cu +
2. u, i 取非关联参考方向
+ u – +
i
p吸 = u i p>0 p<0 实际吸收 实际发出
i
p发 = u i p>0 p<0 实际发出 实际吸收
u
–
上述功率计算适用于任意二端网络。 例 U = 5V, I = - 1A
+
U
I
关 联
P吸= UI = 5(-1) = -5 W
– +
I U
线性电感的 ~i (韦安)特性是过原点的直线
0
i
二. 线性电感电压、电流关系: i + – u e – +
u , i 关联
由电磁感应定律与楞次定律
i , 右螺旋
电路原理第一章 电路元件和电路定律
i + U
关联参考方向
i +
U
非关联参考方向
返 回 上 页 下 页
例
i
+
A U B
电压电流参考方向如图中所标, 电压电流参考方向如图中所标,问:A、B 、 两部分电路电压电流参考方向关联否? 两部分电路电压电流参考方向关联否? 电压、电流参考方向非关联; 答: A 电压、电流参考方向非关联; B 电压、电流参考方向关联。 电压、电流参考方向关联。
•
信号是运载信息的工具 电路是对信号进行加工、处理或能量传递的具体结构 是对信号进行加工、 系统是信号通过的全部电路和设备的总和
第1章
重点: 重点:
电路元件和电路定律
(circuit elements) (circuit laws)
1. 电压、电流的参考方向 电压、 2. 电功率和能量 3. 电路元件特性 4. 基尔霍夫定律
(reference direction)
电路中的主要物理量有电压、电流、电荷、磁链、 电路中的主要物理量有电压、电流、电荷、磁链、能 量、电功率等。在线性电路分析中人们主要关心的物理量 电功率等。 是电流、电压和功率。 是电流、电压和功率。
1. 电流的参考方向 (current reference direction)
返 回 下 页
电路和电路模型( §1-1 电路和电路模型(model)
1. 实际电路 功能 由电工设备和电气器件按预期目的连 接构成的电流的通路。 接构成的电流的通路。 a 能量的传输、分配与转换; 能量的传输、分配与转换; b 信息的传递与处理。 信息的传递与处理。 共性 建立在同一电路理论基础上
解
(2) 以c点为电位参考点 点为电位参考点
清华考研_电路原理课件_第1章__电路元件和电路定律
Uab= ϕ a–ϕ b → ϕ b = ϕ a –Uab= –1.5 V
1.5 V Ubc= ϕ b–ϕ c → ϕ c = ϕ b –Ubc= –1.5–1.5 = –3 V
b
Uac= ϕ a–ϕ c = 0 –(–3)=3 V
1.5 V (2) 以b点为参考点,ϕ b=0
c
Uab= ϕ a–ϕ b → ϕ a = ϕ b +Uab= 1.5 V
2. 电压(voltage) 电场中某两点A、B间的电压(降)UAB 等于将点电荷q
从A点移至B点电场力所做的功WAB与该点电荷q的比值,即
uAB
=
dWAB dq
A
B
单位名称: 伏(特) 符号:V (Volt,伏特;1745 – 1827,Italian)
3. 电位(potential) 在分析电路问题时,常在电路中选一个点为参考点
• 用箭头表示:箭头的指向为电流的参考方向。 • 用双下标表示:如 iAB ,电流的参考方向由A指向B。
例
I 10V
A I1
10Ω
I2 B
电路中电流 I 的大小为1A, 其方向为从A流向B。 (此为电流的实际方向)
若参考方向如 I1 所示,则I1=1A
若参考方向如 I2 所示,则I2= -1A
因此,同一支路的电流可用两种方法表示。
电路模型
3. 集总参数电路 实际电路的尺寸必须远小于电路工作频率下的电磁波的波
长。
返回目录
1.2 电流、电压、电动势及其参考方向
一、电流、电压、电动势
1. 电流 带电质点有规律的运动形成电流。
