中考数学几何证明题经典题型分析报告
中考数学几何证明题优秀篇
THANK YOU
汇报人:
汇报时间:20XX/XX/XX
YOUR LOGO
注重基础知识的学习和掌握
掌握基本概念:理解几何图形、 定理、性质等基本概念
掌握基本技巧:掌握几何证明题 的基本技巧,如辅助线、特殊点、 特殊图形等
添加标题
添加标题
添加标题
添加标题
掌握基本方法:熟练掌握几何证 明题的基本方法,如分析法、综 合法、反证法等
注重实践:通过大量练习,提高 解题速度和准确性,培养解题能 力
学会利用辅助线
辅助线的作用:帮助理解几何图形,简化证明过程 辅助线的类型:平行线、垂线、中线、角平分线等 辅助线的添加原则:不破坏原图形的性质,不影响原图形的证明 辅助线的添加方法:根据已知条件和待证结论,寻找合适的辅助线添加位置
掌握常见证明题的解题方法
掌握基本概念 和定理:理解 几何证明题中 的基本概念和 定理,如平行 线、垂直线、
证明过程:先证 明角A=角B=角C ,再证明 AB=BC=AC
结论:三角形 ABC是等边三角 形
中考数学几何证明题解析
证明题类型:包括平行线、三角形、四边形等几何图形的证明 证明方法:包括直接证明、间接证明、反证法等 证明步骤:明确已知条件、寻找突破口、逐步推理、得出结论 解题技巧:注意图形的性质、对称性、相似性等,运用几何公式和定理进行证明
中考数学几何证明题优秀篇
汇报人:
汇报时间:20XX/XX/XX
YOUR LOGO
目录
CONTENTS
1 几何证明题概述
2 几何证明题解题技巧
3 中考数学几何证明题优秀 篇解析
4 如何提高几何证明题的解 题能力
5 中考数学几何证明题备考 策略
【中考数学专题】10 与翻折或轴对称作图有关的几何证明题解析-
专题十:与翻折或轴对称作图有关的几何证明题解析专题导例如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是.【分析】:先判断出Rt△ADM≌Rt△BCN(HL),得出∠DAM=∠CBN,进而判断出△DCE≌△BCE (SAS),得出∠CDE=∠CBE,即可判断出∠AFD=90°,根据直角三角形斜边上的中线等于斜边的一半可得OF=AD=3,利用勾股定理列式求出OC,然后根据三角形的三边关系可知当O、F、C 三点共线时,CF的长度最小.方法剖析轴对称的性质(1)对应线段相等,对应角相等;对称点的连线被对称轴垂直平分;(2)轴对称图形变换的特征是不改变图形的形状和大小,只改变图形的位置,新旧图形具有对称性;(3)轴对称的两个图形,它们对应线段或延长线相交,交点在对称轴上.轴对称(折叠)的思考层次全等变换:对应边相等,对应角相等;对称轴性质:对应点所连线段被对称轴(折痕)垂直平分,对称轴(折痕)上的点到对应点的距离相等;指出:(1)在翻折下,前后的图形关于折痕成轴对称,注意前后的图形成镜面对称,即前后的图形的左右位置互换;(2)翻折或对称中建构勾股方程来求取线段长及对最值类问题进行探究;(3)轴对称常见的结构,折叠会产生垂直平分,等腰三形.导例答案:解:如图,在正方形ABC D中,AD=BC=CD,∠ADC=∠BCD,∠DCE=∠BCE,在Rt△ADM和Rt△BCN中,,∴Rt△ADM≌Rt△BCN(HL),∴∠DAM=∠CBN,在△DCE和△BCE中,,∴△DCE≌△BCE(SAS),∴∠CDE=∠CBE∴∠DAM=∠CDE,∵∠ADF+∠CDE=∠ADC=90°,∴∠DAM+∠ADF=90°,∴∠AFD=180°﹣90°=90°,取AD的中点O,连接OF、OC,则OF=DO =AD=3,在Rt△OD C中,OC ==3根据三角形的三边关系,OF+CF>OC,∴当O、F、C三点共线时,CF的长度最小,最小值=OC﹣OF=3﹣3.故答案为:3﹣3.典型例题类型一:利用已知直线作对称图形进行证明例1、在等边△AB C中,点D在BC边上,点E在AC的延长线上,DE=DA(如图1).(1)求证:∠BAD=∠EDC;(2)点E关于直线BC的对称点为M,连接DM,AM.①依题意将图2补全;②证明:在点D运动的过程中,始终有DA=AM.【分析】(1)先判断出∠BAD+∠CAD=60°,进而得出∠BAD+∠E=60°,即可得出结论;(2)①由对称性即可补全图形;②由对称性判断出DM=DE,∠MDC=∠EDC,再用三角形的外角的性质,判断出∠ADC=∠B+∠BAD=∠B+∠MDC,进而判断出△ADM是等边三角形,即可得出结论.类型二:对已知图形进行翻折进行证明例2.如图,矩形ABC D中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)在线段AB上找一点P,连结FP使FP⊥AC,连结PC,试判定四边形APCF的形状,并说明理由,直接写出此时线段PF的大小.【分析】(1)根据矩形的性质、轴对称的性质可得到AD=EC,AE=DC,即可证到△DEC≌△EDA (SSS);(2)易证AF=CF,设DF=x,则有AF=4﹣x,然后在Rt△ADF中运用勾股定理就可求出DF的长.(3)根据三角形的内角和定理求得∠APF=∠AFP根据等角对等边得出AF=AP进而得出FC=AP,从而证得四边形APCF是平行四边形,又因为FP⊥AC证得四边形APCF为菱形,然后根据菱形的面积S菱形=PF•AC=AP•AD,即可求得.专项突破1.如图,在Rt△AB C中,∠C=90°,点D、E分别是BC、AB上一个动点,连接DE.将点B沿直线DE折叠,点B的对应点为F,若AC=3,BC=4,当点F落在AC的三等分点上时,BD的长为.2.如图,正方形ABC D中,点E是BC延长线上一点,连接DE,过点B作BF⊥DE于点F,连接F C.(1)求证:∠FBC=∠CDF;(2)作点C关于直线DE的对称点G,连接CG,FG,猜想线段DF,BF,CG之间的数量关系,并证明你的结论.3.已知矩形ABCD,其中AD>AB,依题意先画出图形,然后解答问题.(1)F为DC边上一点,把△ADF沿AF折叠,使点D恰好落在BC上的点E处.在图1中先画出点E,再画出点F,若AB=8,AD=10,直接写出EF的长为;(2)把△ADC沿对角线AC折叠,点D落在点E处,在图2先画出点E,AE交CB于点F,连接BE.求证:△BEF是等腰三角形.4.如图,Rt△AB C中,∠ACB=90°,AC=BC,点D为AB边上的一个动点(不与点A,B及A B中点重合),连接CD,点A关于直线CD的对称点为点E,直线BE,CD交于点F.(1)如图1,当∠ACD=15°时,根据题意将图形补充完整,并直接写出∠BFC的度数;(2)如图2,当45°<∠ACD<90°时,用等式表示线段AC,EF,BF之间的数量关系,并加以证明.5.在Rt△AB C中,∠ACB=90°,CA=C B.点D为线段BC上一个动点(点D不与点B,C重合),连接AD,点E在射线AB上,连接DE,使得DE=D A.作点E关于直线BC的对称点F,连接BF,DF.(1)依题意补全图形;(2)求证:∠CAD=∠BDF;(3)用等式表示线段AB,BD,BF之间的数量关系,并证明.6.如图①,在等腰三角形AB C中,AB=AC=8,BC=14.如图②,在底边BC上取一点D,连结AD,使得∠DAC=∠AC D.如图③,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABE D.则BE的长是.7.在等边三角形ABC外侧作射线AP,∠BAP=α,点B关于射线AP的对称点为点D,连接CD交AP于点E.(1)依据题意补全图形;(2)当α=20°时,∠ADC= ;∠AEC= ;(3)连接BE,求证:∠AEC=∠BEC;(4)当0°<α<60°时,用等式表示线段AE,CD,DE之间的数量关系,并证明.8.在等边△ABC外侧作直线AP,点B关于直线AP的对称点为D,连结BD,CD,其中CD交直线AP与点E.(1)如图1,若∠P AB=30°,则∠ACE=;(2)如图2,若60°<∠P AB<120°,请补全图形,判断由线段AB,CE,ED可以构成一个含有多少度角的三角形,并说明理由.9.如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:△BDF是等腰三角形;(2)如图2,过点D作DG∥BE,交BC于点G,连结FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长.10.【问题情境】如图①,在Rt△AB C中,∠ACB=90°,AC=BC,点D为A B中点,连结CD,点E为CB上一点,过点E且垂直于DE的直线交AC于点F.易知:BE=CF.(不需要证明)【探索发现】如图②,在Rt△AB C中,∠ACB=90°,AC=BC,点D为A B中点,连结CD,点E为CB的延长线上一点,过点E且垂直于DE的直线交AC的延长线于点F.【问题情境】中的结论还成立吗?请说明理由.【类比迁移】如图③,在等边△AB C中,AB=4,点D是A B中点,点E是射线AC上一点(不与点A、C重合),将射线DE绕点D逆时针旋转60°交BC于点F.当CF=2CE时,CE=.11.在△AB C中,∠ACB=90°,AC<BC,点D在AC的延长线上,点E在BC边上,且BE=AD,(1)如图1,连接AE,DE,当∠AEB=110°时,求∠DAE的度数;(2)在图2中,点D是AC延长线上的一个动点,点E在BC边上(不与点C重合),且BE=AD,连接AE,DE,将线段AE绕点E顺时针旋转90°得到线段EF,连接BF,DE.①依题意补全图形;②求证:BF=DE.专题十:与翻折或轴对称作图有关的几何证明题解析例1.解:(1)∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∴∠BAD+∠CAD=60°,∵DE=DA,∴∠CAD=∠E,∴∠BAD+∠E=60°,∵∠EDC+∠E=∠ACB=60°,∴∠BAD=∠EDC;(2)①补全图形如图2所示;②∵△ABC是等边三角形,∴∠B=60°,由对称性得,∠EDC=∠MDC,由(1)知,∠EDC=∠BAD,∴∠MDC=∠BAD,∵∠ADC=∠B+∠BAD=∠B+∠MD C.∴∠ADM=∠B=60°,由对称性得,DM=DE,∵DE=DA,∴DA=DM,∴△ADM是等边三角形,∴DA=DM,即:在点D运动的过程中,始终有DA=AM.例2.(1)证明:∵四边形ABCD是矩形,∴AD=BC,AB=CD,AB∥CD,∴∠ACD=∠CAB,∵△AEC由△ABC翻折得到,∴AB=AE,BC=EC,∠CAE=∠CAB,∴AD=CE,DC=EA,∠ACD=∠CAE,在△ADE与△CE D中,,∴△DEC≌△EDA(SSS);(2)解:如图1,∵∠ACD=∠CAE,∴AF=CF,设DF=x,则AF=CF=4﹣x,在RT△ADF中,AD2+DF2=AF2,即32+x2=(4﹣x)2,解得;x=,即DF=.(3)解:四边形APCF为菱形,设AC、FP相较于点O∵FP⊥AC∴∠AOF=∠AOP又∵∠CAE=∠CAB,∴∠APF=∠AFP∴AF=AP∴FC=AP又∵AB∥CD∴四边形APCF是平行四边形又∵FP⊥AC∴四边形APCF为菱形,在矩形ABC D中,AB=4,AD=3,∴AC=5,∵S菱形=PF•AC=AP•AD,∵AP=AF=4﹣=∴PF==.专项突破1.解:∵折叠∴BD=DF,∵点F落在AC的三等分点上∴CF=1或CF=2,若CF=1时,在Rt△CDF中,DF2=CD2+CF2,∴BD2=(4﹣BD)2+1∴BD=当CF=2时,在Rt△CDF中,DF2=CD2+CF2,∴BD2=(4﹣BD)2+4∴BD=故答案为:或2.解:(1)∵ABCD为正方形,∴∠DCE=90°.∴∠CDF+∠E=90°,又∵BF⊥DE,∴∠FBC+∠E=90°,∴∠FBC=∠CDF(2)如图所示:在线段FB上截取FM,使得FM=F D.∵∠BDC=∠MDF=45°,∴∠BDM=∠CDF,∵==,∴△BDM∽△CDF,∴==,∠DBM=∠DCF,∴BM=CF,∴∠CFE=∠FCD+∠CDF=∠DBM+∠BDM=∠DMF=45°,∴∠EFG=∠EFC=45°,∴∠CFG=90°,∵CF=FG,∴CG=CF,∴BM=CG,∴BF=BM+FM=CG+DF.补充方法:连接GM,证明四边形BMGC是平行四边形即可.3.解:(1)如图1,在BC上截取AE=AD得点E,作AF垂直DE交CD于点F(或作∠AED的平分线AF交CD于点F,或作EF垂直AE交CD于点F等等),∵四边形ABCD是矩形,∴AB=CD=8,AD=BC=10,∠B=∠C=90°,在Rt△ABE中,BE==6,∴EC=10﹣6=4,设EF=DF=x,在Rt△EF C中,则有x2=(8﹣x)2+42,解得x=5,∴EF=5.故答案为:5;(2)证明:如图2,作DH垂直AC于点H,延长DH至点E,使HE=DH.方法1:∵△ADC≌△AEC,∴AD=AE=BC,AB=DC=EC,在△ABE与△CE B中,,∴△ABE≌△CEB(SSS),∴∠AEB=∠CBE,∴BF=EF,∴△BEF是等腰三角形.方法2:∵△ADC≌△AEC,∴AD=AE=BC,∠DAC=∠EAC,又∴AD∥BC,∴∠DAC=∠ACB,∴∠EAC=∠ACB,∴F A=FC,∴FE=FB,∴△BEF是等腰三角形.4.(1)如图1中,连接E C.∵A,E关于CD对称,∴∠DCA=∠DCE=15°,CA=CE=C B.∵∠ACB=90°,∴∠ECB=60°,∴△ECB是等边三角形,∴∠CEB=60°,∵∠CEB=∠BFC+∠DCE,∴∠BFC=60°-15°=45°.(2)结论:EF2+BF2=2AC2.理由:如图2,连接CE,AF,延长AC交FE的延长线于点G.∵A,E关于CD对称,∴AC=CE,AF=EF,又∵CF=CF,∴△ACF≌△ECF(SSS),∴∠CAF=∠1,∵AC=BC,∴BC=CE,∴∠1=∠2,∴∠CAF=∠2,∵∠ACB=90°,∴∠G+∠2=90°,∴∠CAF+∠G=90°,∴∠AFG=90°,在Rt△AF B中,AB2=AF2+BF2,在Rt△AB C中,AB2=AC2+BC2=2AC2,∴BF2+AF2=2AC2,∴BF2+EF2=2AC2.5.(1)如图所示:(2)∵∠ACB=90°,CA=CB,∴∠BAC=∠CBA=45°,∴∠CAD+∠DAB=45°,∵DA=DE,∴∠DAE=∠DEB,∵∠DBA是△DBE的一个外角,∴∠EDB+∠DEB=∠DBA=45°,∴∠EDB=∠CAD,∵点E关于直线BC的对称点F,∴∠EDB=∠FDB,∴∠CAD=∠FDB;(3)线段AB,BD,BF之间的数量关系是AB﹣BF=√2BD,证明:过点D作AC的平行线交AB于M点,∴∠C=∠MDB=90°,∠CAB=∠DMB=45°,∴∠DMB=∠DBM,∴DM=DB,∴MB=√2BD,∵点E关于直线BC的对称点F,∴DE=DF,∵AD=DE,∴AD=DF,∵AC∥MD,∴∠CAD=∠ADM,∵∠CAD=∠FDB,∴∠ADM=∠FDB,∴△ADM≌△FDB(SAS),∴AM=BF,∴AB﹣BF=AB﹣AM=MB,又∵MB=√2BD,∴AB﹣BF=√2B D.6.解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴=,∴BE ===.故答案为:.7.(1)如图;EDP(2)40°;60 °;(3)证明:∵点B关于射线AP的对称点为点D,∴△BAE≌△DAE.∴∠BAE=∠DAE=α.∵AD=AB=AC,∴∠ADC=()1806022α︒-︒+=60°-α.∴∠AEC=60°.∵∠ACB=60°,∠ACD=∠ADC=60°-α,∴∠BCE=α.∵∠ABC=60°,∠ABE=∠ADC=60°-α,∴∠BEC=60°.(4)证明:法一:在CD上截取AF=AE.F EDAB C P∵∠AEF =60°,∴△AEF 是等边三角形.∴∠AFC =∠AED =120°.∵∠ACD =∠ADC =60°-α,∴△ADE ≌△ACF .∴DE =CF .∴CD =2DE +EF .∵AE =EF ,∴CD =2DE +AE .法二:在CD 上截取BG =BE .GEDAB C P∵∠BEC =60°,∴△BEG 是等边三角形.∴∠BGC =∠AED =120°.∵∠BCE =∠DAE =α,∴△BCG ≌△DAE .∴AE =CG .∵EG =BE =DE ,∴CD =2DE +CG .∴CD =2DE +AE .8.解:(1)连接AD ,如图1.∵点D 与点B 关于直线AP 对称,∴AD =AB ,∠DAP =∠BAP =30°,∵AB =AC ,∠BAC =60°,∴AD =AC ,∠DAC =120°,∴2∠ACE +60°+60°=180°,∴∠ACE =30°,故答案为:30°;(3)线段AB ,CE ,ED 可以构成一个含有60°角的三角形.证明:连接AD ,EB ,如图2.∵点D 与点B 关于直线AP 对称,∴AD =AB ,DE =BE ,∴∠EDA =∠EBA ,∵AB =AC ,AB =AD ,∴AD =AC ,∴∠ADE =∠ACE ,∴∠ABE =∠ACE .设AC ,BE 交于点F ,又∵∠AFB =∠CFE ,∴∠BAC =∠BEC =60°,∴线段AB ,CE ,ED 可以构成一个含有60°角的三角形.9.(1)根据折叠,∠DBC =∠DBE ,又AD ∥BC ,∴∠DBC =∠ADB ,∴∠DBE =∠ADB ,∴DF =BF ,∴△BDF 是等腰三角形(2)①菱形,理由:∵四边形ABCD 是矩形,∴AD ∥BC ,∴FD ∥BG ,又∵FD ∥BG ,∴四边形BFDG 是平行四边形,∵DF =BF ,∴四边形BFDG 是菱形②∵AB =6,AD =8,∴BD =10.∴OB =12BD =5.设DF =BF =x ,∴AF =AD -DF =8-x .∴在Rt △ABF 中,AB 2+AF 2=BF 2,即62+(8-x )2=x 2,解得x =254,即BF =254,∴FO =BF 2-OB 2=(254)2-52=154,∴FG =2FO =152 10.解:【问题情境】证明:∵在Rt △AB C 中,∠ACB =90°,AC =BC ,点D 为A B 中点, ∴CD ⊥AB ,CD =BD =AD =AB ,∠BCD =∠B =45°,∴∠BDC =90°,∵∠EDF =90°,∴∠CDF=∠BDE,在△BDE与△CDF中,,∴△BDE≌△CDF(ASA),∴BE=CF;【探索发现】成立,理由:∵在Rt△AB C中,D为A B中点,∴CD=BD,又∵AC=BC,∴DC⊥AB,∴∠DBC=∠DCB=45°,∵DE⊥DF,∴∠EDF=90°,∴∠EDB+∠BDF=∠CDF+∠BDF=90°,∴∠CDF=∠BDE,∴∠ADF=∠CDE,∴AF=CE,∴CF=BE;【类比迁移】∵△ABC是等边三角形,∴∠A=∠B=60°,∵∠FDE=60°,∴∠BDF=120°﹣∠ADE,∠AED=120°﹣∠ADE,∴∠BDF=∠AED,∴△ADE∽△BDF,∴,∵点D为A B中点,AB=4,∴AD=BD=2,AC=BC=4,∵CF=2CE,∴设CE=x,则CF=2x,当点E在线段AC上时,∴AE=4﹣x,BF=4﹣2x,∴=,解得:x=3﹣,x=3+(不合题意,舍去),∴CE=3﹣,如图④,当点E在AC的延长线上时,∵AE=4+x,BF=4﹣2x,∴=,解得:x=﹣1+,(负值舍去),∴CE=﹣1+.综上所述,CE=3﹣或﹣1+,故答案为:3﹣或﹣1+.11.解:(1)∵∠AEB=110°,∠ACB=90°,∴∠DAE=∠AEB﹣∠ACB=20°;(2)①补全图形,如图所示.②证明:由题意可知∠AEF=90°,EF=AE.∵∠ACB=90°,∴∠AEC+∠BEF=∠AEC+∠DAE=90°.∴∠BEF=∠DAE.∵在△EBF和△ADE中,,∴△EBF≌△ADE(SAS).∴DE=BF.。
中考数学必考题型分析及解题策略总结
中考数学必考题型分析及解题策略总结一、必考题型分析1、线段、角的计算与证明问题中考的解答题一般是分两到三部分的。
第一部分基本上都是一些简单题或者中档题,目的在于考察基础。
第二部分往往就是开始拉分的中难题了。
对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。
2、图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。
在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。
3、动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。
动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
4、一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。
5、多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。
这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。
初中数学几何证明题解题思路分析
初中数学几何证明题解题思路分析在初中数学中,几何证明题是一种常见的题型,对学生的几何思维和证明能力有一定的要求。
解决几何证明题目的关键在于理解题目所要求的证明目标,并在此基础上运用合适的几何知识和推理方法进行解答。
本文将对初中数学几何证明题的解题思路进行分析和讨论,并介绍几个常见的解题方法。
一、理解题目要求在解决几何证明题之前,首先要仔细阅读题目,理解题目所要求的证明目标。
通常,几何证明题目要求证明一个几何性质或者关系,例如证明两条线段相等、两个角相等、两个三角形全等等。
理解题目目标的关键在于明确要证明的内容,并在脑海中形成一个清晰的图像。
二、运用几何知识在理解题目要求之后,就需要运用所学的几何知识进行解答。
根据不同的题目要求,可以运用的几何知识包括角的性质、相交线的性质、全等三角形的条件等等。
熟练掌握这些几何知识,并能够灵活运用是解决几何证明题的基础。
三、运用几何推理几何证明题的解答过程中,需要进行一系列的推理和推导。
常见的推理方法包括利用等式关系、三角形的相似性质、垂直定理、相反定理等等。
通过合理的推理和推导,可以从已知条件中推出所要证明的结论。
在推理过程中,要注意合理地运用几何定理和性质,严密地推导每一步。
四、列举反例有时候,我们在解决几何证明题时可能会思路受限,找不到有效的解题思路。
这个时候,可以尝试通过列举反例的方法来寻找突破口。
列举几个特殊情况或者反例,观察其中的规律和性质,有时能够为解题提供一些启示。
接下来,我们将通过几个具体的例子来进一步说明初中数学几何证明题的解题思路。
例子1:证明等腰三角形的底角相等。
解题思路:1. 题目要求证明等腰三角形的底角相等。
2. 已知条件是等腰三角形,即两条底边相等。
3. 运用几何推理:由等腰三角形的性质可知,两个底角相等。
4. 结论:等腰三角形的底角相等。
例子2:证明直角三角形的斜边长等于两腰长的平方和的平方根。
解题思路:1. 题目要求证明直角三角形的斜边长等于两腰长的平方和的平方根。
数学丨中考几何综合题型分析
数学丨中考几何综合题型分析数学教研组李涛涛2018中考还有不到两个月的时间,几何难题大家有没有攻克?顺天府学中学部数学教研组李涛涛老师就数学试卷几何题部分题型做了简要分析。
希望同学们能够从中找到解题灵感。
一中考题分析就近几年中考试卷整体来看,几何部分考察几何思维能力的居多,主要使用几何技巧解决问题。