电流的大小用电流强度表示。
电流强度:单位时间内通过导体横截面的电量。
电路基本定律与公式总结
电路基本定律与公式总结电路基本定律与公式是电路理论中非常重要的一部分,它们用于描述电路中电荷的流动、电压的分布以及电阻的影响。
掌握这些定律和公式对于理解和分析电路特性至关重要。
本文将对电路中常见的基本定律与公式进行总结。
一、欧姆定律(Ohm's Law)欧姆定律是电路中最基本的定律之一,用于描述电流、电压和电阻之间的关系。
根据欧姆定律,电流(I)通过一个电阻(R)的大小与电压(V)成正比,关系可以用以下公式表示:V = I * R其中,V表示电压,I表示电流,R表示电阻。
欧姆定律适用于各种电路,包括直流电路和交流电路。
二、基尔霍夫定律(Kirchhoff's Laws)基尔霍夫定律是电路中电流与电压分布的基本法则,包括基尔霍夫的第一定律(KCL)和基尔霍夫的第二定律(KVL)。
1. 基尔霍夫的第一定律(KCL)基尔霍夫的第一定律也称为电流守恒定律,它表明电流在节点处的总和等于0。
具体而言,对于一个节点,进入节点的电流等于离开节点的电流。
这个定律可以用以下公式表示:ΣI_in = ΣI_out其中,ΣI_in表示进入节点的电流之和,ΣI_out表示离开节点的电流之和。
2. 基尔霍夫的第二定律(KVL)基尔霍夫的第二定律描述了电压在闭合回路中的分布关系。
根据这个定律,电压在闭合回路中的总和等于0。
具体而言,对于一个闭合回路,沿着回路的任意路径,电压的代数和等于0。
这个定律可以用以下公式表示:ΣV_loop = 0其中,ΣV_loop表示电压在闭合回路中的代数和。
三、功率定律(Power Law)功率定律用于计算电路中的功率,它表示功率与电流和电压之间的关系。
电路中的功率可以通过以下公式计算:P = V * I其中,P表示功率,V表示电压,I表示电流。
功率可以用单位瓦(W)表示,它表示单位时间内的能量转换。
四、电路中的串联与并联在电路中,元件可以通过串联和并联的方式连接在一起。
1. 串联连接串联连接是指将电路中的元件依次连接在一起,电流穿过每个元件相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
路不能视为集总参数电路。
1-2 电压和电流的参考方向
一、电路中的主要物理量
主要有电压、电流、电荷、磁链等。在线性电路分析中 常用电流、电压、电位等。
1. 电流 (current):带电质点的运动形成电流。
电流的大小用电流强度表示:单位时间内通过导体截 面的电量。
def
交流高频状态,消耗能 量,储磁场能量和电场
能量
1-1 电路和电路模型
2. 电路模型:由理想元件及其组合代表实际电路元件,与
实际电路具有基本相同的电磁性质,称其为电路模型。
* 电路模型是由理想电路元件构成的。
例.
电 池
1 0 B A S E - T w a ll p la t e
开关
灯泡
导线
1-1 电路和电路模型
电感元件:表示各种电感线圈产生磁场,储存电能的作用 电容元件:表示各种电容器产生电场,储存电能的作用 电源元件:表示各种将其它形式的能量转变成电能的元件
1-1 电路和电路模型
建模时,工作条件不一样,其模型也不一样:如一个电感线圈
实际线圈
R
R
C
R
L
L
直流状态,仅消 交流低频状态,
耗能量
消能,储能
电路元件和电路定律
第一章 电路元件和电路定律
1-1 电路和电路模型 1-2 电压和电流的参考方向 1-3 电路元件的功率 1-4 电阻元件 1-5 电感元件 1-6 电容元件 1-7 电源元件 1-8 受控电源 1-9 基尔霍夫定律
1-1 电路和电路模型
一、 电路:电工设备构成的整体,它为电流的流通提供路径。
电路主要由电源、负载、连接导线及开关等构成。 电源(source):提供能量或信号.