对于特定的模型要求相对不高。
二突破几何综合问题需掌握的三种方法⑴几何模型:几何模型的积累是决定未来解决几何综合问题的基础,要掌握所有我们学过的几何模型。
如:手拉手模型、半角模型、对角互补模型、最短路径模型、一线三角模型、弦图模型等,那么如何记忆这些模型呢?如:手拉手模型首先,要有建模意识,碰到相关模型要有意识的把该模型有条有理的分类记忆,对号入座,拒绝模棱两可。
其次,相同模型类型题反复做。
这个方法主要目的是,通过强化训练来达到记忆模型的目的。
最后,如果前两种方法做起来出现问题,那么只能够采取下下策,就是先把所有学过的几何模型拿过来背下来,然后再通过做题融会贯通。
如果可以,尽量不要选择最后的方法。
⑵几何技巧:几何变换、中点技巧、截长补短等,熟练掌握各种技巧,看到某些条件,会想到某些固定的技巧,用比较熟悉的技巧解决问题。
善于利用辅助线解决多种类型题,掌握好各种技巧会让你的解题能力提高一个层次。
如:截长补短技巧⑶几何思维能力: “先猜后证”猜:精确作图,才能更加有效地猜。
证:条件结论,动态生成。
①条件结论:从条件、结论分析,找突破口②动态生成:分析题目的生成过程,从而对图形的基本结构有清晰的认知(可删除多余的线,正方形变成两条线等)。
综上所述:对于学生来说,能够通过模型、技巧,进而让其领悟思想固然好,但是如果两个人水平差不多,比的往往是技巧领悟的深浅和模型知道的多少了,所以平时的积累和时刻保持的探究精神是非常重要的。
教师简介【教师姓名】李涛涛【教授科目】中学数学【个人简介】曾就职于公立重点中学,积攒了丰富的一线教学经验。
2024年中考数学重难点《几何最值问题》题型及答案解析
重难点几何最值问题中考数学中《几何最值问题》部分主要考向分为五类:一、将军饮马类最值二、动点辅助圆类最值三、四点共圆类最值四、瓜豆原理类最值五、胡不归类最值几何最值问题虽然在中考数学中经常考察的是将军饮马类和辅助圆类,剩余几种虽然不经常考察,但是考到的时候难度都比较大,所以也需要理解并掌握不同类型的几何最值问题的处理办法,这样到考到的时候才能有捷径应对。
考向一:将军饮马类最值一动”“两定异侧普通一动”“两定同侧普通动”两定“一动”两定“两两动”“两定同侧两动”“两定异侧满分技巧将军饮马:。
1.(2023•绥化)如图,△ABC是边长为6的等边三角形,点E为高BD上的动点.连接CE,将CE绕点C 顺时针旋转60°得到CF.连接AF,EF,DF,则△CDF周长的最小值是3+3.【分析】分析已知,可证明△BCE≌△ACF,得∠CAF=∠CBE=30°,可知点F在△ABC外,使∠CAF =30°的射线AF上,根据将军饮马型,求得DF+CF的最小值便可求得本题结果.【解答】解:∵△ABC是等边三角形,∴AC=BC=6,∠ABC=∠BCA=60°,∵∠ECF=60°,∴∠BCE=60°﹣∠ECA=∠ACF,∵CE=CF,∴△BCE≌△ACF(SAS),∴∠CAF=∠CBE,∵△ABC是等边三角形,BD是高,∴∠CBE=∠ABC=30°,CD=AC=3,过C点作CG⊥AF,交AF的延长线于点G,延长CG到H,使得GH=CG,连接AH,DH,DH与AG 交于点I,连接CI,FH,则∠ACG=60°,CG=GH=AC=3,∴CH=AC=6,∴△ACH为等边三角形,∴DH=CD•tan60°=,AG垂直平分CH,∴CI=HI,CF=FH,∴CI+DI=HI+DI=DH=3,CF+DF=HF+DF≥DH,∴当F与I重合时,即D、F、H三点共线时,CF+DF的值最小为:CF+DF=DH=3,∴△CDF的周长的最小值为3+3.故答案为:3+3.2.(2023•德州)如图,在四边形ABCD中,∠A=90°,AD∥BC,AB=3,BC=4,点E在AB上,且AE=1.F,G为边AD上的两个动点,且FG=1.当四边形CGFE的周长最小时,CG的长为.【分析】先确定FG和EC的长为确定的值,得到四边形CGFE的周长最小时,即为CG+EF最小时,平移CG到C'F,作点E关于AD对称点E',连接E'C'交AD于点G',得到CG+EF最小时,点G与G'重合,再利用平行线分线段成比例求出C'G'长即可.【解答】解:∵∠A=90°,AD∥BC,∴∠B=90°,∵AB=3,BC=4,AE=1,∴BE=AB﹣AE=3﹣1=2,在Rt△EBC中,由勾股定理,得EC===,∵FG=1,∴四边形CGFE的周长=CG+FG+EF+EC=CG+EF+1+,∴四边形CGFE的周长最小时,只要CG+EF最小即可.过点F作FC'∥GC交BC于点C',延长BA到E',使AE'=AE=1,连接E'F,E'C',E'C'交AD于点G',可得AD垂直平分E'E,∴E'F=EF,∵AD∥BC,∴C'F=CG,CC'=FG=1,∴CG+EF=C'F+E'F≥E'C',即CG+EF最小时,CG=C'G',∵E'B=AB+AE'=3+1=4,BC'=BC﹣CC'=4﹣1=3,由勾股定理,得E'C'===5,∵AG'∥BC',∴=,即=,解得C'G'=,即四边形CGFE的周长最小时,CG的长为.故答案为:.考向二:动点辅助圆类最值满分技巧动点运动轨迹为辅助圆的三种类型:一.定义法——若一动点到定点的距离恒等于固定长,则该点的运动轨迹为以定点为圆心,定长为半径的圆(或圆弧)二.定边对直角模型原理:直径所对的圆周角是直角思路构造:若一条定边所对的“动角”始终为直角,则直角顶点运动轨迹是以该定边为直径的圆(或圆弧)三.定边对定角模型原理:在同圆或等圆中,同弧所对的圆周角相等思路构造:若一条定边所对的“动角”始终为定角,则该定角顶点运动轨迹是以该定角为圆周角,该定边为弦的圆(或圆弧)1.(2023•徐州)如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为.【分析】由折叠性质可知AC=AC'=3,然后根据三角形的三边不等关系可进行求解.【解答】解:∵∠C=90°,CA=CB=3,∴,由折叠的性质可知AC=AC'=3,∵BC'≥AB﹣AC',∴当A、C′、B三点在同一条直线时,BC'取最小值,最小值即为,故答案为.2.(2023•黑龙江)如图,在Rt△ACB中,∠BAC=30°,CB=2,点E是斜边AB的中点,把Rt△ABC绕点A顺时针旋转,得Rt△AFD,点C,点B旋转后的对应点分别是点D,点F,连接CF,EF,CE,在旋转的过程中,△CEF面积的最大值是4+.【分析】线段CE为定值,点F到CE距离最大时,△CEF的面积最大,画出图形,即可求出答案.【解答】解:∵线段CE为定值,∴点F到CE的距离最大时,△CEF的面积有最大值.在Rt△ACB中,∠BAC=30°,E是AB的中点,∴AB=2BC=4,CE=AE=AB=2,AC=AB•cos30°=2,∴∠ECA=∠BAC=30°,过点A作AG⊥CE交CE的延长线于点G,∴AG=AC=,∵点F在以A为圆心,AB长为半径的圆上,∴AF=AB=4,∴点F到CE的距离最大值为4+,∴,故答案为:.3.(2023•大庆模拟)如图,AB是⊙O的直径,AB=4,C为的三等分点(更靠近A点),点P是⊙O上个动点,取弦AP的中点D,则线段CD的最大值为()A.2B.C.D.【分析】如图,连接OD,OC,首先证明点D的运动轨迹为以AO为直径的⊙K,连接CK,当点D在CK的延长线上时,CD的值最大,利用勾股定理求出CK即可解决问题.【解答】解:如图,连接OD,OC,∵AD=DP,∴OD⊥P A,∴∠ADO=90°,∴点D的运动轨迹为以AO为直径的⊙K,连接CK,AC,当点D在CK的延长线上时,CD的值最大,∵C为的三等分点,∴∠AOC=60°,∴△AOC是等边三角形,∴CK⊥OA,在Rt△OCK中,∵∠COA=60°,OC=2,OK=1,∴CK==,∵DK=OA=1,∴CD=+1,∴CD的最大值为+1,故选:D.考向三:四点共圆类最值满分技巧对角互补的四边形必有四点共圆,即辅助圆产生模型原理:圆内接四边形对角互补∴FD=,在四边形ACBF中,∠ACB=∠AFB=90°,∴A、C、B、F四点共圆,∴∠ACF=∠ABF=45°,∠CAB=∠CFB,∵∠PCD=45°∴∠ACP=∠FCD,又∵△ABE∽△FBD,∴∠BAE=∠BFD,∴∠CAP=∠CFD,∴△CAP∽△CFD,∴,在四边形ACBF中,由对角互补模型得AC+CB=,∴CF=∴,∴AP=1,∴PE=2,故答案为:2考向四:瓜豆原理类最值满分技巧瓜豆原理的特征和结论:∴AB=CD=6,∠B=∠BCD=90°,∵∠BET=∠FEG=45°,∴∠BEF=∠TEG,∵EB=ET,EF=EG,∴△EBF≌△ETG(SAS),∴∠B=∠ETG=90°,∴点G在射线TG上运动,∴当CG⊥TG时,CG的值最小,∵BC=,BE=,CD=6,∴CE=CD=6,∴∠CED=∠BET=45°,∴∠TEJ=90°=∠ETG=∠JGT=90°,∴四边形ETGJ是矩形,∴DE∥GT,GJ=TE=BE=,∴CJ⊥DE,∴JE=JD,∴CJ=DE=3,∴CG=CJ+GJ=+3,∴CG的最小值为+3,故答案为:+3.2.(2023•宿城区二模)如图,矩形ABCD中,AD=6,DC=8,点E为对角线AC上一动点,BE⊥BF,,BG⊥EF于点G,连接CG,当CG最小时,CE的长为.【分析】过点B作BP⊥AC于点P,连接PG,则可得△ABE∽△PBG,进而可知∠BPG为定值,因此CG⊥PG时,CG最小,通过设元利用三角函数和相似比可表示出PG、CP,即可求出结果.【解答】解:如图,过点B作BP⊥AC于点P,连接PG,∵,∠ABC=∠EBF,∴△ABC∽△EBF,∴∠CAB=∠FEB,∵∠APB=∠EGB=90°,∴△ABP∽△EBG,∴=,∠ABP=∠EBG,∴∠ABE=∠PBG,∴△ABE∽△PBG,∴∠BPG=∠BAE,即在点E的运动过程中,∠BPG的大小不变且等于∠BAC,∴当CG⊥PG时,CG最小,设此时AE=x,∵,∴PG=,∵CG⊥PG,∴∠PCG=∠BPG=∠BAC,∴,代入PG=,解得CP=x,∵CP=BC•sin∠CBP=BC•sin∠BAC=,∴x=,∴AE=∴CE=,故答案为:.考向五:胡不归类最值满分技巧胡不归模型解决步骤:模型具体化:如图,已知两定点A、B,在定直线BC上找一点P,使从B走道P,再从P走到A的总时间最小解决步骤:由系数k·PB确定分割线为PBPA在分割线一侧,在分割线PB另一侧依定点B构α角,使sinα=k,α角另一边为BD过点P作PQ⊥BD,转化kPB=PQ过定点A作AH⊥BD,转化(PA+k·PB)min=AH,再依“勾股法”求AH的长即可。
河南中考数学题分析
中考例题
试题以图形与几何 → 图形的性质 → 圆 → 圆的综合知识作为命题主线,以圆的对称性、 圆心角与圆周角之间的关系、圆的有关运算作为考查核心,与初中所学知识融会贯通, 较好地考查对图形与几何部分知识的掌握情况.
中考例题
本题第一问为填空,主要考查常见几何模型的掌握情况;第二问为几何证明,考查逻辑推 理能力.试题形式丰富、梯度合理、考查全面、难易适中,具有较好的难度与区分度.可 通过对本试题的求解,总结掌握与圆有关几何问题的求解通法.
中考例题中考例题源自敬请各位老师批评指正河南中考数学题分析
——图形与几何
中考例题
本题是一道综合运用圆的有关知识解决问题的解答题.知识层面考查了对圆周角 的性质定理、圆心角及其所对应的弧或弦之间的关系、扇形的面积公式、特殊角的三 角函数、三角形全等及三角形相似判定、等腰直角三角形的性质及正三角形的面积计 算等内容的掌握情况,能力层面考查对数学运算、几何直观、逻辑推理等学科素养的 掌握情况.
中考例题
本题第一问为填空,主要考查常见几何模型的掌握情况;第二问为几何证明,考查逻辑推 理能力.试题形式丰富、梯度合理、考查全面、难易适中,具有较好的难度与区分度.可 通过对本试题的求解,总结掌握与圆有关几何问题的求解通法.
中考例题
中考例题
中考例题
解法2 如图4,连接BN,AN.
中考例题
中考例题
初三数学案例分析几何证明
初三数学案例分析几何证明在初三数学学习过程中,几何证明是一个重要的知识点。
几何证明作为数学推理的基础,需要学生具备一定的逻辑思维和推理能力。
本文将通过分析一个几何证明的案例,来深入探讨几何证明的方法和技巧。
案例:已知三角形ABC中,角B=角C,通过点D作BC的垂线,垂足为E。
证明:AE=DE。
这个案例要求证明线段AE与线段DE的长度相等。
为了进行证明,我们需要运用一系列的几何推理和定理。
下面将按照传统几何证明的格式,进行步骤分析。
步骤一:根据已知条件绘制图形首先,根据已知条件绘制三角形ABC,使得角B=角C。
然后,在BC上选择一点D作为垂线的垂足,记作点E。
步骤二:分析证明思路观察图形,我们需要证明AE=DE。
这意味着我们需要找到一些性质或者定理来推导出这个结论。
根据角B=角C,可以推断出AB=AC,而且由于BD=CD,所以也可以得到△BDE是一个等腰三角形。
步骤三:推理证明过程由于△BDE是一个等腰三角形,所以我们可以利用等腰三角形的性质来推导AE=DE。
根据等腰三角形的性质,BD=CD,所以角B和角C的对边也相等,即BD=CD=BE=CE。
又因为△BDE是一个等腰三角形,所以BE=DE。
在△BAE和△DAE中,已知AB=AC,角B=角C,BE=DE,所以根据SSS判定原理,可以得出△BAE≌△DAE。
根据等边三角形的性质,对应边相等,所以AE=DE。
步骤四:总结证明结果综上所述,通过分析几何图形,运用等腰三角形和等边三角形的性质,我们可以得出结论:AE=DE。
通过这个案例分析,我们可以发现几何证明的过程是系统的、有条理的。
我们需要明确已知条件,绘制图形,分析证明思路,推理证明过程,最后总结结果。
同时,根据不同的证明要求,我们可以灵活运用几何定理和性质来推导结论。
几何证明不仅要求我们掌握几何图形的性质和性质之间的联系,还需要培养逻辑思维和推理能力。
通过大量的练习和实践,我们可以提高几何证明的能力,并且能够更好地理解数学中的推理和证明方法。
安徽中考2010-2019十年中考重难点题型总结分析:几何综合证明考向分析和解法总结
七、几何综合证明题考向分析与解法总结1、考向分析【真题再现】年份:2010年考向:全等相似综合证明20. 如图,AD∥FE,点B、C在AD上,∥1=∥2,BF=BC.(1)求证:四边形BCEF是菱形;(2)若AB=BC=CD,求证:∥ACF∥∥BDE.第20题图23. 如图,已知∥ABC∥∥A1B1C1,相似比为k(k>1),且∥ABC的三边长分别为a、b、c(a>b>c),∥A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对∥ABC和∥A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在∥ABC和∥A1B1C1使得k=2?请说明理由.第23题图年份:2011年考向:旋转问题,全等相似综合证明22. 在∥ABC中,∥ACB=90°,∥ABC=30°,将∥ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到∥A′B′C.(1)如图∥,当AB∥CB′时,设A′B′与CB相交于点D.证明:∥A′CD是等边三角形;(2)如图∥,连接A′A、B′B,设∥ACA′和∥BCB′的面积分别为S∥ACA′和S∥BCB′.求证:S∥ACA′∥S∥BCB′=1∥3;(3)如图∥,设AC中点为E,A′B′中点为P,AC=a,连接EP,当θ=________°时,EP长度最大,最大值为________.图∥图∥图∥第22题图23. 如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1,h2,h3(h1>0,h2>0,h3>0).(1)求证:h1=h3;(2)设正方形ABCD的面积为S,求证:S=(h1+h2)2+h21;(3)若32h1+h2=1,当h1变化时,说明正方形ABCD的面积S随h1的变化情况.第23题图年份:2012年考向:相似综合证明22. 如图∥,在∥ABC中,D、E、F分别为三边的中点,G点在边AB上,∥BDG与四边形ACDG的周长相等.设BC=a,AC=b,AB=c.第22题图(1)求线段BG的长;(2)求证:DG平分∥EDF;(3)连接CG,如图∥,若∥BDG与∥DFG相似,求证:BG∥CG.年份:2013年考向:新定义几何证明23. 我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图∥,四边形ABCD即为“准等腰梯形”,其中∥B=∥C.(1)在图∥所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图∥,在“准等腰梯形”ABCD中,∥B=∥C,E为边BC上一点,若AB∥DE,AE∥DC.求证:ABDC=BEEC;(3)在由不平行于BC的直线AD截∥PBC所得的四边形ABCD中,∥BAD与∥ADC的平分线交于点E,若EB=EC,请问当点E在四边形ABCD内部时(即图∥所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不必说明理由)图∥图∥ 图∥第23题图年份:2014年考向:全等综合证明,旋转问题23. 如图∥,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD 交DE于N.(1)∥∥MPN=________°;∥求证:PM +PN =3a ;(2)如图∥,点O 是AD 的中点,连接OM ,ON .求证:OM =ON ;(3)如图∥,点O 是AD 的中点,OG 平分∥MON ,判断四边形OMGN 是否为特殊四边形?并说明理由.第23题图∥ 第23题图∥ 第23题图∥年份:2015年 考向:全等相似综合证明,旋转问题23. 如图∥,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接GA 、GB 、GC 、GD 、EF ,若∥AGD =∥BGC .(1)求证:AD =BC ; (2)求证:∥AGD ∥∥EGF ;(3)如图∥,若AD 、BC 所在直线互相垂直,求ADEF的值.图∥ 图∥第23题图年份:2016年 考向:全等相似综合证明,特殊图形特殊性质的运用23. 如图1,A ,B 分别在射线OM ,ON 上,且∥MON 为钝角.现以线段OA ,OB 为斜边向∥MON 的外侧作等腰直角三角形,分别是∥OAP ,∥OBQ ,点C ,D ,E 分别是OA ,OB ,AB 的中点.(1)求证:∥PCE∥∥EDQ;(2)延长PC,QD交于点R.∥如图2,若∥MON=150°,求证:∥ABR为等边三角形;∥如图3,若∥ARB∥∥PEQ,求∥MON大小和ABPQ的值.年份:2017年考向:全等相似综合证明23.已知正方形ABCD,点M为边AB的中点.(1)如图1,点G为线段CM上的一点,且∥AGB=90°,延长AG,BG分别与边BC,CD交于点E,F.∥求证:BE=CF;∥求证:BE2=BC·CE.(2)如图2,在边BC上取一点E,满足BE2=BC·CE,连接AE交CM于点G,连接BG并延长交CD于点F,求tan∥CBF的值.图1 图2第23题图年份:2018年考向:全等综合证明,特殊图形特殊性质的运用23. 如图∥,Rt∥ABC中,∥ACB=90°,点D为边AC上一点,DE∥AB于点E,点M为BD中点,CM 的延长线交AB于点F.(1)求证:CM=EM;(2)若∥BAC=50°,求∥EMF的大小;(3)如图∥,若∥DAE∥∥CEM,点N为CM的中点,求证:AN∥EM.图∥ 图∥第23题图年份:2019年考向:全等相似综合证明20、如图,点E在□ABCD内部,A F∥BE,D F∥CE。
长春中考数学试题分析及答案
长春中考数学试题分析及答案本文将对长春市中考数学试题进行分析,并提供对应的答案。
1. 第一题分析:这道题目考察的是数学计算能力。
题干给出了一个数列,需要计算数列中所有奇数项的和。
答案:假设数列为a1,a2,a3,...,an,其中a1=1,an=100。
根据题干,这是一个等差数列,公差为2。
而奇数项的个数为50个。
因此,根据等差数列求和公式,可以得出答案为(1+99)×25=2500。
2. 第二题分析:这道题目考察的是立体几何知识。
题干给出了一个长方体的体积和表面积,需要计算长、宽和高的积。
答案:假设长方体的长、宽、高分别为x、y、z。
根据题干,可以得到以下两个等式:2(x·y + y·z + x·z) = 132x·y·z = 24通过求解这个方程组,可以得到长、宽和高的值分别为2, 3和4。
因此,积为2×3×4=24。
3. 第三题分析:这道题目考察的是函数的定义域和值域。
题干给出了一个函数的定义式,需要求出该函数的定义域和值域。
答案:根据题目给出的函数定义,可以得知该函数的定义域为实数集R。
接下来,我们需要求出该函数的值域。
可以观察到,函数的定义式是一个关于x的二次函数,开口向上,因此函数的最小值为定点的纵坐标。
根据顶点公式,可以求得定点坐标为(-2, 4)。
因此,函数的值域是大于等于4的实数。
4. 第四题分析:这道题目考察的是概率统计知识。
题干给出了一个袋子中黑球和白球的数量和抽取规则,需要计算抽出两个白球的概率。
答案:假设袋子中黑球的数量为m,白球的数量为n。
根据题干,有以下两个等式:m + n = 10n(n-1)/10(10-1) = 1/3通过求解这个方程组,可以得到m和n的值分别为6和4。
因此,抽出两个白球的概率为4/10 × 3/9 = 2/15。
5. 第五题分析:这道题目考察的是平面几何知识。
北京市近五年中考数学倒数第二题几何综合题分析
北京市近五年中考数学倒数第二题几何综合题分析先贴上近五年的真题,最好还是先让孩子试着做一做,再看后边的分析。
在上一篇中,我们重点强调了变中抓不变的思想,因为它是我们发现事物规律,提炼出一般性结论和方法的基础。
相信大部分同学做完这五道题都已经发现,每年的题虽然在变,但考察的主要知识点不变,都是围绕全等三角形展开。
而在全等三角形中,考察的知识点有两个:一个是性质;一个是判定。
由于这是压轴题,所以通常两个点都需要涉及,那么命题思路就比较固定了,一般分为三步。
第一步:找出一组简单全等第二步:全等性质的应用第三步:证一组复杂全等(设置简单全等,是为了考察全等性质的应用,通常从简单全等中推出的边角对应相等,会是证明复杂全等的关键。
)当然,无论是全等三角形的性质还是判定,都是围绕边、角对应相等展开的,所以实质上角度关系、边长关系的分析与转化,才是解决问题的关键点。
在我们正式分析每一道题目之前,照例还是先简单梳理一下知识点。
知识点一:全等三角形的性质全等三角形的性质非常简单,课本上就一句话:“全等三角形对应边相等,全等三角形对应角相等”。
不过,我们已经发现,性质应用处在第二步这个纽带环节,所以必须要引起足够的重视。
三角形有三条边三个角,共6组对应,证明全等需要三组对应,那么证明出全等后还可以推出另外三组对应。
建议思路不太清晰的同学一定要将推出的三组对应写出来,再分别看看是否可以跟其它条件结合推出其它边角相等,为第三部证复杂全等做好充足的准备。
知识点二:全等三角形的判定全等三角形的判定,学校讲了五种方法:SSS、SAS、HL、ASA、AAS。
可以再简单归纳一下:一定要找到三组对应;三组对应中至少有一组边对应;如果是两组边对应一组角对应时,角必须是夹角或直角。
相信绝大部分同学对这五种判定方法都非常熟悉,但光熟悉判定方法是远远不够的,因为对于全等三角形判定的考察,难点通常是在添加辅助线构造全等上。
因此,我们对常见辅助线的添法进行了归纳,如倍长中线、截长补短等。
中考数学经典几何证明题60例附试题分析和参考答案
中考数学经典几何证明题60例一、解答题(共60小题)1.(遵义)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.2.(珠海)已知△ABC,AB=AC,将△ABC沿BC方向平移得到△DEF.(1)如图1,连接BD,AF,则BD AF(填“>”、“<”或“=”);(2)如图2,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N,连接BH,GF,求证:BH=GF.3.(镇江)如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.(1)求证:△BAE≌△BCF;(2)若∠ABC=50°,则当∠EBA=°时,四边形BFDE是正方形.4.(漳州)如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作分、FG∥CD,交AE于点G连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求的值.5.(玉林)如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O 的切线CD交AB的延长线于点C,E为的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.6.(永州)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.7.(营口)如图,点P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=,AC=8,求图中阴影部分的面积;(3)在(2)的条件下,若点E是的中点,连接CE,求CE的长.8.(徐州)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE=时,四边形BFCE是菱形.9.(宿迁)如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.10.(湘西州)如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.11.(咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.12.(咸宁)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.13.(梧州)如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.(1)求证:HF=AP;(2)若正方形ABCD的边长为12,AP=4,求线段EQ的长.14.(威海)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.15.(铜仁市)已知,如图,点D在等边三角形ABC的边AB上,点F在边AC上,连接DF并延长交BC的延长线于点E,EF=FD.求证:AD=CE.16.(通辽)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.17.