UBAW qABUAB
1-2 电压和电流的参考方向
3. 电位:电路中为分析方便,常在电路中选某一点为参考
点,把任一点到参考点的电压称为该点的电位。 参考点的电位一般选为零,所以,参考点也称为零电位 点。
电位用表示,单位与电压相同,也是V(伏)。
a
b
设c点为电位参考点,则 c=0
a=Uac, b=Ubc, d=Udc
a
(1) 以a点为参考点,a=0
Uab= a–b b = a –Uab= –1.5 V
1.5 V Ubc= b–c c = b –Ubc= –1.5–1.5= –3 V
b
Uac= a–c = 0 –(–3)=3 V
1.5 V (2) 以b点为参考点,b=0
c
Uab= a–b a = a +Uab= 1.5 V
(1) 若电路的工作频率为f=50 Hz,则 周期 T = 1/f = 1/50 = 0.02 s
波长 = 3×105 0.02=6000 km 一般电路尺寸远小于 。
(2) 若电路的工作频率为 f=50 MHz,则 周期 T = 1/f = 0.0210–6 s = 0.02 ns
波长 = 3×105 0.0210–6 = 6 m
i(t)li
mΔqdq
Δt0Δt dt
单位:A (安) (Ampere,安培)
1-2 电压和电流的参考方向
当数值过大或过小时,常用十进制的倍数表示。
SI制中,一些常用的十进制倍数的表示法: 符号 T G M k c m n p 中文 太 吉 兆 千 厘 毫 微 纳 皮 数量 1012 109 106 103 10–2 10–3 10–6 10–9 10–12
Ubc= b–c c = b –Ubc= –1.5 V
Uac= a–c = 1.5 –(–1.5) = 3 V
结论:电路中电位参考点可任意选择;当选择不同的电位
参考时,电路中各点电位均不同,但任意两点间电 压保持不变。
1-2 电压和电流的参考方向
4. 电动势(eletromotive force):局外力克服电场力把单位正电荷从
负载(load):将电能转化为其它形式的能量,或对 信号进行处理.
导线(line)、开关(switch)等:将电源与负载接成通路.
1-1 电路和电路模型
二、电路模型 (circuit model)
1. 理想电路元件:根据实际电路元件所具备的电磁性
质所设想的具有某种单一电磁性质的元件,其u,i 关系可用简单的数学式子严格表示。 几种基本的电路元件: 电阻元件:表示消耗电能的元件
d
c
1-2 电压和电流的参考方向
两点间电压与电位的关系:
前例
a
b
仍设c点为电位参考点, c=0
Uac = a , Udc = d
d
c
Uad= Uac –Udc= a–d
结论:电路中任意两点间的电压等于该两点间的
电位之差。
1-2 电压和电流的参考方向
例.
已知 Uab=1.5 V,Ubc=1.5 V
1-2 电压和电流的参考方向
二、电压、电流的参考方向 (reference direction)
1. 电流的参考方向
+
10V
ቤተ መጻሕፍቲ ባይዱ
10k
电流为1mA
1-2 电压和电流的参考方向
元件(导线)中电流流动的实际方向有两种可能:
实际方向
实际方向
参考方向:任意选定一个方向即为电流的参考方向。
三. 集总参数元件与集总参数电路
集总参数元件:每一个具有两个端钮的元件中有确
定的电流,端钮间有确定的电压。
集总参数电路:由集总参数元件构成的电路。
一个实际电路要能用集总参数电路近似, 要满足如下条件:即实际电路的尺寸必须远小 于电路工作频率下的电磁波的波长。
1-1 电路和电路模型
已知电磁波的传播速度与光速相同,即 v=3×105 km/s (千米/秒)
负极经电源内部移到正极所作的功称为电源的电动势。
def
e
dA
A
dq
e 的单位与电压相同,也是 V (伏)
根据能量守恒:UAB = eBA。电压表示电位降, 电动势表示电位升,即从A到B的电压,数
值上等于从B到A的电动势。
B
* 电场力把单位正电荷从A移到B所做的功(UAB ),与外 力克服电场力把相同的单位正电荷从B经电源内部移向 A所做的功(eBA)是相同的,所以UAB = eBA。
1-2 电压和电流的参考方向
2. 电压 (voltage):电场中某两点A、B间的电压(降)UAB
等于将点电荷q从A点移至B点电场力所做的功WAB与 该点电荷q的比值,即
U
AB
def
WAB q
单位:V (伏) (Volt,伏特)
当把点电荷q由B移至A时,需外力克服电场力做同样的功
WAB=WBA,此时可等效视为电场力做了负功–WAB,则B到 A的电压为