(铁岭)如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形;(2)若四边形AFCE是菱形,求菱形AFCE的周长.18.(天水)如图,AB是⊙O的直径,BC切⊙O于点B,OC平行于弦AD,过点D作DE⊥AB于点E,连结AC,与DE交于点P.求证:(1)AC•PD=AP•BC;(2)PE=PD.19.(泰安)如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E 为AC中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.20.(随州)如图,射线PA切⊙O于点A,连接PO.(1)在PO的上方作射线PC,使∠OPC=∠OPA(用尺规在原图中作,保留痕迹,不写作法),并证明:PC是⊙O的切线;(2)在(1)的条件下,若PC切⊙O于点B,AB=AP=4,求的长.21.(绥化)如图1,在正方形ABCD中,延长BC至M,使BM=DN,连接MN交BD延长线于点E.(1)求证:BD+2DE=BM.(2)如图2,连接BN交AD于点F,连接MF交BD于点G.若AF:FD=1:2,且CM=2,则线段DG=.22.(苏州)如图,在△ABC中,AB=AC,分别以B、C为圆心,BC长为半径在BC下方画弧.设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD(1)求证:AD平分∠BAC;(2)若BC=6,∠BAC=50°,求DE、DF的长度之和(结果保留π).23.(上海)已知,如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD•CE=CD•DE.24.(厦门)如图,在平面直角坐标系中,点A(2,n),B(m,n)(m>2),D(p,q)(q<n),点B,D在直线y=x+1上.四边形ABCD的对角线AC,BD相交于点E,且AB∥CD,CD=4,BE=DE,△AEB的面积是2.求证:四边形ABCD是矩形.25.(庆阳)如图,在正方形ABCD中,点E是边BC的中点,直线EF交正方形外角的平分线于点F,交DC于点G,且AE⊥EF.(1)当AB=2时,求△GEC的面积;(2)求证:AE=EF.26.(青海)如图,梯形ABCD中,AB∥DC,AC平分∠BAD,CE∥DA交AB于点E.求证:四边形ADCE是菱形.27.(钦州)如图,AB为⊙O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是⊙O的切线;(2)连接OC,如果OC恰好经过弦BD的中点E,且tanC=,AD=3,求直径AB的长.28.(黔东南州)如图,已知PC平分∠MPN,点O是PC上任意一点,PM与⊙O相切于点E,交PC于A、B两点.(1)求证:PN与⊙O相切;(2)如果∠MPC=30°,PE=2,求劣弧的长.29.(潜江)如图,AC是⊙O的直径,OB是⊙O的半径,PA切⊙O于点A,PB与AC的延长线交于点M,∠COB=∠APB.(1)求证:PB是⊙O的切线;(2)当OB=3,PA=6时,求MB,MC的长.30.(盘锦)如图1,AB为⊙O的直径,点P是直径AB上任意一点,过点P作弦CD⊥AB,垂足为P,过点B的直线与线段AD的延长线交于点F,且∠F=∠ABC.(1)若CD=2,BP=4,求⊙O的半径;(2)求证:直线BF是⊙O的切线;(3)当点P与点O重合时,过点A作⊙O的切线交线段BC的延长线于点E,在其它条件不变的情况下,判断四边形AEBF是什么特殊的四边形?请在图2中补全图象并证明你的结论.31.(内江)如图,将▱ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC 于点O.(1)求证:△ABD≌△BEC;(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.32.(南通)如图,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.33.(南平)如图,AB是半圆O的直径,C是AB延长线上的一点,CD与半圆O相切于点D,连接AD,BD.(1)求证:∠BAD=∠BDC;(2)若∠BDC=28°,BD=2,求⊙O的半径.(精确到0.01)34.(南京)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.35.(南充)如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.36.(南昌)(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D 的形状为A.平行四边形B.菱形C.矩形D.正方形(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.①求证:四边形AFF′D是菱形.②求四边形AFF′D的两条对角线的长.37.(梅州)如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD,CD.(1)求证:△ABC≌△ADC;(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长.38.(龙岩)如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.(1)求证:AE=DC;(2)已知DC=,求BE的长.39.(柳州)如图,已知四边形ABCD是平行四边形,AD与△ABC的外接圆⊙O恰好相切于点A,边CD与⊙O相交于点E,连接AE,BE.(1)求证:AB=AC;(2)若过点A作AH⊥BE于H,求证:BH=CE+EH.40.(辽阳)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC于点G,交AB的延长线于点F.(1)求证:直线FG是⊙O的切线;(2)若AC=10,cosA=,求CG的长.41.(连云港)如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F 处,DF交AB于点E.(1)求证;∠EDB=∠EBD;(2)判断AF与DB是否平行,并说明理由.42.(莱芜)如图,△ABC是等腰直角三角形,∠ACB=90°,分别以AB,AC为直角边向外作等腰直角△ABD和等腰直角△ACE,G为BD的中点,连接CG,BE,CD,BE与CD 交于点F.(1)判断四边形ACGD的形状,并说明理由.(2)求证:BE=CD,BE⊥CD.43.(酒泉)如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)44.(荆门)已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O 于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,sinA=,求BH的长.45.(吉林)如图①,半径为R,圆心角为n°的扇形面积是S扇形=,由弧长l=,得S扇形==••R=lR.通过观察,我们发现S扇形=lR类似于S三角形=×底×高.类比扇形,我们探索扇环(如图②,两个同心圆围成的圆环被扇形截得的一部分交作扇环)的面积公式及其应用.(1)设扇环的面积为S扇环,的长为l1,的长为l2,线段AD的长为h(即两个同心圆半径R与r的差).类比S梯形=×(上底+下底)×高,用含l1,l2,h的代数式表示S扇环,并证明;(2)用一段长为40m的篱笆围成一个如图②所示的扇环形花园,线段AD的长h为多少时,花园的面积最大,最大面积是多少?46.(黄石)在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.47.(黄冈)已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点M,交BC于点N,连接AN,过点C的切线交AB的延长线于点P.(1)求证:∠BCP=∠BAN(2)求证:=.48.(湖北)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.49.(葫芦岛)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G、F两点.(1)求证:AB与⊙O相切;(2)若等边三角形ABC的边长是4,求线段BF的长?50.(呼伦贝尔)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.(1)求证:△ADE≌△CBF;(2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.51.(呼伦贝尔)如图,已知直线l与⊙O相离.OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)求证:AB=AC;(2)若PC=2,求⊙O的半径.52.(贺州)如图,AB是⊙O的直径,C为⊙O上一点,AC平分∠BAD,AD⊥DC,垂足为D,OE⊥AC,垂足为E.(1)求证:DC是⊙O的切线;(2)若OE=cm,AC=2cm,求DC的长(结果保留根号).53.(贺州)如图,将矩形ABCD沿对角线BD对折,点C落在E处,BE与AD相交于点F.若DE=4,BD=8.(1)求证:AF=EF;(2)求证:BF平分∠ABD.54.(河南)如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD、PO.(1)求证:△CDP≌△POB;(2)填空:①若AB=4,则四边形AOPD的最大面积为;②连接OD,当∠PBA的度数为时,四边形BPDO是菱形.55.(桂林)如图,在▱ABCD中,E、F分别是AB、CD的中点.(1)求证:四边形EBFD为平行四边形;(2)对角线AC分别与DE、BF交于点M、N,求证:△ABN≌△CDM.56.(贵港)如图,已知AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,且点E 是OD的中点,⊙O的切线BM与AO的延长线相交于点M,连接AC,CM.(1)若AB=4,求的长;(结果保留π)(2)求证:四边形ABMC是菱形.57.(甘南州)如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.(1)求证:CF=CH;(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM 是什么四边形?并证明你的结论.58.(东莞)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.59.(大庆)如图,四边形ABCD内接于⊙O,AD∥BC,P为BD上一点,∠APB=∠BAD.(1)证明:AB=CD;(2)证明:DP•BD=AD•BC;(2)证明:BD2=AB2+AD•BC.60.(赤峰)如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO 交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是的切线.(2)若PB=6,DB=8,求⊙O的半径.中考数学经典几何证明题60例参考答案与试题解析一、解答题(共60小题)1.(遵义)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.考点:菱形的判定与性质;全等三角形的判定与性质;直角三角形斜边上的中线;三角形中位线定理.专题:证明题.分析:(1)根据AAS证△AFE≌△DBE;(2)利用①中全等三角形的对应边相等得到AF=BD.结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF是菱形,由“直角三角形斜边的中线等于斜边的一半”得到AD=DC,从而得出结论;(3)由直角三角形ABC与菱形有相同的高,根据等积变形求出这个高,代入菱形面积公式可求出结论.解答:(1)证明:①∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵,∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)解:设菱形DC边上的高为h,∴RT△ABC斜边BC边上的高也为h,∵BC==,∴DC=BC=,∴h==,菱形ADCF的面积为:DC•h=×=10.点评:本题考查了全等三角形的性质和判定,平行四边形的判定,菱形的判定的应用,菱形的面积计算,主要考查学生的推理能力.2.(珠海)已知△ABC,AB=AC,将△ABC沿BC方向平移得到△DEF.(1)如图1,连接BD,AF,则BD=AF(填“>”、“<”或“=”);(2)如图2,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N,连接BH,GF,求证:BH=GF.考点:全等三角形的判定与性质;等腰三角形的性质;平移的性质.专题:证明题.分析:(1)根据等腰三角形的性质,可得∠ABC与∠ACB的关系,根据平移的性质,可得AC与DF的关系,根据全等三角形的判定与性质,可得答案;(2)根据相似三角形的判定与性质,可得GM与HN的关系,BM与FN的关系,根据全等三角形的判定与性质,可得答案.解答:(1)解:由AB=AC,得∠ABC=ACB.由△ABC沿BC方向平移得到△DEF,得DF=AC,∠DFE=∠ACB.在△ABF和△DFB中,,△ABF≌△DFB(SAS),BD=AF,故答案为:BD=AF;(2)证明:如图:MN∥BF,△AMG∽△ABC,△DHN∽△DEF,=,=,∴MG=HN,MB=NF.在△BMH和△FNG中,,△BMH≌△FNG(SAS),∴BH=FG.点评:本题考查了全等三角形的判定与性质,利用了平移的性质,相似三角形的判定与性质,全等三角形的判定与性质.3.(镇江)如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.(1)求证:△BAE≌△BCF;(2)若∠ABC=50°,则当∠EBA=20°时,四边形BFDE是正方形.考点:菱形的性质;全等三角形的判定与性质;正方形的判定.专题:证明题.分析:(1)由题意易证∠BAE=∠BCF,又因为BA=BC,AE=CF,于是可证△BAE≌△BCF;(2)由已知可得四边形BFDE对角线互相垂直平分,只要∠EBF=90°即得四边形BFDE 是正方形,由△BAE≌△BCF可知∠EBA=∠FBC,又由∠ABC=50°,可得∠EBA+∠FBC=40°,于是∠EBA=×40°=20°.解答:(1)证明:∵菱形ABCD的对角线AC,BD相交于点O,∴AB=BC,∠BAC=∠BCA,∴∠BAE=∠BCF,在△BAE与△BCF中,∴△BAE≌△BCF(SAS);(2)∵四边形BFDE对角线互相垂直平分,∴只要∠EBF=90°即得四边形BFDE是正方形,∵△BAE≌△BCF,∴∠EBA=∠FBC,又∵∠ABC=50°,∴∠EBA+∠FBC=40°,∴∠EBA=×40°=20°.故答案为:20.点评:本题考查了菱形的性质,全等三角形的判定与性质以及正方形的判定.本题关键是根据SAS证明△BAE≌△BCF.4.(漳州)如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作分、FG∥CD,交AE于点G连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求的值.考点:翻折变换(折叠问题);勾股定理;菱形的判定与性质;矩形的性质.专题:证明题.分析:(1)根据折叠的性质,易知DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,易证FG=FE,故由四边相等证明四边形DEFG为菱形;(2)在Rt△EFC中,用勾股定理列方程即可CD、CE,从而求出的值.解答:(1)证明:由折叠的性质可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形;(2)解:设DE=x,根据折叠的性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,FC2+EC2=EF2,即42+(8﹣x)2=x2,解得:x=5,CE=8﹣x=3,∴=.点评:本题主要考查了折叠的性质、菱形的判定以及勾股定理,熟知折叠的性质和菱形的判定方法是解答此题的关键.5.(玉林)如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O 的切线CD交AB的延长线于点C,E为的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.考点:切线的性质;平行四边形的判定;扇形面积的计算.专题:证明题.分析:(1)由∠BOD=60°E为的中点,得到,于是得到DE∥BC,根据CD 是⊙O的切线,得到OD⊥CD,于是得到BE∥CD,即可证得四边形BCDE是平行四边形;(2)连接OE,由(1)知,,得到∠BOE=120°,根据扇形的面积公式列方程即可得到结论.解答:解:(1)∵∠BOD=60°,∴∠AOD=120°,∴=,∵E为的中点,∴,∴DE∥AB,OD⊥BE,即DE∥BC,∵CD是⊙O的切线,∴OD⊥CD,∴BE∥CD,∴四边形BCDE是平行四边形;(2)连接OE,由(1)知,,∴∠BOE=120°,∵阴影部分面积为6π,∴=6π,∴r=6.点评:本题考查了切线的性质,平行四边形的判定,扇形的面积公式,垂径定理,证明是解题的关键.6.(永州)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.考点:全等三角形的判定与性质.专题:证明题.分析:(1)根据四边形的内角和等于360°求出∠B+∠ADC=180°,再根据邻补角的和等于180°可得∠CDE+∠ADE=180°,从而求出∠B=∠CDE;(2)根据“边角边”证明即可.解答:(1)证明:在四边形ABCD中,∵∠BAD=∠BCD=90°,∴90°+∠B+90°+∠ADC=360°,∴∠B+∠ADC=180°,又∵∠CDE+∠ADC=180°,∴∠ABC=∠CDE,(2)连接AC,由(1)证得∠ABC=∠CDE,在△ABC和△EDC中,,∴△ABC≌△EDC(SAS).点评:本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据四边形的内角和定理以及邻补角的定义,利用同角的补角相等求出夹角相等是证明三角形全等的关键,也是本题的难点.7.(营口)如图,点P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=,AC=8,求图中阴影部分的面积;(3)在(2)的条件下,若点E是的中点,连接CE,求CE的长.考点:切线的判定;扇形面积的计算.专题:证明题.分析:(1)连接OC,证明△PAO≌△PCO,得到∠PCO=∠PAO=90°,证明结论;(2)证明△ADP∽△PDA,得到成比例线段求出BC的长,根据S阴=S⊙O﹣S△ABC 求出答案;(3)连接AE、BE,作BM⊥CE于M,分别求出CM和EM的长,求和得到答案.解答:(1)证明:如图1,连接OC,∵PA切⊙O于点A,∴∠PAO=90°,∵BC∥OP,∴∠AOP=∠OBC,∠COP=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠AOP=∠COP,在△PAO和△PCO中,,∴△PAO≌△PCO,∴∠PCO=∠PAO=90°,∴PC是⊙O的切线;(2)解:由(1)得PA,PC都为圆的切线,∴PA=PC,OP平分∠APC,∠ADO=∠PAO=90°,∴∠PAD+∠DAO=∠DAO+∠AOD,∴∠PAD=∠AOD,∴△ADP∽△ODA,∴,∴AD2=PD•DO,∵AC=8,PD=,∴AD=AC=4,OD=3,AO=5,由题意知OD为△的中位线,∴BC=6,OD=6,AB=10.∴S阴=S⊙O﹣S△ABC=﹣24;(3)解:如图2,连接AE、BE,作BM⊥CE于M,∴∠CMB=∠EMB=∠AEB=90°,∵点E是的中点,∴∠ECB=∠CBM=∠ABE=45°,CM=MB=3,BE=AB•cos45°=5,∴EM==4,则CE=CM+EM=7.点评:本题考查的是切线的判定和性质、扇形面积的计算和相似三角形的判定和性质,灵活运用切线的性质:圆的切线垂直于过切点的半径和切线的判定是解题的关键.8.(徐州)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE=4时,四边形BFCE是菱形.考点:平行四边形的判定;菱形的判定.专题:证明题.分析:(1)由AE=DF,∠A=∠D,AB=DC,易证得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四边形BFCE是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.解答:(1)证明:∵AB=DC,∴AC=DF,在△AEC和△DFB中,∴△AEC≌△DFB(SAS),∴BF=EC,∠ACE=∠DBF∴EC∥BF,∴四边形BFCE是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,∵AD=10,DC=3,AB=CD=3,∴BC=10﹣3﹣3=4,∵∠EBD=60°,∴BE=BC=4,∴当BE=4 时,四边形BFCE是菱形,故答案为:4.点评:此题考查了相似三角形的判定与性质、全等三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及勾股定理等知识.此题综合性较强,难度适中,注意数形结合思想的应用,注意掌握辅助线的作法.9.(宿迁)如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.考点:平行四边形的判定与性质;等腰三角形的性质.专题:证明题.分析:(1)根据同旁内角互补两直线平行求出BC∥AD,再根据两直线平行,内错角相等可得∠CBE=∠DFE,然后利用“角角边”证明△BEC和△FCD全等,根据全等三角形对应边相等可得BE=EF,然后利用对角线互相平分的四边形是平行四边形证明即可;(2)分①BC=BD时,利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得解;②BC=CD时,过点C作CG⊥AF于G,判断出四边形AGCB 是矩形,再根据矩形的对边相等可得AG=BC=3,然后求出DG=2,利用勾股定理列式求出CG,然后利用平行四边形的面积列式计算即可得解;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾.解答:(1)证明:∵∠A=∠ABC=90°,∴BC∥AD,∴∠CBE=∠DFE,在△BEC与△FED中,,∴△BEC≌△FED,∴BE=FE,又∵E是边CD的中点,∴CE=DE,∴四边形BDFC是平行四边形;(2)①BC=BD=3时,由勾股定理得,AB===2,所以,四边形BDFC的面积=3×2=6;②BC=CD=3时,过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG﹣AD=3﹣1=2,由勾股定理得,CG===,所以,四边形BDFC的面积=3×=3;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC的面积是6或3.点评:本题考查了平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.10.(湘西州)如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.考点:矩形的判定;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;(2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.解答:证明:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四边形ABCD为平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS);(2)∵四边形ABCD为平行四边形,∴CD∥AB,∴∠CDE+∠DEB=180°,∵∠DEB=90°,∴∠CDE=90°,∴∠CDE=∠DEB=∠BFD=90°,则四边形BFDE为矩形.点评:此题考查了矩形的判定,全等三角形的判定与性质,以及平行四边形的性质,熟练掌握矩形的判定方法是解本题的关键.11.(咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.考点:根的判别式;解一元二次方程-公式法.专题:证明题.分析:(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m的值.解答:(1)证明:△=(m+2)2﹣8m=m2﹣4m+4=(m﹣2)2,∵不论m为何值时,(m﹣2)2≥0,∴△≥0,∴方程总有实数根;(2)解:解方程得,x=,x1=,x2=1,∵方程有两个不相等的正整数根,∴m=1或2,m=2不合题意,∴m=1.点评:本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是解题的关键.12.(咸宁)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.考点:切线的性质;菱形的判定与性质;相似三角形的判定与性质.专题:证明题.分析:(1)连接OD、OE、ED.先证明△AOE是等边三角形,得到AE=AO=0D,则四边形AODE是平行四边形,然后由OA=OD证明四边形AODE是菱形;(2)连接OD、DF.先由△OBD∽△ABC,求出⊙O的半径,然后证明△ADC∽△AFD,得出AD2=AC•AF,进而求出AD.解答:(1)证明:如图1,连接OD、OE、ED.∵BC与⊙O相切于一点D,∴OD⊥BC,∴∠ODB=90°=∠C,∴OD∥AC,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AOE是等边三角形,∴AE=AO=0D,∴四边形AODE是平行四边形,∵OA=OD,∴四边形AODE是菱形.(2)解:设⊙O的半径为r.∵OD∥AC,∴△OBD∽△ABC.∴,即10r=6(10﹣r).解得r=,∴⊙O的半径为.如图2,连接OD、DF.∵OD∥AC,∴∠DAC=∠ADO,∵OA=OD,∴∠ADO=∠DAO,∴∠DAC=∠DAO,∵AF是⊙O的直径,∴∠ADF=90°=∠C,∴△ADC∽△AFD,∴,∴AD2=AC•AF,∵AC=6,AF=,∴AD2=×6=45,∴AD==3.点评:本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、菱形的判定和性质以及相似三角形的判定和性质,是一个综合题,难度中等.熟练掌握相关图形的性质及判定是解本题的关键.13.(梧州)如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.(1)求证:HF=AP;(2)若正方形ABCD的边长为12,AP=4,求线段EQ的长.考点:正方形的性质;全等三角形的判定与性质;勾股定理.专题:证明题.分析:(1)先根据EQ⊥BO,EH⊥AB得出∠EQN=∠BHM=90°.根据∠EMQ=∠BMH得出△EMQ∽△BMH,故∠QEM=∠HBM.由ASA定理得出△APB≌△HFE,故可得出结论;(2)由勾股定理求出BP的长,根据EF是BP的垂直平分线可知BQ=BP,再根据锐角三角函数的定义得出QF=BQ的长,由(1)知,△APB≌△HFE,故EF=BP=4,再根据EQ=EF﹣QF即可得出结论.解答:(1)证明:∵EQ⊥BO,EH⊥AB,∴∠EQN=∠BHM=90°.∵∠EMQ=∠BMH,∴△EMQ∽△BMH,∴∠QEM=∠HBM.在Rt△APB与Rt△HFE中,,∴△APB≌△HFE,∴HF=AP;(2)解:由勾股定理得,BP===4.∵EF是BP的垂直平分线,∴BQ=BP=2,∴QF=BQ•tan∠FBQ=BQ•tan∠ABP=2×=.由(1)知,△APB≌△HFE,∴EF=BP=4,∴EQ=EF﹣QF=4﹣=.点评:本题考查的是正方形的性质,熟知正方形的性质及全等三角形的判定与性质是解答此题的关键.14.(威海)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.考点:相似三角形的判定与性质;等腰三角形的性质;圆周角定理.专题:证明题.分析:(1)连结AE,如图,根据圆周角定理,由AC为⊙O的直径得到∠AEC=90°,然后利用等腰三角形的性质即可得到BE=CE;(2)连结DE,如图,证明△BED∽△BAC,然后利用相似比可计算出AB的长,从而得到AC的长.解答:(1)证明:连结AE,如图,∵AC为⊙O的直径,∴∠AEC=90°,∴AE⊥BC,而AB=AC,∴BE=CE;(2)连结DE,如图,∵BE=CE=3,∴BC=6,∵∠BED=∠BAC,而∠DBE=∠CBA,∴△BED∽△BAC,∴=,即=,∴BA=9,∴AC=BA=9.点评:本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和圆周角定理.15.(铜仁市)已知,如图,点D在等边三角形ABC的边AB上,点F在边AC上,连接DF并延长交BC的延长线于点E,EF=FD.求证:AD=CE.考点:全等三角形的判定与性质;等边三角形的判定与性质.专题:证明题.分析:作DG∥BC交AC于G,先证明△DFG≌△EFC,得出GD=CE,再证明△ADG是等边三角形,得出AD=GD,即可得出结论.解答:证明:作DG∥BC交AC于G,如图所示:则∠DGF=∠ECF,在△DFG和△EFC中,,∴△DFG≌△EFC(AAS),∴GD=CE,。
初中数学经典几何题及答案解析总结计划
一、等腰三角形性质的应用1.题目:在等腰三角形ABC中,AB=AC,BD是底边BC上的高,垂足为D。
求证:AD=BD。
解析:利用等腰三角形的性质,我们知道AB=AC,所以∠ABC=∠ACB。
因为BD是高,所以∠BDA=90°。
根据直角三角形的性质,我们可以得到∠ABD=∠ACD。
又因为∠ABC=∠ACB,所以三角形ABD和三角形ACD是全等的。
根据全等三角形的性质,我们可以得到AD=BD。
2.题目:在等腰三角形ABC中,AB=AC,点D在底边BC上,且BD=CD。
求证:AD垂直平分BC。
解析:同样利用等腰三角形的性质,我们知道AB=AC,所以∠ABC=∠ACB。
因为BD=CD,所以∠BDC=∠CBD。
根据等腰三角形的性质,我们可以得到∠BDA=∠ADC=90°。
又因为∠BDC=∠CBD,所以三角形BDC 是等腰三角形,BD=CD。
根据等腰三角形的性质,我们知道AD垂直平分BC。
二、勾股定理的应用3.题目:直角三角形ABC中,∠C=90°,AB=10,BC=6,求AC的长度。
解析:根据勾股定理,我们知道AC^2+BC^2=AB^2。
将已知的AB 和BC的长度代入,得到AC^2+6^2=10^2。
解方程得到AC^2=100-36,所以AC=√64=8。
4.题目:直角三角形DEF中,∠F=90°,DE=8,DF=15,求EF的长度。
解析:同样根据勾股定理,我们知道DE^2+DF^2=EF^2。
将已知的DE和DF的长度代入,得到8^2+15^2=EF^2。
解方程得到EF^2=289,所以EF=√289=17。
三、圆的性质5.题目:在圆O中,∠AOB=60°,AB是圆的直径。
求证:∠ACB=30°。
解析:因为AB是圆的直径,所以∠AOB=90°。
因为∠AOB=60°,所以∠ACB=∠AOB/2=30°。
6.题目:在圆O中,直径AB,半径OC。
中考数学几何证明题经典题型分析
中考数学经典几何证明题(一)1.(1)如图1所示,在四边形ABCD 中,AC =BD ,AC 与BD 相交于点O ,E F 、分别是AD BC 、的中点,联结EF ,分别交AC 、BD 于点M N 、,试判断OMN △的形状,并加以证明;(2)如图2,在四边形ABCD 中,若AB CD =,E F 、分别是AD BC 、的中点,联结FE 并延长,分别与BA CD 、的延长线交于点M N 、,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论: ;(3)如图3,在ABC △中,AC AB >,点D 在AC 上,AB CD =,E F 、分别是AD BC 、的中点,联结FE 并延长,与BA 的延长线交于点M ,若45FEC ∠=︒,判断点M 与以AD 为直径的圆的位置关系,并简要说明理由.图 1 图2 图3FB ACD EFM NOD 2.(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC 于点G,CH⊥BD于点H,试证明CH=EF+EG;图1D(2) 若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;(3) 如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC, 连结CL,点E是CL上任一点, EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;(4) 观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、EG、CH这样的线段,并满足(1)或(2)的结论,写出相关题设的条件和结论.BGAFDECH3. 如图,△ABC 是等边三角形,F 是AC 的中点,D 在线段BC 上,连接DF ,以DF 为边在DF 的右侧作等边△DFE ,ED 的延长线交AB 于H ,连接EC ,则以下结论:①∠AHE +∠AFD =180°;②AF =21BC ;③当D 在线段BC 上(不与B ,C 重合)运动,其他条件不变时BDBH是定值;④当D 在线段BC 上(不与B ,C 重合)运动,其他条件不变时DCEC BC 21是定值;(1)其中正确的是-------------------; (2)对于(1)中的结论加以说明;4. 在ABC △中,AC=BC ,90ACB ∠=︒,点D 为AC 的中点.(1)如图1,E 为线段DC 上任意一点,将线段DE 绕点D 逆时针旋转90°得到线段DF ,连结CF ,过点F 作FH FC ⊥,交直线AB 于点H .判断FH 与FC 的数量关系并加以证明. (2)如图2,若E 为线段DC 的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.5. 如图12,在△ABC 中,D 为BC 的中点,点E 、F 分别在边AC 、AB 上,并且∠ABE =∠ACF ,BE 、CF 交于点O .过点O 作OP ⊥AC ,OQ ⊥AB ,P 、Q 为垂足.求证:DP=DQ .H F图2图1HFEB C DA E D BC A6. 如图。
中考数学几何证明题经典题型分析报告
中考数学经典几何证明题(一)1.(1)如图1所示,在四边形ABCD 中,AC =BD ,AC 与BD 相交于点O ,E F 、分别是AD BC 、的中点,联结EF ,分别交AC 、BD 于点M N 、,试判断OMN △的形状,并加以证明;(2)如图2,在四边形ABCD 中,若AB CD =,E F 、分别是AD BC 、的中点,联结FE 并延长,分别与BA CD 、的延长线交于点M N 、,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论: ;(3)如图3,在ABC △中,AC AB >,点D 在AC 上,AB CD =,E F 、分别是AD BC 、的中点,联结FE 并延长,与BA 的延长线交于点M ,若45FEC ∠=︒,判断点M 与以AD 为直径的圆的位置关系,并简要说明理由.图 1 图2 图3FBACD EFM NOD 2.(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD于点H,试证明CH=EF+EG;图1D(2) 若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;(3) 如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC, 连结CL,点E是CL上任一点, EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;(4) 观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、EG、CH这样的线段,并满足(1)或(2)的结论,写出相关题设的条件和结论.3. 如图,△ABC是等边三角形,F是AC的中点,D在线段BC上,连接DF,以DF为边在DF的右侧作等边△DFE,ED的延长线交AB于H,连接EC,则以下结论:①∠AHE+1BC;③当D在线段BC上(不与B,C重合)运动,其他条件∠AFD=180°;②AF=2BGAFDECH 不变时BDBH是定值;④当D 在线段BC 上(不与B ,C 重合)运动,其他条件不变时DCEC BC 21是定值;(1)其中正确的是-------------------; (2)对于(1)中的结论加以说明;4. 在ABC △中,AC=BC ,90ACB ∠=︒,点D 为AC 的中点.(1)如图1,E 为线段DC 上任意一点,将线段DE 绕点D 逆时针旋转90°得到线段DF ,连结CF ,过点F 作FH FC ⊥,交直线AB 于点H .判断FH 与FC 的数量关系并加以证明. (2)如图2,若E 为线段DC 的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.HF图2HFEBCD AEDBCA5. 如图12,在△ABC中,D为BC的中点,点E、F分别在边AC、AB上,并且∠ABE=∠ACF,BE、CF交于点O.过点O作OP⊥AC,OQ⊥AB,P、Q为垂足.求证:DP=DQ.6. 如图。
中学考试几何证明题知识点分析报告
目录1、考点总分析2、知识点讲解3、出题的类型4、解题思路5、相关练习题几何证明题专题本题的主要知识点(中考中第3道,分值为8分)七年级上第4章几何图形初步七年级下第5章相交线与平行线八年级上第11章三角形第12章全等三角形第13章轴对称八年级下第17章勾股定理第18章平行四边形九年级上第23章旋转第24章圆九年级下第27章相似第28章投影与视图1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。
几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2. 掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
几何证明题重点考察的是学生的逻辑思维能力,能通过严密的"因为"、"所以"逻辑将条件一步步转化为所要证明的结论。
这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。
所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。
知识结构图0160160⎧⎪⎨⎪⎩⎧⎪==⎪⎨⎪⎪⎩⎧⎨⎩”’”直线:两点确定一条直线线射线:线段:两点之间线段最短,(点到直线的距离,平行线间的距离)角的分类:锐角、直角、钝角、平角、周角.角的度量与比较:, ;角余角与补角的性质:同角的余角(补角)相等,等角的余角(补角)相等,角的位置关系:同位角、内错角、同旁内角、对顶角、邻补角对顶角:对顶角相等.相交线几何初步垂线:定义,垂直的判定,垂线段最短.平行⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎩⎩定义:在同一平面内,不相交的两条直线叫平行线线性质:两直线平行,同位角相等、内错角相等、同旁内角互补;同位角相等或内错角相等或同旁内角互补,两直线平行判定:平行于同一条直线的两条直线平行平面内,垂直于同一条直线的两直线平行1C S 20.⎧⎨⎩⎧⎪⎨⨯⎪⎩⎧⎪⎨⎪⎩按边分类:不等边三角形、等腰三角形、等边三角形分类按角分类:锐角三角形、直角三角形、钝角三角形三边关系:两边之和大于第三边,两边之差小于第三边;边面积与周长:=a+b=c ,=底高.三角形的内角和等于18度,外角和等于360度;角三角形的一个外角等于不相邻的两内角之和;三角形的一个外角大于任何一个不相邻的内角中线:一条中线平分三角形的面积一般三角形角线段三角形.⎧⎪⎨⎪⎩性质:角平分线上的点到角两边的距离相等;平分线判定:到角两边的距离相等的点在角的平分线上内心:三角形三条角平分线的交点,到三边距离相等.高:高的作法及高的位置(可以在三角形的内部、边上、外部)中位线:三角形的中位线平行于第三边且等于第三边的一半.性质:线段垂直平分线上的点到线段两端点的距离相等;中垂线判定:到线段两端点的距离相等的点在线段的垂直平分线上.外心:三角形三边垂直平分线的交点.60.6060⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎩⎧⎨⎩,到三个顶点的距离相等等腰三角形的两腰相等、两底角相等,具有三线合一性质,是轴对称图形性质等边三角形的三边上均有三线合一,三边相等,三角形等都为度有两边相等的三角形是等腰三角形;等腰三角形有两角相等的三角形是等腰三角形;判定有一个角为度的等腰三角形是等边三角形;有两个角是度的三角02220.30C 90.⎧⎪⎪⎪⎪⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎨⎧⎪⎨⎪=⎩形是等边三角形一个角是直角或两个锐角互余;直角三角形斜边上的中线等于斜边的一半;性质直角三角形中,的锐角所对的直角边等于斜边的一半;勾股定理:两直角边的平方和等于斜边的平方.直角三角形证一个角是直角或两个角互余;判定有一边上的中线等于这边的一半的三角形是直角三角形;勾股定理的逆定理:若a +b =c ,则∠.ASA SAS AAS SSS HL ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎧⎪⎨⎪⎨⎩⎪⎪⎪⎩⎩全等三角形的对应边相等,对应角相等,周长、面积也相等;性质全等三角形全等三角形对应线段(角平分线、中线、高、中位线等)相等判定:,,,,.00.⋅⎧⎪⎧⎪⎪⎪⎧⎪⎪⎪⎨⎪⎧⎨⎪⎪⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎩⎩⎩多边形:多边形的内角和为(n-2)180,外角和为360定义:一组对边平行而另一组对边不平行的四边形叫做梯形.直角梯形性质:两腰相等、对角线相等,同一底上的两角相等.梯形特殊梯形两腰相等的梯形是等腰梯形;等腰梯形判定对角线相等的梯形是等腰梯形;同一底上的两角相等的梯形是等腰梯形;两组对边分别平性质:平行四边形的平行四边形四边形...⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎨⎪⎪⎪⎪⎪⇒⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎧⎨⎪⎩⎪⎧⎨⎪⎨⎪⎩行且相等两组对角分别相等两条对角线互相平分两组对边分别平行一组对边平行且相等判定:两组对边分别相等的四边形是平行四边形.两组对角分别相等对角线互相平分共性:具有平行四边形的所有性质性质个性:对角线相等,四个角都是直角矩形先证平行四边形,再证有一个直角;判定先证平行四边形,再证对角线相等;三个角是直角的四边形是矩形....1S=2⎪⎪⎪⎪⎩⎧⎧⎨⎪⎩⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎩⎧⎪→→⎧⎨⎨⎪→→⎩⎩+共性:具有平行四边形的所有性质性质个性:对角线互相垂直且每条对角线平分一组对角,四条边相等菱形先证平行四边形,再证对角线互相垂直;判定先证平行四边形,再证一组邻边相等;四条边都相等的四边形是菱形性质:具有平行四边形、矩形、菱形的所有性质正方形证平行四边形矩形正方形判定证平行四边形菱形正方形梯形:(上底下底面积求法S=S S S ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⨯⨯⎪⎪⎪⎪⨯⎪⎪⎨=⨯⎪⎪⎪⎪⨯⎪⎪⎪=⨯⎩⎩)高=中位线高平行四边形:底高矩形:长宽菱形:=底高=对角线乘积的一半正方形:边长边长=对角线乘积的一半⎧⎪⎨⎪⎩⎧⎪⎧⎨⎨⎪⎩⎩点在圆外:d >r 点与圆的三种位置关系点在圆上:d =r 点在圆内:d <r 弓形计算:(弦、弦心距、半径、拱高)之间的关系圆的轴对称性定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧垂径定理推论:平分弦(不是直径)的直径垂直于弦,并且平分线所对的弧在同圆或等圆中,两条弧、两条弦、两个圆心角、两个圆周角、五组量的关系:两条弦心距中有一组量相等,则其余的各组两也分别圆的中心对称性圆009090AB CD P PA PA PC PD..⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪⎪⎨⎨⎪⎪⎩⎪⎪=⎪⎪⎩⎧⎪⎨⎪⎩g g 相等.同弧所对的圆周角是它所对圆心角的一半;圆周角与圆心角半圆(或直径)所对的圆周角是;的圆周角所对的弦是直径,所对的弧是半圆.相交线定理:圆中两弦、相交于点,则圆中两条平行弦所夹的弧相等相离:d >r 直线和圆的三种位置关系相切:d =r(距离法)相交:d <r 性质:圆的切线垂直圆的切线直线和圆的位置关系2PA PB PO APB PA PC PD.⎧⎪⎪⎪⎪⎪⎧⎪⎨⎨⎩⎪⎪⎪⎪=⎪⎪⎩⎧⎪⎨⎪⎩g 于过切点的直径(或半径)判定:经过半径的外端且垂直于这条半径的直线是圆的切线.弦切角:弦切角等于它所夹的弧对的圆周角切线长定理:如图,=,平分∠切割线定理:如图,外心与内心:相离:外离(d >R+r ),内含(d <R-r )圆和圆的位置关系相切:外切(d=R+r ),内切(d=R-r )相交:R-r <d <R+r )圆的有关计算22n n 2360180n 1S 36021S 2(2S l r r r l r r l rl r l r rl πππππππ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪==⎪⎪⎪⎪⎪==⋅⋅⎪⎪⎨⎪⎪⎪=⋅⋅=⎪⎪⎪⎪⎪=+⎪⎩⎩弧长弧长侧全弧长公式:扇形面积公式:圆锥的侧面积:为底面圆的半径,为母线)圆锥的全面积:⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎨⎪⎩⎪⎪⎧⎪⎨⎪⎩⎩①轴对称指两个图形之间的关系,它们全等②对应点的连线段被对称轴垂直平分轴对称(折叠)③对应线段所在的直线相交于对称轴上一点(或平行)轴对称④图形折叠后常用勾股定理求线段长①指一个图形轴对称图形②轴对称图形被对称轴分成的两部分全等①平移前后两个图形全等②平移前后对应点的连线段相等且平行(或共线)平 移③平移前后的对应角相等,对应线段相等且平行(或图形的变化⎧⎪⎪⎨⎪⎪⎩⎧⎪⎪⎨⎪⎪⎩⎧⎨⎩共线)④平移的两个要素:平移方向、平移距离①旋转前后的两个图形全等②旋转前后对应点与旋转中心的连线段相等,且它们的夹角等于旋转角旋 转③旋转前后对应角相等,对应线段相等④旋转的三要素:旋转中心、旋转方向、旋转角①大小、比例要适中视图的画法②实线、虚线要画清平行投影:平行光线下的投影,物体平行影子平行或共线视图与投影中心投影:点光源射出的光线下的投影,影子不平投影2.........0)...AB C AC BC AC BC AC BC AB a c ad bc b d a c a b c d b d b d a c m a b m k k b d n b d n b d n ⎧⎪⎪⎪⎪⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎧=⇔=⎪⎪±±⎪=⇒=⎨⎪+++⎪====⇒=+++⎪+++⎩g 行视点、视线、盲区投影的计算:画好图形,相似三角形性质的应用基本性质:比例的性质合比性质:等比性质:,(条件≠黄金分割:线段被点分成、两线段(>),满足=, 相似形C AB ⎧⎨⎩⎧⎪⎨⎪⎩ 则点为的一个黄金分割点性质:相似多边形的对应边成比例、对应角相等相似多边形判定:全部的对应边成比例、对应角相等①对应角相等、对应边成比例性质②对应线段(中线、高、角平分线、周长)的比等于相似比③面积的比等于相似比的平方①有两个角相等的两个三角形相似相似图形②两边对应成比例且夹角相等的两个三角形相似相似三角形判定③三边对应成比例的两个三角形相似④有一条直角边与0222Rt ABC C 90CD AB AC AD AB BC BD AB CD AD BD ⎧⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪=⋅⎪⎪⎪⎪⋅⋅⎪⎪⎪⎪⎩⎩⎧⎨斜边对应成比例的两个直角三角形相似射影定理:在△中,∠,⊥,则=, =,=(如图)①位似图形是一种特殊的相似图形,具有相似图形的一切性质位似图形②位似图形对应点所确定的直线过位似中心③通过位似可以将图形放大或缩小⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎩中考中主要考试的类型一、证明两线段相等1.两全等三角形中对应边相等。
初中数学中考几何题型研究分析
初中数学中考几何题型研究分析发布时间:2021-04-30T15:44:25.297Z 来源:《中小学教育》2021年3期(下)作者:胡亚利[导读] 几何习题是中考试卷中主要的题型之一胡亚利浙江省宁波慈溪市周巷镇杭州湾初级中学 315324摘要:几何习题是中考试卷中主要的题型之一,在试卷中占据一定的比例,因此几何习题对整个试卷的质量与有效性具有一定的影响,也决定了学生在中考中会夺取多少分数。
所以通过简要分析浙教版初中的中考试卷,分析其中的几何题型,从侧面提出复习的见解,适当提出复习工作的相应建议。
关键词:中考;初中数学;几何题型引言:分析近几年的浙教版中考试卷,发现几何题型在考察中较为重要,分数占据比例较大。
因此在复习过程中,需要注重几何知识的复习,才能在中考中获取更加优秀的成绩。
本文将分析中考试卷中几何题型,提出复习的策略。
一、中考几何习题分析几何习题的题型考察较为广泛,在选择题、填空题与应用题中都有所考察,但是在选择题与填空题的考察中较为简单,更多是对几何知识的直接考察,不会进行太复杂的思考与计算。
在选择题与填空题中,大多数习题都与实际生活相联系,例如,在2018年的浙江绍兴中考题的第七题,将学校门口的栏杆从水平位置BD绕O点旋转到AC的位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为多少?这一习题就是与实际生活相联系,以学校栏杆作为习题背景依据,进行习题讲述,使习题更加直观。
在应用题的考察中,近几年只是考察单个知识点的习题较少,更多是考察多个几何知识点,在考察的习题中更多的是在圆图形上做一定的深入,结合三角形知识、线段知识、三角函数知识等,对学生的基础知识、思维与能力等进行考察,这类习题做到了综合考察,在中考试卷中具有重要的地位[1]。
二、复习策略(一)降低重心,夯实基础在中考中,对于基础的考察是其中的主体,因此在复习过程中必须注重复习“三基”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学经典几何证明题(一)
1.(1)如图1所示,在四边形ABCD 中,AC =BD ,AC 与BD 相交于点O ,E F 、分
别是AD BC 、的中点,联结EF ,分别交AC 、BD 于点M N 、,试判断OMN △的形状,并加以证明;
(2)如图2,在四边形ABCD 中,若AB CD =,E F 、分别是AD BC 、的中点,联结FE 并延长,分别与BA CD 、的延长线交于点M N 、,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论: ;
(3)如图3,在ABC △中,AC AB >,点D 在AC 上,AB CD =,E F 、分别是
AD BC 、的中点,联结FE 并延长,与BA 的延长线交于点M ,若45FEC ∠=︒,判
断点M 与以AD 为直径的圆的位置关系,并简要说明理由.
图 1 图2 图3
F
B A
C
D E
F
M N
O
2.(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥A C 于点G,CH⊥BD于点H,试证明CH=EF+EG;
D
图1
(2) 若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥A C的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;
(3) 如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC, 连结CL,点E是CL上任
一点, EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;
(4) 观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、
EG、CH这样的线段,并满足(1)或(2)的结论,写出相关题设的条件和结论.
B
G
A
F
D
E
C
H
3. 如图,△ABC 是等边三角形,F 是AC 的中点,D 在线段BC 上,连接DF ,以DF 为边在
DF 的右侧作等边△DFE ,ED 的延长线交AB 于H ,连接EC ,则以下结论:①∠AHE +∠
AFD =180°;②AF =21BC ;③当D 在线段BC 上(不与B ,C 重合)运动,其他条件不变时
BD
BH
是定值;④当D 在线段BC 上(不与B ,C 重合)运动,其他条件不变时DC
EC BC 21
是定值;
(1)其中正确的是-------------------; (2)对于(1)中的结论加以说明;
4. 在ABC △中,AC=BC ,90ACB ∠=︒,点D 为AC 的中点.
(1)如图1,E 为线段DC 上任意一点,将线段DE 绕点D 逆时针旋转90°得到线段DF ,连结CF ,过点F 作FH FC ⊥,交直线AB 于点H .判断FH 与FC 的数量关系并加以证明. (2)如图2,若E 为线段DC 的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.
5. 如图12,在△ABC 中,D 为BC 的中点,点E 、F 分别在边AC 、AB 上,并且∠ABE =∠ACF ,BE 、CF 交于点O .过点O 作OP ⊥AC ,OQ ⊥AB ,P 、Q 为垂足.求证:DP=DQ .
6. 如图。
,BD 是△ABC 的角平分线,CE 是△ABC 的外角平分线,过点A 作AF ⊥BD ,AG ⊥CE ,垂足分别为F 、G 。
探究:线段FG 的长与△ABC 三边的关系,并加以证明。
说明:⑴如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);⑵在你经历说明⑴的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明。
注意:选取①完成证明得10分;选取②完成证明得7分。
H F
图2图1
H
F
E
B C D
A E D B
C A
①可画出将△ADF沿BD折叠后的图形;
②将CE变为△ABC的角平分线。
(如图2)
附加题:探究BD、CE满足什么条件时,线段FG的长与△ABC的周长存在一定的数量关系,并给出证明。
7. 在四边形ABCD中,对角线AC平分∠DAB.
(1)如图①,当∠DAB=120°,∠B=∠D=90°时,求证:AB+AD=AC.
(2)如图②,当∠DAB=120°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?
写出你的猜想,并给予证明.
(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.
8. 设点E是平行四边形ABCD的边AB的中点,F是BC边上一点,线段DE和AF相交于点P,
点Q在线段DE上,且AQ∥PC.
(1)证明:PC=2AQ.
(2)当点F为BC的中点时,试比较△PFC和梯形APCQ面积的大小关系,并对你的结论加以证明.
9. 两块等腰直角三角板△ABC 和△DEC 如图摆放,其中∠ACB =∠DCE = 90°,F 是DE 的中点,H 是AE 的中点,G 是BD 的中点.
(1)如图1,若点D 、E 分别在AC 、BC 的延长线上,通过观察和测量,猜想FH 和FG 的数量关系为_______和位置关系为______;
(2)如图2,若将三角板△DEC 绕着点C 顺时针旋转至ACE 在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由; (2)如图3,将图1中的△DEC 绕点C 顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.
10. 已知△ABC 中,AB =AC =3,∠BAC =90°,点D 为BC 上一点,把一个足够大的直角三
角板的直角顶点放在D 处. (1)如图①,若BD =CD ,将三角板绕点D 逆时针旋转,两条直角边分别交AB 、AC 于点E 、点F ,求出重叠部分AEDF 的面积(直接写出结果).
(2)如图②,若BD =CD ,将三角板绕点D 逆时针旋转,使一条直角边交AB 于点E 、另一条直角边交AB 的延长线于点F ,设AE =x ,重叠部分的面积为y ,求出y 与x 的函数关系式,并写出自变量x 的取值围.
(3)若BD =2CD ,将三角板绕点D 逆时针旋转,使一条直角边交AC 于点F 、另一条直角
D E
C H
F G 图3 D E C H F G 图1 图2
A D
E
C H
F G
边交射线AB于点E.设CF=x(x>1),重叠部分的面积为y,求出y与x的函数关系式,并写出自变量x的取值围.
中考几何经典证明题(二)
1、如图,△ABC中,∠BAC=90°,AD⊥BC,E为CB延长线上一点,且∠EAB=∠BAD,设DC=kBD,试探究EC与EA的数量关系。
2、如图,△ABC中,∠BAC=90°,AD⊥BC,DE⊥AB,DF⊥AC,若AB=kAC,试探究BE与CF的数量关系。
3、如图,在△ABC和△PQD中,AC=kBC,DP=kDQ,∠C=∠PDQ,D、E分别是AB、AC的中点,点P在直线BC上,连接EQ交PC于点H。
猜想线段EH与AC的数量关系,并证明你的猜想,若证明有困难,则可选k=1证明之。
4、在△ABC中,O是AC上一点,P、Q分别是AB、BC上一点,∠B=45°,∠POQ=135°,BC=kAB,OC=mAO。
试说明OP与OQ是数量关系,选择条件:(1)m=1,(2)m=k=1。
5、如图,△ABC中,AD是BC边上的中线,∠CAD=∠B,AC=kAB,E在AD延长线上,∠CED=∠ADB,探究AE与AD的关系。
6、如图,∠BAC=90°,AD⊥BC,DE⊥AB, AB=kAC,探究BE与AE是数量关系。